101
|
Hoffman MD, Goulet EDB, Maughan RJ. Considerations in the Use of Body Mass Change to Estimate Change in Hydration Status During a 161-Kilometer Ultramarathon Running Competition. Sports Med 2018; 48:243-250. [PMID: 28895063 DOI: 10.1007/s40279-017-0782-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydration guidelines found in the scientific and popular literature typically advise that body mass losses beyond 2% should be avoided during exercise. In this work, we demonstrate that these guidelines are not applicable to prolonged exercise of several hours where body mass loss does not reflect an equivalent loss of body water due to the effects of body mass change from substrate use, release of water bound with muscle and liver glycogen, and production of water during substrate metabolism. These effects on the body mass loss required to maintain body water balance are shown for a 161-km mountain ultramarathon running competition participant utilizing published data for the total energy cost, exogenous energy consumption and percentage from each fuel source, average participant body mass, and the extent of soft tissue fluid accumulation during an ultramarathon. We assumed that total energy derived from protein ranges from 5 to 10%, all exogenous energy is used to support the energy cost of the race, glycogen utilization ranges from 300 to 500 g, water linked with glycogen ranges from 1 to 3 g per g of glycogen, and the mass of the bladder and gastrointestinal tract is unchanged from pre-race to post-race body mass measurements. These calculations show that the average participant of 68.8 kg must lose 1.9-5.0% body mass to maintain the water supporting body water balance while also avoiding overhydration. Future hydration guidelines should consider these findings so that the proper hydration message is conveyed to those who participate in prolonged exercise.
Collapse
Affiliation(s)
- Martin D Hoffman
- Department of Physical Medicine and Rehabilitation, Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Sacramento, CA, 95655-1200, USA. .,Department of Physical Medicine and Rehabilitation, University of California Davis Medical Center, Sacramento, CA, USA. .,Ultra Sports Science Foundation, El Dorado Hills, CA, USA.
| | - Eric D B Goulet
- Research Centre on Aging and Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
102
|
Cholewa JM, Newmire DE, Zanchi NE. Carbohydrate restriction: Friend or foe of resistance-based exercise performance? Nutrition 2018; 60:136-146. [PMID: 30586657 DOI: 10.1016/j.nut.2018.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
Abstract
It is commonly accepted that adequate carbohydrate availability is necessary for optimal endurance performance. However, for strength- and physique-based athletes, sports nutrition research and recommendations have focused on protein ingestion, with far less attention given to carbohydrates. Varying resistance exercise protocols, such as differences in intensity, volume, and intraset rest prescriptions between strength-training and physique-training goals elicit different metabolic responses, which may necessitate different carbohydrate needs. The results of several acute and chronic training studies suggest that although severe carbohydrate restriction may not impair strength adaptations during a resistance training program, consuming an adequate amount of carbohydrate in the days leading up to testing may enhance maximal strength and strength-endurance performance. Although several molecular studies demonstrate no additive increases in postexercise mammalian target of rapamycin 1 phosphorylation with carbohydrate and protein compared with protein ingestion alone, the effects of chronic resistance training with carbohydrate restriction on muscle hypertrophy are conflicting and require further research to determine a minimal carbohydrate threshold necessary to optimize muscle hypertrophy. This review summarizes the current knowledge regarding carbohydrate availability and resistance training outcomes and poses new research questions that will better help guide carbohydrate recommendations for strength and physique athletes. In addition, given that success in physique sports is based on subjective appearance, and not objective physical performance, we also review the effects of subchronic carbohydrate ingestion during contest preparation on aesthetic appearance.
Collapse
Affiliation(s)
- Jason M Cholewa
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina, USA.
| | - Daniel E Newmire
- Department of Kinesiology and Military Science, University of Texas A&M, Corpus Christi, Texas, USA
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão, São Luís, Brazil; Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luís, Brazil
| |
Collapse
|
103
|
Glucose prevents cisplatin-induced fatigue-like behavior in mice. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
104
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
105
|
Hargreaves M, Spriet LL. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029744. [PMID: 28533314 DOI: 10.1101/cshperspect.a029744] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During exercise, the supply of adenosine triphosphate (ATP) is essential for the energy-dependent processes that underpin ongoing contractile activity. These pathways involve both substrate-level phosphorylation, without any need for oxygen, and oxidative phosphorylation that is critically dependent on oxygen delivery to contracting skeletal muscle by the respiratory and cardiovascular systems and on the supply of reducing equivalents from the degradation of carbohydrate, fat, and, to a limited extent, protein fuel stores. The relative contribution of these pathways is primarily determined by exercise intensity, but also modulated by training status, preceding diet, age, gender, and environmental conditions. Optimal substrate availability and utilization before, during, and after exercise is critical for maintaining exercise performance. This review provides a brief overview of exercise metabolism, with expanded discussion of the regulation of muscle glucose uptake and fatty acid uptake and oxidation.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
106
|
Sutehall S, Muniz-Pardos B, Bosch AN, Di Gianfrancesco A, Pitsiladis YP. Sports Drinks on the Edge of a New Era. Curr Sports Med Rep 2018; 17:112-116. [PMID: 29629968 DOI: 10.1249/jsr.0000000000000475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shaun Sutehall
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Borja Muniz-Pardos
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Andrew N Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Alessia Di Gianfrancesco
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Yannis P Pitsiladis
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA.,Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA.,Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| |
Collapse
|
107
|
Abstract
Elite athletes and coaches are in a constant search for training methods and nutritional strategies to support training and recovery efforts that may ultimately maximize athletes’ performance. Recently, there has been a re-emerging interest in the role of ketone bodies in exercise metabolism, with considerable media speculation about ketone body supplements being routinely used by professional cyclists. Ketone bodies can serve as an important energy substrate under certain conditions, such as starvation, and can modulate carbohydrate and lipid metabolism. Dietary strategies to increase endogenous ketone body availability (i.e., a ketogenic diet) require a diet high in lipids and low in carbohydrates for ~4 days to induce nutritional ketosis. However, a high fat, low carbohydrate ketogenic diet may impair exercise performance via reducing the capacity to utilize carbohydrate, which forms a key fuel source for skeletal muscle during intense endurance-type exercise. Recently, ketone body supplements (ketone salts and esters) have emerged and may be used to rapidly increase ketone body availability, without the need to first adapt to a ketogenic diet. However, the extent to which ketone bodies regulate skeletal muscle bioenergetics and substrate metabolism during prolonged endurance-type exercise of varying intensity and duration remains unknown. Therefore, at present there are no data available to suggest that ingestion of ketone bodies during exercise improves athletes’ performance under conditions where evidence-based nutritional strategies are applied appropriately.
Collapse
|
108
|
Broelz EK, Wolf S, Schneeweiss P, Niess AM, Enck P, Weimer K. Increasing effort without noticing: A randomized controlled pilot study about the ergogenic placebo effect in endurance athletes and the role of supplement salience. PLoS One 2018; 13:e0198388. [PMID: 29889868 PMCID: PMC5995445 DOI: 10.1371/journal.pone.0198388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose Previous research shows that endurance performance can be enhanced by placebo ergogenic aids. This study investigates the ergogenic placebo response, which we define as an increase in objective and physiological effort without an increase in subjective effort, in competitive cyclists. The primary objective of this study is to explore the role of supplement salience in the ergogenic placebo response, while the secondary aim is to assess whether believing to have taken an inactive placebo supplement attenuates the desired ergogenic effect. Methods We employed a double-blind placebo-controlled study design and compared a high salience (pudding) to a low salience (capsules) ergogenic placebo supplement and to a no treatment control group. Thirty-four male athletes (30.0 ± 5.7 years) performed two self-regulated time trials on an isokinetic cycling ergometer, one without intervention serving as a baseline and one with intervention according to group assignment. At both time trials, power output (objective effort), blood lactate (physiological effort) and the rating of perceived exertion (subjective effort) were measured. Results Receiving a high salience supplement can increase physiological and objective effort without a proportional rise in subjective effort, suggesting a decoupling of perceived exertion and endurance performance. Low salience and control group both showed no such ergogenic placebo response. Athletes’ belief concerning the true nature of the ergogenic aid (inactive placebo vs. ergogenic supplement) did not influence the ergogenic placebo response. Conclusion High salience placebo ergogenic aids can elicit enhanced performance without the athlete noticing (exertion), and deception of athletes seems unnecessary as even believing to have received an inactive placebo supplement maintains the ergogenic placebo response.
Collapse
Affiliation(s)
- Ellen K. Broelz
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Wolf
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Patrick Schneeweiss
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas M. Niess
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Katja Weimer
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
109
|
Schleh MW, Dumke CL. Comparison of Sports Drink Versus Oral Rehydration Solution During Exercise in the Heat. Wilderness Environ Med 2018; 29:185-193. [PMID: 29548770 DOI: 10.1016/j.wem.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Michael W Schleh
- Department of Health and Human Performance, University of Montana, Missoula, MT
| | - Charles L Dumke
- Department of Health and Human Performance, University of Montana, Missoula, MT.
| |
Collapse
|
110
|
The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: A double-blind, randomized cross-over trial. PLoS One 2018; 13:e0197480. [PMID: 29771966 PMCID: PMC5957406 DOI: 10.1371/journal.pone.0197480] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/02/2018] [Indexed: 11/29/2022] Open
Abstract
Background Sodium bicarbonate (SB) has been proposed as an ergogenic aid, as it improves high-intensity and resistance exercise performance. However, no studies have yet investigated SB application in CrossFit. This study examined the effects of chronic, progressive-dose SB ingestion on CrossFit-like performance and aerobic capacity. Methods In a randomized, double-blind, cross-over trial, 21 CrossFit-trained participants were randomly allocated to 2 groups and underwent 2 trials separated by a 14-day washout period. Participants ingested either up to 150 mg∙kg-1 of SB in a progressive-dose regimen or placebo for 10 days. Before and after each trial, Fight Gone Bad (FGB) and incremental cycling (ICT) tests were performed. In order to examine biochemical responses, blood samples were obtained prior to and 3 min after completing each exercise test. Results No gastrointestinal (GI) side effects were reported during the entire protocol. The overall FGB performance improved under SB by ~6.1% (p<0.001) and it was ~3.1% higher compared to post placebo (PLApost) (p = 0.040). The number of repetitions completed in each round also improved under SB (mean from baseline: +5.8% to +6.4%). Moreover, in ICT, the time to ventilatory threshold (VT) (~8:25 min SBpost vs. ~8:00 min PLApost, p = 0.020), workload at VT (~218 W SBpost vs. ~208 W PLApost, p = 0.037) and heart rate at VT (~165 bpm SBpost vs. ~161 bpm PLApost, p = 0.030) showed higher SBpost than PLApost. Furthermore, the maximum carbon dioxide production increased under SB by ~4.8% (from ~3604 mL∙min-1 to ~3776 mL∙min-1, p = 0.049). Pyruvate concentration and creatine kinase activity before ICT showed higher SBpost than PLApost (~0.32 mmol∙L-1 vs. ~0.26 mmol∙L-1, p = 0.001; ~275 U∙L-1 vs. ~250 U∙L-1, p = 0.010, respectively). However, the small sample size limits the wide-application of our results. Conclusions Progressive-dose SB ingestion regimen eliminated GI side effects and improved CrossFit-like performance, as well as delayed ventilatory threshold occurrence.
Collapse
|
111
|
Getzin AR, Milner C, Harkins M. Fueling the Triathlete: Evidence-Based Practical Advice for Athletes of All Levels. Curr Sports Med Rep 2018; 16:240-246. [PMID: 28696986 DOI: 10.1249/jsr.0000000000000386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triathletes need to effectively fuel during training and racing to maximize their potential for success. While most research on fueling has focused on elite male triathletes, triathlon participation encompasses a broader demographic of racers ranging from those with aspirations of winning to those whose goals are completion. Carbohydrate is the primary macronutrient for fueling endurance activities. Athletes can usually tolerate 60 to 90 mg·h in the form of multiple different carbohydrate sources. Athletes should drink as thirst dictates and consider sodium replacement of sweat loss especially in individuals with a history of exercise-associated muscle cramps. Caffeine is a known ergogenic aid that could be dosed at 3 mg·kg to maximize benefits of mental alertness while limiting potential side effects. Athletes need to balance fueling with development of exercise-induced gastrointestinal syndrome. As demographics of race participants change, understanding the special fueling needs of obese triathletes can encourage participation while minimizing bad outcomes.
Collapse
Affiliation(s)
- Andrew R Getzin
- 1Cayuga Medical Center, Ithaca, NY; 2Cayuga Center for Healthy Living, Cayuga Medical Center, Ithaca, NY; and 3Cayuga Center for Metabolic and Bariatric Surgery, Cayuga Medical Center, Ithaca, NY
| | | | | |
Collapse
|
112
|
Effects of Low Versus Moderate Glycemic Index Diets on Aerobic Capacity in Endurance Runners: Three-Week Randomized Controlled Crossover Trial. Nutrients 2018; 10:nu10030370. [PMID: 29562613 PMCID: PMC5872788 DOI: 10.3390/nu10030370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
The glycemic index (GI) of ingested carbohydrates may influence substrate oxidation during exercise and athletic performance. Therefore, the aim of this study was to assess the effect of low- and moderate-GI three-week diets on aerobic capacity and endurance performance in runners. We conducted a randomized crossover feeding study of matched diets differing only in GI (low vs. moderate) in 21 endurance-trained runners. Each participant consumed both, low- (LGI) and moderate-GI (MGI) high-carbohydrate (~60%) and nutrient-balanced diets for three weeks each. At the beginning and end of each diet, participants had their aerobic capacity and body composition measured and performed a 12-min running test. After LGI, time to exhaustion during incremental cycling test (ICT) and distance covered in the 12-min run were significantly increased. The MGI diet led to an increase in maximal oxygen uptake (V˙O2max), but no performance benefits were found after the MGI diet. The LGI and MGI diets improved time and workload at gas exchange threshold (GET) during ICT. The results indicate that a three-week high-carbohydrate LGI diet resulted in a small but significant improvement in athletic performance in endurance runners. Observed increase in V˙O2max on MGI diet did not affect performance.
Collapse
|
113
|
Finger D, Lanferdini FJ, Farinha JB, Brusco CM, Helal L, Boeno FP, Cadore EL, Pinto RS. Ingestion of carbohydrate or carbohydrate plus protein does not enhance performance during endurance exercise: a randomized crossover placebo-controlled clinical trial. Appl Physiol Nutr Metab 2018; 43:937-944. [PMID: 29544062 DOI: 10.1139/apnm-2017-0835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A beverage containing protein (PRO) and carbohydrate (CHO) may have an ergogenic effect on endurance performance. However, evidence regarding its efficacy on similar conditions to athletes' race day is still lacking. The objective of this study was to compare the effects of 3 different nutritional supplementation strategies on performance and muscle recovery in a duathlon protocol. Thirteen male athletes (29.7 ± 7.7 years) participated in 3 simulated Olympic-distance duathlon trials (SDTs) under 3 different, randomly assigned supplementation regimens: CHO drink (75 g CHO), isocaloric CHO plus PRO drink (60.5 g CHO and 14.5 g PRO), and placebo drink (PLA). Supplements were offered during the cycling bout. Blood samples were collected before, immediately after, and 24 h after each SDT for creatine kinase (CK) analysis. Isometric peak torque (PT) was measured before and 24 h after each SDT. The primary outcome measure was the time to complete the 5-km running section (t5km) at a self-selected pace. There was no difference in t5km between CHO (1270.3 ± 130.5 s), CHO+PRO (1267.2 ± 138.9 s), and PLA (1275.4 ± 120 s); p = 0.87, effect size (ES) ≤ 0.1. Pre-post changes for PT and CK were not significant for any of the 3 conditions (PT: p = 0.24, ES ≤ 0.4; CK: p = 0.32, ES = 0.3-1.04). For endurance sports lasting up to 2 h, with a pre-exercise meal containing CHO at 1.5 g·kg-1, supplementation with CHO or CHO+PRO does not offer additional benefits for performance and muscle recovery when compared with PLA.
Collapse
Affiliation(s)
- Débora Finger
- a Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750, Jardim Botânico, CEP: 90690-200, Porto Alegre, RS, Brazil
| | - Fábio Juner Lanferdini
- a Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750, Jardim Botânico, CEP: 90690-200, Porto Alegre, RS, Brazil.,b Physical Education Course, Universidade Regional Integrada do Alto Uruguai e das Missões, Av. Universidade das Missões, 464 - Universitário, CEP: 98802-470, Santo Ângelo, RS, Brazil
| | - Juliano Boufleur Farinha
- a Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750, Jardim Botânico, CEP: 90690-200, Porto Alegre, RS, Brazil
| | - Clarissa Müller Brusco
- a Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750, Jardim Botânico, CEP: 90690-200, Porto Alegre, RS, Brazil
| | - Lucas Helal
- c Exercise Pathophysiology Laboratory, School of Medicine, Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Largo Eduardo Zaccaro Faraco, CEP: 90035-903, Porto Alegre, RS, Brazil
| | - Francesco Pinto Boeno
- a Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750, Jardim Botânico, CEP: 90690-200, Porto Alegre, RS, Brazil
| | - Eduardo Lusa Cadore
- a Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750, Jardim Botânico, CEP: 90690-200, Porto Alegre, RS, Brazil
| | - Ronei Silveira Pinto
- a Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Rua Felizardo, 750, Jardim Botânico, CEP: 90690-200, Porto Alegre, RS, Brazil
| |
Collapse
|
114
|
Marosi K, Moehl K, Navas-Enamorado I, Mitchell SJ, Zhang Y, Lehrmann E, Aon MA, Cortassa S, Becker KG, Mattson MP. Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation. FASEB J 2018; 32:3844-3858. [PMID: 29485903 DOI: 10.1096/fj.201701378rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary considerations suggest that the body has been optimized to perform at a high level in the food-deprived state when fatty acids and their ketone metabolites are a major fuel source for muscle cells. Because controlled food deprivation in laboratory animals and intermittent energy restriction in humans is a potent physiologic stimulus for ketosis, we designed a study to determine the impact of intermittent food deprivation during endurance training on performance and to elucidate the underlying cellular and molecular mechanisms. Male mice were randomly assigned to either ad libitum feeding or alternate-day food deprivation (ADF) groups, and half of the mice in each diet group were trained daily on a treadmill for 1 mo. A run to exhaustion endurance test performed at the end of the training period revealed superior performance in the mice maintained on ADF during training compared to mice fed ad libitum during training. Maximal O2 consumption was increased similarly by treadmill training in mice on ADF or ad libitum diets, whereas respiratory exchange ratio was reduced in ADF mice on food-deprivation days and during running. Analyses of gene expression in liver and soleus tissues, and metabolomics analysis of blood suggest that the metabolic switch invoked by ADF and potentiated by exercise strongly modulates molecular pathways involved in mitochondrial biogenesis, metabolism, and cellular plasticity. Our findings demonstrate that ADF engages metabolic and cellular signaling pathways that result in increased metabolic efficiency and endurance capacity.-Marosi, K., Moehl, K., Navas-Enamorado, I., Mitchell, S. J., Zhang, Y., Lehrmann, E., Aon, M. A., Cortassa, S., Becker, K. G., Mattson, M. P. Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ignacio Navas-Enamorado
- Translational Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sarah J Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
115
|
Characteristics and Challenges of Open-Water Swimming Performance: A Review. Int J Sports Physiol Perform 2018; 12:1275-1284. [PMID: 28459347 DOI: 10.1123/ijspp.2017-0230] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CONTEXT Although the popularity of open-water swimming (OWS) events has significantly increased in the last decades, specific studies regarding performance of elite or age-group athletes in these events are scarce. PURPOSE To analyze the existing literature on OWS. METHODS Relevant literature was located via computer-generated citations. During August 2016, online computer searches on PubMed and Scopus databases were conducted to locate published research. RESULTS The number of participants in ultraendurance swimming events has substantially increased in the last 10 y. In elite athletes there is a higher overall competitive level of women than of men. The body composition of female athletes (different percentage and distribution of fat tissue) shows several advantages (more buoyancy and less drag) in aquatic conditions that determine the small difference between males and females. The main physiological characteristics of open-water swimmers (OW swimmers) are the ability to swim at high percentage of [Formula: see text] (80-90%) for many hours. Furthermore, to sustain high velocity for many hours, endurance swimmers need a high propelling efficiency and a low energy cost. CONCLUSION Open-water races may be characterized by extreme environmental conditions (water temperature, tides, currents, and waves) that have an overall impact on performance, influencing tactics and pacing. Future studies are needed to study OWS in both training and competition.
Collapse
|
116
|
Hills SP, Russell M. Carbohydrates for Soccer: A Focus on Skilled Actions and Half-Time Practices. Nutrients 2017; 10:nu10010022. [PMID: 29295583 PMCID: PMC5793250 DOI: 10.3390/nu10010022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate consumption is synonymous with soccer performance due to the established effects on endogenous energy store preservation, and physical capacity maintenance. For performance-enhancement purposes, exogenous energy consumption (in the form of drinks, bars, gels and snacks) is recommended on match-day; specifically, before and during match-play. Akin to the demands of soccer, limited opportunities exist to consume carbohydrates outside of scheduled breaks in competition, such as at half-time. The link between cognitive function and blood glucose availability suggests that carbohydrates may influence decision-making and technical proficiency (e.g., soccer skills). However, relatively few reviews have focused on technical, as opposed to physical, performance while also addressing the practicalities associated with carbohydrate consumption when limited in-play feeding opportunities exist. Transient physiological responses associated with reductions in activity prevalent in scheduled intra-match breaks (e.g., half-time) likely have important consequences for practitioners aiming to optimize match-day performance. Accordingly, this review evaluated novel developments in soccer literature regarding (1) the ergogenic properties of carbohydrates for skill performance; and (2) novel considerations concerning exogenous energy provision during half-time. Recommendations are made to modify half-time practices in an aim to enhance subsequent performance. Viable future research opportunities exist regarding a deeper insight into carbohydrate provision on match-day.
Collapse
Affiliation(s)
- Samuel P Hills
- School of Social and Health Sciences, Leeds Trinity University, Horsforth, Leeds LS18 5HD, UK.
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Horsforth, Leeds LS18 5HD, UK.
| |
Collapse
|
117
|
Durkalec-Michalski K, Zawieja EE, Zawieja BE, Podgórski T, Jurkowska D, Jeszka J. Influence of low versus moderate glycemic index of diet on substrate oxidation and energy expenditure during incremental exercise in endurance athletes: a randomized counterbalanced cross-over trial. Int J Food Sci Nutr 2017; 69:741-752. [PMID: 29252040 DOI: 10.1080/09637486.2017.1411891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study was aimed at assessing the influence of 3-week low glycemic index (LGI) versus moderate glycemic index (MGI) diet on substrate oxidation during incremental exercise. 17 runners completed two 3-week trials of either LGI or MGI diet in a randomised counterbalanced manner. Before and after each trial the incremental cycling test was performed. Metabolic alternations were observed only within tested diets and no significant differences in fat and carbohydrate (CHO) oxidation were found between MGI and LGI diets. Following MGI diet CHO oxidation rate increased. The AUC of fat oxidation decreased after both diets. Percent contribution of fat to energy yield declined, whereas contribution of CHO was augmented following MGI diet. This study indicates that the 3-week MGI diet increased the rate of carbohydrate oxidation during incremental cycling test and improved performance in acute intense exercise test, while both high-carbohydrate diets downregulated fat oxidation rate.
Collapse
Affiliation(s)
| | - Emilia Ewa Zawieja
- a Institute of Human Nutrition and Dietetics , Poznań University of Life Sciences , Poznań , Poland
| | - Bogna Ewa Zawieja
- b Department of Mathematical and Statistical Methods , Poznań University of Life Sciences , Poznań , Poland
| | - Tomasz Podgórski
- c Department of Biochemistry , University School of Physical Education in Poznan , Poznań , Poland
| | - Dominika Jurkowska
- a Institute of Human Nutrition and Dietetics , Poznań University of Life Sciences , Poznań , Poland
| | - Jan Jeszka
- a Institute of Human Nutrition and Dietetics , Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
118
|
The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. J Sci Med Sport 2017; 20:1123-1129. [DOI: 10.1016/j.jsams.2017.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/13/2017] [Accepted: 04/16/2017] [Indexed: 11/24/2022]
|
119
|
Peart DJ. Quantifying the Effect of Carbohydrate Mouth Rinsing on Exercise Performance. J Strength Cond Res 2017; 31:1737-1743. [PMID: 28538327 DOI: 10.1519/jsc.0000000000001741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to review the existing literature investigating carbohydrate mouth rinsing as an ergogenic aid using the effect sizes (ES) and percentage change in performance of the respective studies as outcome measures. A trivial-small average overall ES was present for the 25 studies included in the review (0.18, 95% confidence interval [CI] = 0.10-0.27). Effect sizes for the subgroups were ≥25 minutes (0.25, 95% CI = 0.14-0.36), ≤180 seconds (0.06, 95% CI = -0.03 to 0.15), resistance exercise (-0.09, 95% CI = -0.20 to 0.03) but the ES is still small. A subanalysis of ∼1-h cycling time trial performance resulted in an overall ES of 0.20 (95% CI = 0.02-0.38), and ES for performance time and power output of 0.31 (95% CI = -0.02 to 0.64) and 0.19 (95% CI = -0.09 to 0.46), respectively. Although ES were small, the average percentage change in performance in ∼1-hour trials was 2.48%, which may have implications for elite performers as this is greater than the 1.30% smallest worthwhile change recommended in the past research.
Collapse
Affiliation(s)
- Daniel J Peart
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
120
|
Raizel R, da Mata Godois A, Coqueiro AY, Voltarelli FA, Fett CA, Tirapegui J, de Paula Ravagnani FC, de Faria Coelho-Ravagnani C. Pre-season dietary intake of professional soccer players. Nutr Health 2017; 23:215-222. [PMID: 29037118 DOI: 10.1177/0260106017737014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite the well-documented importance of nutrition in optimizing performance and health, the dietary intake of soccer players has attracted little attention. AIM We aimed to assess the pre-season dietary intake of professional soccer players and its adequacy in macro and micronutrients. METHODS The pre-season dietary intake of 19 male athletes was assessed using a semi-structured 3-day food record. To determine dietary adequacy and excess, energy and macronutrient intake were compared with the Brazilian dietary reference values for athletes, and micronutrients were compared with the Estimated Average Requirement - EAR (minimum recommendation) and Tolerable Upper Intake Level - UL (maximum recommendation). RESULTS Mean daily energy intake (40.74±12.81 kcal/kg) was adequate. However, there was a low carbohydrate intake (5.44±1.86 g/kg/day) and a high amount of protein and fat (1.91±0.75 and 1.27±0.50 g/kg/day, respectively). Sodium intake (3141.77±939.76 mg/day) was higher than UL (2300 mg/day), while the majority of players showed daily intake of vitamin A (74%), vitamin D (100%), folate (58%), calcium and magnesium (68%) below the EAR (625, 10 and 320 µg/day, 800 and 330 mg/day, respectively). CONCLUSION The dietary intake of professional soccer players was adequate in energy, but inadequate in macro and micronutrients, which suggests the need to improve nutritional practices to sustain the physical demands of soccer during pre-season.
Collapse
Affiliation(s)
- Raquel Raizel
- 1 Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | - Audrey Yule Coqueiro
- 1 Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | | | - Julio Tirapegui
- 1 Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | | |
Collapse
|
121
|
Pomportes L, Brisswalter J, Casini L, Hays A, Davranche K. Cognitive Performance Enhancement Induced by Caffeine, Carbohydrate and Guarana Mouth Rinsing during Submaximal Exercise. Nutrients 2017; 9:nu9060589. [PMID: 28598402 PMCID: PMC5490568 DOI: 10.3390/nu9060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the influence of serial mouth rinsing (MR) with nutritional supplements on cognitive performance (i.e., cognitive control and time perception) during a 40-min submaximal exercise. Twenty-four participants completed 4 counterbalanced experimental sessions, during which they performed MR with either placebo (PL), carbohydrate (CHO: 1.6 g/25 mL), guarana complex (GUAc: 0.4 g/25 mL) or caffeine (CAF: 67 mg/25 mL) before and twice during exercise. The present study provided some important new insights regarding the specific changes in cognitive performance induced by nutritional supplements. The main results were: (1) CHO, CAF and GUA MR likely led participants to improve temporal performance; (2) CAF MR likely improved cognitive control; and (3) CHO MR led to a likely decrease in subjective perception of effort at the end of the exercise compared to PL, GUA and CAF. Moreover, results have shown that performing 40-min submaximal exercise enhances information processing in terms of both speed and accuracy, improves temporal performance and does not alter cognitive control. The present study opens up new perspectives regarding the use of MR to optimize cognitive performance during physical exercise.
Collapse
Affiliation(s)
- Laura Pomportes
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Nice Sophia Antipolis, 06205 Nice, France.
- CREPS PACA, 13080 Aix-en-Provence, France.
| | - Jeanick Brisswalter
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Nice Sophia Antipolis, 06205 Nice, France.
| | - Laurence Casini
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, CNRS, LNC, 13331 Marseille, France.
| | - Arnaud Hays
- Institut des Sciences du Mouvement, Aix-Marseille Université, UMR 7287, 13288 Marseille, France.
| | - Karen Davranche
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, CNRS, LPC, 13331 Marseille, France.
| |
Collapse
|
122
|
Margolis LM, Murphy NE, Carrigan CT, McClung HL, Pasiakos SM. Ingesting a Combined Carbohydrate and Essential Amino Acid Supplement Compared to a Non-Nutritive Placebo Blunts Mitochondrial Biogenesis-Related Gene Expression after Aerobic Exercise. Curr Dev Nutr 2017; 1:e000893. [PMID: 29955707 PMCID: PMC5998348 DOI: 10.3945/cdn.117.000893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/06/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Whether load carriage (LC), an endurance exercise mode composed of the aerobic component of traditional endurance exercise [e.g., cycle ergometry (CE)] and contractile forces characteristic of resistive-type exercise, modulates acute mitochondrial adaptive responses to endurance exercise and supplemental nutrition [carbohydrate + essential amino acids (CHO+EAA)] is not known. Objective: The aim of this study was to examine the effects of LC and CE, with or without CHO+EAA supplementation, on acute markers of mitochondrial biogenesis. Methods: Twenty-five adults performed 90 min of metabolically matched LC (treadmill walking, wearing a vest equal to 30% of body mass) or CE exercise during which CHO+EAA (46 g carbohydrate and 10 g essential amino acids) or non-nutritive control (CON) drinks were consumed. Muscle biopsy samples were collected at rest (pre-exercise), post-exercise, and after 3 h of recovery to assess citrate synthase activity and the expression of mRNA (reverse transcriptase-quantitative polymerase chain reaction) and protein (Western blot). Results: Citrate synthase and phosphorylated p38 mitogen-activated protein kinase (p38 MAPK)Thr180/Tyr182 were elevated postexercise compared with pre-exercise (time main effect, P < 0.05). Peroxisome proliferator-activated γ-receptor coactivator 1α (PGC-1α) expression was highest after recovery for CE compared with LC (exercise-by-time effect, P < 0.05). Sirtuin 1 (SIRT1) expression postexercise was higher for CON than for CHO+EAA treatments (drink-by-time, P < 0.05). Tumor suppressor p53 (p53), mitochondrial transcription factor A (TFAM), and cytochrome c oxidase subunit IV (COXIV) expression was greater for CON than for CHO+EAA treatments (drink main effect, P < 0.05). PGC-1α and p53 expressions were positively associated (P < 0.05) with TFAM (r = 0.629 and 0.736, respectively) and COXIV (r = 0.465 and 0.461, respectively) expressions. Conclusions: Acute mitochondrial adaptive responses to endurance exercise appear to be largely driven by exogenous nutrition availability. Although CE upregulated PGC-1α expression to a greater extent than LC, downstream signaling was the same between modes, suggesting that LC, in large part, elicits the same acute mitochondrial response as traditional, non-weight-bearing endurance exercise. This trial was registered at clinicaltrials.gov as NCT01714479.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Christopher T Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Holly L McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| |
Collapse
|
123
|
Naughton RJ, Drust B, O’Boyle A, Abayomi J, Mahon E, Morton JP, Davies IG. Free-sugar, total-sugar, fibre, and micronutrient intake within elite youth British soccer players: a nutritional transition from schoolboy to fulltime soccer player. Appl Physiol Nutr Metab 2017; 42:517-522. [DOI: 10.1139/apnm-2016-0459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is recommended that soccer players consume a high carbohydrate diet to augment performance. However, growing evidence suggests that there is a link between high free-sugar (FS) intake (>5% total energy intake; TEI) and metabolic diseases. Furthermore, foods that are often high in sugar, such as processed foods, are typically lacking in nutrient quality. We therefore analysed total-sugar, FS, dietary fibre, and micronutrient intake of players from an English Premier League academy under (U) 18 (n = 13), U15/16 (n = 25), and U13/14 (n = 21) using a 7-day food diary. Data were compared with current United Kingdom (UK) dietary reference value (DRV) for FS via a t test. The U13/14s (10% ± 18%) and U15/16s (11% ± 30%) both consumed higher amounts of FS in comparison with the UK DRV of 5% TEI (P < 0.01); conversely, the U18s did not exceed the DRV (5% ± 13%). Furthermore, FS intake of the U18s was significantly lower than the U13/14s and U15/16s (P < 0.01). Dietary fibre was below the DRV (25 g/day for U13/14 and U15/16s; 30 g/day for U18s) for all squads (19.0 ± 4.7, 19.6 ± 8.3, 17.1 ± 4.2 g/day, respectively), but not different between squads. Additionally, micronutrient reference intakes were generally met. In conclusion, we provide novel data on dietary sugar, fibre, and micronutrient intake within elite youth soccer players. We report an apparent “nutritional transition” from schoolboy to fulltime soccer player, with U18s showing a significantly lower intake of sugar in comparison with younger squads, and a similar intake of FS to the UK DRVs. Practitioners should target improving player education around sugar and fibre consumption.
Collapse
Affiliation(s)
- Robert J. Naughton
- School of Human and Health Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- School of Sports Studies, Leisure and Nutrition, Liverpool John Moores University, Liverpool, L17 6BD, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, L3 3AF, UK
- Liverpool Football Club, Melwood Training Ground, Deysbrook Lane, Liverpool, L12 8SY, UK
| | - Andy O’Boyle
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, L3 3AF, UK
- Liverpool Football Club, Melwood Training Ground, Deysbrook Lane, Liverpool, L12 8SY, UK
| | - Julie Abayomi
- School of Sports Studies, Leisure and Nutrition, Liverpool John Moores University, Liverpool, L17 6BD, UK
| | - Elizabeth Mahon
- School of Sports Studies, Leisure and Nutrition, Liverpool John Moores University, Liverpool, L17 6BD, UK
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, L3 3AF, UK
| | - Ian G. Davies
- School of Sports Studies, Leisure and Nutrition, Liverpool John Moores University, Liverpool, L17 6BD, UK
| |
Collapse
|
124
|
Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol 2017; 595:2857-2871. [PMID: 27861911 PMCID: PMC5407977 DOI: 10.1113/jp273185] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023] Open
Abstract
Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β-hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post-exercise recovery period, and the ability to utilise ketone bodies is higher in exercise-trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes.
Collapse
Affiliation(s)
- Mark Evans
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Karl E. Cogan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports ScienceUniversity College DublinBelfieldDublin4Ireland
- School of Health and Human PerformanceDublin City UniversityGlasnevinDublin9Ireland
| |
Collapse
|
125
|
Rosset R, Egli L, Lecoultre V. Glucose-fructose ingestion and exercise performance: The gastrointestinal tract and beyond. Eur J Sport Sci 2017; 17:874-884. [PMID: 28441908 DOI: 10.1080/17461391.2017.1317035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbohydrate ingestion can improve endurance exercise performance. In the past two decades, research has repeatedly reported the performance benefits of formulations comprising both glucose and fructose (GLUFRU) over those based on glucose (GLU). This has been usually related to additive effects of these two monosaccharides on the gastrointestinal tract whereby intestinal carbohydrate absorption is enhanced and discomfort limited. This is only a partial explanation, since glucose and fructose are also metabolized through different pathways after being absorbed from the gut. In contrast to glucose that is readily used by every body cell type, fructose is specifically targeted to the liver where it is mainly converted into glucose and lactate. The ingestion of GLUFRU may thereby profoundly alter hepatic function ultimately raising both glucose and lactate fluxes. During exercise, this particular profile of circulating carbohydrate may induce a spectrum of effects on muscle metabolism possibly resulting in an improved performance. Compared to GLU alone, GLUFRU ingestion could also induce several non-metabolic effects which are so far largely unexplored. Through its metabolite lactate, fructose may act on central fatigue and/or alter metabolic regulation. Future research could further define the effects of GLUFRU over other exercise modalities and different athletic populations, using several of the hypotheses discussed in this review.
Collapse
Affiliation(s)
- Robin Rosset
- a Department of Physiology , University of Lausanne , Lausanne , Switzerland
| | - Léonie Egli
- b Nestle Research Center Singapore , Singapore , Singapore
| | - Virgile Lecoultre
- c Centre for Metabolic Disease , Broye Intercantonal Hospital , Estavayer-le-Lac , Switzerland
| |
Collapse
|
126
|
Endurance Training with or without Glucose-Fructose Ingestion: Effects on Lactate Metabolism Assessed in a Randomized Clinical Trial on Sedentary Men. Nutrients 2017; 9:nu9040411. [PMID: 28425966 PMCID: PMC5409750 DOI: 10.3390/nu9040411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
Glucose-fructose ingestion increases glucose and lactate oxidation during exercise. We hypothesized that training with glucose-fructose would induce key adaptations in lactate metabolism. Two groups of eight sedentary males were endurance-trained for three weeks while ingesting either glucose-fructose (GF) or water (C). Effects of glucose-fructose on lactate appearance, oxidation, and clearance were measured at rest and during exercise, pre-training, and post-training. Pre-training, resting lactate appearance was 3.6 ± 0.5 vs. 3.6 ± 0.4 mg·kg−1·min−1 in GF and C, and was increased to 11.2 ± 1.4 vs. 8.8 ± 0.7 mg·kg−1·min−1 by exercise (Exercise: p < 0.01). Lactate oxidation represented 20.6 ± 1.0% and 17.5 ± 1.7% of lactate appearance at rest, and 86.3 ± 3.8% and 86.8 ± 6.6% during exercise (Exercise: p < 0.01) in GF and C, respectively. Training with GF increased resting lactate appearance and oxidation (Training × Intervention: both p < 0.05), but not during exercise (Training × Intervention: both p > 0.05). Training with GF and C had similar effects to increase lactate clearance during exercise (+15.5 ± 9.2 and +10.1 ± 5.9 mL·kg−1·min−1; Training: p < 0.01; Training × Intervention: p = 0.97). The findings of this study show that in sedentary participants, glucose-fructose ingestion leads to high systemic lactate appearance, most of which is disposed non-oxidatively at rest and is oxidized during exercise. Training with or without glucose-fructose increases lactate clearance, without altering lactate appearance and oxidation during exercise.
Collapse
|
127
|
Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ. "Nutraceuticals" in relation to human skeletal muscle and exercise. Am J Physiol Endocrinol Metab 2017; 312:E282-E299. [PMID: 28143855 PMCID: PMC5406990 DOI: 10.1152/ajpendo.00230.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine.
Collapse
Affiliation(s)
- Colleen S Deane
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- Faculty of Health and Social Science, Bournemouth University, Bournemouth, United Kingdom; and
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel J Wilkinson
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Bethan E Phillips
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Kenneth Smith
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy Etheridge
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Philip J Atherton
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom;
| |
Collapse
|
128
|
Che Jusoh MR, Stannard SR, Mündel T. Sago supplementation for recovery from cycling in a warm-humid environment and its influence on subsequent cycling physiology and performance. Temperature (Austin) 2017; 3:444-454. [PMID: 28349084 PMCID: PMC5079217 DOI: 10.1080/23328940.2016.1179382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022] Open
Abstract
This study determined whether sago porridge ingested immediately after exercise (Exercise 1) in warm-humid conditions (30 ± 1°C, 71 ± 4 % RH; 20 km·h−1 frontal airflow) conferred more rapid recovery, as measured by repeat performance (Exercise 2), compared to a control condition. Eight well-trained, male cyclists/triathletes (34 ± 9 y, VO2peak 70 ± 10 ml·kg−1·min−1, peak aerobic power 413 ± 75 W) completed two 15-min time-trials pre-loaded with 15-min warm-up cycling following >24h standardization of training and diet. Mean power output was not different between trials during Exercise 1 (286 ± 67 vs. 281 ± 59 W), however, was reduced during Exercise 2 for control (274 ± 61 W) but not sago (283 ± 60 W) that led to a significant performance decrement (vs. Exercise 1) of 3.9% for control and an improvement (vs. control) of 3.7% for sago during Exercise 2 (P < 0.05). Sago ingestion was also associated with higher blood glucose concentrations during recovery compared to control. These results indicate that feeding sago during recovery from exercise in a warm-humid environment improves recovery of performance during a subsequent exercise bout when compared to a water-only control. As these effects were larger than the test-retest coefficient of variation for work completed during the 15-min time-trial (2.3%) it can be confidently concluded that the observed effects are real.
Collapse
Affiliation(s)
| | - Stephen R Stannard
- School of Sport and Exercise, Massey University , Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport and Exercise, Massey University , Palmerston North, New Zealand
| |
Collapse
|
129
|
Affiliation(s)
- Romain Meeusen
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Roelands
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
130
|
Rosset R, Lecoultre V, Egli L, Cros J, Dokumaci AS, Zwygart K, Boesch C, Kreis R, Schneiter P, Tappy L. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals. Am J Clin Nutr 2017; 105:609-617. [PMID: 28100512 DOI: 10.3945/ajcn.116.138214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/12/2016] [Indexed: 11/14/2022] Open
Abstract
Background: Postexercise nutrition is paramount to the restoration of muscle energy stores by providing carbohydrate and fat as precursors of glycogen and intramyocellular lipid (IMCL) synthesis. Compared with glucose, fructose ingestion results in lower postprandial glucose and higher lactate and triglyceride concentrations. We hypothesized that these differences in substrate concentration would be associated with a different partition of energy stored as IMCLs or glycogen postexercise.Objective: The purpose of this study was to compare the effect of isocaloric liquid mixed meals containing fat, protein, and either fructose or glucose on the repletion of muscle energy stores over 24 h after a strenuous exercise session.Design: Eight male endurance athletes (mean ± SEM age: 29 ± 2 y; peak oxygen consumption: 66.8 ± 1.3 mL · kg-1 · min-1) were studied twice. On each occasion, muscle energy stores were first lowered by a combination of a 3-d controlled diet and prolonged exercise. After assessment of glycogen and IMCL concentrations in vastus muscles, subjects rested for 24 h and ingested mixed meals providing fat and protein together with 4.4 g/kg fructose (the fructose condition; FRU) or glucose (the glucose condition; GLU). Postprandial metabolism was assessed over 6 h, and glycogen and IMCL concentrations were measured again after 24 h. Finally, energy metabolism was evaluated during a subsequent exercise session.Results: FRU and GLU resulted in similar IMCL [+2.4 ± 0.4 compared with +2.0 ± 0.6 mmol · kg-1 wet weight · d-1; time × condition (mixed-model analysis): P = 0.45] and muscle glycogen (+10.9 ± 0.9 compared with +12.3 ± 1.9 mmol · kg-1 wet weight · d-1; time × condition: P = 0.45) repletion. Fructose consumption in FRU increased postprandial net carbohydrate oxidation and decreased net carbohydrate storage (estimating total, muscle, and liver glycogen synthesis) compared with GLU (+117 ± 9 compared with +135 ± 9 g/6 h, respectively; P < 0.01). Compared with GLU, FRU also resulted in lower plasma glucose concentrations and decreased exercise performance the next day.Conclusions: Mixed meals containing fat, protein, and either fructose or glucose elicit similar repletion of IMCLs and muscle glycogen. Under such conditions, fructose lowers whole-body glycogen synthesis and impairs subsequent exercise performance, presumably because of lower hepatic glycogen stores. This trial was registered at clinicaltrials.gov as NCT01866215.
Collapse
Affiliation(s)
- Robin Rosset
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Virgile Lecoultre
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Léonie Egli
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Jérémy Cros
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Ayse Sila Dokumaci
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Karin Zwygart
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Roland Kreis
- Department of Clinical Research and Radiology, University of Bern, Bern, Switzerland
| | - Philippe Schneiter
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| | - Luc Tappy
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; and
| |
Collapse
|
131
|
Abstract
It is becoming increasingly clear that adaptations, initiated by exercise, can be amplified or reduced by nutrition. Various methods have been discussed to optimize training adaptations and some of these methods have been subject to extensive study. To date, most methods have focused on skeletal muscle, but it is important to note that training effects also include adaptations in other tissues (e.g., brain, vasculature), improvements in the absorptive capacity of the intestine, increases in tolerance to dehydration, and other effects that have received less attention in the literature. The purpose of this review is to define the concept of periodized nutrition (also referred to as nutritional training) and summarize the wide variety of methods available to athletes. The reader is referred to several other recent review articles that have discussed aspects of periodized nutrition in much more detail with primarily a focus on adaptations in the muscle. The purpose of this review is not to discuss the literature in great detail but to clearly define the concept and to give a complete overview of the methods available, with an emphasis on adaptations that are not in the muscle. Whilst there is good evidence for some methods, other proposed methods are mere theories that remain to be tested. 'Periodized nutrition' refers to the strategic combined use of exercise training and nutrition, or nutrition only, with the overall aim to obtain adaptations that support exercise performance. The term nutritional training is sometimes used to describe the same methods and these terms can be used interchangeably. In this review, an overview is given of some of the most common methods of periodized nutrition including 'training low' and 'training high', and training with low- and high-carbohydrate availability, respectively. 'Training low' in particular has received considerable attention and several variations of 'train low' have been proposed. 'Training-low' studies have generally shown beneficial effects in terms of signaling and transcription, but to date, few studies have been able to show any effects on performance. In addition to 'train low' and 'train high', methods have been developed to 'train the gut', train hypohydrated (to reduce the negative effects of dehydration), and train with various supplements that may increase the training adaptations longer term. Which of these methods should be used depends on the specific goals of the individual and there is no method (or diet) that will address all needs of an individual in all situations. Therefore, appropriate practical application lies in the optimal combination of different nutritional training methods. Some of these methods have already found their way into training practices of athletes, even though evidence for their efficacy is sometimes scarce at best. Many pragmatic questions remain unanswered and another goal of this review is to identify some of the remaining questions that may have great practical relevance and should be the focus of future research.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
132
|
Trommelen J, Beelen M, Pinckaers PJM, Senden JM, Cermak NM, Van Loon LJC. Fructose Coingestion Does Not Accelerate Postexercise Muscle Glycogen Repletion. Med Sci Sports Exerc 2017; 48:907-12. [PMID: 26606271 DOI: 10.1249/mss.0000000000000829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Postexercise muscle glycogen repletion is largely determined by the systemic availability of exogenous carbohydrate provided. PURPOSE This study aimed to assess the effect of the combined ingestion of fructose and glucose on postexercise muscle glycogen repletion when optimal amounts of carbohydrate are ingested. METHODS Fourteen male cyclists (age: 28 ± 6 yr; Wmax: 4.8 ± 0.4 W·kg⁻¹) were studied on three different occasions. Each test day started with a glycogen-depleting exercise session. This was followed by a 5-h recovery period, during which subjects ingested 1.5 g·kg⁻¹·h⁻¹ glucose (GLU), 1.2 g·kg⁻¹·h⁻¹ glucose + 0.3 g·kg⁻¹·h⁻¹ fructose (GLU + FRU), or 0.9 g·kg⁻¹·h⁻¹ glucose + 0.6 g·kg⁻¹·h⁻¹ sucrose (GLU + SUC). Blood samples and gastrointestinal distress questionnaires were collected frequently, and muscle biopsy samples were taken at 0, 120, and 300 min after cessation of exercise to measure muscle glycogen content. RESULTS Plasma glucose responses did not differ between treatments (ANOVA, P = 0.096), but plasma insulin and lactate concentrations were elevated during GLU + FRU and GLU + SUC when compared with GLU (P < 0.01). Muscle glycogen content immediately after exercise averaged 207 ± 112, 219 ± 107, and 236 ± 118 mmol·kg⁻¹ dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P = 0.362). Carbohydrate ingestion increased muscle glycogen concentrations during 5 h of postexercise recovery to 261 ± 98, 289 ± 130, and 315 ± 103 mmol·kg⁻¹ dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P < 0.001), with no differences between treatments (time × treatment, P = 0.757). CONCLUSIONS Combined ingestion of glucose plus fructose does not further accelerate postexercise muscle glycogen repletion in trained cyclists when ample carbohydrate is ingested. Combined ingestion of glucose (polymers) plus fructose or sucrose reduces gastrointestinal complaints when ingesting large amounts of carbohydrate.
Collapse
Affiliation(s)
- Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, THE NETHERLANDS
| | | | | | | | | | | |
Collapse
|
133
|
Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc 2017; 48:543-68. [PMID: 26891166 DOI: 10.1249/mss.0000000000000852] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is the position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine that the performance of, and recovery from, sporting activities are enhanced by well-chosen nutrition strategies. These organizations provide guidelines for the appropriate type, amount, and timing of intake of food, fluids, and supplements to promote optimal health and performance across different scenarios of training and competitive sport. This position paper was prepared for members of the Academy of Nutrition and Dietetics, Dietitians of Canada (DC), and American College of Sports Medicine (ACSM), other professional associations, government agencies, industry, and the public. It outlines the Academy's, DC's and ACSM's stance on nutrition factors that have been determined to influence athletic performance and emerging trends in the field of sports nutrition. Athletes should be referred to a registered dietitian/nutritionist for a personalized nutrition plan. In the United States and in Canada, the Certified Specialist in Sports Dietetics (CSSD) is a registered dietitian/nutritionist and a credentialed sports nutrition expert.
Collapse
|
134
|
Wilson PB. Does Carbohydrate Intake During Endurance Running Improve Performance? A Critical Review. J Strength Cond Res 2016; 30:3539-3559. [PMID: 27045602 DOI: 10.1519/jsc.0000000000001430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wilson, PB. Does carbohydrate intake during endurance running improve performance? A critical review. J Strength Cond Res 30(12): 3539-3559, 2016-Previous review articles assessing the effects of carbohydrate ingestion during prolonged exercise have not focused on running. Given the popularity of distance running and the widespread use of carbohydrate supplements, this article reviewed the evidence for carbohydrate ingestion during endurance running. The criteria for inclusion were (a) experimental studies reported in English language including a performance task, (b) moderate-to-high intensity exercise >60 minutes (intermittent excluded), and (c) carbohydrate ingestion (mouth rinsing excluded). Thirty studies were identified with 76 women and 505 men. Thirteen of the 17 studies comparing a carbohydrate beverage(s) with water or a placebo found a between-condition performance benefit with carbohydrate, although heterogeneity in protocols precludes clear generalizations about the expected effect sizes. Additional evidence suggests that (a) performance benefits are most likely to occur during events >2 hours, although several studies showed benefits for tasks lasting 90-120 minutes; (b) consuming carbohydrate beverages above ad libitum levels increases gastrointestinal discomfort without improving performance; (c) carbohydrate gels do not influence performance for events lasting 16-21 km; and (d) multiple saccharides may benefit events >2 hours if intake is ≥1.3 g·min Given that most participants were fasted young men, inferences regarding women, adolescents, older runners, and those competing in fed conditions are hampered. Future studies should address these limitations to further elucidate the role of carbohydrate ingestion during endurance running.
Collapse
Affiliation(s)
- Patrick B Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
135
|
Rowlatt G, Bottoms L, Edmonds CJ, Buscombe R. The effect of carbohydrate mouth rinsing on fencing performance and cognitive function following fatigue-inducing fencing. Eur J Sport Sci 2016; 17:433-440. [DOI: 10.1080/17461391.2016.1251497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- G. Rowlatt
- School of Health, Sport and Bioscience, School of Psychology, University of East London, Stratford, UK
| | - L. Bottoms
- Department of Psychology and Sports Science, University of Hertfordshire, Hatfield, UK
| | - C. J. Edmonds
- School of Health, Sport and Bioscience, School of Psychology, University of East London, Stratford, UK
| | - R. Buscombe
- School of Health, Sport and Bioscience, School of Psychology, University of East London, Stratford, UK
| |
Collapse
|
136
|
Pomportes L, Brisswalter J, Hays A, Davranche K. Effect of Carbohydrate Intake on Maximal Power Output and Cognitive Performances. Sports (Basel) 2016; 4:sports4040049. [PMID: 29910297 PMCID: PMC5968900 DOI: 10.3390/sports4040049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to assess the beneficial effect of acute carbohydrate (7% CHO) intake on muscular and cognitive performances. Seventeen high levels athletes in explosive sports (fencing and squash) participated in a randomized, double-blind study consisting in series of 6 sprints (5s) with a passive recovery (25s) followed by 15 min submaximal cycling after either maltodextrine and fructose (CHO) or placebo (Pl) intake. Cognitive performances were assessed before and after sprint exercise using a simple reaction time (SRT) task at rest, a visual scanning task (VS) and a Go/Nogo task (GNG) during a submaximal cycling exercise. Results showed a beneficial effect of exercise on VS task on both conditions (Pl: −283 ms; CHO: −423 ms) and on SRT only during CHO condition (−26 ms). In the CHO condition, SRT was faster after exercise whereas no effect of exercise was observed in the Pl condition. According to a qualitative statistical method, a most likely and likely positive effect of CHO was respectively observed on peak power (+4%) and tiredness (−23%) when compared to Pl. Furthermore, a very likely positive effect of CHO was observed on SRT (−8%) and a likely positive effect on visual scanning (−6%) and Go/Nogo tasks (−4%) without any change in accuracy. In conclusion acute ingestion of 250 mL of CHO, 60 min and 30 min before exercise, improve peak power output, decrease muscular tiredness and speed up information processing and visual detection without changing accuracy.
Collapse
Affiliation(s)
- Laura Pomportes
- Université Cote d'Azur, Laboratoire Motricité Humaine Expertise Sport Santé, Nice 06205, France.
- CREPS PACA, Aix en Provence 13098, France.
| | - Jeanick Brisswalter
- Université Cote d'Azur, Laboratoire Motricité Humaine Expertise Sport Santé, Nice 06205, France.
| | - Arnaud Hays
- Aix-Marseille Université, CNRS, ISM, Marseille 13288, France.
| | - Karen Davranche
- Aix-Marseille Université, CNRS, LPC UMR 7290, Marseille 13331, France.
| |
Collapse
|
137
|
Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab 2016; 311:E543-53. [PMID: 27436612 DOI: 10.1152/ajpendo.00232.2016] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion.
Collapse
Affiliation(s)
- Javier T Gonzalez
- Department for Health, University of Bath, Bath, United Kingdom; and
| | - Cas J Fuchs
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - James A Betts
- Department for Health, University of Bath, Bath, United Kingdom; and
| | - Luc J C van Loon
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
138
|
Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet 2016; 116:501-528. [PMID: 26920240 DOI: 10.1016/j.jand.2015.12.006] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/12/2022]
Abstract
It is the position of the Academy of Nutrition and Dietetics (Academy), Dietitians of Canada (DC), and the American College of Sports Medicine (ACSM) that the performance of, and recovery from, sporting activities are enhanced by well-chosen nutrition strategies. These organizations provide guidelines for the appropriate type, amount, and timing of intake of food, fluids, and supplements to promote optimal health and performance across different scenarios of training and competitive sport. This position paper was prepared for members of the Academy, DC, and ACSM, other professional associations, government agencies, industry, and the public. It outlines the Academy's, DC's, and ACSM's stance on nutrition factors that have been determined to influence athletic performance and emerging trends in the field of sports nutrition. Athletes should be referred to a registered dietitian nutritionist for a personalized nutrition plan. In the United States and in Canada, the Certified Specialist in Sports Dietetics is a registered dietitian nutritionist and a credentialed sports nutrition expert.
Collapse
Affiliation(s)
- D Travis Thomas
- College of Health Sciences, University of Kentucky, Lexington
| | - Kelly Anne Erdman
- Canadian Sport Institute Calgary/University of Calgary Sport Medicine Centre, Calgary, AB, Canada
| | - Louise M Burke
- AIS Sports Nutrition/Australian Institute of Sport Australia and Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
139
|
Che Jusoh MR, Stannard SR, Mündel T. Sago supplementation for exercise performed in a thermally stressful environment: Rationale, efficacy and opportunity. Temperature (Austin) 2016; 3:384-393. [PMID: 28349080 PMCID: PMC5079226 DOI: 10.1080/23328940.2016.1211072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/04/2022] Open
Abstract
Sago (Metroxylin sagu), a carbohydrate (CHO) based dietary staple of Southeast Asia is easily digestible and quickly absorbed, and thus has potential to be prescribed as an affordable pre-and post-exercise food in this part of the world. Compared to other CHO staples, research into the physiological response to sago ingestion is sparse, and only a few recent studies have investigated its value before, during, and after exercise. The purpose of this review is to describe the published literature pertaining to sago, particularly as a supplement in the peri-exercise period, and suggest further avenues of research, principally in an environment/climate which would be experienced in Southeast Asia i.e. hot/humid.
Collapse
Affiliation(s)
| | - Stephen R. Stannard
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| |
Collapse
|
140
|
Pöchmüller M, Schwingshackl L, Colombani PC, Hoffmann G. A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. J Int Soc Sports Nutr 2016; 13:27. [PMID: 27408608 PMCID: PMC4940907 DOI: 10.1186/s12970-016-0139-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Carbohydrate supplements are widely used by athletes as an ergogenic aid before and during sports events. The present systematic review and meta-analysis aimed at synthesizing all available data from randomized controlled trials performed under real-life conditions. Methods MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched systematically up to February 2015. Study groups were categorized according to test mode and type of performance measurement. Subgroup analyses were done with reference to exercise duration and range of carbohydrate concentration. Random effects and fixed effect meta-analyses were performed using the Software package by the Cochrane Collaboration Review Manager 5.3. Results Twenty-four randomized controlled trials met the objectives and were included in the present systematic review, 16 of which provided data for meta-analyses. Carbohydrate supplementations were associated with a significantly shorter exercise time in groups performing submaximal exercise followed by a time trial [mean difference −0.9 min (95 % confidence interval −1.7, −0.2), p = 0.02] as compared to controls. Subgroup analysis showed that improvements were specific for studies administering a concentration of carbohydrates between 6 and 8 % [mean difference −1.0 min (95 % confidence interval −1.9, −0.0), p = 0.04]. Concerning groups with submaximal exercise followed by a time trial measuring power accomplished within a fixed time or distance, mean power output was significantly higher following carbohydrate load (mean difference 20.2 W (95 % confidence interval 9.0, 31.5), p = 0.0004]. Likewise, mean power output was significantly increased following carbohydrate intervention in groups with time trial measuring power within a fixed time or distance (mean difference 8.1 W (95 % confidence interval 0.5, 15.7) p = 0.04]. Conclusion Due to the limitations of this systematic review, results can only be applied to a subset of athletes (trained male cyclists). For those, we could observe a potential ergogenic benefit of carbohydrate supplementation especially in a concentration range between 6 and 8 % when exercising longer than 90 min. Electronic supplementary material The online version of this article (doi:10.1186/s12970-016-0139-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Pöchmüller
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14 (UZAII), A-1090 Vienna, Austria
| | - Lukas Schwingshackl
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Paolo C Colombani
- Swiss Federal Institute of Sport Magglingen (SFISM), CH-2532 Magglingen, Switzerland
| | - Georg Hoffmann
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14 (UZAII), A-1090 Vienna, Austria
| |
Collapse
|
141
|
Providing Oral Nutrition to Women in Labor. J Midwifery Womens Health 2016; 61:528-34. [DOI: 10.1111/jmwh.12515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|
142
|
Webster CC, Noakes TD, Chacko SK, Swart J, Kohn TA, Smith JAH. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J Physiol 2016; 594:4389-405. [PMID: 26918583 DOI: 10.1113/jp271934] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Blood glucose is an important fuel for endurance exercise. It can be derived from ingested carbohydrate, stored liver glycogen and newly synthesized glucose (gluconeogenesis). We hypothesized that athletes habitually following a low carbohydrate high fat (LCHF) diet would have higher rates of gluconeogenesis during exercise compared to those who follow a mixed macronutrient diet. We used stable isotope tracers to study glucose production kinetics during a 2 h ride in cyclists habituated to either a LCHF or mixed macronutrient diet. The LCHF cyclists had lower rates of total glucose production and hepatic glycogenolysis but similar rates of gluconeogenesis compared to those on the mixed diet. The LCHF cyclists did not compensate for reduced dietary carbohydrate availability by increasing glucose synthesis during exercise but rather adapted by altering whole body substrate utilization. ABSTRACT Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycaemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however, these processes have not been investigated in athletes following a low carbohydrate high fat (LCHF) diet. Therefore, we studied seven well-trained male cyclists that were habituated to either a LCHF (7% carbohydrate, 72% fat, 21% protein) or a mixed diet (51% carbohydrate, 33% fat, 16% protein) for longer than 8 months. After an overnight fast, participants performed a 2 h laboratory ride at 72% of maximal oxygen consumption. Glucose kinetics were measured at rest and during the final 30 min of exercise by infusion of [6,6-(2) H2 ]-glucose and the ingestion of (2) H2 O tracers. Rates of EGP and GLY both at rest and during exercise were significantly lower in the LCHF group than the mixed diet group (Exercise EGP: LCHF, 6.0 ± 0.9 mg kg(-1) min(-1) , Mixed, 7.8 ± 1.1 mg kg(-1) min(-1) , P < 0.01; Exercise GLY: LCHF, 3.2 ± 0.7 mg kg(-1) min(-1) , Mixed, 5.3 ± 0.9 mg kg(-1) min(-1) , P < 0.01). Conversely, no difference was detected in rates of GNG between groups at rest or during exercise (Exercise: LCHF, 2.8 ± 0.4 mg kg(-1) min(-1) , Mixed, 2.5 ± 0.3 mg kg(-1) min(-1) , P = 0.15). We conclude that athletes on a LCHF diet do not compensate for reduced glucose availability via higher rates of glucose synthesis compared to athletes on a mixed diet. Instead, GNG remains relatively stable, whereas glucose oxidation and GLY are influenced by dietary factors.
Collapse
Affiliation(s)
- Christopher C Webster
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - Timothy D Noakes
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - Shaji K Chacko
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Swart
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - Tertius A Kohn
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - James A H Smith
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| |
Collapse
|
143
|
Fuchs CJ, Gonzalez JT, Beelen M, Cermak NM, Smith FE, Thelwall PE, Taylor R, Trenell MI, Stevenson EJ, van Loon LJC. Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. J Appl Physiol (1985) 2016; 120:1328-34. [PMID: 27013608 DOI: 10.1152/japplphysiol.01023.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to assess the effects of sucrose vs. glucose ingestion on postexercise liver and muscle glycogen repletion. Fifteen well-trained male cyclists completed two test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg(-1)·h(-1) sucrose or glucose. Blood was sampled frequently and (13)C magnetic resonance spectroscopy and imaging were employed 0, 120, and 300 min postexercise to determine liver and muscle glycogen concentrations and liver volume. Results were as follows: Postexercise muscle glycogen concentrations increased significantly from 85 ± 27 (SD) vs. 86 ± 35 mmol/l to 140 ± 23 vs. 136 ± 26 mmol/l following sucrose and glucose ingestion, respectively (no differences between treatments: P = 0.673). Postexercise liver glycogen concentrations increased significantly from 183 ± 47 vs. 167 ± 65 mmol/l to 280 ± 72 vs. 234 ± 81 mmol/l following sucrose and glucose ingestion, respectively (time × treatment, P = 0.051). Liver volume increased significantly over the 300-min period after sucrose ingestion only (time × treatment, P = 0.001). As a result, total liver glycogen content increased during postexercise recovery to a greater extent in the sucrose treatment (from 53.6 ± 16.2 to 86.8 ± 29.0 g) compared with the glucose treatment (49.3 ± 25.5 to 65.7 ± 27.1 g; time × treatment, P < 0.001), equating to a 3.4 g/h (95% confidence interval: 1.6-5.1 g/h) greater repletion rate with sucrose vs. glucose ingestion. In conclusion, sucrose ingestion (1.5 g·kg(-1)·h(-1)) further accelerates postexercise liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.
Collapse
Affiliation(s)
- Cas J Fuchs
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | | - Milou Beelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naomi M Cermak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Fiona E Smith
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pete E Thelwall
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Roy Taylor
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael I Trenell
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Emma J Stevenson
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands;
| |
Collapse
|
144
|
Hansen M, Bangsbo J, Jensen J, Krause-Jensen M, Bibby BM, Sollie O, Hall UA, Madsen K. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J Int Soc Sports Nutr 2016; 13:9. [PMID: 26949378 PMCID: PMC4779585 DOI: 10.1186/s12970-016-0120-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
Background Training camps for top-class endurance athletes place high physiological demands on the body. Focus on optimizing recovery between training sessions is necessary to minimize the risk of injuries and improve adaptations to the training stimuli. Carbohydrate supplementation during sessions is generally accepted as being beneficial to aid performance and recovery, whereas the effect of protein supplementation and timing is less well understood. We studied the effects of protein ingestion during training sessions on performance and recovery of elite cyclists during a strenuous training camp. Methods In a randomized, double-blinded study, 18 elite cyclists consumed either a whey protein hydrolysate-carbohydrate beverage (PRO-CHO, 14 g protein/h and 69 g CHO/h) or an isocaloric carbohydrate beverage (CHO, 84 g/h) during each training session for six days (25–29 h cycling in total). Diet and training were standardized and supervised. The diet was energy balanced and contained 1.7 g protein/kg/day. A 10-s peak power test and a 5-min all-out performance test were conducted before and after the first training session and repeated at day 6 of the camp. Blood and saliva samples were collected in the morning after overnight fasting during the week and analyzed for biochemical markers of muscle damage, stress, and immune function. Results In both groups, 5-min all-out performance was reduced after the first training session and at day 6 compared to before the first training session, with no difference between groups. Peak power in the sprint test did not change significantly between tests or between groups. In addition, changes in markers for muscle damage, stress, and immune function were not significantly influenced by treatment. Conclusions Intake of protein combined with carbohydrate during cycling at a training camp for top cyclists did not result in marked performance benefits compared to intake of carbohydrates when a recovery drink containing adequate protein and carbohydrate was ingested immediately after each training session in both groups. These findings suggest that the addition of protein to a carbohydrate supplement consumed during exercise does not improve recovery or performance in elite cyclists despite high demands of daily exhaustive sessions during a one-week training camp.
Collapse
Affiliation(s)
- Mette Hansen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Matilde Krause-Jensen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark
| | - Bo Martin Bibby
- Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ove Sollie
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Ulrika Andersson Hall
- Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Klavs Madsen
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark ; Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
145
|
Abstract
Eurycoma longifolia (family: Simaroubaceae) is commonly distributed in the Southeast Asia and Indo-China. In particular, the aqueous extract and decoction of its root are a well-known folk medicine which enhances sexuality, fertility, and antiaging. Furthermore, it has been shown to possess anti-inflammatory, antimalarial, antimicrobial, and antioxidant properties. Its common phytochemical components include alkaloids, flavonoids, phenolics, saponins, tannins, and triterpenes. This plant is rich in various quassinoids including eurycolactone, eurycomalactone, eurycomanol, eurycomanone, and eurycomaoside all of which has been reported to contribute to its remedial properties including increased muscle strength, endurance in cycling time, and reduced anxiety and stress. Based on established literature on the health benefits of E. longifolia, this review article has attempted to compile E. longifolia to be one of the choices of ergogenic plants.
Collapse
Affiliation(s)
- Thasanee Khanijo
- Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | | |
Collapse
|
146
|
Choi K, Weber JM. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming. Am J Physiol Regul Integr Comp Physiol 2015; 310:R493-501. [PMID: 26719305 DOI: 10.1152/ajpregu.00330.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/29/2015] [Indexed: 11/22/2022]
Abstract
This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise.
Collapse
Affiliation(s)
- Kevin Choi
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
147
|
Knuiman P, Hopman MTE, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab (Lond) 2015; 12:59. [PMID: 26697098 PMCID: PMC4687103 DOI: 10.1186/s12986-015-0055-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022] Open
Abstract
It is well established that glycogen depletion affects endurance exercise performance negatively. Moreover, numerous studies have demonstrated that post-exercise carbohydrate ingestion improves exercise recovery by increasing glycogen resynthesis. However, recent research into the effects of glycogen availability sheds new light on the role of the widely accepted energy source for adenosine triphosphate (ATP) resynthesis during endurance exercise. Indeed, several studies showed that endurance training with low glycogen availability leads to similar and sometimes even better adaptations and performance compared to performing endurance training sessions with replenished glycogen stores. In the case of resistance exercise, a few studies have been performed on the role of glycogen availability on the early post-exercise anabolic response. However, the effects of low glycogen availability on phenotypic adaptations and performance following prolonged resistance exercise remains unclear to date. This review summarizes the current knowledge about the effects of glycogen availability on skeletal muscle adaptations for both endurance and resistance exercise. Furthermore, it describes the role of glycogen availability when both exercise modes are performed concurrently.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands
| | - Maria T E Hopman
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands ; Radboud University, Radboud Institute for Health Sciences, Department of Physiology, Geert Grooteplein-West 32, 6525 GA Nijmegen, The Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
148
|
Gonzalez JT, Fuchs CJ, Smith FE, Thelwall PE, Taylor R, Stevenson EJ, Trenell MI, Cermak NM, van Loon LJC. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am J Physiol Endocrinol Metab 2015; 309:E1032-9. [PMID: 26487008 DOI: 10.1152/ajpendo.00376.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/04/2015] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to define the effect of glucose ingestion compared with sucrose ingestion on liver and muscle glycogen depletion during prolonged endurance-type exercise. Fourteen cyclists completed two 3-h bouts of cycling at 50% of peak power output while ingesting either glucose or sucrose at a rate of 1.7 g/min (102 g/h). Four cyclists performed an additional third test for reference in which only water was consumed. We employed (13)C magnetic resonance spectroscopy to determine liver and muscle glycogen concentrations before and after exercise. Expired breath was sampled during exercise to estimate whole body substrate use. After glucose and sucrose ingestion, liver glycogen levels did not show a significant decline after exercise (from 325 ± 168 to 345 ± 205 and 321 ± 177 to 348 ± 170 mmol/l, respectively; P > 0.05), with no differences between treatments. Muscle glycogen concentrations declined (from 101 ± 49 to 60 ± 34 and 114 ± 48 to 67 ± 34 mmol/l, respectively; P < 0.05), with no differences between treatments. Whole body carbohydrate utilization was greater with sucrose (2.03 ± 0.43 g/min) vs. glucose (1.66 ± 0.36 g/min; P < 0.05) ingestion. Both liver (from 454 ± 33 to 283 ± 82 mmol/l; P < 0.05) and muscle (from 111 ± 46 to 67 ± 31 mmol/l; P < 0.01) glycogen concentrations declined during exercise when only water was ingested. Both glucose and sucrose ingestion prevent liver glycogen depletion during prolonged endurance-type exercise. Sucrose ingestion does not preserve liver glycogen concentrations more than glucose ingestion. However, sucrose ingestion does increase whole body carbohydrate utilization compared with glucose ingestion. This trial was registered at https://www.clinicaltrials.gov as NCT02110836.
Collapse
Affiliation(s)
- Javier T Gonzalez
- Department for Health, University of Bath, Bath, United Kingdom; Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Cas J Fuchs
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; Department of Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands; and
| | - Fiona E Smith
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Pete E Thelwall
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Emma J Stevenson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Michael I Trenell
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Naomi M Cermak
- Department of Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands; and
| | - Luc J C van Loon
- Department of Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands; and
| |
Collapse
|
149
|
The effect of breakfast on appetite regulation, energy balance and exercise performance. Proc Nutr Soc 2015; 75:319-27. [DOI: 10.1017/s0029665115004243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.
Collapse
|
150
|
|