101
|
Choi JC, Wu W, Muchir A, Iwata S, Homma S, Worman HJ. Dual specificity phosphatase 4 mediates cardiomyopathy caused by lamin A/C (LMNA) gene mutation. J Biol Chem 2012; 287:40513-24. [PMID: 23048029 DOI: 10.1074/jbc.m112.404541] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mutations in LMNA gene cause cardiomyopathy, for which mechanistic insights are lacking. RESULTS Dusp4 expression is enhanced in hearts with LMNA cardiomyopathy, and its overexpression in mice causes it by activating AKT-mTOR signaling that impairs autophagy. CONCLUSIONS Dusp4 causes cardiac dysfunction and may contribute to the development of LMNA cardiomyopathy. SIGNIFICANCE Revealing pathogenic mechanisms of LMNA cardiomyopathy is essential for the development of mechanism-based therapies. Mutations in the lamin A/C gene (LMNA) cause a diverse spectrum of diseases, the most common of which is dilated cardiomyopathy often with skeletal muscular dystrophy. Lamin A and C are fundamental components of the nuclear lamina, a dynamic meshwork of intermediate filaments lining the nuclear envelope inner membrane. Prevailing evidence suggests that the nuclear envelope functions as a signaling node and that abnormality in the nuclear lamina leads to dysregulated signaling pathways that underlie disease pathogenesis. We previously showed that activated ERK1/2 in hearts of a mouse model of LMNA cardiomyopathy (Lmna(H222P/H222P) mice) contributes to disease, but the complete molecular pathogenesis remains poorly understood. Here we uncover a pathogenic role of dual specificity phosphatase 4 (Dusp4), which is transcriptionally induced by ERK1/2. Dusp4 is highly expressed in the hearts of Lmna(H222P/H222P) mice, and transgenic mice with cardiac-selective overexpression of Dusp4 display heart dysfunction similar to LMNA cardiomyopathy. In both primary tissue and cell culture models, overexpression of Dusp4 positively regulates AKT-mTOR signaling, resulting in impaired autophagy. These findings identify a pathogenic role of Dusp4 in LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Jason C Choi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
102
|
Dodd MS, Ball DR, Schroeder MA, Le Page LM, Atherton HJ, Heather LC, Seymour AM, Ashrafian H, Watkins H, Clarke K, Tyler DJ. In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res 2012; 95:69-76. [PMID: 22593200 PMCID: PMC4617603 DOI: 10.1093/cvr/cvs164] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The aim of this work was to use hyperpolarized carbon-13 ((13)C) magnetic resonance (MR) spectroscopy and cine MR imaging (MRI) to assess in vivo cardiac metabolism and function in the 15-week-old spontaneously hypertensive rat (SHR) heart. At this time point, the SHR displays hypertension and concentric hypertrophy. One of the cellular adaptations to hypertrophy is a reduction in β-oxidation, and it has previously been shown that in response to hypertrophy the SHR heart switches to a glycolytic/glucose-oxidative phenotype. METHODS AND RESULTS Cine-MRI (magnetic resonance imaging) was used to assess cardiac function and degree of cardiac hypertrophy. Wistar rats were used as controls. SHRs displayed functional changes in stroke volume, heart rate, and late peak-diastolic filling alongside significant hypertrophy (a 56% increase in left ventricular mass). Using hyperpolarized [1-(13)C] and [2-(13)C]pyruvate, an 85% increase in (13)C label flux through pyruvate dehydrogenase (PDH) was seen in the SHR heart and (13)C label incorporation into citrate, acetylcarnitine, and glutamate pools was elevated in proportion to the increase in PDH flux. These findings were confirmed using biochemical analysis of PDH activity and protein expression of PDH regulatory enzymes. CONCLUSIONS Functional and structural alterations in the SHR heart are consistent with the hypertrophied phenotype. Our in vivo work indicates a preference for glucose metabolism in the SHR heart, a move away from predominantly fatty acid oxidative metabolism. Interestingly, (13)C label flux into lactate was unchanged, indicating no switch to an anaerobic glycolytic phenotype, but rather an increased reliance on glucose oxidation in the SHR heart.
Collapse
Affiliation(s)
- Michael S Dodd
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Berthiaume JM, Young ME, Chen X, McElfresh TA, Yu X, Chandler MP. Normalizing the metabolic phenotype after myocardial infarction: impact of subchronic high fat feeding. J Mol Cell Cardiol 2012; 53:125-33. [PMID: 22542451 PMCID: PMC3372615 DOI: 10.1016/j.yjmcc.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/28/2023]
Abstract
The normal heart relies primarily on the oxidation of fatty acids (FA) for ATP production, whereas during heart failure (HF) glucose utilization increases, implying pathological changes to cardiac energy metabolism. Despite the noted lipotoxic effects of elevating FA, our work has demonstrated a cardioprotective effect of a high fat diet (SAT) when fed after myocardial infarction (MI), as compared to normal chow (NC) fed cohorts. This data has suggested a mechanistic link to energy metabolism. The goal of this study was to determine the impact of SAT on the metabolic phenotype of the heart after MI. Male Wistar rats underwent coronary ligation surgery (MI) and were evaluated after 8 weeks of SAT. Induction of MI was verified by echocardiography. LV function assessed by in vivo hemodynamic measurements revealed improvements in the MI-SAT group as compared to MI-NC. Perfused working hearts revealed a decrease in cardiac work in MI-NC that was improved in MI-SAT. Glucose oxidation was increased and FA oxidation decreased in MI-NC compared to shams suggesting an alteration in the metabolic profile that was ameliorated by SAT. (31)P NMR analysis of Langendorff perfused hearts revealed no differences in PCr:ATP indicating no overt energy deficit in MI groups. Phospho-PDH and PDK(4) were increased in MI-SAT, consistent with a shift towards fatty acid oxidation (FAO). Overall, these results support the hypothesis that SAT post-infarction promotes a normal metabolic phenotype that may serve a cardioprotective role in the injured heart.
Collapse
Affiliation(s)
- Jessica M. Berthiaume
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Martin E. Young
- Dept. of Medicine, University of Alabama, 1825 University Boulevard, Birmingham, Alabama, 35294, USA
| | - Xiaoqin Chen
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Tracy A. McElfresh
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Xin Yu
- Dept. of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Margaret P. Chandler
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| |
Collapse
|
104
|
Osterholt M, Sen S, Dilsizian V, Taegtmeyer H. Targeted metabolic imaging to improve the management of heart disease. JACC Cardiovasc Imaging 2012; 5:214-26. [PMID: 22340831 DOI: 10.1016/j.jcmg.2011.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/14/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
Tracer techniques are powerful methods for assessing rates of biological processes in vivo. A case in point is intermediary metabolism of energy providing substrates, a central feature of every living cell. In the heart, the tight coupling between metabolism and contractile function offers an opportunity for the simultaneous assessment of cardiac performance at different levels in vivo: coronary flow, myocardial perfusion, oxygen delivery, metabolism, and contraction. Noninvasive imaging techniques used to identify the metabolic footprints of either normal or perturbed cardiac function are discussed.
Collapse
Affiliation(s)
- Moritz Osterholt
- Department of Internal Medicine/Division of Cardiology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
105
|
Keeler AM, Flotte TR. Cell and gene therapy for genetic diseases: inherited disorders affecting the lung and those mimicking sudden infant death syndrome. Hum Gene Ther 2012; 23:548-56. [PMID: 22642257 PMCID: PMC3392613 DOI: 10.1089/hum.2012.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Some of the first human gene therapy trials targeted diseases of the lung and provided important information that will continue to help shape future trials. Here we describe both cell and gene therapies for lung diseases such as cystic fibrosis and alpha-1 antitrypsin disorder as well as fatty acid oxidation disorders that mimic sudden infant death syndrome (SIDS). Human clinical gene therapy trials for cystic fibrosis and alpha-1 antitrypsin have been performed using a variety of vectors including adenovirus, adeno-associated virus, and nonviral vectors. No human clinical gene therapy trials have been performed for disorders of fatty acid oxidation; however, important proof-of-principle studies have been completed for multiple fatty acid oxidation disorders. Important achievements have been made and have yet to come for cell and gene therapies for disorders of the lung and those mimicking SIDS.
Collapse
Affiliation(s)
- Allison M Keeler
- Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
106
|
Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, Chen Q, Chen J, Cheng H, Xiao R, Zheng M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012; 287:23615-25. [PMID: 22619176 DOI: 10.1074/jbc.m112.379164] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the heart, autophagy has been implicated in cardioprotection and ischemia-reperfusion tolerance, and the dysregulation of autophagy is associated with the development of heart failure. Mitochondrial dynamic proteins are profoundly involved in autophagic processes, especially the initiation and formation of autophagosomes, but it is not clear whether they play any role in cardiac autophagy. We previously reported that mitofusin 2 (MFN2), a mitochondrial outer membrane protein, serves as a major determinant of cardiomyocyte apoptosis mediated by oxidative stress. Here, we reveal a novel and essential role of MFN2 in mediating cardiac autophagy. We found that specific deletion of MFN2 in cardiomyocytes caused extensive accumulation of autophagosomes. In particular, the fusion of autophagosomes with lysosomes, a critical step in autophagic degradation, was markedly retarded without altering the formation of autophagosomes and lysosomes in response to ischemia-reperfusion stress. Importantly, MFN2 co-immunoprecipitated with RAB7 in the heart, and starvation further increased it. Knockdown of MFN2 by shRNA prevented, whereas re-expression of MFN2 restored, the autophagosome-lysosome fusion in neonatal cardiomyocytes. Hearts from cardiac-specific MFN2 knock-out mice had abnormal mitochondrial and cellular metabolism and were vulnerable to ischemia-reperfusion challenge. Our study defined a novel and essential role of MFN2 in the cardiac autophagic process by mediating the maturation of autophagy at the phase of autophagosome-lysosome fusion; deficiency of MFN2 caused multiple molecular and functional defects that undermined cardiac reserve and gradually led to cardiac vulnerability and dysfunction.
Collapse
Affiliation(s)
- Ting Zhao
- Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Liu Y, Liu J, Deng C, Zhang X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3223-3234. [PMID: 22006384 DOI: 10.1002/rcm.5218] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, graphene (G) and graphene oxide (GO) were utilized to enrich and ionize long-chain fatty acids. All together five long-chain fatty acids were selected as models here, n-dodecanoic acid (C12), n-tetradecanoic acid (C14), n-hexadecanoic acid (C16), n-octadecanoic acid (C18), and n-eicosanoic acid (C20). Due to the large surface area and strong interaction force of G or GO, all the five long-chain fatty models were effectively enriched by G or GO. On the other hand, the excellent electronic, thermal, and mechanical properties enable G and GO to be prefect energy receptacles for laser radiation, which make the ionization steps more effective. Eventually, the promoted G and GO methodology can sensitively detect the five long-chain fatty acid models from real biological samples even at low concentrations. Meanwhile, by adopting our promoted methodology, the detection of long-chain fatty acids by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was demonstrated to be simple, sensitive, fast, cost effective and high throughput, which is meaningful as to practical usage.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | |
Collapse
|
108
|
Mitchell RW, Hatch GM. Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot Essent Fatty Acids 2011; 85:293-302. [PMID: 21816594 DOI: 10.1016/j.plefa.2011.04.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier formed by the brain capillary endothelial cells provides a protective barrier between the systemic blood and the extracellular environment of the central nervous system. Brain capillaries are a continuous layer of endothelial cells with highly developed tight junctional complexes and a lack of fenestrations. The presence of these tight junctions in the cerebral microvessel endothelial cells aids in the restriction of movement of molecules and solutes into the brain. Fatty acids are important components of biological membranes, are precursors for the biosynthesis of phospholipids and sphingolipids and are utilized for mitochondrial β-oxidation. The brain is capable of synthesizing only a few fatty acids. Hence, most fatty acids must enter into the brain from the blood. Here we review current mechanisms of transport of free fatty acids into cells and describe how free fatty acids move from the blood into the brain. We discuss both diffusional as well as protein-mediated movement of fatty acids across biological membranes.
Collapse
Affiliation(s)
- Ryan W Mitchell
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A307 Chown Building, 753 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0T6
| | | |
Collapse
|
109
|
Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis. PLoS One 2011; 6:e26326. [PMID: 22028857 PMCID: PMC3196577 DOI: 10.1371/journal.pone.0026326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/23/2011] [Indexed: 11/19/2022] Open
Abstract
In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart.
Collapse
|
110
|
Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M, Kaambre T, Dos Santos P, Boucher F, Guzun R. Intracellular Energetic Units regulate metabolism in cardiac cells. J Mol Cell Cardiol 2011; 52:419-36. [PMID: 21816155 DOI: 10.1016/j.yjmcc.2011.07.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 12/30/2022]
Abstract
This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs). Beta II tubulin association with the mitochondrial outer membrane, when co-expressed with mitochondrial creatine kinase (MtCK) specifically limits the permeability of voltage-dependent anion channel for adenine nucleotides. In the MtCK reaction this interaction changes the regulatory kinetics of respiration through a decrease in the affinity for adenine nucleotides and an increase in the affinity for creatine. Metabolic Control Analysis of the coupled MtCK-ATP Synthasome in permeabilized cardiomyocytes showed a significant increase in flux control by steps involved in ADP recycling. Mathematical modeling of compartmentalized energy transfer represented by ICEUs shows that cyclic changes in local ADP, Pi, phosphocreatine and creatine concentrations during contraction cycle represent effective metabolic feedback signals when amplified in the coupled non-equilibrium MtCK-ATP Synthasome reactions in mitochondria. This mechanism explains the regulation of respiration on beat to beat basis during workload changes under conditions of metabolic stability. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Very-low-density lipoprotein: complex particles in cardiac energy metabolism. J Lipids 2011; 2011:189876. [PMID: 21773049 PMCID: PMC3136095 DOI: 10.1155/2011/189876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 05/09/2011] [Indexed: 01/07/2023] Open
Abstract
The heart is a major consumer of energy and is able to utilise a wide range of substrates including lipids. Nonesterified fatty acids (NEFA) were thought to be a favoured carbon source, but their quantitative contribution is limited because of their relative histotoxicity. Circulating triacylglycerols (TAGs) in the form of chylomicrons (CMs) and very-low-density lipoprotein (VLDL) are an alternative source of fatty acids and are now believed to be important in cardiac metabolism. However, few studies on cardiac utilisation of VLDL have been performed and the role of VLDL in cardiac energy metabolism remains unclear. Hearts utilise VLDL to generate ATP, but the oxidation rate of VLDL-TAG is relatively low under physiological conditions; however, in certain pathological states switching of energy substrates occurs and VLDL may become a major energy source for hearts. We review research regarding myocardial utilisation of VLDL and suggest possible roles of VLDL in cardiac energy metabolism: metabolic regulator and extracardiac energy storage for hearts.
Collapse
|
112
|
Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold J, Gumpert A, Chen M, Otis NJ, Dorn GW, Trimarco B, Iaccarino G, Koch WJ. G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 2011; 123:1953-62. [PMID: 21518983 PMCID: PMC3113597 DOI: 10.1161/circulationaha.110.988642] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/01/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alterations in cardiac energy metabolism downstream of neurohormonal stimulation play a crucial role in the pathogenesis of heart failure. The chronic adrenergic stimulation that accompanies heart failure is a signaling abnormality that leads to the upregulation of G protein-coupled receptor kinase 2 (GRK2), which is pathological in the myocyte during disease progression in part owing to uncoupling of the β-adrenergic receptor system. In this study, we explored the possibility that enhanced GRK2 expression and activity, as seen during heart failure, can negatively affect cardiac metabolism as part of its pathogenic profile. METHODS AND RESULTS Positron emission tomography studies revealed in transgenic mice that cardiac-specific overexpression of GRK2 negatively affected cardiac metabolism by inhibiting glucose uptake and desensitization of insulin signaling, which increases after ischemic injury and precedes heart failure development. Mechanistically, GRK2 interacts with and directly phosphorylates insulin receptor substrate-1 in cardiomyocytes, causing insulin-dependent negative signaling feedback, including inhibition of membrane translocation of the glucose transporter GLUT4. This identifies insulin receptor substrate-1 as a novel nonreceptor target for GRK2 and represents a new pathological mechanism for this kinase in the failing heart. Importantly, inhibition of GRK2 activity prevents postischemic defects in myocardial insulin signaling and improves cardiac metabolism via normalized glucose uptake, which appears to participate in GRK2-targeted prevention of heart failure. CONCLUSIONS Our data provide novel insights into how GRK2 is pathological in the injured heart. Moreover, it appears to be a critical mechanistic link within neurohormonal crosstalk governing cardiac contractile signaling/function through β-adrenergic receptors and metabolism through the insulin receptor.
Collapse
Affiliation(s)
- Michele Ciccarelli
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Clinical Medicine and Cardiovascular Science, “Federico II” University of Naples, Italy
| | - J. Kurt Chuprun
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Giuseppe Rengo
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Division of Cardiology, Fondazione “Salvatore Maugeri” – IRCCS – Istituto di Telese Terme – Italy
| | - Erhe Gao
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhengyu Wei
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond J. Peroutka
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Gold
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna Gumpert
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mai Chen
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicholas J. Otis
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno Trimarco
- Department of Clinical Medicine and Cardiovascular Science, “Federico II” University of Naples, Italy
| | - Guido Iaccarino
- University of Salerno, Department of Medicine, Salerno, Italy Ciccarelli, GRK2 and Cardiac Metabolism
| | - Walter J. Koch
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
113
|
Heather LC, Clarke K. Metabolism, hypoxia and the diabetic heart. J Mol Cell Cardiol 2011; 50:598-605. [PMID: 21262230 DOI: 10.1016/j.yjmcc.2011.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 12/18/2022]
Abstract
The diabetic heart becomes metabolically remodelled as a consequence of exposure to abnormal circulating substrates and hormones. Fatty acid uptake and metabolism are increased in the type 2 diabetic heart, resulting in accumulation of intracellular lipid intermediates and an increased contribution of fatty acids towards energy generation. Cardiac glucose uptake and oxidation are decreased, predominantly due to increased fatty acid metabolism, which suppresses glucose utilisation via the Randle cycle. These metabolic changes decrease cardiac efficiency and energetics in both humans and animal models of diabetes. Diabetic hearts have decreased recovery following ischemia, indicating a reduced tolerance to oxygen-limited conditions. There is evidence that diabetic hearts have a compromised hypoxia signalling pathway, as hypoxia-inducible factor (HIF) and downstream signalling from HIF are reduced following ischemia. Failure to activate HIF under oxygen-limited conditions results in less angiogenesis, and an inability to upregulate glycolytic ATP generation. Given that glycolysis is already suppressed in the diabetic heart under normoxic conditions, the inability to upregulate glycolysis in response to hypoxia may have deleterious effects on ATP production. Thus, impaired HIF signalling may contribute to metabolic and energetic abnormalities, and impaired collateral vessel development following myocardial infarction in the type 2 diabetic heart.
Collapse
Affiliation(s)
- Lisa C Heather
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
114
|
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011; 50:940-50. [PMID: 21385587 DOI: 10.1016/j.yjmcc.2011.02.018] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/29/2022]
Abstract
In the late 19th century, a number of investigators were working on perfecting isolated heart model, but it was Oscar Langendorff who, in 1895, pioneered the isolated perfused mammalian heart. Since that time, the Langendorff preparation has evolved and provided a wealth of data underpinning our understanding of the fundamental physiology of the heart: its contractile function, coronary blood flow regulation and cardiac metabolism. In more recent times, the procedure has been used to probe pathophysiology of ischaemia/reperfusion and disease states, and with the dawn of molecular biology and genetic manipulation, the Langendorff perfused heart has remained a stalwart tool in the study of the impact upon the physiology of the heart by pharmacological inhibitors and targeted deletion or up-regulation of genes and their impact upon intracellular signalling and adaption to clinically relevant stressful stimuli. We present here the basic structure of the Langendorff system and the fundamental experimental rules which warrant a viable heart preparation. In addition, we discuss the use of the isolated retrograde perfused heart in the model of ischaemia-reperfusion injury ex-vivo, and its applicability to other areas of study. The Langendorff perfusion apparatus is highly adaptable and this is reflected not only in the procedure's longevity but also in the number of different applications to which it has been turned.
Collapse
Affiliation(s)
- Robert M Bell
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | | | | |
Collapse
|
115
|
Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD, Finck BN, Kelly DP. Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem 2011; 286:11155-62. [PMID: 21321124 DOI: 10.1074/jbc.m110.217349] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiac dysfunction is associated with decreased rates of myocardial glucose oxidation (GO) and increased fatty acid oxidation (FAO), a fuel shift that has been shown to sensitize the heart to ischemic insult and ventricular dysfunction. We sought to evaluate the metabolic and functional consequences of chronic suppression of GO in heart as modeled by transgenic mice with cardiac-specific overexpression of pyruvate dehydrogenase kinase 4 (myosin heavy chain (MHC)-PDK4 mice), an inhibitor of pyruvate dehydrogenase. Hearts of MHC-PDK4 mice were shown to exhibit an insulin-resistant substrate utilization profile, characterized by low GO rates and high FAO flux. Surprisingly, MHC-PDK4 mice were not sensitized to cardiac ischemia-reperfusion injury despite a fuel utilization pattern that phenocopied the diabetic heart. In addition, MHC-PDK4 mice were protected against high fat diet-induced myocyte lipid accumulation, likely related to increased capacity for FAO. The high rates of mitochondrial FAO in the MHC-PDK4 heart were related to heightened activity of the AMP-activated protein kinase, reduced levels of malonyl-CoA, and increased capacity for mitochondrial uncoupled respiration. The expression of the known AMP-activated protein kinase target, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial function and biogenesis, was also activated in the MHC-PDK4 heart. These results demonstrate that chronic activation of PDK4 triggers transcriptional and post-transcriptional mechanisms that re-program the heart for chronic high rates of FAO without the expected deleterious functional or metabolic consequences.
Collapse
Affiliation(s)
- Kari T Chambers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1333-50. [PMID: 21256164 DOI: 10.1016/j.bbamcr.2011.01.015] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Mazankowski Alberta Heart Institute, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
117
|
Xu JP, Wang HX, Wang W, Zhang LK, Tang CS. Ghrelin improves disturbed myocardial energy metabolism in rats with heart failure induced by isoproterenol. J Pept Sci 2010; 16:392-402. [PMID: 20572026 DOI: 10.1002/psc.1253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To explore the effects of ghrelin on disturbed myocardial energy metabolism during chronic heart failure (CHF). Rats were subcutaneously injected with isoproterenol (ISO) for 10 days with or without ghrelin for another 10 days. Enzyme immunoassay was to measure ghrelin concentrations. Compared with the control group, ISO-treated rats showed suppressed cardiac function with high ghrelin/GHS-R expressions. These rats also showed the decreases in food consumption and weight. The decreased levels of plasma glucose and myocardial glucogen, but the high lactate in blood and myocardium showed myocardial metabolic disturbance. Compared with the group given ISO alone, the rats with ghrelin (20 and 100 microg/kg/day) improved cardiac dysfunction and increased food intake by 13.5 and 14.2% (both P < 0.01), and rate of weight gain by 95% (P < 0.05) and 1.71-fold (P < 0.01), respectively. The plasma glucose were increased by 49.7 and 50.8% (both P < 0.01), and myocardial glucogen, by 40.5 and 51.7% (both P < 0.01), but blood lactate decreased by 1.56- and 1.96-fold (both P < 0.01), and myocardial lactate by 32.1 and 48.7% (both P < 0.05), respectively. Their MCT1 mRNA and protein expressions increased. The myocardial ghrelin/GHS-R pathway can be upregulated during CHF. The ghrelin can attenuate cardiac dysfunction and energy metabolic disturbance in CHF rats.
Collapse
Affiliation(s)
- Jian-Ping Xu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | | | | | | | | |
Collapse
|
118
|
Taegtmeyer H, Stanley WC. Too much or not enough of a good thing? Cardiac glucolipotoxicity versus lipoprotection. J Mol Cell Cardiol 2010; 50:2-5. [PMID: 20869969 DOI: 10.1016/j.yjmcc.2010.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/24/2023]
Affiliation(s)
- Heinrich Taegtmeyer
- The University of Texas Medical School at Houston, Department of Internal Medicine, Division of Cardiology, Houston, TX 77030, USA.
| | | |
Collapse
|
119
|
Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1323-32. [PMID: 20869994 DOI: 10.1016/j.bbamcr.2010.09.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 12/21/2022]
Abstract
Recent evidence highlights monoamine oxidases (MAO) as another prominent source of oxidative stress. MAO are a class of enzymes located in the outer mitochondrial membrane, deputed to the oxidative breakdown of key neurotransmitters such as norepinephrine, epinephrine and dopamine, and in the process generate H(2)O(2). All these monoamines are endowed with potent modulatory effects on myocardial function. Thus, when the heart is subjected to chronic neuro-hormonal and/or peripheral hemodynamic stress, the abundance of circulating/tissue monoamines can make MAO-derived H(2)O(2) production particularly prominent. This is the case of acute cardiac damage due to ischemia/reperfusion injury or, on a more chronic stand, of the transition from compensated hypertrophy to overt ventricular dilation/pump failure. Here, we will first briefly discuss mitochondrial status and contribution to acute and chronic cardiac disorders. We will illustrate possible mechanisms by which MAO activity affects cardiac biology and function, along with a discussion as to their role as a prominent source of reactive oxygen species. Finally, we will speculate on why MAO inhibition might have a therapeutic value for treating cardiac affections of ischemic and non-ischemic origin. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
|
120
|
Heck PM, Hoole SP, Khan SN, Dutka DP. Hyperinsulinemia improves ischemic LV function in insulin resistant subjects. Cardiovasc Diabetol 2010; 9:27. [PMID: 20576156 PMCID: PMC2903514 DOI: 10.1186/1475-2840-9-27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/24/2010] [Indexed: 01/04/2023] Open
Abstract
Background Glucose is a more efficient substrate for ATP production than free fatty acid (FFA). Insulin resistance (IR) results in higher FFA concentrations and impaired myocardial glucose use, potentially worsening ischemia. We hypothesized that metabolic manipulation with a hyperinsulinemic euglycemic clamp (HEC) would affect a greater improvement in left ventricular (LV) performance during dobutamine stress echo (DSE) in subjects with IR. Methods 24 subjects with normal LV function and coronary disease (CAD) awaiting revascularization underwent 2 DSEs. Prior to one DSEs they underwent an HEC, where a primed infusion of insulin (rate 43 mU/m 2/min) was co-administered with 20% dextrose at variable rates to maintain euglycemia. At steady-state the DSE was performed and images of the LV were acquired with tissue Doppler at each stage for offline analysis. Segmental peak systolic velocities (Vs) were recorded, as well as LV ejection fraction (EF). Subjects were then divided into two groups based on their insulin sensitivity during the HEC. Results HEC changed the metabolic environment, suppressing FFAs and thereby increasing glucose use. This resulted in improved LV performance at peak stress, measured by EF (IS group mean difference 5.3 (95% CI 2.5-8) %, p = 0.002; IR group mean difference 8.7 (95% CI 5.8-11.6) %, p < 0.0001) and peak V s in ischemic segments (IS group mean improvement 0.7(95% CI 0.07-1.58) cm/s, p = 0.07; IR group mean improvement 1.0 (95% CI 0.54-1.5) cm/s, p < 0.0001) , that was greater in the subjects with IR. Conclusions Increased myocardial glucose use induced by HEC improves LV function under stress in subjects with CAD and IR. Cardiac metabolic manipulation in subjects with IR is a promising target for future therapy.
Collapse
Affiliation(s)
- Patrick M Heck
- Cardiovascular Medicine, ACCI, Level 6, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | | | | | | |
Collapse
|
121
|
Juang JMJ, de las Fuentes L, Waggoner AD, Gu CC, Dávila-Román VG. Association and interaction of PPAR-complex gene variants with latent traits of left ventricular diastolic function. BMC MEDICAL GENETICS 2010; 11:65. [PMID: 20426853 PMCID: PMC2874543 DOI: 10.1186/1471-2350-11-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 04/28/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND Abnormalities in myocardial metabolism and/or regulatory genes have been implicated in left ventricular systolic dysfunction. However, the extent to which these modulate left ventricular diastolic function (LVDF) is uncertain. METHODS Independent component analysis was applied to extract latent LVDF traits from 14 measured echocardiography-derived endophenotypes of LVDF in 403 Caucasians. Genetic association was assessed between measured and latent LVDF traits and 64 single nucleotide polymorphisms (SNPs) in three peroxisome proliferator-activated receptor (PPAR)-complex genes involved in the transcriptional regulation of fatty acid metabolism. RESULTS By linear regression analysis, 7 SNPs (4 in PPARA, 2 in PPARGC1A, 1 in PPARG) were significantly associated with the latent LVDF trait, whereas a range of 0-4 SNPs were associated with each of the 14 measured echocardiography-derived endophenotypes. Frequency distribution of P values showed a greater proportion of significant associations with the latent LVDF trait than for the measured endophenotypes, suggesting that analyses of the latent trait improved detection of the genetic underpinnings of LVDF. Ridge regression was applied to investigate within-gene and gene-gene interactions. In the within-gene analysis, there were five significant pair-wise interactions in PPARGC1A and none in PPARA or PPARG. In the gene-gene analysis, significant interactions were found between rs4253655 in PPARA and rs1873532 (p = 0.02) and rs7672915 (p = 0.02), both in PPARGC1A, and between rs1151996 in PPARG and rs4697046 in PPARGC1A (p = 0.01). CONCLUSIONS Myocardial metabolism PPAR-complex genes, including within and between genes interactions, may play an important role modulating left ventricular diastolic function.
Collapse
Affiliation(s)
- Jyh-Ming Jimmy Juang
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lisa de las Fuentes
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan D Waggoner
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Víctor G Dávila-Román
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
122
|
Abstract
In the myocardial cell, a series of enzyme-catalyzed reactions results in the efficient transfer of chemical energy into mechanical energy. The goals of this article are to emphasize the ability of noninvasive imaging techniques using isotopic tracers to detect the metabolic footprints of heart disease and to propose that cardiac metabolic imaging is more than a useful adjunct to current myocardial perfusion imaging studies. A strength of metabolic imaging is in the assessment of regional myocardial differences in metabolic activity, probing for 1 substrate at a time. We hope that new and developing methods of cardiac imaging will lead to the earlier detection of heart disease and improve the management and quality of life for patients afflicted with ischemic and nonischemic heart muscle disorders.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| |
Collapse
|
123
|
Cheng VY, Slomka PJ, Ahlen M, Thomson LEJ, Waxman AD, Berman DS. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J Nucl Cardiol 2010; 17:286-91. [PMID: 20013165 PMCID: PMC2842563 DOI: 10.1007/s12350-009-9179-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/29/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Low-carbohydrate (LC) and high-fat, low-carbohydrate (HFLC) dietary preparations may enhance (18)F-FDG-PET-based imaging of small, inflamed structures near the heart by suppressing myocardial FDG signal. We compared myocardial (18)F-FDG uptake in patients randomized to LC, HFLC, and unrestricted (UR) preparations prior to (18)F-FDG-PET. METHODS AND RESULTS We randomized 63 outpatients referred for oncologic (18)F-FDG-PET to LC, HFLC, or UR dietary preparations (1:1:1 allocation) starting the evening before PET. After eating dinner according to instructions, UR and LC patients fasted until FDG injection (mean time 745 minutes for UR, 899 minutes for LC), and HFLC patients drank a fatty drink 60-70 minutes prior to FDG injection. Attenuation-corrected PET imaging was performed 60 minutes after FDG administration. Maximal myocardial standard uptake values (MyoSUV(max)) were systematically measured in axial view and compared between the three groups. Using UR patients as reference, mean MyoSUV(max) was lower in LC patients (3.3 +/- 2.7 vs 6.2 +/- 5.2, P = .03) but not in HFLC patients (5.5 +/- 4.2, P = .63). Ratios of MyoSUV(max) to liver SUV(max), calculated to control for background uptake, were not significantly different amongst the groups (1.9 +/- 2.1 LC, 2.6 +/- 2.3 HFLC, 3.6 +/- 3.5 UR). CONCLUSION In this small randomized controlled trial using UR diet as reference, LC dietary preparation followed by extended fasting resulted in significant myocardial uptake suppression.
Collapse
Affiliation(s)
- Victor Y Cheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Moreno KX, Sabelhaus SM, Merritt ME, Sherry AD, Malloy CR. Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate. Am J Physiol Heart Circ Physiol 2010; 298:H1556-64. [PMID: 20207817 DOI: 10.1152/ajpheart.00656.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon 13 nuclear magnetic resonance (NMR) isotopomer analysis was used to measure the rates of oxidation of long-chain fatty acids, ketones, and pyruvate to determine the minimum pyruvate concentration ([pyruvate]) needed to suppress oxidation of these alternative substrates. Substrate mixtures were chosen to represent either the fed or fasted state. At physiological [pyruvate], fatty acids and ketones supplied the overwhelming majority of acetyl-CoA. Under conditions mimicking the fed state, 3 mM pyruvate provided approximately 80% of acetyl-CoA, but under fasting conditions 6 mM pyruvate contributed only 33% of acetyl-CoA. Higher [pyruvate], 10-25 mM, was associated with transient reduced cardiac output, but overall hemodynamic performance was unchanged after equilibration. These observations suggested that 3-6 mM pyruvate in the coronary arteries would be an appropriate target for studies with hyperpolarized [1-(13)C]pyruvate. However, the metabolic products of 3 mM hyperpolarized [1-(13)C]pyruvate could not be detected in the isolated heart during perfusion with a physiological mixture of substrates including 3% albumin. In the presence of albumin even at high concentrations of pyruvate, 20 mM, hyperpolarized H(13)CO(3)(-) could be detected only in the absence of competing substrates. Highly purified albumin (but not albumin from plasma) substantially reduced the longitudinal relaxation time of [1-(13)C]pyruvate. In conclusion, studies of cardiac metabolism using hyperpolarized [1-(13)C]pyruvate are sensitive to the effects of competing substrates on pyruvate oxidation.
Collapse
Affiliation(s)
- Karlos X Moreno
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
125
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1468] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
126
|
Heather LC, Cole MA, Atherton HJ, Coumans WA, Evans RD, Tyler DJ, Glatz JFC, Luiken JJFP, Clarke K. Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart. Endocrinology 2010; 151:422-31. [PMID: 19940039 DOI: 10.1210/en.2009-0593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones can modify cardiac metabolism via multiple molecular mechanisms, yet their integrated effect on overall substrate metabolism is poorly understood. Here we determined the effect of hyperthyroidism on substrate metabolism in the isolated, perfused, contracting rat heart. Male Wistar rats were injected for 7 d with T(3) (0.2 mg/kg x d ip). Plasma free fatty acids increased by 97%, heart weights increased by 33%, and cardiac rate pressure product, an indicator of contractile function, increased by 33% in hyperthyroid rats. Insulin-stimulated glycolytic rates and lactate efflux rates were increased by 33% in hyperthyroid rat hearts, mediated by an increased insulin-stimulated translocation of the glucose transporter GLUT4 to the sarcolemma. This was accompanied by a 70% increase in phosphorylated AMP-activated protein kinase (AMPK) and a 100% increase in phosphorylated acetyl CoA carboxylase, confirming downstream signaling from AMPK. Fatty acid oxidation rates increased in direct proportion to the increased heart weight and rate pressure product in the hyperthyroid heart, mediated by synchronized changes in mitochondrial enzymes and respiration. Protein levels of the fatty acid transporter, fatty acid translocase (FAT/CD36), were reduced by 24% but were accompanied by a 19% increase in the sarcolemmal content of fatty acid transport protein 1 (FATP1). Thus, the relationship between fatty acid metabolism, cardiac mass, and contractile function was maintained in the hyperthyroid heart, associated with a sarcolemmal reorganization of fatty acid transporters. The combined effects of T(3)-induced AMPK activation and insulin stimulation were associated with increased sarcolemmal GLUT4 localization and glycolytic flux in the hyperthyroid heart.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy, and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wang J, Bai L, Li J, Sun C, Zhao J, Cui C, Han K, Liu Y, Zhuo X, Wang T, Liu P, Fan F, Guan Y, Ma A. Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart. ACTA ACUST UNITED AC 2009; 52:1003-10. [PMID: 19937197 DOI: 10.1007/s11427-009-0140-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
This work characterizes the mitochondrial proteomic profile in the failing heart and elucidates the molecular basis of mitochondria in heart failure. Heart failure was induced in rats by myocardial infarction, and mitochondria were isolated from hearts by differential centrifugation. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry, a system biology approach was employed to investigate differences in mitochondrial proteins between normal and failing hearts. Mass spectrometry identified 27 proteins differentially expressed that involved in energy metabolism. Among those, the up-regulated proteins included tricarboxylic acid cycle enzymes and pyruvate dehydrogenase complex subunits while the down-regulated proteins were involved in fatty acid oxidation and the OXPHOS complex. These results suggest a substantial metabolic switch from free fatty acid oxidation to glycolysis in heart failure and provide molecular evidence for alterations in the structural and functional parameters of mitochondria that may contribute to cardiac dysfunction during ischemic injury.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiology, First Affiliated Hospital ofMedical College of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Hirano KI. A novel clinical entity: triglyceride deposit cardiomyovasculopathy. J Atheroscler Thromb 2009; 16:702-5. [PMID: 19729869 DOI: 10.5551/jat.1669] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heart diseases, including atherosclerotic cardiovascular disease and congestive heart failure, are major life-threatening disorders in most countries. Cholesterol is a vital causal factor and focus of research into heart diseases, but the involvement of triglycerides remains unclear. We recently reported a unique patient suffering from severe congestive heart failure and needing cardiac transplantation. Massive accumulation of triglycerides was observed in coronary atherosclerotic lesions as well as in the myocardium, while plasma triglyceride levels were normal. We suggested that this phenotype was a novel clinical entity and named it "Triglyceride deposit cardiomyovasculopathy", or simply "Obesity of the heart". The patient was identified as homozygous for a genetic mutation in the adipose triglyceride lipase, an essential molecule for hydrolysis of intracellular triglycerides. The present paper deals with what we can learn from this single case and discusses its implications for research and clinical medicine related to heart diseases.
Collapse
Affiliation(s)
- Ken-Ichi Hirano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Japan.
| |
Collapse
|
129
|
Taegtmeyer H. Richard Bing at 100: reflections on a lion in winter. J Mol Cell Cardiol 2009; 47:562-4. [PMID: 19695256 DOI: 10.1016/j.yjmcc.2009.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/06/2009] [Accepted: 08/11/2009] [Indexed: 12/01/2022]
|
130
|
Ashrafian H, Neubauer S. Metabolomic profiling of cardiac substrate utilization: fanning the flames of systems biology? Circulation 2009; 119:1700-2. [PMID: 19349333 DOI: 10.1161/circulationaha.109.849919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
131
|
Abstract
At present the prevalence of heart failure rises along with aging of the population. Current heart failure therapeutic options are directed towards disease prevention via neurohormonal antagonism (β-blockers, angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers and aldosterone antagonists), symptomatic treatment with diuretics and digitalis and use of biventricular pacing and defibrillators in a special subset of patients. Despite these therapies and device interventions heart failure remains a progressive disease with high mortality and morbidity rates. The number of patients who survive to develop advanced heart failure is increasing. These patients require new therapeutic strategies. In this review two of emerging therapies in the treatment of heart failure are discussed: metabolic modulation and cellular therapy. Metabolic modulation aims to optimize the myocardial energy utilization via shifting the substrate utilization from free fatty acids to glucose. Cellular therapy on the other hand has the goal to achieve true cardiac regeneration. We review the experimental data that support these strategies as well as the available pharmacological agents for metabolic modulation and clinical application of cellular therapy.
Collapse
Affiliation(s)
- Diana Revenco
- Division of Cardiovascular Medicine, Caritas St. Elizabeth's Medical Center, Boston, MA 02135, USA
| | | |
Collapse
|
132
|
Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. J Physiol 2009; 587:2087-99. [PMID: 19289551 DOI: 10.1113/jphysiol.2008.168286] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is minimal in vivo data in humans evaluating myocardial substrate utilization during increased heart work. This study was performed to determine the balance of myocardial glucose and lactate metabolism during rest and increased heart work induced by atrial pacing in seven healthy men and women (age, 49.7 +/- 3.9 years; body mass index, 23.4 +/- 1.1 kg m(-2), maximum oxygen consumption, 35.5 +/- 3.0 ml kg(-1) min(-1), ejection fraction, 68 +/- 3%). After 3 days of dietary control, catheters were placed in coronary sinus, femoral arterial and venous, and peripheral venous blood vessels. Subjects received a primed continuous infusion of [3,3,3-(2)H]lactate and [6,6-(2)H]glucose throughout the study. Arterial and coronary sinus blood sampling and measurements of coronary sinus blood flow were made during rest and atrial pacing at approximately 111 beats min(-1). Myocardial oxygen consumption increased (P = 0.04) from rest to atrial pacing. Net glucose uptake increased (P = 0.04) from rest to atrial pacing with unchanged fractional extraction (rest: 9.1 +/- 2.7%, atrial pacing 9.8 +/- 2.9%). The percentage of whole body glucose disposal from myocardial uptake also increased from rest to atrial pacing. Isotopically measured lactate uptake also increased significantly from rest to atrial pacing with no significant differences in fractional extraction. The myocardium released lactate throughout the experiment, which increased significantly from rest and atrial pacing (P < 0.05). The heart accounted for a significantly greater percentage of whole body lactate disposal during atrial pacing (15.0 +/- 4.4%) compared to rest (4.9 +/- 0.9%, P = 0.03). These data suggest: (1) in the absence of ischaemia the myocardium is constantly taking up and releasing lactate at rest which increases during atrial pacing, and (2) when arterial substrate delivery is unchanged, increased myocardial work is accomplished with similar proportions of glucose and lactate utilization in healthy humans in vivo.
Collapse
Affiliation(s)
- Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
133
|
Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial FFA metabolism during rest and atrial pacing in humans. Am J Physiol Endocrinol Metab 2009; 296:E358-66. [PMID: 19066320 PMCID: PMC2645020 DOI: 10.1152/ajpendo.90747.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is limited in vivo data in humans evaluating myocardial fat utilization during increased heart work. This study was done to determine myocardial free fatty acid (FFA) metabolism during rest and atrial pacing, which increases cardiac work without changing arterial substrate concentration. We studied seven healthy men and women (age = 49.7 +/- 3.9 yr, BMI = 23.4 +/- 1.1 kg/m(2), Vo(2max) = 35.5 +/- 3.0 ml.kg(-1).min(-1), ejection fraction = 68 +/- 3%). After 3 days of dietary control, coronary sinus, femoral arterial and venous, and peripheral venous catheters were placed. Subjects received [(13)C]bicarbonate followed by a continuous infusion of [1-(13)C]palmitate through the end of the study. Arterial and coronary sinus blood sampling and measurements of resting coronary sinus blood flow were made during rest and atrial pacing to 120 beats/min. MVo(2) increased (P < 0.05) from rest to atrial pacing. Coronary sinus FFA concentration was significantly lower than arterial through rest and atrial pacing (P = 0.007). Isotopically measured myocardial palmitate uptake increased significantly from rest to atrial pacing (P = 0.03). Approximately one-third of palmitate delivery was extracted by the myocardium during rest and atrial pacing. Myocardial V(13)CO(2) production and palmitate oxidation increased significantly from rest (P < 0.01) to atrial pacing. Net glycerol balance was significantly greater than zero during rest (P = 0.04) but not different from zero during atrial pacing (P = 0.13). These data suggest that myocardial lipid uptake and oxidation increase with greater heart work during atrial pacing, with a similar relative proportion of fat oxidation to total myocardial energy expenditure.
Collapse
Affiliation(s)
- Bryan C Bergman
- Div. of Endocrinology, Diabetes, and Metabolism, Univ. of Colorado Denver School of Medicine, P. O. Box 6511, MS 8106, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
134
|
|
135
|
Thakker GD, Frangogiannis NG, Zymek PT, Sharma S, Raya JL, Barger PM, Taegtmeyer H, Entman ML, Ballantyne CM. Increased myocardial susceptibility to repetitive ischemia with high-fat diet-induced obesity. Obesity (Silver Spring) 2008; 16:2593-600. [PMID: 18833212 PMCID: PMC3049112 DOI: 10.1038/oby.2008.414] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.
Collapse
Affiliation(s)
- Geeta D. Thakker
- Section of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston, TX
| | | | - Pawel T. Zymek
- Section of Cardiovascular Sciences, Baylor College of Medicine, Houston, TX
| | - Saumya Sharma
- Division of Cardiology, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, TX
| | - Joe L. Raya
- Section of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston, TX
| | - Philip M. Barger
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, TX
| | - Mark L. Entman
- Section of Cardiovascular Sciences, Baylor College of Medicine, Houston, TX
| | - Christie M. Ballantyne
- Section of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston, TX
- Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, Houston, TX
| |
Collapse
|
136
|
|
137
|
|
138
|
Essop MF, Camp HS, Choi CS, Sharma S, Fryer RM, Reinhart GA, Guthrie PH, Bentebibel A, Gu Z, Shulman GI, Taegtmeyer H, Wakil SJ, Abu-Elheiga L. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice. Am J Physiol Heart Circ Physiol 2008; 295:H256-65. [PMID: 18487439 DOI: 10.1152/ajpheart.91489.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC2) is a key regulator of mitochondrial fatty acid (FA) uptake via carnitine palmitoyltransferase 1 (CPT1). To test the hypothesis that oxidative metabolism is upregulated in hearts from animals lacking ACC2 (employing a transgenic Acc2-mutant mouse), we assessed cardiac function in vivo and determined rates of myocardial substrate oxidation ex vivo. When examined by echocardiography, there was no difference in systolic function, but left ventricular mass of the Acc2-mutant (MUT) mouse was significantly reduced ( approximately 25%) compared with wild-types (WT). Reduced activation of the mammalian target of rapamycin (mTOR) and its downstream target p70S6K was found in MUT hearts. Exogenous oxidation rates of oleate were increased approximately 22%, and, unexpectedly, exogenous glucose oxidation rates were also increased in MUT hearts. Using a hyperinsulinemic-euglycemic clamp, we found that glucose uptake in MUT hearts was increased by approximately 83%. Myocardial triglyceride levels were significantly reduced in MUT vs. WT while glycogen content was the same. In parallel, transcript levels of PPARalpha and its target genes, pyruvate dehydrogenase kinase-4 (PDK-4), malonyl-CoA decarboxylase (MCD), and mCPT1, were downregulated in MUT mice. In summary, we report that 1) Acc2-mutant hearts exhibit a marked preference for the oxidation of both glucose and FAs coupled with greater utilization of endogenous fuel substrates (triglycerides), 2) attenuated mTOR signaling may result in reduced heart sizes observed in Acc2-mutant mice, and 3) Acc2-mutant hearts displayed normal functional parameters despite a significant decrease in size.
Collapse
Affiliation(s)
- M Faadiel Essop
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Chess DJ, Stanley WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res 2008; 79:269-78. [PMID: 18343896 DOI: 10.1093/cvr/cvn074] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Under physiological conditions, the human heart derives energy from glucose, fatty acids, and/or lactate depending upon substrate availability, circulating hormone levels, and nutritional status. Circulating free fatty acid and glucose levels often exceed the normal range, as observed with type 2 diabetes, obesity, or physical inactivity. Chronic exposure of the heart to high plasma levels of free fatty acids may cause accumulation of toxic lipid intermediates within cardiomyocytes. Furthermore, suppression of glucose oxidation by increased fatty acid uptake shunts glucose into the oxidative pentose phosphate and hexosamine biosynthetic pathways, both of which yield potentially harmful products. Noxious derivatives of aberrant glucose and fatty acid oxidation can activate signalling cascades leading to myocyte dysfunction or death, processes termed 'glucotoxicity' and 'lipotoxicity'. This review discusses the effects of dietary extremes (e.g. high fat and high carbohydrate consumption) and substrate overabundance in the context of heart failure (HF) development and progression. Emerging data suggest that substrate excess leads to cardiac dysfunction and HF, which may be prevented or slowed by maintaining low body fat and high insulin sensitivity and consuming a diet of low glycaemic load that is high in mono- and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- David J Chess
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
140
|
Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 2008; 117:3930-9. [PMID: 18037994 DOI: 10.1172/jci32578] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022] Open
Abstract
In the diabetic heart, chronic activation of the PPARalpha pathway drives excessive fatty acid (FA) oxidation, lipid accumulation, reduced glucose utilization, and cardiomyopathy. The related nuclear receptor, PPARbeta/delta, is also highly expressed in the heart, yet its function has not been fully delineated. To address its role in myocardial metabolism, we generated transgenic mice with cardiac-specific expression of PPARbeta/delta, driven by the myosin heavy chain (MHC-PPARbeta/delta mice). In striking contrast to MHC-PPARalpha mice, MHC-PPARbeta/delta mice had increased myocardial glucose utilization, did not accumulate myocardial lipid, and had normal cardiac function. Consistent with these observed metabolic phenotypes, we found that expression of genes involved in cellular FA transport were activated by PPARalpha but not by PPARbeta/delta. Conversely, cardiac glucose transport and glycolytic genes were activated in MHC-PPARbeta/delta mice, but repressed in MHC-PPARalpha mice. In reporter assays, we showed that PPARbeta/delta and PPARalpha exerted differential transcriptional control of the GLUT4 promoter, which may explain the observed isotype-specific effects on glucose uptake. Furthermore, myocardial injury due to ischemia/reperfusion injury was significantly reduced in the MHC-PPARbeta/delta mice compared with control or MHC-PPARalpha mice, consistent with an increased capacity for myocardial glucose utilization. These results demonstrate that PPARalpha and PPARbeta/delta drive distinct cardiac metabolic regulatory programs and identify PPARbeta/delta as a potential target for metabolic modulation therapy aimed at cardiac dysfunction caused by diabetes and ischemia.
Collapse
Affiliation(s)
- Eileen M Burkart
- Center for Cardiovascular Research, Department of Medicine,Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abozguia K, Nallur Shivu G, Phan TT, Ahmed I, Maher AR, Frenneaux M. Potential of metabolic agents as adjunct therapies in heart failure. Future Cardiol 2007; 3:525-35. [DOI: 10.2217/14796678.3.5.525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heart failure continues to have a significant morbidity and mortality rate despite several recent advances in treatment such as additional neurohumoral blockades and cardiac resynchronisation therapy. There is emerging evidence that, irrespective of etiology, heart failure is associated with an energetic disorder and that this may contribute to the pathogenesis of the syndrome. Recently, a number of studies have suggested that some metabolic agents may have potential as adjunctive therapy in patients with heart failure. These agents cause a shift of myocardial-substrate utilization away from free fatty acids toward glucose. Free fatty acid utilization consumes more oxygen to generate an equivalent amount of energy compared with glucose. Some of these agents are also effective antianginals, presumably by reducing the myocardial oxygen requirement. In this review we will discuss some of the current issues and progresses relating to metabolic manipulation in heart failure.
Collapse
Affiliation(s)
- Khalid Abozguia
- BHF Research Fellow, University of Birmingham, Department of Cardiovascular Medicine, Medical School, Edgbaston, Birmingham B15 2TT, UK
| | - Ganesh Nallur Shivu
- BHF Research Fellow, University of Birmingham, Department of Cardiovascular Medicine, Birmingham B15 2TT, UK
| | - Thanh Trung Phan
- BHF Research Fellow, University of Birmingham, Department of Cardiovascular Medicine, Medical School, Edgbaston, Birmingham B15 2TT, UK
| | - Ibrar Ahmed
- BHF Research Fellow, University of Birmingham, Department of Cardiovascular Medicine, Medical School, Edgbaston, Birmingham B15 2TT, UK
| | - Abdul R Maher
- BHF Research Fellow, University of Birmingham, Department of Cardiovascular Medicine, Medical School, Edgbaston, Birmingham B15 2TT, UK
| | - Michael Frenneaux
- BHF Chair of Cardiology, University of Birmingham, Department of Cardiovascular Medicine, Medical School, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
142
|
Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 2007; 12:331-43. [PMID: 17516164 DOI: 10.1007/s10741-007-9034-1] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A common feature of the hemodynamically or metabolically stressed heart is the return to a pattern of fetal metabolism. A hallmark of fetal metabolism is the predominance of carbohydrates as substrates for energy provision in a relatively hypoxic environment. When the normal heart is exposed to an oxygen rich environment after birth, energy substrate metabolism is rapidly switched to oxidation of fatty acids. This switch goes along with the expression of "adult" isoforms of metabolic enzymes and other proteins. However, the heart retains the ability to return to the "fetal" gene program. Specifically, the fetal gene program is predominant in a variety of pathophysiologic conditions including hypoxia, ischemia, hypertrophy, and atrophy. A common feature of all of these conditions is extensive remodeling, a decrease in the rate of aerobic metabolism in the cardiomyocyte, and an increase in cardiac efficiency. The adaptation is associated with a whole program of cell survival under stress. The adaptive mechanisms are prominently developed in hibernating myocardium, but they are also a feature of the failing heart muscle. We propose that in failing heart muscle at a certain point the fetal gene program is no longer sufficient to support cardiac structure and function. The exact mechanisms underlying the transition from adaptation to cardiomyocyte dysfunction are still not completely understood.
Collapse
Affiliation(s)
- Mitra Rajabi
- Department of Internal Medicine, Division of Cardiology, University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
143
|
Jüllig M, Chen X, Hickey AJ, Crossman DJ, Xu A, Wang Y, Greenwood DR, Choong YS, Schönberger SJ, Middleditch MJ, Phillips ARJ, Cooper GJS. Reversal of diabetes-evoked changes in mitochondrial protein expression of cardiac left ventricle by treatment with a copper(II)-selective chelator. Proteomics Clin Appl 2007; 1:387-99. [PMID: 21136691 DOI: 10.1002/prca.200600770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Indexed: 01/02/2023]
Affiliation(s)
- Mia Jüllig
- Faculty of Science, School of Biological Sciences and Maurice Wilkins Centre of Research Excellence in Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
|
145
|
Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:26-39. [PMID: 17081788 DOI: 10.1016/j.cbpa.2006.09.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/19/2006] [Accepted: 09/23/2006] [Indexed: 01/13/2023]
Abstract
Proper heart function relies on high efficiency of energy conversion. Mitochondrial oxygen-dependent processes transfer most of the chemical energy from metabolic substrates into ATP. Healthy myocardium uses mainly fatty acids as its major energy source, with little contribution of glucose. However, lactate, ketone bodies, amino acids or even acetate can be oxidized under certain circumstances. A complex interplay exists between various substrates responding to energy needs and substrate availability. The relative substrate concentration is the prime factor defining preference and utilization rate. Allosteric enzyme regulation and protein phosphorylation cascades, partially controlled by hormones such as insulin, modulate the concentration effect; together they provide short-term adjustments of cardiac energy metabolism. The expression of metabolic machinery genes is also dynamically regulated in response to developmental and (patho)physiological conditions, leading to long-term adjustments. Specific nuclear receptor transcription factors and co-activators regulate the expression of these genes. These include peroxisome proliferator-activated receptors and their nuclear receptor co-activator, estrogen-related receptor and hypoxia-inducible transcription factor 1. Increasing glucose and reducing fatty acid oxidation by metabolic regulation is already a target for effective drugs used in ischemic heart disease and heart failure. Interaction with genetic factors that control energy metabolism could provide even more powerful pharmacological tools.
Collapse
|
146
|
Saks V, Favier R, Guzun R, Schlattner U, Wallimann T. Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands. J Physiol 2006; 577:769-77. [PMID: 17008367 PMCID: PMC1890373 DOI: 10.1113/jphysiol.2006.120584] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review re-evaluates regulatory aspects of substrate supply in heart. In aerobic heart, the preferred substrates are always free fatty acids, and workload-induced increase in their oxidation is observed at unchanged global levels of ATP, phosphocreatine and AMP. Here, we evaluate the mechanisms of regulation of substrate supply for mitochondrial respiration in muscle cells, and show that a system approach is useful also for revealing mechanisms of feedback signalling within the network of substrate oxidation and particularly for explaining the role of malonyl-CoA in regulation of fatty acid oxidation in cardiac muscle. This approach shows that a key regulator of fatty acid oxidation is the energy demand. Alterations in malonyl-CoA would not be the reason for, but rather the consequence of, the increased fatty acid oxidation at elevated workloads, when the level of acetyl-CoA decreases due to shifts in the kinetics of the Krebs cycle. This would make malonyl-CoA a feedback regulator that allows acyl-CoA entry into mitochondrial matrix space only when it is needed. Regulation of malonyl-CoA levels by AMPK does not seem to work as a master on-off switch, but rather as a modulator of fatty acid import.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Bioenergetics, Joseph Fourier University, 2280 Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
147
|
Gambert S, Vergely C, Filomenko R, Moreau D, Bettaieb A, Opie LH, Rochette L. Adverse effects of free fatty acid associated with increased oxidative stress in postischemic isolated rat hearts. Mol Cell Biochem 2006; 283:147-52. [PMID: 16444597 DOI: 10.1007/s11010-006-2518-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms of the adverse effects of free fatty acids on the ischemic-reperfused myocardium are not fully understood. Long-chain fatty acids, including palmitate, uncouple oxidative phosphorylation and should therefore promote the formation of oxygen-derived free radicals, with consequent adverse effects. Conversely, the antianginal agent trimetazidine (TMZ), known to inhibit cardiac fatty acid oxidation, could hypothetically lessen the formation of reactive oxygen species (ROS) and thus improve reperfusion mechanical function. Isolated perfused rat hearts underwent 30 min of total global ischemia followed by 30 min of reperfusion. Hearts were perfused with glucose 5.5 mmol/l or palmitate 1.5 mmol/l with or without TMZ (100 micromol/l). Ascorbyl free radical (AFR) release during perfusion periods was measured by electron spin resonance as a marker of oxidative stress. Post-ischemic recovery in the palmitate group of heart was lower than in the glucose group with a marked rise in diastolic tension and reduction in left ventricular developed pressure (Glucose: 85 +/- 11 mmHg; Palmitate: 10 +/- 6 mmHg; p < 0.001). TMZ decreased diastolic tension in both glucose- and in palmitate-perfused hearts. Release of AFR within the first minute of reperfusion was greater in palmitate-perfused hearts and in hearts perfused with either substrate, this marker of oxidative stress was decreased by TMZ (expressed in arbitrary units/ml; respectively: 8.49 +/- 1.24 vs. 1.06 +/- 0.70 p < 0.05; 12.47 +/- 2.49 vs. 3.37 +/- 1.29 p < 0.05). Palmitate increased the formation of ROS and reperfusion contracture. TMZ, a potential inhibitor of palmitate-induced mitochondrial uncoupling, decreased the formation of free radicals and improved postischemic mechanical dysfunction. The novel conclusion is that adverse effects of fatty acids on ischemic-reperfusion injury may be mediated, at least in part, by oxygen-derived free radicals.
Collapse
|
148
|
Musters M, Bassingthwaighte J, van Riel N, van der Vusse G. Computational evidence for protein-mediated fatty acid transport across the sarcolemma. Biochem J 2006; 393:669-78. [PMID: 16207175 PMCID: PMC1360719 DOI: 10.1042/bj20050869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Long-chain fatty acids (FAs) are important substrates used by the heart to fulfil its energy requirements. Prior to mitochondrial oxidation, blood-borne FAs must pass through the cell membrane of the cardiac myocyte (sarcolemma). The mechanism underlying the sarcolemmal transport of FAs is incompletely understood. The aim of the present study was to estimate the trans-sarcolemmal FA uptake rate using a comprehensive computer model, in which the most relevant mechanisms proposed for cardiac FA uptake were incorporated. Our in silico findings show that diffusion of FA, present in its unbound form (uFA) in close proximity to the outer leaflet of the sarcolemma and serving as sole FA source, is insufficient to account for the physiological FA uptake rate. The inclusion of a hypothetical membrane-associated FA-TFPC (FA-transport-facilitating protein complex) in the model calculations substantially increased the FA uptake rate across the sarcolemma. The model requires that the biological properties of the FA-TFPC allow for increasing the rate of absorption of FA into the outer leaflet and the 'flip-flop' rate of FA from the outer to the inner leaflet of the sarcolemma. Experimental studies have identified various sarcolemma-associated proteins promoting cardiac FA uptake. It remains to be established whether these proteins possess the properties predicted by our model. Our findings also indicate that albumin receptors located on the outer leaflet of the sarcolemma facilitate the transfer of FA across the membrane to a significant extent. The outcomes of the computer simulations were verified with physiologically relevant FA uptake rates as assessed in the intact, beating heart in experimental studies.
Collapse
Affiliation(s)
- Mark W. J. M. Musters
- *Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | | | - Natal A. W. van Riel
- ‡Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Ger J. van der Vusse
- §Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
149
|
Martinez-Puig D, Mourot J, Ferchaud-Roucher V, Anguita M, Garcia F, Krempf M, Pérez J. Consumption of resistant starch decreases lipogenesis in adipose tissues but not in muscular tissues of growing pigs. Livest Sci 2006. [DOI: 10.1016/j.livprodsci.2005.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093-129. [PMID: 15987803 DOI: 10.1152/physrev.00006.2004] [Citation(s) in RCA: 1429] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The alterations in myocardial energy substrate metabolism that occur in heart failure, and the causes and consequences of these abnormalities, are poorly understood. There is evidence to suggest that impaired substrate metabolism contributes to contractile dysfunction and to the progressive left ventricular remodeling that are characteristic of the heart failure state. The general concept that has recently emerged is that myocardial substrate selection is relatively normal during the early stages of heart failure; however, in the advanced stages there is a downregulation in fatty acid oxidation, increased glycolysis and glucose oxidation, reduced respiratory chain activity, and an impaired reserve for mitochondrial oxidative flux. This review discusses 1) the metabolic changes that occur in chronic heart failure, with emphasis on the mechanisms that regulate the changes in the expression of metabolic genes and the function of metabolic pathways; 2) the consequences of these metabolic changes on cardiac function; 3) the role of changes in myocardial substrate metabolism on ventricular remodeling and disease progression; and 4) the therapeutic potential of acute and long-term manipulation of cardiac substrate metabolism in heart failure.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4970, USA.
| | | | | |
Collapse
|