101
|
Contamination of Heavy Metals in Sediments from an Estuarine Bay, South China: Comparison with Previous Data and Ecological Risk Assessment. Processes (Basel) 2022. [DOI: 10.3390/pr10050837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Heavy metal contamination is an elevating threat to the aquatic environment of estuarine bays. In the present study, surface sediments from Shantou Bay in South China were collected and detected for the concentrations of heavy metals including copper (Cu), zinc (Zn), chromium (Cr), nickel (Ni), cadmium (Cd), and lead (Pb) using ICP-MS. Spatial distribution, temporal trend, and potential ecological risks for the metal pollution were discussed. The results showed that levels of metals generally decreased by the order of Zn > Pb > Cr > Cu > Ni > Cd. Spatial variation of metal contents was observed with an order of Rongjiang River > Niutian Bay > Shanthou Harbor for Zn and Cd. Sediments of the Niutian Bay were observed with higher levels of Cu, Cr, Ni, and Pb. Compared with reported data from the same region at different sampling periods, a low–high–low trend was observed for the concentrations of the six elements, suggesting a great improvement of sediment quality in Shantou Bay. The average Igeo values suggested moderate pollution of Cu, Zn, Pb, and Cd. The potential ecological risks of Cu, Pb, Zn, Ni, and Cr were in low levels. More attention should be paid to the Cd pollution, considering its great values of potential ecological risk index. Our findings provided better understanding of heavy metal pollution in estuarine environments.
Collapse
|
102
|
Detection and Prediction of HMS from Drinking Water by Analysing the Adsorbents from Residuals Using Deep Learning. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3265366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Contamination HM is an important issue associated with the environment, and it requires suitable steps for the reduction of HMs in water at an acceptable ratio. With modern technologies, this could be possible by enabling the carbon adsorbents to adsorb the pollutions via deep learning strategies. In this paper, we develop a model on detection and prediction of presence of HMs from drinking water by analysing the adsorbents from residuals using deep learning. The study uses dense neural networks or DenseNets to analyse the microscopic images of the residual adsorbents. The study initially preprocesses and extracts features using standardised procedure. The DenseNets are used finally for detection purpose, and it is trained and tested with standard set of microscopic images. The experimental results are conducted to test the efficacy of the deep learning model on detecting the HM composition. The results of simulation show that the proposed deep learning model achieves 95% higher rate of detecting the HM composition from the adsorption residuals than other methods.
Collapse
|
103
|
Zhang Y, Boparai HK, Wang J, Sleep BE. Effect of low permeability zone location on remediation of Cr(VI)-contaminated media by electrokinetics combined with a modified-zeolite barrier. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127785. [PMID: 34801309 DOI: 10.1016/j.jhazmat.2021.127785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Research on electrokinetics-permeable reactive barrier (EK-PRB) remediation to date has mainly focused on homogeneous soils or soils with micro-scale heterogeneities. The potential impact of macro-scale physical heterogeneities, such as stratified layers or lenses, on EK-PRB remediation has not received much attention. This study investigates the effect of a low permeability stratum on EK-PRB remediation of hexavalent chromium (Cr(VI)). Sandbox experiments were conducted to treat Cr(VI)-contaminated kaolinite/sand media, consisting of vertically-layered high permeability (HPZ) and low permeability zones (LPZ), where distance between LPZ and anode (DLA) was 3, 9, or 15 cm. Parameters including current, moisture content (MC), pH, and removal of Cr(VI) were evaluated. With 72 h of EK-PRB treatment, tests with larger DLA (15 cm) had greater Cr(VI) migration from contaminated area to modified-zeolite PRB. Cr(VI), Cr(III), and Cr(Total) removal and energy utilization efficiency followed the trend as: DLA-15 > DLA-9 > DLA-3. MC generally decreased from anode towards cathode and pH was alkaline in all the zones for DLA-3 and DLA-15. In DLA-9 (LPZ in the middle), MC increased and pH was alkaline in HPZs near cathode whereas HPZs near anode were very dry (MC < 1%) and acidic (pH < 5.5). Our results show that the location of LPZ relative to electrode locations has a significant influence on Cr(VI) removal efficiency and macro-scale physical heterogeneity is an important factor to be considered during EK-PRB remediation.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Earth Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing 211100, China; Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Hardijleet K Boparai
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Jinguo Wang
- School of Earth Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing 211100, China
| | - Brent E Sleep
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| |
Collapse
|
104
|
Ammar EE, Aioub AA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, EL-Shershaby NA. Algae as Bio-fertilizers: Between Current situation and Future prospective. Saudi J Biol Sci 2022; 29:3083-3096. [PMID: 35360501 PMCID: PMC8961072 DOI: 10.1016/j.sjbs.2022.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
Bio-fertilization is a sustainable agricultural practice that includes using bio-fertilizers to increase soil nutrient content resulting in higher productivity. Soil micro-flora has been exposed to improve soil fertility and increase biomass productivity and identified as a correct environmentally friendly bio-based fertilizer for pollution-free agricultural applies. The majority of cyanobacteria can fix nitrogen from the atmosphere and several species including Anabaena sp., Nostoc sp., and Oscillatoria angustissima is known to be effective cyanobacterial based bio fertilizers. Acutodesmus dimorphus, Spirulina platensis Chlorella vulgaris, Scenedesmus dimorphus, Anabaena azolla, and Nostoc sp. are some of the green microalgae and cyanobacteria species that have been successfully used as bio fertilizers to boost crop growth. Also, Chlorella vulgaris is one of the most commonly used microalgae in bio fertilizer studies. The addition of seaweed species that are Sargassum sp. and Gracilaria verrucosa leads to chemical changes as a soil fertility indicator on clay and sandy soils, and the addition of seaweed conditioner to soil can improve its organic content, return pH to normal, and reduce C/N ratio in both sandy and clay soil. This review provides an effective approach to increase soil fertility via environmentally friendly bio-based fertilizer using micro and macro algae. Instead of the usage of inorganic and organic fertilizers that have polluted impacts to soil as aggregation of heavy metals, in addition to there their human carcinogenic effects.
Collapse
Affiliation(s)
- Esraa E. Ammar
- Sector of Plant Ecology, Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Ahmed A.A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Corresponding author at: Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed E. Elesawy
- Department of Project Management and Sustainable Development - Arid Land Agriculture Research Institute - City of Scientific Research and Technological Applications, New Borg El-Arab, 21934 Alexandaria, Egypt
| | - Ali M. Karkour
- Sector of Microbiology, Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Moustafa S. Mouhamed
- Sector of Microbiology, Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Aliaa A. Amer
- Sector of Microbiology, Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | | |
Collapse
|
105
|
Khosropour E, Weisany W, Tahir NAR, Hakimi L. Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17476-17486. [PMID: 34668134 DOI: 10.1007/s11356-021-17073-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Organic substrates are gaining popularity as a means of mitigating the negative effects of cadmium (Cd) stress on plant growth. The aim of the present study was to investigate the physio-biochemical attributes of Berberis integerrima bunge under Cd-contaminated soil. The pot experiment was carried out based on a completely randomized design (CRD) with six replicates. Cd stress was used as cadmium chloride (CdCl2) at 10, 20, and 30 mg Cd kg-1 dry soil. Biochar was applied at the doses of 125 g per pot, and vermicompost was used at the doses of 250 g per pot separately, and for their combination, they were used as 125 g per pot of BC + 250 g per pot of VC. The results showed higher Cd accumulation in both roots and leaves when the soil was polluted with Cd concentrations, but both BC and VC decreased the Cd accumulation in plant tissues. Although chlorophyll content and relative water content (RWC) decreased at 20 and 30 mg Cd kg-1 soil, BC and VC, particularly their combination, increased these traits. The highest total phenolic content (TPC) was observed in plants exposed to 20 mg Cd kg-1 soil and combined BC and VC. The total flavonoid content (TFC) was increased to 20 mg Cd kg-1 soil and then decreased to 30 mg Cd kg-1 soil. In addition, organic fertilizer promoted the plants' high accumulation of TFC. The greater activities of antioxidant enzymes including superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL) were observed at 30 mg Cd kg-1 soil when organic substrates were added. The present study suggests the use of combined BC and VC lead to alleviate the adverse effects of Cd stress in B. integerrima.
Collapse
Affiliation(s)
- Esmail Khosropour
- Department of Forestry and Forest Economics, University of Tehran, Tehran, Iran
| | - Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nawroz Abdul-Razzak Tahir
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Leila Hakimi
- Department of Agriculture, Islamic Azad University, Saveh Branch, Iran
| |
Collapse
|
106
|
Ji M, Wang X, Usman M, Liu F, Dan Y, Zhou L, Campanaro S, Luo G, Sang W. Effects of different feedstocks-based biochar on soil remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118655. [PMID: 34896220 DOI: 10.1016/j.envpol.2021.118655] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/19/2021] [Accepted: 12/05/2021] [Indexed: 05/22/2023]
Abstract
As a promising amendment, biochar has excellent characteristics and can be used as a remediation agent for diverse types of soil pollution. Biochar is mostly made from agricultural wastes, forestry wastes, and biosolids (eg, sewage sludge), but not all the biochar has the same performance in the improvement of soil quality. There is a lack of guidelines devoted to the selection of biochar to be used for different types of soil pollution, and this can undermine the remediation efficiency. To shed light on this sensitive issue, this review focus on the following aspects, (i) how feedstocks affect biochar properties, (ii) the effects of biochar on heavy metals and organic pollutants in soil, and (iii) the impact on greenhouse gas emissions from soil. Generally, the biochars produced from crop residue and woody biomass which are composed of lignin, cellulose, and hemicellulose are more suitable for organic pollution remediation and greenhouse gas emission reduction, while biochar with high ash content are more suitable for cationic organic pollutant and heavy metal pollution (manure and sludge, etc.). Additionally, the effect of biochar on soil microorganisms shows that gram-negative bacteria in soil tend to use WB biochar with high lignin content, while biochar from OW (rich in P, K, Mg, and other nutrients) is more able to promote enzyme activity. Finally, our recommendations on feedstocks selection are presented in the form of a flow diagram, which is precisely intended to be used as a support for decisions on the crucial proportioning conditions to be selected for the preparation of biochar having specific properties and to maximize its efficiency in pollution control.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Department of Biology, University of Padua, 35131, Padova, Italy
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | | | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
107
|
Soil Remediation: Towards a Resilient and Adaptive Approach to Deal with the Ever-Changing Environmental Challenges. ENVIRONMENTS 2022. [DOI: 10.3390/environments9020018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pollution from numerous contaminants due to many anthropogenic activities affects soils quality. Industrialized countries have many contaminated sites; their remediation is a priority in environmental legislation. The aim of this overview is to consider the evolution of soil remediation from consolidated invasive technologies to environmentally friendly green strategies. The selection of technology is no longer exclusively based on eliminating the source of pollution but aims at remediation, which includes the recovery of soil quality. “Green remediation” appears to be the key to addressing the issue of remediation of contaminated sites as it focuses on environmental quality, including the preservation of the environment. Further developments in green remediation reflect the aim of promoting clean-up strategies that also address the effects of climate change. Sustainable and resilient remediation faces the environmental challenge of achieving targets while reducing the environmental damage caused by clean-up interventions and must involve an awareness that social systems and environmental systems are closely connected.
Collapse
|
108
|
Application of Deinococcus radiodurans in the treatment of environmental pollution by heavy metals and radionuclides. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
109
|
Guo X, Zhang S, Luo J, Pan M, Du Y, Liang Y, Li T. Integrated glycolysis and pyrolysis process for multiple utilization and cadmium collection of hyperaccumulator Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126859. [PMID: 34449335 DOI: 10.1016/j.jhazmat.2021.126859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is a cost-effective and environmentally-friendly method to treat cadmium (Cd) contaminated soils, however, there is still a lack of safe disposal methods of harvested hyperaccumulators. In this study, by integrating glycolysis and pyrolysis, we investigated the possibility of bioproduct production and Cd collection from the hyperaccumulator Sedum alfredii. By means of acid-alkali pretreatment, the degree of cellulose polymerization was reduced by 36.24% while the surface accessibility was increased by 115.80%, resulting in a bioethanol yield of 9.29%. Meanwhile, 99.22% of total Cd of biomass could be reclaimed by collecting H2SO4-pretreatment waste. The saccharification residue was subsequently modified by NaOH-pretreatment-filtrate and converted into biochar at 500 °C which possessed a maximum Cd2+ sorption capacity of 60.52 mg g-1 based on the Langmuir model. Furthermore, sustainability analysis indicated that the economic input of this process is acceptable when considering its good environmental benefits. Taken together, our study provides a strategy for simultaneous bioethanol and biochar production during Cd collection from the hyperaccumulator S. alfredii, which could be a promising alternative for the suitable treatment of metal-enriched plants.
Collapse
Affiliation(s)
- Xinyu Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijun Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minghui Pan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yilin Du
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
110
|
Dhaliwal SS, Sharma V, Taneja PK, Shukla AK, Kaur L, Verma G, Verma V, Singh J. Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6000-6009. [PMID: 34431059 DOI: 10.1007/s11356-021-16084-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) metal extraction through efficient plant roots has attracted much attention as this methodology is environment-friendly and cost-effective. Brassica species are well known for their tolerance towards high Cd concentration in contaminated soils. The tolerance ability may vary among species; hence the assessment of this variability is mandatory for selecting Brassica species. For this purpose, a greenhouse pot experiment was carried out using three Brassica species (Brassica juncea L., Brassica campestris L., and Brassica napus L.). To evaluate the effect of chelating agent ethylenediamine tetraacetic acid (EDTA) on Cd uptake, EDTA (0, 1, and 2 g kg-1 soil) was supplemented along with Cd (0, 5, 10, 20, 40, and 80 mg kg-1 soil). Among different species, B. juncea possessed the highest root dry biomass and lowest root Cd concentration in untreated soil. Overall root dry biomass of all tested Brassica species reduced on increasing Cd and EDTA levels. The trend was appeared to be related to an increase in root Cd concentration on the supplementation of EDTA that formed a complex with the target metal contaminate and resulted in vacuolar sequestration. Roots of B. juncea showed maximum Cd accumulation and highest values at Cd and EDTA levels up to 20 mg kg-1 and 1 g kg-1 soil due to the combined effect of root biomass and Cd concentration in roots. Thus, present findings inferred that Cd and EDTA supplementation might prove as a feasible strategy to improve remediation of Cd-polluted soil using B. juncea as an efficient Cd accumulator.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | | | | | - Lovedeep Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Gayatri Verma
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Vibha Verma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Jagdish Singh
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| |
Collapse
|
111
|
The rhizosphere of Sulla spinosissima growing in abandoned mining soils is a reservoir of heavy metals tolerant plant growth-promoting rhizobacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
112
|
Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, Karaman C, Orooji Y, Show PL. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. CHEMOSPHERE 2022; 287:132369. [PMID: 34582930 DOI: 10.1016/j.chemosphere.2021.132369] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution remains a global environmental challenge that poses a significant threat to human life. Various methods have been explored to eliminate heavy metal pollutants from the environment. However, most methods are constrained by high expenses, processing duration, geological problems, and political issues. The immobilization of metals, phytoextraction, and biological methods have proven practical in treating metal contaminants from the soil. This review focuses on the general status of heavy metal contamination of soils, including the excessive heavy metal concentrations in crops. The assessment of the recent advanced technologies and future challenges were reviewed. Molecular and genetic mechanisms that allow microbes and plants to collect and tolerate heavy metals were elaborated. Tremendous efforts to remediate contaminated soils have generated several challenges, including the need for remediation methodologies, degrees of soil contamination, site conditions, widespread adoptions and various possibilities occurring at different stages of remediation are discussed in detail.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - T A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey
| | - Yasin Orooji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
113
|
Paria K, Pyne S, Chakraborty SK. Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. CHEMOSPHERE 2022; 286:131874. [PMID: 34426280 DOI: 10.1016/j.chemosphere.2021.131874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Wastewater imposes a great threat to any ecosystem across the world, especially the aquatic one because of the different anthropogenic activities of human beings. The present study emphasizes the optimization of ecological parameters [pH, time (h) and temperature (°C)] employing Box-Behnken design (BBD) to achieve better bio-adsorption of a selected heavy metal [lead (Pb II)] from the wastewater through an extracellular polymeric substance (EPS) of a benthic fungus, Aspergillus penicillioides (F12) (MN210327). The relevant statistical analysis (ANOVA) has enabled to record of the optimized bio-adsorption (73.14 %) of lead (Pb II) by fungal EPS at pH (8.85) and temperature (32 °C) for a duration of 5.74 h. Besides that, at the concentration of 0.5 mg/L of EPS, the flocculating rate was noted to be highest (88.4 %) in kaolin clay and the 50 % emulsifying activity. This investigation has also opened up new vistas on the possibility of the development of an alternative method of eco-sustainable bioremediation of heavy metals by fungal EPS on an industrial scale.
Collapse
Affiliation(s)
- Kishalay Paria
- Department of Zoology, Vidyasagar University, Medinipur, 721102, West Bengal, India.
| | - Smritikana Pyne
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
| | | |
Collapse
|
114
|
Zhao R, Wang B, Theng BKG, Wu P, Liu F, Lee X, Chen M, Sun J. Fabrication and environmental applications of metal-containing solid waste/biochar composites: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149295. [PMID: 34388886 DOI: 10.1016/j.scitotenv.2021.149295] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The resource utilization of industrial solid waste has become a hot issue worldwide. Composites of biochar with metal-containing solid wastes (MCSWs) can not only improve the adsorption performance, but also reduce the cost of modification and promote the recycling of waste resources. Thus, the synthesis and applications of biochar composites modified by MCSWs have been attracting increasing attention. However, different MCSWs may result in metal-containing solid waste/biochar composites (MCSW-BCs) with various physicochemical properties and adsorption performance, causing distinct adsorption mechanisms and applications. Although a lot of researches have been carried out, it is still in infancy. In particular, the explanation on the adsorption mechanisms and influencing factors of pollutant onto MCSW-BCs are not comprehensive and clear enough. Therefore, a systematic review on fabrication and potential environmental applications of different MCSW-BCs is highly needed. Here we summarize the recent advances on the utilization of typical metal-containing solid wastes, preparation of MCSW-BCs, adsorption mechanisms and influencing factors of pollutants by MCSW-BCs as well as their environmental applications. Finally, comments and perspectives for future studies are proposed.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Benny K G Theng
- Manaaki Whenua-Landcare Research, Palmerston North, New Zealand
| | - Pan Wu
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Fang Liu
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Miao Chen
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Jing Sun
- College of Resources and Environment Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
115
|
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3106. [PMID: 34835870 PMCID: PMC8623625 DOI: 10.3390/nano11113106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications due to their unique and tunable magnetic properties, the existing versatility with regard to their (bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in the agricultural sector.
Collapse
Affiliation(s)
- Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Kyriakos Athanasiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus;
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | | |
Collapse
|
116
|
The fate of char in controlling the rate of heavy metal transfer from soil to potato. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
117
|
Wang W, Cui J, Li J, Du J, Chang Y, Cui J, Liu X, Fan X, Yao D. Removal effects of different emergent-aquatic-plant groups on Cu, Zn, and Cd compound pollution from simulated swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113251. [PMID: 34271356 DOI: 10.1016/j.jenvman.2021.113251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Aquatic plants play effective in removing heavy metal (HM) as a prominent factor of bioremediations, however, there are still knowledge gaps in species selection and configuration for high removal efficiency (RE) of compound HM and ornamental value. In this study, seven emergent-aquatic-plant species were configured into seven groups and planted in a simulated swine wastewater (SW) with Cu, Zn, and Cd for 75 days in summer. REs of Cu, Zn, and Cd were 45.06-86.93%, 42.40-87.22%, and 73.85-85.52% at day 75, respectively. Higher REs were observed from day 30-45 for Cu and Zn, whereas days 15-30 for Cd. The synergistic removal of Zn and Cu or Zn and Cd was almost observed (p < 0.05). The configuration of G5 (S. tabernaemontani, I. sibirica, and P. cordata) was generally efficient roles in the removal at day 45, with REs of 85.14%, 87.06%, and 83.56% for Cu, Zn, and Cd, respectively. The dry weight of roots, water NH4+-N, temperature, pH, and dissolved oxygen acted on heavy-metal removal. During days 45-75, concentrations of Cu, Zn, and Cd in G5 were 0.52-0.66, 0.54-0.65, and 0.23-0.33 mg L-1. The former two were below the limits of Grade Ⅱ (1.0 mg L-1) and the latter was above the limits of Grade Ⅴ (0.1 mg L-1; GB3838-2002). Thus, G5 could be optimal for Cu and Zn removal from simulated SW, however, efficient Cd removal is required to ensure efficient SW recycling.
Collapse
Affiliation(s)
- Wei Wang
- Farmland Irrigation Research Institute, CAAS / Key Laboratory of High-efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China; Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jian Cui
- Farmland Irrigation Research Institute, CAAS / Key Laboratory of High-efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China; Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| | - Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jinmeng Du
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; School of Water Conservancy and Environment, Chang'an University, Xi'an, 710054, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jianwei Cui
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Xiangyang Fan
- Farmland Irrigation Research Institute, CAAS / Key Laboratory of High-efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China; Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| |
Collapse
|
118
|
Witkowska D, Słowik J, Chilicka K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021; 26:molecules26196060. [PMID: 34641604 PMCID: PMC8511997 DOI: 10.3390/molecules26196060] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy metals enter the human body through the gastrointestinal tract, skin, or via inhalation. Toxic metals have proven to be a major threat to human health, mostly because of their ability to cause membrane and DNA damage, and to perturb protein function and enzyme activity. These metals disturb native proteins’ functions by binding to free thiols or other functional groups, catalyzing the oxidation of amino acid side chains, perturbing protein folding, and/or displacing essential metal ions in enzymes. The review shows the physiological and biochemical effects of selected toxic metals interactions with proteins and enzymes. As environmental contamination by heavy metals is one of the most significant global problems, some detoxification strategies are also mentioned.
Collapse
|
119
|
Hiller E, Jurkovič Ľ, Faragó T, Vítková M, Tóth R, Komárek M. Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117268. [PMID: 33964561 DOI: 10.1016/j.envpol.2021.117268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Soils containing a large proportion of industrial waste can pose a health risk due to high environmentally available concentrations of toxic metal(loid)s. Nano zero-valent iron (nZVI) and amorphous manganese oxide (AMO) were applied as immobilising amendments (1 wt%) to soils with different industrial origin of As and Sb, and leaching of As, Sb, Pb, and Zn was investigated using a single extraction with deionised water. The different industrial impact was reflected in the mineralogy, chemical composition and pH of these soils. Water-soluble As ratios positively correlated with pH in all experimental treatments. A significant decrease of water-soluble As ratios was observed in all nZVI-amended soils (~65-93% of the control) except for one sample with the lowest solution pH. Nano zero-valent iron was also successful in Sb immobilisation (~76-90% of the control). Highly variable results were obtained for AMO, which only led to a decrease of water-soluble As in soils with solution pH of ≥7 (~70-80% of the control), probably due to lower stability of AMO in acidic conditions. In each case, nZVI was more efficient at decreasing water-soluble As ratios than AMO. Dissolved Pb concentrations remained unchanged after the application of nZVI and AMO, and the decrease of Zn leaching using AMO was controlled mainly by soil pH increase induced by its application. According to the calculated saturation indices, tripuhyite (FeSbO4) was predicted to be the key mineral controlling Sb solubility in mine soils. Secondary Fe (hydr)oxides either originally present or newly formed due to nZVI oxidation were instrumentally identified at different stages of their transformation and metal(loid) retention. To conclude, nZVI is suitable for application to contaminated soils at a wide pH range, while the use of AMO for decreasing As leaching is limited to soils with pH ≥ 7.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic
| | - Roman Tóth
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
120
|
Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126253. [PMID: 34119972 DOI: 10.1016/j.jhazmat.2021.126253] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Heavy metal toxicity has become a pressing ecological problem that affects the ecosystems through bioaccumulation, representing a serious public health hazard. Many conventional strategies have been developed and applied to decontaminate and restore metal-contaminated areas. However, these conventional approaches are not very suitable and environmentally safe for heavy metal remediation because of their high operational costs, high energy requirements, post-waste disposal problems, and secondary pollutant generation. Thus, biosurfactant-based bioremediation of heavy metals is a sustainable and promising approach because of its biodegradation capability, economic effectiveness, and ecofriendly nature. Pseudomonas sp., Bacillus sp., Citrobacter freundii, and Candida tropicalis have been isolated as potential sources of biosurfactants and produce compounds such as surfactin, rhamnolipids, and sophorolipids. Owing to the severity of heavy metal pollution in certain parts of the environment, biosurfactants have garnered great interest and attention as an emerging multi-functional technology of the new century for successful removal of heavy metal pollutants. The present study describes the role of biosurfactants in the bioremediation of heavy metals from contaminated environments. Moreover, the interaction mechanism underlying biosurfactant-metal complexation and metal remediation are discussed. Based on the review of the literature, further research is warranted to elucidate the mechanistic roles and explore the structural characterization and gene regulation of biosurfactants to improve their productivity and expand their applicability in bioremediation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
121
|
Rai GK, Bhat BA, Mushtaq M, Tariq L, Rai PK, Basu U, Dar AA, Islam ST, Dar TUH, Bhat JA. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies. PHYSIOLOGIA PLANTARUM 2021; 173:287-304. [PMID: 33864701 DOI: 10.1111/ppl.13433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
In the current era of rapid industrialization, the foremost challenge is the management of industrial wastes. Activities such as mining and industrialization spill over a large quantity of toxic waste that pollutes soil, water, and air. This poses a major environmental and health challenge. The toxic heavy metals present in the soil and water are entering the food chain, which in turn causes severe health hazards. Environmental clean-up and reclamation of heavy metal contaminated soil and water are very important, and it necessitates efforts of environmentalists, industrialists, scientists, and policymakers. Phytoremediation is a plant-based approach to remediate heavy metal/organic pollutant contaminated soil and water in an eco-friendly, cost-effective, and permanent way. This review covers the effect of heavy metal toxicity on plant growth and physiological process, the concept of heavy metal accumulation, detoxification, and the mechanisms of tolerance in plants. Based on plants' ability to uptake heavy metals and metabolize them within tissues, phytoremediation techniques have been classified into six types: phytoextraction, phytoimmobilization, phytovolatilization, phytodegradation, rhizofiltration, and rhizodegradation. The development of research in this area led to the identification of metal hyper-accumulators, which could be utilized for reclamation of contaminated soil through phytomining. Concurrently, breeding and biotechnological approaches can enhance the remediation efficiency. Phytoremediation technology, combined with other reclamation technologies/practices, can provide clean soil and water to the ecosystem.
Collapse
Affiliation(s)
- Gyanendra K Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Basharat A Bhat
- Department of Bioresources, University of Kashmir, Jammu and Kashmir, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Lubna Tariq
- Department of Biotechnology, BGSB University, Jammu and Kashmir, India
| | - Pradeep K Rai
- Advance Center for Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Umer Basu
- Division of Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aejaz A Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sheikh T Islam
- Department of Bioresources, University of Kashmir, Jammu and Kashmir, India
| | - Tanvir U H Dar
- Department of Biotechnology, BGSB University, Jammu and Kashmir, India
| | - Javaid A Bhat
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
122
|
Narayanan M, Thangabalu R, Natarajan D, Kumarasamy S, Kandasamy S, Elfasakhany A, Pugazhendhi A. Reclamation competence of Crotalaria juncea with the amalgamation and influence of indigenous bacteria on a waste dump of bauxite mine. CHEMOSPHERE 2021; 279:130632. [PMID: 34134423 DOI: 10.1016/j.chemosphere.2021.130632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 05/16/2023]
Abstract
The accumulated bauxite mine soil had an acidic pH of 5.52 ± 0.12 and more heavy metals such as Cr, Cd, Zn, and Pb, which can cause severe soil and water pollution to the nearby farmlands and water reservoirs. Hence, the work was designed to find the possibility of reclamation of bauxite mine soil through Crotalaria juncea with the amalgamation of native metal degrading bacterial isolates. Out of 15 bacterial cultures, only 2 isolates (B3 and B14) showed excellent metal tolerance (for up to 750 mg L-1), solubilizing (15.27-38.7 mg kg-1) (including phosphate: 47.4 ± 1.79%), and degrading potential (22.8 ± 0.89 to 31.5 ± 1.6%) than the others. These B3 and B14 isolates were recognized as B. borstelensis UTM105 (1432 bp) and B. borstelensis AK2 (1494 bp) through molecular characterization. These isolates have produced a metal stress response protein (205-43 KDa molecular weight protein) during metal stress conditions. The phytoremediation competence of C. juncea under the influence of these bacterial isolates was assessed with various treatment (I-IV) schemes. The treatment IV (C. juncea with two bacterial isolates) showed substantial physiological and biochemical results compared with the control and the other treatments. The phytoremediation competence of C. juncea was also effective in treatment IV than the others. It reduced and extracted a reasonable quantity of metals from the bauxite mine soil. The intact results accomplished that these native metals tolerant, solubilizing, and degrading bacterial isolates, could be used as optimistic bacterial candidates in combination with C. juncea for the effective reclamation of metal enriched bauxite mine soil.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, India
| | - Ramar Thangabalu
- Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | | | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, India
| | | | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
123
|
Su W, Li X, Zhang H, Xing Y, Liu P, Cai C. Migration and transformation of heavy metals in hyperaccumulators during the thermal treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47838-47855. [PMID: 34302242 DOI: 10.1007/s11356-021-15346-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The pollution of heavy metals (HMs) in the soil has become one of the important factors affecting the national environment and human health. Phytoremediation, as a technology to deal with HM pollution in soil, has been extensively studied and applied due to its sustainability and environmental friendliness. However, hyperaccumulators polluted by HMs need to be properly treated to avoid secondary pollution to the environment. This paper reviews the migration and transformation of HMs during the incineration, pyrolysis, gasification, and hydrothermal treatment of hyperaccumulators; comprehensively evaluates the advantages and disadvantages of each technology in the treatment of HM-enriched hyperaccumulators; and analyzes the current development status and unsolved problems in detail for each technology. Generally speaking, thermal treatment technology can fix most of the HMs of exchangeable fraction in biochar, reducing its bioavailability and biotoxicity. In addition, the application direction and research focus of the target product are discussed, and it is clarified that in the future, it is necessary to further optimize the reaction conditions and explore the mechanism of HM immobilization to maximize the immobilization of HMs and improve the quality and output of the target product.
Collapse
Affiliation(s)
- Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinyan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongshuo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Ping Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changqing Cai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
124
|
Devanesan S, AlSalhi MS. Effective removal of Cd 2+, Zn 2+ by immobilizing the non-absorbent active catalyst by packed bed column reactor for industrial wastewater treatment. CHEMOSPHERE 2021; 277:130230. [PMID: 34384169 DOI: 10.1016/j.chemosphere.2021.130230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium and zinc are leading heavy metal pollutants causing serious health problems when discharged into the aquatic environments. The present investigation focused on the bioaccumulation of Cd2+ and Zn2+depending on the sorption process by Bacillus amyloliquefaciens HM28. The selected bacterium was multi-metal (Zn2+, Pb2+, Cd2+, Cu2+ and Li+) and antibiotic (cefotaxime, ampicilin, nalidixic acid, ceftazidime, penicillin and kanamycin) resistance was resolved. The identified strain showed maximum resistance onCd2+ (2575 ppm) and Zn2+ (1300 ppm). The sorption of Cd2+ and Zn2+ by a dried bacterium was investigated. Biosorption of Cd2+ was maximum (98.4 ± 5.2%) at 100 mg/L concentration and maximum Zn2+ (98.3 ± 1.5%) was detected in the medium containing 150 mg/L metal ion. Bioremoval was maximum after 30 min contact time with dried biomass and the absorption rate improved. The optimum Cd2+ and Zn2+ bioremoval yield of 93 ± 4.4% and 89.8 ± 4.3% were observed, at pH 7.0 and 7.5, respectively. Despite the significant reduction in growth rate, heavy metals increased nitro-blue tetrazolium reduction from 11 ± 1.3 to 67 ± 3.3%. Dehydrogenase activity elevated due to heavy metal stress. Bacterial biomass was immobilized in a glass column (20 cm × 2 cm). Biosorption of Cd2+ and Zn2+ ions were performed in a packed bed column. The breakthrough time of Cd2+ was 210 min at 1 mL/min flow rate and it decreased 94 min at 5 mL/min flow rate, whereas 240 min at 1 mL/min, and 90 min at 5 mL/min, respectively. The absorption capacity was 4.87 ± 0.8 to 5.43 ± 0.5 mg/g for Cd2+ and 3.85 ± 0.3 to 4.53 ± 0.4 mg/g for Zn2+. The present findings revealed the potential of B. amyloliquefaciens HM28 biomass in Cd2+ and Zn2+ biosorption, with feasibility in the bioremediation of Cd2+ and Zn2+ contaminated water.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box -2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
125
|
Zhang J, Xiao Q, Wang P. Phosphate-solubilizing bacterium Burkholderia sp. strain N3 facilitates the regulation of gene expression and improves tomato seedling growth under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112268. [PMID: 33930768 DOI: 10.1016/j.ecoenv.2021.112268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is among the most toxic heavy metals in soils. The ways by which tomato plants inoculated with a phosphate-solubilizing bacterium (PSB) respond to Cd and regulate gene expression remain unclear. We investigated hormone metabolism and genes involved in Cd resistance in tomato seedlings inoculated with the PSB strain N3. Cd inhibited tomato plant growth and nutrient uptake and increase in dry weight. Compared with Cd treatment, N3 inoculation inhibited the accumulation of Cd in the shoots and roots, and the root dry weight significantly increased by 30.50% (P < 0.05). The nitrogen and potassium contents in the roots of seedlings treated with N3 increased, and the phosphorus levels were the same as those in the control. N3 decreased the rate of Zn2+ absorption but increased Fe3+ absorption in the roots, and the amount of accumulated Cd increased with Zn2+ uptake. The concentrations of hormones (indole-3-acetic acid, IAA; zeatin, ZEA; and jasmonic acid, JA) increased under Cd stress, whereas inoculation with N3 reduced IAA and ZEA levels. In the comparison between N3 + Cd and Cd treatments, the highest number of up- and downregulated genes was obtained. Pathways involved in signaling response, photosynthesis, phenylpropanoid biosynthesis, and DNA replication and the photosynthesis-antenna proteins pathway play important roles in the responses and adaptation of seedlings to Cd. Inoculation with N3 alleviates Cd stress in tomato seedlings. The present study provides new insights into the differentially expressed genes related to interaction between PSB and tomato exposed to Cd in soils.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, China.
| | - Qingqing Xiao
- School of Biology, Food and Environment, Hefei University, 230601 Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, China
| |
Collapse
|
126
|
Sbarato VM, Falchini GE, Sánchez HJ, Perez RD. Monitoring of metal phytofiltration performance by micro-XRF methodology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2701-2709. [PMID: 34037638 DOI: 10.1039/d1ay00360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, micro-XRF was considered as a possible technique for monitoring the rate of incorporation of Cu and Zn into aquatic plants of a laboratory-scale phytofiltration system. This system employed Salvinia biloba Raddi under controlled conditions of light and nutrients. This aquatic plant is being considered as an efficient hyperaccumulator of Cu and Zn and is widely spread in South American lakes and rivers. One set of plants was exposed to 40 ppm w/w of Cu and another to 40 ppm w/w of Zn. The analytical procedure was based on the periodic in vivo quantitative analysis of Cu and Zn at selected points in the plants using micro-XRF. The accuracy of this quantification was effectively improved with the assistance of the Monte Carlo XMI-MSIM simulation code. In order to establish the input parameters of this software, careful measurements of the experimental parameters necessary for the correct modeling of the micro-XRF spectrometer were performed. After that, specially manufactured standards made of tissue equivalent material were employed to validate the configuration of the simulation code and input parameters. It was fulfilled by the comparison of measured and simulated micro-XRF spectra of these standards. Once the configuration code and input parameters were verified, two strategies were considered for the application of Monte Carlo simulation for elemental quantification in plants: an iterative process and inverse method established with external virtual standards. Benefits and drawbacks of both approaches to improve the monitoring of phytofiltration systems were carefully discussed.
Collapse
Affiliation(s)
- Viviana M Sbarato
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | |
Collapse
|
127
|
Anaerobic Degradation of Environmentally Hazardous Aquatic Plant Pistia stratiotes and Soluble Cu(II) Detoxification by Methanogenic Granular Microbial Preparation. ENERGIES 2021. [DOI: 10.3390/en14133849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aquatic plant Pistia stratiotes L. is environmentally hazardous and requires effective methods for its utilization. The harmfulness of these plants is determined by their excessive growth in water bodies and degradation of local aquatic ecosystems. Mechanical removal of these plants is widespread but requires fairly resource-intensive technology. However, these aquatic plants are polymer-containing substrates and have a great potential for conversion into bioenergy. The aim of the work was to determine the main patterns of Pistia stratiotes L. degradation via granular microbial preparation (GMP) to obtain biomethane gas while simultaneously detoxifying toxic copper compounds. The composition of the gas phase was determined via gas chromatography. The pH and redox potential parameters were determined potentiometrically, and Cu(II) concentration photocolorimetrically. Applying the preparation, high efficiency of biomethane fermentation of aquatic plants and Cu(II) detoxification were achieved. Biomethane yield reached 68.0 ± 11.1 L/kg VS of Pistia stratiotes L. biomass. The plants’ weight was decreased by 9 times. The Cu(II) was completely removed after 3 and 10 days of fermentation from initial concentrations of 100 ppm and 200 ppm, respectively. The result confirms the possibility of using the GMP to obtain biomethane from environmentally hazardous substrates and detoxify copper-contaminated fluids.
Collapse
|
128
|
Abstract
The contamination of soil by heavy metals and metalloids is a worldwide problem due to the accumulation of these compounds in the environment, endangering human health, plants, and animals. Heavy metals and metalloids are normally present in nature, but the rise of industrialization has led to concentrations higher than the admissible ones. They are non-biodegradable and toxic, even at very low concentrations. Residues accumulate in living beings and become dangerous every time they are assimilated and stored faster than they are metabolized. Thus, the potentially harmful effects are due to persistence in the environment, bioaccumulation in the organisms, and toxicity. The severity of the effect depends on the type of heavy metal or metalloid. Indeed, some heavy metals (e.g., Mn, Fe, Co, Ni) at very low concentrations are essential for living organisms, while others (e.g., Cd, Pb, and Hg) are nonessential and are toxic even in trace amounts. It is important to monitor the concentration of heavy metals and metalloids in the environment and adopt methods to remove them. For this purpose, various techniques have been developed over the years: physical remediation (e.g., washing, thermal desorption, solidification), chemical remediation (e.g., adsorption, catalysis, precipitation/solubilization, electrokinetic methods), biological remediation (e.g., biodegradation, phytoremediation, bioventing), and combined remediation (e.g., electrokinetic–microbial remediation; washing–microbial degradation). Some of these are well known and used on a large scale, while others are still at the research level. The main evaluation factors for the choice are contaminated site geology, contamination characteristics, cost, feasibility, and sustainability of the applied process, as well as the technology readiness level. This review aims to give a picture of the main techniques of heavy metal removal, also giving elements to assess their potential hazardousness due to their concentrations.
Collapse
|
129
|
Eco-Friendly Adsorbent from Waste of Mint: Application for the Removal of Hexavalent Chromium. J CHEM-NY 2021. [DOI: 10.1155/2021/8848964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A serious environmental disaster is looming on the horizon due to the indiscriminate release of heavy metals into the soil and wastewater from human industrial practices. In this study, waste mint (WM) was used to remove chromium(VI) from aqueous solution using batch experiments. The adsorbent material (WM) was characterized using scanning electron microscopy coupled with energy dispersive analysis of X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The adsorption parameters optimized were as follows: pH solution (2–11), initial concentration of Cr(VI) (10–50 mg/L), adsorbent dose (0.1–10 g/L), and temperature conditions (298 K, 308 K, and 318 K). The experimental data fitted well to the fractional power kinetic model (0.97≤R2≤ 0.99) and Langmuir isotherm (R2 = 0.984) with a maximum adsorption capacity Qmax = 172.41 mg/g. The thermodynamic parameters for Cr(VI) sorption were also calculated, confirming that the adsorption process was spontaneous and accompanied by an exothermic adsorption (−4.83 ≤ ΔG ≤ −3.22 kJ/mol and ΔH = −28.93 kJ/mol). The Cr(VI) removal percentage was within the range of 41–98%, and the highest removal was noted at pH = 2. The results of the present study suggest that WM is a potential low-cost adsorbent for the removal of chromium(VI) from aqueous solutions.
Collapse
|
130
|
Irfan M, Liu X, Hussain K, Mushtaq S, Cabrera J, Zhang P. The global research trend on cadmium in freshwater: a bibliometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-13894-7. [PMID: 33877520 DOI: 10.1007/s11356-021-13894-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium pollution turns out to be a global environmental problem. This study conducted a quantitative and qualitative bibliometric analysis based on 9188 research items from the Web of Science Core Collection published in the last 20 years (2000-2020), presenting an in-depth statistical investigation of global freshwater cadmium research progress and developing trend. Our results demonstrated that the researchers from China, the USA, and India contribute the most to this field. The primary sources of cadmium are mining, industry, wastewater, sedimentation, and agricultural activities. In developing countries, cadmium exposure occurs mainly through the air, freshwater, and food. Fish and vegetables are the main food sources of cadmium for humans because of their high accumulation capability. Source evaluation, detection, and remediation represent the main technologies used to clean up cadmium-contaminated sites. To mitigate the risk of cadmium contamination in freshwater, biomarker-based cadmium monitoring methods and integrated policies/strategies to reduce cadmium exposure merit further concern.
Collapse
Affiliation(s)
- Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China.
| | - Khalid Hussain
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Suraya Mushtaq
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|
131
|
Olivia LC, Minerva GC, Rocío PJ, Francisco José MP. Assessment of biopiles treatment on polluted soils by the use of Eisenia andrei bioassay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116642. [PMID: 33571857 DOI: 10.1016/j.envpol.2021.116642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
A long-term case of residual pollution is studied after 20 years since the largest mining accident in Spain (the Aznalcóllar spill) happened. This pollution is manifested through a surface zoning consisting of bare soils (B0), sparsely vegetated soils (B1), and densely vegetated and recovered soils (B2). A biopiles treatment with a mixture of contaminated soils (B0 and B1) with recovered soils (B2) at 50% (w/w), and vermicompost addition (50 tons ha-1) was evaluated. To assess the effectiveness of treatments, total, water-soluble, and bioavailable fractions of the most polluting elements in the zone (Cu, Zn, As, Pb, Cd, and Sb) was analyzed. To evaluate the potential risk of contamination for the ecosystem, a bioassay with earthworm Eisenia andrei was carried out. Twenty years after the accident, there are still soils where total As and Pb exceed the regulatory levels and water-soluble Zn and As exceed the toxicity guidelines. According to toxicity bioassay, weight variation and juvenile production of earthworms showed an improvement after biopiles treatment, with values that trend to be similar to those of recovered soils. The only bioaccumulated element in earthworms was Cd (BAF>1), both in polluted as in treated soils, which indicates the possible existence of exclusion mechanisms of the other pollutants by earthworms. The comparison between biopiles and polluted soils showed no significant differences for the bioaccumulation factor of trace elements, with the exception of Zn and Cu, which slightly increased after treatment. According to our results, biopiles treatment combined with vermicompost addition is a good technique for the recovery of residual contaminated areas, by the improvement of soil properties and the reduction of the potential toxicity; anyway, monitoring of soils and organisms is needed to prevent the increase of bioavailability of some potentially pollutant elements over time.
Collapse
Affiliation(s)
- Lorente-Casalini Olivia
- Departamento de Edafología y Química Agrícola, Faculty of Sciences, University of Granada, Campus Fuente Nueva S/n, 18071, Granada, Spain
| | - García-Carmona Minerva
- Departamento de Agroquímica y Medio Ambiente, University Miguel Hernández, Avda. de La Universidad S/n, 03202, Elche, Alicante, Spain
| | - Pastor-Jáuregui Rocío
- Departamento de Recursos Hídricos, National Agrarian University "La Molina", 15024, Lima, Peru
| | - Martín-Peinado Francisco José
- Departamento de Edafología y Química Agrícola, Faculty of Sciences, University of Granada, Campus Fuente Nueva S/n, 18071, Granada, Spain.
| |
Collapse
|
132
|
Wang M, Hu C, Xu J, Jing X, Rahim HU, Cai X. Facile combinations of thiosulfate and zerovalent iron synergically immobilize cadmium in soils through mild extraction and facilitated immobilization. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124806. [PMID: 33341570 DOI: 10.1016/j.jhazmat.2020.124806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic substances released in the environment. Cd-contaminated soils usually have a large pool of bioavailable Cd species and lead to excessive Cd accumulation in planted cereal crops. Treatment methods for stable immobilization of Cd in soils are desirable. Here we reported that facile combinations of thiosulfate (STS) and zerovalent iron (ZVI) reinforced Cd immobilization in soils and reduced Cd accumulation in wheat. STS mildly activated Cd in soils through the formation of soluble Cd(S2O3)x complexes, whereas intermediates of STS (e.g., sulfate and sulfides) and ZVI synergically facilitated immobilization of Cd in soils. The synergy was ascribed to the facilitated formation of FeOOH with high Cd-binding affinity and formation of stable sulfate-Cd-FeOOH complexes and poorly available CdSx. STS-ZVI treatments increased residual Cd in soils by 101-123% and decreased Cd accumulation in wheat shoots by 13-68%, depending on chemical compositions and doses of binary reagents. Field applications of STS and ZVI (0.06-0.11 kg/m2) demonstrated 24-39% reductions of grain Cd.
Collapse
Affiliation(s)
- Maolin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Canyang Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiahui Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xudong Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hafeez Ur Rahim
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
133
|
Ducey TF, Novak JM, Sigua GC, Ippolito JA, Rushmiller HC, Watts DW, Trippe KM, Spokas KA, Stone KC, Johnson MG. Microbial response to designer biochar and compost treatments for mining impacted soils. BIOCHAR 2021; 3:299-314. [PMID: 35128320 PMCID: PMC8815453 DOI: 10.1007/s42773-021-00093-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/02/2021] [Indexed: 06/14/2023]
Abstract
The Oronogo-Duenweg mining belt is a designated United States Environmental Protection Agency Superfund site due to lead-contaminated soil and groundwater by former mining and smelting operations. Sites that have undergone remediation - in which the O, A, and B horizons have been removed alongside the lead contamination - have an exposed C horizon and are incalcitrant to revegetation efforts. Soils also continue to contain quantifiable Cd and Zn concentrations. In order to improve soil conditions and encourage successful site revegetation, our study employed three biochars, sourced from different feedstocks (poultry litter, beef lot manure, and lodge pole pine), at two rates of application (2.5%, and 5%), coupled with compost (0%, 2.5% and 5% application rates). Two plant species - switchgrass (Panicum virgatum) and buffalograss (Bouteloua dactyloides) - were grown in the amended soils. Amendment of soils with poultry litter biochar applied at 5% resulted in the greatest reduction of soil bioavailable Cd and Zn. Above ground biomass yields were greatest with beef lot manure biochar applied at 2.5% with 5% compost, or with 5% biochar at 2.5% and 5% compost rates. Maximal microbial biomass was achieved with 5% poultry litter biochar and 5% compost, and microbial communities in soils amended with poultry litter biochar distinctly clustered away from all other soil treatments. Additionally, poultry litter biochar amended soils had the highest enzyme activity rates for β-glucosidase, N-acetyl-β-D-glucosaminidase, and esterase. These results suggest that soil reclamation using biochar and compost can improve mine-impacted soil biogeophysical characteristics, and potentially improve future remediation efforts.
Collapse
Affiliation(s)
- Thomas F. Ducey
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Jeffrey M. Novak
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Gilbert C. Sigua
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins CO, USA
| | - Hannah C. Rushmiller
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Donald W. Watts
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Kristin M. Trippe
- National Forage Seed Production Research Center, Agricultural Research Service-USDA, Corvallis OR, USA
| | - Kurt A. Spokas
- Soil and Water Management Research Unit, Agricultural Research Service-USDA, St. Paul MN, USA
| | - Kenneth C. Stone
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service-USDA, Florence SC, USA
| | - Mark G. Johnson
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Corvallis OR, USA
| |
Collapse
|
134
|
Anne A, Ebenezer SK, Guy Valerie DW, Pierre N, Cédric DC, Annie Stephanie N, Pierre François D, Noumsi Ives Magloire In Memorium K. Floristic surveys of some lowlands polluted of a tropical urban area: the case of Yaounde, Cameroon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1191-1202. [PMID: 33765403 DOI: 10.1080/15226514.2021.1884183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study presents original results for field surveys in lowland sites polluted in Yaounde-Cameroon. The screening of 11 polluted lowlands compared to a natural lowland (unpolluted), made it possible to identify species which may exhibit the best capacities to adapt to environmental changes and to develop in contaminated areas, in particular heavy metals. This work can be a preliminary study around the species growing in contaminated lowlands. Thus, this study can be reproduced in other regions, to compare the results obtained and identify potential plants for the lowlands remediation in Cameroon.
Collapse
Affiliation(s)
- Ayo Anne
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Soh Kengne Ebenezer
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
- Department of Plant Biology, University of Bamenda, Bamenda, Cameroon
| | - Djumyom Wafo Guy Valerie
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Nbendah Pierre
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Djomo Chimi Cédric
- Institute of Agricultural Research for the Development (IRAD), Bertoua, Cameroon
| | - Nana Annie Stephanie
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
- Laboratory of Phytopathology, Biotechnology and Environment, Department of Plant Biology, University of Yaounde I, Yaounde, Cameroon
| | - Djocgoué Pierre François
- Department of Ecology and Natural Resources Management, Center for Development Research, Bonn, Germany
| | | |
Collapse
|
135
|
Sahraoui AS, Verweij RA, Belhiouani H, Cheriti O, van Gestel CAM, Sahli L. Dose-dependent effects of lead and cadmium and the influence of soil properties on their uptake by Helix aspersa: an ecotoxicity test approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:331-342. [PMID: 33432456 DOI: 10.1007/s10646-020-02331-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Three soil types with different physicochemical properties were selected to evaluate their effect on lead and cadmium bioavailability and toxicity in the land snail Helix aspersa. In 28-day ecotoxicity tests, H. aspersa juveniles were exposed to increasing concentrations of Pb or Cd. EC50s, concentrations reducing snail growth by 50%, differed between the soils and so did Cd and Pb uptake in the snails. For lead, EC50s were 2397-6357 mg Pb/kg dry soil, while they ranged between 327 and 910 mg Cd/kg dry soil for cadmium. Toxicity and metal uptake were highest on the soil with the lowest pH, organic matter content and Cation Exchange Capacity (CEC). Growth reduction was correlated with metal accumulation levels in the snails' soft body, and differences in toxicity between the soils decreased when EC50s were expressed on the basis of internal metal concentrations in the snails. These results confirm the effect of soil properties; pH, CEC, OM content, on the uptake and growth effect of Pb and Cd in H. aspersa, indicating the importance of properly characterizing soils when assessing the environmental risk of metal contaminated sites.
Collapse
Affiliation(s)
- Aboubakre Seddik Sahraoui
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria.
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hadjer Belhiouani
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria
| | - Oumnya Cheriti
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Leila Sahli
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria
| |
Collapse
|
136
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2021. [PMID: 35601203 DOI: 10.3389/fmicb.2021.687888/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
137
|
Masoumi A, Yengejeh RJ. Study of chemical wastes in the Iranian petroleum industry and feasibility of hazardous waste disposal. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1037-1044. [PMID: 33312622 PMCID: PMC7721774 DOI: 10.1007/s40201-020-00525-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Oil production activities have expanded and the use of chemicals in industry has increased and generated various types of wastes. The main objective of this paper Proposes to determine the quantitative and qualitative characteristics of chemical waste in the Iranian Petroleum industry. It is conducted in accordance with international laws and regulations such as RCRA and Basel. There is currently no disposal method for these substances, but the results show that more than 73% of the chemical waste can dispose through sanitary landfill. For the case study, more than 160 hazardous chemical substances were investigated. Due to the nearness of these warehouses to the residential area of Ahvaz downtown, the risk of these materials is higher and should be addressed quickly as possible.
Collapse
Affiliation(s)
- Alireza Masoumi
- Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | |
Collapse
|
138
|
Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140145. [PMID: 32927577 DOI: 10.1016/j.scitotenv.2020.140145] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, soil pollution is a major global concern drawing worldwide attention. Earthworms can resist high concentrations of soil pollutants and play a vital role in removing them effectively. Vermiremediation, using earthworms to remove contaminants from soil or help to degrade non-recyclable chemicals, is proved to be an alternative, low-cost technology for treating contaminated soil. However, knowledge about the mechanisms and framework of the vermiremediation various organic and inorganic contaminants is still limited. Therefore, we reviewed the research progress of effects of soil contaminants on earthworms and potential of earthworm used for remediation soil contaminated with heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, as well as crude oil. Especially, the possible processes, mechanisms, advantages and limitations, and how to boost the efficiency of vermiremediation are well addressed in this review. Finally, future prospects of vermiremediation soil contamination are listed to promote further studies and application of vermiremediation in contaminated soils.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
139
|
Contreras-Cortés AG, Almendariz-Tapia FJ, Cortez-Rocha MO, Burgos-Hernández A, Rosas-Burgos EC, Rodríguez-Félix F, Gómez-Álvarez A, Quevedo-López MÁ, Plascencia-Jatomea M. Biosorption of copper by immobilized biomass of Aspergillus australensis. Effect of metal on the viability, cellular components, polyhydroxyalkanoates production, and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28545-28560. [PMID: 32052334 DOI: 10.1007/s11356-020-07747-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Heavy metals are toxic especially when they are introduced into the environment due to anthropogenic activities such as metallurgy, mining, and tanning. Removing these pollutants has become a worldwide concern since they cannot be degraded into nontoxic forms causing extended effects in the ecosystems. The use of an Aspergillus australensis was evaluated in order to remove Cu2+ from simulated wastewater. The fungus was isolated from river sludges contaminated with heavy metals and was first evaluated for the determination of Cu2+ tolerance levels. Microscopic fluorescence analysis was carried out to determine the effect of Cu2+ presence on the viability, cellular components, polyhydroxyalkanoates production, and oxidative stress of the fungus, as a response to the stress caused by exposure to metal. In order to achieve copper removal, the A. australensis biomass was produced using batch cultures, and the mycelium was immobilized on a textile media in order to compare the copper-removal efficiency of live or dead biomass. The optimal values of pH and temperature for biomass production were established by using a surface response analysis. Live immobilized biomass was capable of removing Cu2+ from 1.54 ± 0.19 to 2.66 ± 0.26 mg of copper/ g of dry biomass, while values of 1.93 ± 0.03 to 2.36 ± 0.29 mg of copper/g of dry biomass were observed when dead biomass was used. As was expected, copper removal using biomass varied depending on the pH and temperature used.
Collapse
Affiliation(s)
- Ana Gabriela Contreras-Cortés
- Departamento de Investigación y Posgrado en Alimentos, Microbiology and Micotoxins Laboratory, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico
| | - Francisco Javier Almendariz-Tapia
- Bioremediation Laboratory, Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico.
| | - Mario Onofre Cortez-Rocha
- Departamento de Investigación y Posgrado en Alimentos, Microbiology and Micotoxins Laboratory, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico
| | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Microbiology and Micotoxins Laboratory, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Microbiology and Micotoxins Laboratory, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Microbiology and Micotoxins Laboratory, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico
| | - Agustín Gómez-Álvarez
- Bioremediation Laboratory, Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico
| | - Manuel Ángel Quevedo-López
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Microbiology and Micotoxins Laboratory, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Sonora, C.P., 83000, Hermosillo, Mexico.
| |
Collapse
|
140
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|
141
|
Copper and mercury induced oxidative stresses and antioxidant responses of Spirodela polyrhiza (L.) Schleid. Biochem Biophys Rep 2020; 23:100781. [PMID: 32715102 PMCID: PMC7369327 DOI: 10.1016/j.bbrep.2020.100781] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 01/24/2023] Open
Abstract
Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2. Biochemical responses of copper and mercury in Spirodela polyrhizawere investigated. The threshold tolerance level for Cu and Hg was found < 20 μM and < 0.2 μM respectively. The results reveal that S. polyrhiza is biochemically well adapted to cope with HM toxicity induced by Cu and Hg.
Collapse
Key Words
- CAT, catalase
- Chl, chlorophyll
- Chlorophylls
- Duckweed
- GPOD, Guaiacol peroxidase
- HMs, heavy metal
- Heavy metals
- MDA, malondialdehyde
- Malondialdehyde
- NBT, nitro-blue tetrazolium
- PUFA, polyunsaturated fatty acids
- Proline
- RFN, relative frond number
- ROS, reactive oxygen species
- Reactive oxygen species
- SOD, superoxide peroxide
- TBA, thiobarbituric acid
- TCA, trichloroacetic acid
Collapse
|
142
|
Cheng S, Chen T, Xu W, Huang J, Jiang S, Yan B. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review. Molecules 2020; 25:E3167. [PMID: 32664440 PMCID: PMC7397277 DOI: 10.3390/molecules25143167] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Soil contamination by heavy metals threatens the quality of agricultural products and human health, so it is necessary to choose certain economic and effective remediation techniques to control the continuous deterioration of land quality. This paper is intended to present an overview on the application of biochar as an addition to the remediation of heavy-metal-contaminated soil, in terms of its preparation technologies and performance characteristics, remediation mechanisms and effects, and impacts on heavy metal bioavailability. Biochar is a carbon-neutral or carbon-negative product produced by the thermochemical transformation of plant- and animal-based biomass. Biochar shows numerous advantages in increasing soil pH value and organic carbon content, improving soil water-holding capacity, reducing the available fraction of heavy metals, increasing agricultural crop yield and inhibiting the uptake and accumulation of heavy metals. Different conditions, such as biomass type, pyrolysis temperature, heating rate and residence time are the pivotal factors governing the performance characteristics of biochar. Affected by the pH value and dissolved organic carbon and ash content of biochar, the interaction mechanisms between biochar and heavy metals mainly includes complexation, reduction, cation exchange, electrostatic attraction and precipitation. Finally, the potential risks of in-situ remediation strategy of biochar are expounded upon, which provides the directions for future research to ensure the safe production and sustainable utilization of biochar.
Collapse
Affiliation(s)
- Sheng Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; (S.C.); (J.H.); (S.J.); (B.Y.)
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; (S.C.); (J.H.); (S.J.); (B.Y.)
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wenbin Xu
- Dongjiang Environmental Company Limited, Nanshan District, Shenzhen 518057, China;
| | - Jian Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; (S.C.); (J.H.); (S.J.); (B.Y.)
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shaojun Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; (S.C.); (J.H.); (S.J.); (B.Y.)
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; (S.C.); (J.H.); (S.J.); (B.Y.)
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
143
|
Li W, Wang T. Cadmium binding characterization and mechanism of a newly isolated strain Cystobasidium oligophagum QN-3. Biotechnol Prog 2020; 36:e3029. [PMID: 32463147 DOI: 10.1002/btpr.3029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/18/2020] [Accepted: 05/22/2020] [Indexed: 11/08/2022]
Abstract
The aim of this study was to screen a strain for the removal of Cd2+ from aqueous solution and investigate the characterization and mechanism of the Cd2+ binding process. A novel strain of yeast showed high tolerance of cadmium, namely Cystobasidium oligophagum QN-3, was isolated from soils, which could resist 22,000 mg/L and 18,000 mg/L Cd2+ on PDA (potato dextrose agar) plate and in PDA liquid medium, respectively. Cd2+ binding experiment showed that the strain could remove Cd2+ from aqueous solution effectively, the maximum Cd2+ removal rate of 84.45% was achieved at initial Cd2+ concentration 30 mg/L. Scanning electron microscopy (SEM) analysis revealed that sorption of Cd2+ by cells could be associated with changes in the cell surface morphology. Fourier transform-infrared spectroscopy (FTIR) analysis confirmed the important role of the functional groups OH, CO, NH2 , COO, PO, and CH on the cell surface in the binding of Cd2+ . The comparison of the binding ability of different cellular parts indicated a significant role of the cell wall played in the Cd2+ binding process. Pretreatment of the cells by boiling or ultrasonication could improve the biosorption capacity of QN-3. In addition, QN-3 exhibited selective and preferential property of binding capacity for other heavy metals, such as Pb2+ , Cu2+ , Cd2+ , Zn2+ , and Ni2+ . These data suggested the promising use of Cystobasidium oligophagum QN-3 as an effective and friendly biosorbent for cadmium or other heavy metals decontamination in the environment.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, PR China
| | - Tao Wang
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, PR China
| |
Collapse
|