101
|
Wróbel A, Rechberger T. An animal model of detrusor overactivity induced by depression. J Pharmacol Toxicol Methods 2016; 80:19-25. [PMID: 27050558 DOI: 10.1016/j.vascn.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Depression is frequently found in patients suffering from overactive bladder. The aim of the study was to verify whether the 13-cis-retinoic acid, a synthetic retinoid used in the treatment of acne, which was proven to induce depressive changes in both humans and animals, can cause detrusor overactivity symptoms in conscious rats. METHODS In order to assess the 13-cis-retinoic acid impact on the behavioural parameters, after 6weeks of intraperitoneal administration of retinoid in a dose of 1mg/kg/day, a forced swim test and cystometry were performed, and the locomotor activity of animals was assessed. The control group received a mixture of DMSO and physiological saline at a 1:1 ratio. RESULTS 13-cis-retinoic acid caused cystometric parameter changes analogous to those observed in people with a urodynamic diagnosis of detrusor overactivity. The retinoid caused also an extension of the immobility time in the forced swim test which is consistent with increased depression-related behaviour, with no impact on the locomotor activity of rats. The intravenous administration of solifenacin succinate in a single dose of 0.03mg/kg turned out to reverse changes in the cystometric parameters modified by 13-cis-retinoic acid treatment. The histopathological analysis of bladders did not show any lesions in the upper layer of the umbrella cells, urothelium or muscles. The retinoid concentration level achieved in the animals tested turned out to be identical to that occurring in humans. DISCUSSION 13-cis-retinoic acid can induce detrusor overactivity symptoms that are reversed by solifenacin succinate.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland.
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| |
Collapse
|
102
|
New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats. eNeuro 2016; 3:eN-NWR-0116-15. [PMID: 27066531 PMCID: PMC4819285 DOI: 10.1523/eneuro.0116-15.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/25/2022] Open
Abstract
Virtually all antidepressant agents increase the birth of granule neurons in the adult dentate gyrus in rodents, providing a key basis for the neurogenesis hypothesis of antidepressant action. The novel antidepressant ketamine, however, shows antidepressant activity in humans within hours, far too rapid for a mechanism involving neuronal birth. Ketamine could potentially act more rapidly by enhancing maturation of new neurons born weeks earlier. To test this possibility, we assessed the effects of S-ketamine (S-(+)-ketamine hydrochloride) injection on maturation, as well as birth and survival, of new dentate gyrus granule neurons in rats, using the immediate-early gene zif268, proliferating cell nuclear antigen, and BrdU, respectively. We show that S-ketamine has rapid effects on new neurons, increasing the proportion of functionally mature young granule neurons within 2 h. A single injection of S-ketamine also increased cell proliferation and functional maturation, and decreased depressive-like behavior, for at least 4 weeks in rats treated with long-term corticosterone administration (a depression model) and controls. However, the behavioral effects of S-ketamine on neophagia were unaffected by elimination of adult neurogenesis. Together, these results indicate that ketamine has surprisingly rapid and long-lasting effects on the recruitment of young neurons into hippocampal networks, but that ketamine has antidepressant-like effects that are independent of adult neurogenesis.
Collapse
|
103
|
Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, Svarer C, Mikkelsen JD, Fink-Jensen A, Knudsen GM, Paulson OB, Bolwig TG, Jorgensen MB. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand 2016; 133:154-164. [PMID: 26138003 DOI: 10.1111/acps.12462] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the role of hippocampal plasticity in the antidepressant effect of electroconvulsive therapy (ECT). METHOD We used magnetic resonance (MR) imaging including diffusion tensor imaging (DTI) and proton MR spectroscopy (1 H-MRS) to investigate hippocampal volume, diffusivity, and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. RESULTS Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations, and we were unable to identify a spectral signature at ≈1.30 ppm previously suggested to reflect neurogenesis induced by ECT. None of the brain imaging measures correlated to the clinical response. CONCLUSION Our findings show that ECT causes a remodeling of brain structures involved in affective regulation, but due to their lack of correlation with the antidepressant effect, this remodeling does not appear to be directly underlying the antidepressant action of ECT.
Collapse
Affiliation(s)
- A Jorgensen
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark.,Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, University of Copenhagen, Copenhagen, Denmark
| | - P Magnusson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - L G Hanson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark.,Biomedical Engineering, DTU Elektro, Technical University of Denmark, Lyngby, Denmark
| | - T Kirkegaard
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark
| | - H Benveniste
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA.,Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - H Lee
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, USA.,Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - C Svarer
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - J D Mikkelsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - A Fink-Jensen
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark.,Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, University of Copenhagen, Copenhagen, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - O B Paulson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - T G Bolwig
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark
| | - M B Jorgensen
- Psychiatric Centre Copenhagen (Rigshospitalet), Denmark.,Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
104
|
Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:277-84. [PMID: 26111720 DOI: 10.1016/j.pnpbp.2015.06.008] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| | - Aye-Mu Myint
- Laboratory for Psychoneuroimmunology, Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Brian E Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland; Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
105
|
Dell'Osso L, Del Grande C, Gesi C, Carmassi C, Musetti L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr Dis Treat 2016; 12:1687-703. [PMID: 27468233 PMCID: PMC4946830 DOI: 10.2147/ndt.s106479] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic-ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Grande
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Camilla Gesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Musetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
106
|
Han A, Yeo H, Park MJ, Kim SH, Choi HJ, Hong CW, Kwon MS. IL-4/10 prevents stress vulnerability following imipramine discontinuation. J Neuroinflammation 2015; 12:197. [PMID: 26521132 PMCID: PMC4628271 DOI: 10.1186/s12974-015-0416-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Background Identifying stress vulnerability after antidepressant discontinuation may be useful in treating relapses in depression. Previous studies have suggested significant effects of the immune system as well as the central nervous system (CNS) on progression and induction of major depression. In the present study, we hypothesized that the factors that are not rescued by a tricyclic antidepressant imipramine may be associated with stress vulnerability and relapses in depression. Methods To address this issue, mice were exposed to 2 h of restraint stress for 21 consecutive days (chronic restraint stress (CRS)) with or without co-treatment of imipramine. These groups were exposed to an electronic foot shock (FS) as additional stress after imipramine washout. Main targets of stress and antidepressants were analyzed in the hippocampus, lymph node, and serum after a series of depression-like behavior analysis. Results In this study, we found for the first time that mice exposed to CRS with a tricyclic antidepressant imipramine co-treatment, which did not show depressive-like behaviors, were vulnerable to subsequent stressful stimuli compared to the non-stressed mice after imipramine washout. CRS mice with imipramine co-treatment did not show any difference in BDNF, serotonin receptors, pro-inflammatory cytokines, or kynurenine pathway in the hippocampus compared to the controls. However, peripheral IL-4, IL-10, and alternatively activated microglial phenotypes in the hippocampus were not restored with sustained reduction in CRS mice despite chronic imipramine administration. Supplementing recombinant IL-4 and IL-10 in co-Imi+CRS mice prevented the stress vulnerability on additional stress and restored factors related to alternatively activated microglia (M2) in the hippocampus. Conclusion Thus, our results suggest that the reduced IL-4 and IL-10 levels in serum with hippocampal M2 markers may be involved in the stress vulnerability after imipramine discontinuation, and the restoration and modulation of these factors may be useful to some forms of depression-associated conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0416-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arum Han
- Department of Pharmacology, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Hyelim Yeo
- Department of Pharmacology, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea.,Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, South Korea
| | - Min-Jung Park
- Department of Pharmacology, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Seung Hyun Kim
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, South Korea
| | - Hyun Jin Choi
- College of Pharmacy, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea
| | - Chang-Won Hong
- Department of Pharmacology, Infectious Disease Medical Research Center, College of Medicine, Hallym University, Chuncheon, 200-702, South Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, South Korea.
| |
Collapse
|
107
|
Bolijn S, Lucassen PJ. How the Body Talks to the Brain; Peripheral Mediators of Physical Activity-Induced Proliferation in the Adult Hippocampus. Brain Plast 2015; 1:5-27. [PMID: 29765833 PMCID: PMC5939189 DOI: 10.3233/bpl-150020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the hippocampal dentate gyrus, stem cells maintain the capacity to produce new neurons into adulthood. These adult-generated neurons become fully functional and are incorporated into the existing hippocampal circuit. The process of adult neurogenesis contributes to hippocampal functioning and is influenced by various environmental, hormonal and disease-related factors. One of the most potent stimuli of neurogenesis is physical activity (PA). While the bodily and peripheral changes of PA are well known, e.g. in relation to diet or cardiovascular conditions, little is known about which of these also exert central effects on the brain. Here, we discuss PA-induced changes in peripheral mediators that can modify hippocampal proliferation, and address changes with age, sex or PA duration/intensity. Of the many peripheral factors known to be triggered by PA, serotonin, FGF-2, IGF-1, VEGF, β-endorphin and adiponectin are best known for their stimulatory effects on hippocampal proliferation. Interestingly, while age negatively affects hippocampal proliferation per se, also the PA-induced response to most of these peripheral mediators is reduced and particularly the response to IGF-1 and NPY strongly declines with age. Sex differences per se have generally little effects on PA-induced neurogenesis. Compared to short term exercise, long term PA may negatively affect proliferation, due to a parallel decline in FGF-2 and the β-endorphin receptor, and an activation of the stress system particularly during conditions of prolonged exercise but this depends on other variables as well and remains a matter of discussion. Taken together, of many possible mediators, serotonin, FGF-2, IGF-1, VEGF, β-endorphin and adiponectin are the ones that most strongly contribute to the central effects of PA on the hippocampus. For a subgroup of these factors, brain sensitivity and responsivity is reduced with age.
Collapse
Affiliation(s)
- Simone Bolijn
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
108
|
FAS -670A>G genetic polymorphism Is associated with Treatment Resistant Depression. J Affect Disord 2015; 185:164-9. [PMID: 26186532 DOI: 10.1016/j.jad.2015.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hippocampal neurogenesis has been suggested as a downstream event of antidepressants (AD) mechanism of action and might explain the lag time between AD administration and the therapeutic effect. Despite the widespread use of AD in the context of Major Depressive Disorder (MDD) there are no reliable biomarkers of treatment response phenotypes, and a significant proportion of patients display Treatment Resistant Depression (TRD). Fas/FasL system is one of the best-known death-receptor mediated cell signaling systems and is recognized to regulate cell proliferation and tumor cell growth. Recently this pathway has been described to be involved in neurogenesis and neuroplasticity. METHODS Since FAS -670A>G and FASL -844T>C functional polymorphisms never been evaluated in the context of depression and antidepressant therapy, we genotyped FAS -670A>G and FASL -844T>C in a subset of 80 MDD patients to evaluate their role in antidepressant treatment response phenotypes. RESULTS We found that the presence of FAS -670G allele was associated with antidepressant bad prognosis (relapse or TRD: OR=6.200; 95% CI: [1.875-20.499]; p=0.001), and we observed that patients carrying this allele have a higher risk to develop TRD (OR=10.895; 95% CI: [1.362-87.135]; p=0.008). Moreover, multivariate analysis adjusted to potentials confounders showed that patients carrying G allele have higher risk of early relapse (HR=3.827; 95% CI: [1.072-13.659]; p=0.039). FAS mRNA levels were down-regulated among G carriers, whose genotypes were more common in TRD patients. No association was found between FASL-844T>C genetic polymorphism and any treatment phenotypes. LIMITATIONS Small sample size. Patients used antidepressants with different mechanisms of action. CONCLUSION To the best of our knowledge this is the first study to evaluate the role of FAS functional polymorphism in the outcome of antidepressant therapy. This preliminary report associates FAS -670A>G genetic polymorphism with Treatment Resistant Depression and with time to relapse. The current results may possibly be given to the recent recognized role of Fas in neurogenesis and/or neuroplasticity.
Collapse
|
109
|
Duclot F, Kabbaj M. Epigenetic mechanisms underlying the role of brain-derived neurotrophic factor in depression and response to antidepressants. ACTA ACUST UNITED AC 2015; 218:21-31. [PMID: 25568448 DOI: 10.1242/jeb.107086] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is a devastating neuropsychiatric disorder encompassing a wide range of cognitive and emotional dysfunctions. The prevalence of MDD is expected to continue its growth to become the second leading cause of disease burden (after HIV) by 2030. Despite an extensive research effort, the exact etiology of MDD remains elusive and the diagnostics uncertain. Moreover, a marked inter-individual variability is observed in the vulnerability to develop depression, as well as in response to antidepressant treatment, for nearly 50% of patients. Although a genetic component accounts for some cases of MDD, it is now clearly established that MDD results from strong gene and environment interactions. Such interactions could be mediated by epigenetic mechanisms, defined as chromatin and DNA modifications that alter gene expression without changing the DNA structure itself. Some epigenetic mechanisms have recently emerged as particularly relevant molecular substrates, promoting vulnerability or resilience to the development of depressive-like symptoms. Although the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of MDD remains unclear, its modulation of the efficacy of antidepressants is clearly established. Therefore, in this review, we focus on the epigenetic mechanisms regulating the expression of BDNF in humans and in animal models of depression, and discuss their role in individual differences in vulnerability to depression and response to antidepressant drugs.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Neuroscience Program, Florida State University, Tallahassee, FL 32306, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Neuroscience Program, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
110
|
The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neurosci Biobehav Rev 2015; 56:26-34. [DOI: 10.1016/j.neubiorev.2015.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/22/2023]
|
111
|
Chilmonczyk Z, Bojarski AJ, Pilc A, Sylte I. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands. Int J Mol Sci 2015; 16:18474-506. [PMID: 26262615 PMCID: PMC4581256 DOI: 10.3390/ijms160818474] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/11/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.
Collapse
Affiliation(s)
- Zdzisław Chilmonczyk
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland.
- Institute of Nursing and Health Sciences, University of Rzeszów, W. Kopisto 2A, 35-310 Rzeszów, Poland.
| | - Andrzej Jacek Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Ingebrigt Sylte
- Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, No-9037 Tromsø, Norway.
| |
Collapse
|
112
|
Murata Y, Yanagihara Y, Mori M, Mine K, Enjoji M. Chronic treatment with tandospirone, a serotonin 1A receptor partial agonist, inhibits psychosocial stress-induced changes in hippocampal neurogenesis and behavior. J Affect Disord 2015; 180:1-9. [PMID: 25879718 DOI: 10.1016/j.jad.2015.03.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The 5-hydroxytryptamine (5-HT) 1A receptors are considered a potential target for the treatment of mental and neuropsychiatric disorders. Several studies have indicated that 5-HT1A receptor agonists increase hippocampal neurogenesis, which is implicated in the action mechanism of antidepressants. However, these agents have not been applied to humans due to intolerable side effects. We recently showed that chronic administration of tandospirone, a clinically available 5-HT1A receptor partial agonist, increased hippocampal neurogenesis dose-dependently. The present study was done to determine if chronic tandospirone treatment has antidepressant potential from the standpoint of hippocampal neurogenesis and behavior. METHODS Male Sprague-Dawley rats were intraperitoneally administered a vehicle or tandospirone (10mg/kg) once daily for 28 days. Two weeks after starting the injections, animals were exposed to intermittent social defeat (four times over two weeks). The effects of stress and tandospirone on the rodents׳ behavior were evaluated by the Novelty-Suppressed Feeding (NSF) test. The quantification of hippocampal neurogenesis was estimated using immunostaining with Ki-67 and doublecortin (DCX). RESULTS Chronic tandospirone treatment reversed the psychosocial stress-induced increase in the latency in the NSF test and decrease in the density of DCX-positive cells in the dentate gyrus of the dorsal and ventral hippocampus. However, no difference in the density of Ki-67-positive cells was observed between the vehicle- and tandospirone-administered groups. LIMITATIONS To clarify the antidepressant potential of TDS, the other behavioral tests for depression will be required. CONCLUSIONS Our findings suggest that tandospirone has antidepressant potential through an inhibiting effect on stress-induced changes in hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yuki Yanagihara
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, Mito Hospital, 4-1-1, Shime-Higashi, Shime-Machi, Kasuya-Gun, Fukuoka 811-2243, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
113
|
Abstract
Depression is one of the most disabling medical conditions in the world today, yet its etiologies remain unclear and current treatments are not wholly effective. Animal models are a powerful tool to investigate possible causes and treatments for human diseases. We describe an animal model of social defeat as a possible model for human depression. We discuss the paradigm, behavioral correlates to depression, and potential underlying neurobiological mechanisms with an eye toward possible future therapies.
Collapse
|
114
|
Immunohistochemical determination of the site of antidepressant-like effects of glucagon-like peptide-2 in ACTH-treated mice. Neuroscience 2015; 294:156-65. [DOI: 10.1016/j.neuroscience.2015.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/09/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
|
115
|
Coutellier L, Gilbert V, Shepard R. Npas4 deficiency increases vulnerability to juvenile stress in mice. Behav Brain Res 2015; 295:17-25. [PMID: 25911220 DOI: 10.1016/j.bbr.2015.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
During specific windows of postnatal brain development, individuals are particularly susceptible to developing mental illnesses in adulthood. Adolescence is such a window during which environmental stress can have long-lasting consequences on social and cognitive functions. In individuals, highly vulnerable to stress, a relatively mild stressful situation can trigger the onset of psychiatric conditions. The genetic factors and mechanisms underlying vulnerability to stress are not well understood. Here, we show that variations in expression of the brain-specific transcription factor Npas4 contributes to the long-term consequences of juvenile stress on cognitive abilities. We observed that transgenic Npas4-deficient mice exposed to chronic mild stress during adolescence (but not during adulthood) develop prefrontal cortex-dependent cognitive deficits in adulthood, while the same stress did not affect Npas4 wild-type mice. These cognitive deficits were accompanied by fewer neuroblasts in the subventricular zone, and reduced ability of these immature neuronal cells to migrate away from this neurogenic zone toward cortical regions. These findings suggest for the first time that the transcription factor Npas4 could play a significant role in coping with juvenile stress. They also suggest that Npas4 could modulate resilience or vulnerability to stress by mediating the effects of stress on neurogenesis.
Collapse
Affiliation(s)
- Laurence Coutellier
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH, USA.
| | - Valerie Gilbert
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Ryan Shepard
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
116
|
Conditional Inhibition of Adult Neurogenesis by Inducible and Targeted Deletion of ERK5 MAP Kinase Is Not Associated with Anxiety/Depression-Like Behaviors. eNeuro 2015; 2:eN-NWR-0014-14. [PMID: 26464972 PMCID: PMC4596085 DOI: 10.1523/eneuro.0014-14.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/31/2015] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
Although there is evidence that adult neurogenesis contributes to the therapeutic efficacy of chronic antidepressant treatment for anxiety and depression disorders, the role of adult neurogenesis in the onset of depression-related symptoms is still open to question. To address this issue, we utilized a transgenic mouse strain in which adult neurogenesis was specifically and conditionally impaired by Nestin-CreER-driven, inducible knockout (icKO) of erk5 MAP kinase in Nestin-expressing neural progenitors of the adult mouse brain upon tamoxifen administration. Here, we report that inhibition of adult neurogenesis by this mechanism is not associated with an increase of the baseline anxiety or depression in non-stressed animals, nor does it increase the animal's susceptibility to depression after chronic unpredictable stress treatment. Our findings indicate that impaired adult neurogenesis does not lead to anxiety or depression.
Collapse
|
117
|
Bétry C, Etiévant A, Pehrson A, Sánchez C, Haddjeri N. Effect of the multimodal acting antidepressant vortioxetine on rat hippocampal plasticity and recognition memory. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:38-46. [PMID: 25524057 DOI: 10.1016/j.pnpbp.2014.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/06/2023]
Abstract
Depression is frequently associated with cognitive disturbances. Vortioxetine is a multimodal acting antidepressant that functions as a 5-HT3 and 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and inhibitor of the 5-HT transporter. Given its pharmacological profile, the present study was undertaken to determine whether vortioxetine could modulate several preclinical parameters known to be involved in cognitive processing. In the dorsal hippocampus of anaesthetized rats, the high-frequency stimulation of the Schaffer collaterals provoked a stable long-term potentiation (LTP) of ~25%. Interestingly, vortioxetine (10mg/kg, i.p.) counteracted the suppressant effect of elevated platform stress on hippocampal LTP induction. In the novel object recognition test, vortioxetine (10mg/kg, i.p.) increased the time spent exploring the novel object during the retention test and this pro-cognitive effect was prevented by the partial 5-HT3 receptor agonist SR57227 (1mg/kg, i.p.). Finally, compared to fluoxetine, sustained administration of vortioxetine (5mg/kg/day, s.c.) induced a rapid increase of cell proliferation in the hippocampal dentate gyrus. In summary, vortioxetine prevented the effect of stress on hippocampal LTP, increased rapidly hippocampal cell proliferation and enhanced short-term episodic memory, via, at least in part, its 5-HT3 receptor antagonism. Taken together, these preclinical data suggest that the antidepressant vortioxetine may have a beneficial effect on human cognitive processes.
Collapse
Affiliation(s)
- Cécile Bétry
- INSERM U846, Stem Cell and Brain Research Institute, Université Lyon 1, Lyon, F-69008, France
| | - Adeline Etiévant
- INSERM U846, Stem Cell and Brain Research Institute, Université Lyon 1, Lyon, F-69008, France
| | - Alan Pehrson
- Neuropharmacological Research, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | - Connie Sánchez
- Neuropharmacological Research, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | - Nasser Haddjeri
- INSERM U846, Stem Cell and Brain Research Institute, Université Lyon 1, Lyon, F-69008, France.
| |
Collapse
|
118
|
Jentsch MC, Van Buel EM, Bosker FJ, Gladkevich AV, Klein HC, Oude Voshaar RC, Ruhé HG, Eisel ULM, Schoevers RA. Biomarker approaches in major depressive disorder evaluated in the context of current hypotheses. Biomark Med 2015; 9:277-97. [DOI: 10.2217/bmm.14.114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Major depressive disorder is a heterogeneous disorder, mostly diagnosed on the basis of symptomatic criteria alone. It would be of great help when specific biomarkers for various subtypes and symptom clusters of depression become available to assist in diagnosis and subtyping of depression, and to enable monitoring and prognosis of treatment response. However, currently known biomarkers do not reach sufficient sensitivity and specificity, and often the relation to underlying pathophysiology is unclear. In this review, we evaluate various biomarker approaches in terms of scientific merit and clinical applicability. Finally, we discuss how combined biomarker approaches in both preclinical and clinical studies can help to make the connection between the clinical manifestations of depression and the underlying pathophysiology.
Collapse
Affiliation(s)
- Mike C Jentsch
- University of Groningen, University Medical Centre of Groningen, University Centre of Psychiatry, Groningen, The Netherlands
| | - Erin M Van Buel
- Department of Molecular Neurobiology, Behavioural & Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Fokko J Bosker
- University of Groningen, University Medical Centre of Groningen, University Centre of Psychiatry, Groningen, The Netherlands
- Department of Nuclear Medicine & Molecular Imaging, University of Groningen, Groningen, The Netherlands
| | - Anatoliy V Gladkevich
- University of Groningen, University Medical Centre of Groningen, University Centre of Psychiatry, Groningen, The Netherlands
| | - Hans C Klein
- University of Groningen, University Medical Centre of Groningen, University Centre of Psychiatry, Groningen, The Netherlands
- Department of Nuclear Medicine & Molecular Imaging, University of Groningen, Groningen, The Netherlands
| | - Richard C Oude Voshaar
- University of Groningen, University Medical Centre of Groningen, University Centre of Psychiatry, Groningen, The Netherlands
| | - Henricus G Ruhé
- University of Groningen, University Medical Centre of Groningen, University Centre of Psychiatry, Groningen, The Netherlands
| | - Uli LM Eisel
- Department of Molecular Neurobiology, Behavioural & Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Robert A Schoevers
- University of Groningen, University Medical Centre of Groningen, University Centre of Psychiatry, Groningen, The Netherlands
| |
Collapse
|
119
|
Pascoe MC, Howells DW, Crewther DP, Carey LM, Crewther SG. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat. Neuropsychiatr Dis Treat 2015; 11:153-64. [PMID: 25609971 PMCID: PMC4298295 DOI: 10.2147/ndt.s72925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs) are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo)-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo-associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes.
Collapse
Affiliation(s)
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | | | - Leeanne M Carey
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia ; Department of Occupational Therapy, School of Allied Health La Trobe University, VIC, Australia
| | - Sheila G Crewther
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
120
|
Hamilton GF, Majdak P, Miller DS, Bucko PJ, Merritt JR, Krebs CP, Rhodes JS. Evaluation of a C57BL/6J × 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis. Brain Plast 2015; 1:83-95. [PMID: 28989863 PMCID: PMC5627510 DOI: 10.3233/bpl-150011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and “hybrid vigor”). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice (n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice (n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior.
Collapse
Affiliation(s)
- G F Hamilton
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P Majdak
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D S Miller
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P J Bucko
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J R Merritt
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - C P Krebs
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J S Rhodes
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
121
|
Khedr LH, Nassar NN, El-Denshary ES, Abdel-Tawab AM. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats. Neuropsychiatr Dis Treat 2015; 11:2887-901. [PMID: 26622178 PMCID: PMC4654549 DOI: 10.2147/ndt.s87089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS) model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX) in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally). Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT) was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c), caspase-3 (Casp-3), as well as nitric oxide metabolites (NOx) were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001) as well as the changes in adenos-ine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001). Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression.
Collapse
Affiliation(s)
- Lobna H Khedr
- Department of Pharmacology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Ahmed M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
122
|
Understanding the role of adjunctive nonpharmacological therapies in management of the multiple pathways to depression. Psychiatry Res 2014; 220 Suppl 1:S34-44. [PMID: 25539873 DOI: 10.1016/s0165-1781(14)70004-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/11/2014] [Indexed: 01/28/2023]
Abstract
Major depressive disorder (MDD) is a common disorder with a lifetime prevalence of 16.2% and the fourth highest cause of disability globally. It is hypothesized to be a syndromatic manifestation of multiple pathological processes leading to similar clinical manifestation. MDD is associated with at least three categories of peripheral hormone-type factors including neurotrophic factors, proinflammatory cytokines, and processes that impair regulation of the hypothalamic-pituitary-adrenocortical axis. Neuroimaging studies have identified functional abnormalities including subcortical systems associated with reward and emotion processing, medial prefrontal and anterior cingulate cortical regions and the lateral prefrontal cortical systems involved in cognitive control and voluntary emotion regulation. Studies investigating the effects of psychotherapy and pharmacotherapy on functional brain measures show normalization of brain function with return to euthymia. Nevertheless, approximately 50% of patients with MDD will not respond sufficiently and 60 to 70% will not achieve full remission with first-line pharmacotherapy, therefore clinicians strive to improve patient responses through the use of adjunct therapies. This review discusses recent research in the various biological processes associated with MDD as well as recent data in support of the use of adjunctive non-pharmacological therapies including psychotherapy, bibliotherapy, Internet therapy, "natural" or herbal approaches, exercise therapy, and somatic therapies.
Collapse
|
123
|
Rossetti C, Halfon O, Boutrel B. Controversies about a common etiology for eating and mood disorders. Front Psychol 2014; 5:1205. [PMID: 25386150 PMCID: PMC4209809 DOI: 10.3389/fpsyg.2014.01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and depression represent a growing health concern worldwide. For many years, basic science and medicine have considered obesity as a metabolic illness, while depression was classified a psychiatric disorder. Despite accumulating evidence suggesting that obesity and depression may share commonalities, the causal link between eating and mood disorders remains to be fully understood. This etiology is highly complex, consisting of multiple environmental and genetic risk factors that interact with each other. In this review, we sought to summarize the preclinical and clinical evidence supporting a common etiology for eating and mood disorders, with a particular emphasis on signaling pathways involved in the maintenance of energy balance and mood stability, among which orexigenic and anorexigenic neuropeptides, metabolic factors, stress responsive hormones, cytokines, and neurotrophic factors.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| |
Collapse
|
124
|
|
125
|
Matsuoka Y, Nishi D, Noguchi H, Kim Y, Hashimoto K. Longitudinal changes in serum brain-derived neurotrophic factor in accident survivors with posttraumatic stress disorder. Neuropsychobiology 2014; 68:44-50. [PMID: 23774996 DOI: 10.1159/000350950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/24/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND This prospective cohort study investigated the serum levels of brain-derived neurotrophic factor (BDNF), which mediates synaptic plasticity crucial for fear memory extinction, in patients severely injured in motor vehicle accidents (MVAs). METHOD A nested, case-controlled study was conducted with 103 MVA survivors: 8 medication-naïve patients who met the criteria for full diagnosis of posttraumatic stress disorder (PTSD) at 6 months after MVA, 10 medication-naïve patients with partial PTSD and 85 patients with no PTSD. PTSD was evaluated by the Clinician-Administered PTSD Scale (CAPS). Serum BDNF levels were measured shortly after the MVA (baseline) and at 6-month follow-up. RESULTS Posttrauma serum BDNF levels differed between the 3 groups after controlling for age and sex (F = 3.41, p = 0.04), with unexpectedly higher serum BDNF levels seen in the full-PTSD group compared with the no-PTSD group. Additional analysis of patients with serum samples taken at baseline and at 6 months revealed the full-PTSD group had significantly higher serum BDNF levels over the 6 months than the no-PTSD group after controlling for age and sex (F = 6.44, p < 0.01). A positive correlation was seen between changes in serum BDNF levels over 6 months and the CAPS score at 6 months (r = 0.26, p = 0.014). CONCLUSIONS The findings of this study, the first to report longitudinal serum BDNF levels in MVA survivors, suggest that elevated serum BDNF levels could be a biomarker of PTSD after a traumatic event.
Collapse
Affiliation(s)
- Yutaka Matsuoka
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
126
|
Oomen CA, Bekinschtein P, Kent BA, Saksida LM, Bussey TJ. Adult hippocampal neurogenesis and its role in cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2014; 5:573-587. [PMID: 26308746 DOI: 10.1002/wcs.1304] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 01/26/2023]
Abstract
UNLABELLED Adult hippocampal neurogenesis (AHN) has intrigued neuroscientists for decades. Several lines of evidence show that adult-born neurons in the hippocampus are functionally integrated and contribute to cognitive function, in particular learning and memory processes. Biological properties of immature hippocampal neurons indicate that these cells are more easily excitable compared with mature neurons, and demonstrate enhanced structural plasticity. The structure in which adult-born hippocampal neurons are situated-the dentate gyrus-is thought to contribute to hippocampus function by disambiguating similar input patterns, a process referred to as pattern separation. Several ideas about AHN function have been put forward; currently there is good evidence in favor of a role for AHN in pattern separation. This function of AHN may be understood within a 'representational-hierarchical' view of brain organization. WIREs Cogn Sci 2014, 5:573-587. doi: 10.1002/wcs.1304 For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Charlotte A Oomen
- Department of Psychology, University of Cambridge, Cambridge, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Pedro Bekinschtein
- Facultad de Medicina, UBA-CONICET, Instituto de Biología Celular y Neurociencias, Buenos Aires, Argentina
| | - Brianne A Kent
- Department of Psychology, University of Cambridge, Cambridge, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
127
|
Palagini L, Gemignani A, Banti S, Manconi M, Mauri M, Riemann D. Chronic sleep loss during pregnancy as a determinant of stress: impact on pregnancy outcome. Sleep Med 2014; 15:853-9. [DOI: 10.1016/j.sleep.2014.02.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
128
|
Ramírez-Rodríguez G, Vega-Rivera NM, Oikawa-Sala J, Gómez-Sánchez A, Ortiz-López L, Estrada-Camarena E. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice. J Pineal Res 2014; 56:450-61. [PMID: 24650119 DOI: 10.1111/jpi.12136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/14/2014] [Indexed: 12/25/2022]
Abstract
Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rodríguez
- Division of Clinical Research, Laboratory of Neurogenesis, National Institute of Psychiatry "Ramón de la Fuente Muñiz", México, D.F., México
| | | | | | | | | | | |
Collapse
|
129
|
Almeida OP, Ford AH, Flicker L, Hankey GJ, Yeap BB, Clancy P, Golledge J. Angiogenesis inhibition and depression in older men. J Psychiatry Neurosci 2014; 39:200-5. [PMID: 24331740 PMCID: PMC3997605 DOI: 10.1503/jpn.130158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cardiovascular diseases have been associated with depression in later life, and a potential mechanism is inhibition of angiogenesis. We designed this study to determine if depression is associated with higher serum concentration of endostatin, an endogenous angiogenesis inhibitor. METHODS We performed a cross-sectional examination of a random sample of men aged 69-86 years. Those who scored 7 or higher on the 15-item Geriatric Depression Scale were deemed depressed. We determined the concentration of serum endostatin using a reproducible assay. Other measures included age, education, body mass index, smoking, history of depression, use of antidepressants, hypertension, diabetes, coronary heart disease and stroke, high sensitivity C-reactive protein, plasma homocysteine, triglycerides and cholesterol. We used logistic regression to investigate the association between endostatin and depression, and adjusted the analyses for confounding factors. RESULTS Our sample included 1109 men. Sixty-three (5.7%) men were depressed. Their serum endostatin was higher than that of nondepressed participants (p = 0.021). Men in the highest decile of endostatin had greater adjusted odds of depression (odds ratio [OR] 1.78, 95% confidence interval [CI] 1.03-3.06). A doubling of endostatin doubled the odds of depression (OR 1.93, 95% CI 1.31-2.84). The probability of depression increased with the concentration of endostatin in a log-linear fashion up to a maximum of about 20%-25%. LIMITATIONS The cross-sectional design limits the study's ability to ascribe causality to the association between high endostatin and depression. CONCLUSION Serum endostatin is associated with depression in older men. It remains to be established whether correction of this imbalance is feasible and could decrease the prevalence of depression in later life.
Collapse
Affiliation(s)
- Osvaldo P. Almeida
- Correspondence to: O.P. Almeida, School of Psychiatry & Clinical Neurosciences (M573), University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia;
| | | | | | | | | | | | | |
Collapse
|
130
|
Turner CA, Thompson RC, Bunney WE, Schatzberg AF, Barchas JD, Myers RM, Akil H, Watson SJ. Altered choroid plexus gene expression in major depressive disorder. Front Hum Neurosci 2014; 8:238. [PMID: 24795602 PMCID: PMC4001046 DOI: 10.3389/fnhum.2014.00238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/02/2014] [Indexed: 11/13/2022] Open
Abstract
Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus (CP), the region that produces cerebrospinal fluid (CSF), in individuals with major depressive disorder (MDD). Genes that are expressed in the CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the CP at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled, and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p < 0.05) between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ) pathway. Quantitative real-time PCR (qRT-PCR) confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the CP in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Robert C Thompson
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA
| | - William E Bunney
- Psychiatry and Human Behavior, University of California - Irvine Irvine, CA, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University Palo Alto, CA, USA
| | - Jack D Barchas
- Department of Psychiatry, Weill Cornell Medical College, Cornell University Ithaca, NY, USA
| | | | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA
| | - Stanley J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
131
|
Nam SM, Choi JH, Yoo DY, Kim W, Jung HY, Kim JW, Yoo M, Lee S, Kim CJ, Yoon YS, Hwang IK. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J Med Food 2014; 17:641-9. [PMID: 24712702 DOI: 10.1089/jmf.2013.2965] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus.
Collapse
Affiliation(s)
- Sung Min Nam
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University , Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Garcia-Garcia A, Tancredi AN, Leonardo ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl) 2014; 231:623-36. [PMID: 24337875 PMCID: PMC3927969 DOI: 10.1007/s00213-013-3389-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT(1A)) subtype, in both disorders. OBJECTIVES In this review, we examine the function of 5-HT(1A) receptor subpopulations and re-interpret our understanding of their role in mental illness in light of new data, separating both spatial (autoreceptor versus heteroreceptor) and the temporal (developmental versus adult) roles of the endogenous 5-HT(1A) receptors, emphasizing their distinct actions in mediating anxiety and depression-like behaviors. RESULTS It is difficult to unambiguously distinguish the effects of different populations of the 5-HT(1A) receptors with traditional genetic animal models and pharmacological approaches. However, with the advent of novel genetic systems and subpopulation-selective pharmacological agents, direct evidence for the distinct roles of these populations in governing emotion-related behavior is emerging. CONCLUSIONS There is strong and growing evidence for a functional dissociation between auto- and heteroreceptor populations in mediating anxiety and depressive-like behaviors, respectively. Furthermore, while it is well established that 5-HT(1A) receptors act developmentally to establish normal anxiety-like behaviors, the developmental role of 5-HT(1A) heteroreceptors is less clear, and the specific mechanisms underlying the developmental role of each subpopulation are likely to be key elements determining mood control in adult subjects.
Collapse
Affiliation(s)
- Alvaro Garcia-Garcia
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| | | | - E. David Leonardo
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| |
Collapse
|
133
|
Abstract
Antidepressant drugs were introduced into clinical practice in the mid-20th Century. While for the most part they have proven effective for the amelioration of depressive symptoms, they are associated with significant deficiencies. These well-recognized shortcomings have given impetus to the pursuit of new molecules that seek to improve on the efficacy, tolerability and safety of existing medications. The following article reviews several new compounds that may have antidepressant potential. Some are more advanced in development, having undergone clinical trials, whereas the clinical potential of others is yet to be explored. For this latter group of compounds, the antidepressant potential relies on their activity in validated animal models. Agomelatine and duloxetine are in the first category, having shown antidepressant efficacy in clinical trials. The blockade of cortisol secretion continues to be a focus of attention for the development of new antidepressants. Thus, synthesis inhibitors, nonpeptide antagonists of corticotropin-releasing factor and glucocorticoid receptor antagonists show some promise in clinical and preclinical tests. Antagonists of the neuropeptide substance P, vasopressin and neuropeptide Y represent a departure of approach from traditional monoamine receptor-based mechanisms. While the clinical results with one substance P antagonist have led to the cessation of further trials, other molecules are in development. Approaches to treatment based on glutamatergic transmission arose from observations in animal models. The clinical evaluation of such compounds awaits further development. The extent to which new agents can be judged to have met the goals of efficacy, tolerability and safety rely not only acute treatment trials but also on longer-term outcomes and postmarketing surveillance. Whether any of the new agents canvassed here prove to be significantly better than existing agents is clearly a judgement for the future.
Collapse
Affiliation(s)
- Trevor R Norman
- University of Melbourne, Department of Psychiatry, Austin Hospital, Heidelberg 3084, Victoria, Australia.
| | | |
Collapse
|
134
|
Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:277-86. [PMID: 23123365 DOI: 10.1016/j.pnpbp.2012.10.022] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a serious mental illness with chronic symptoms and significant impairment in psychosocial functioning. Although novel antipsychotics have been developed, the negative and cognitive symptoms of schizophrenia are still unresponsive to pharmacotherapy. The high level of social impairment and a chronic deteriorating course suggest that schizophrenia likely has neurodegenerative characteristics. Inflammatory markers such as pro-inflammatory cytokines are well-known etiological factors for psychiatric disorders, including schizophrenia. Inflammation in the central nervous system is closely related to neurodegeneration. In addition to pro-inflammatory cytokines, microglia also play an important role in the inflammatory process in the CNS. Uncontrolled activity of pro-inflammatory cytokines and microglia can induce schizophrenia in tandem with genetic vulnerability and glutamatergic neurotransmitters. Several studies have investigated the possible effects of antipsychotics on inflammation and neurogenesis. Additionally, anti-inflammatory adjuvant therapy has been under investigation as a treatment option for schizophrenia. Further studies should consider the confounding effects of systemic factors such as metabolic syndrome and smoking. In addition, the unique mechanisms by which pro-inflammatory cytokines are involved in the etiopathology of schizophrenia should be investigated. In this article, we aimed to review (1) major findings regarding neuroinflammation and pro-inflammatory cytokine alterations in schizophrenia, (2) interactions between neuroinflammation and neurogenesis as possible neural substrates for schizophrenia, and (3) novel pharmacological approaches.
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | | | | |
Collapse
|
135
|
Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:261-7. [PMID: 24189118 DOI: 10.1016/j.pnpbp.2013.10.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
This review summarises the evidence that chronic low grade inflammation plays an important role in the pathology of depression. Evidence is provided that pro-inflammatory cytokines, together with dysfunctional endocrine and neurotransmitter systems, provide a network of changes that underlie depression and may ultimately contribute to the neurodegenerative changes that characterise depression in the elderly. Antidepressants attenuate the inflammatory changes and hypercortisolaemia by reducing the release of the pro-inflammatory cytokines from activated microglia, and by sensitizing the glucocorticoids receptors in the HPA axis. These effects correlate with an improvement in monoamine neurotransmitter function. The possible mechanisms whereby this cascade of changes occurs are outlined. In conclusion, the mechanisms whereby antidepressants act should now consider the involvement of the immune and endocrine systems in addition to the central neurotransmitters. This may open up possibilities for a new generation of antidepressants in the future.
Collapse
|
136
|
Abstract
Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glial cells may be important in the pathogenesis of mood disorders and may be possible targets for the development of new treatments. In this article we review the evidence for glial abnormalities in mood disorders, and we discuss glial cell biology and evidence from postmortem studies of mood disorders. The goal is not to carry out a comprehensive review but to selectively discuss existing evidence in support of an argument for the role of glial cells in mood disorders.
Collapse
|
137
|
Abstract
The ubiquitous gaseous signaling molecule nitric oxide participates in the regulation of a variety of physiological and pathological processes, including adult neurogenesis. Adult neurogenesis, or the generation of new neurons in the adult brain, is a restricted event confined to areas with neurogenic capability. Although nitric oxide has been shown to mediate conflicting effects on adult neurogenesis, which may be partly explained by its unique characteristics, more studies are required in order to fully comprehend and appreciate the mechanisms involved. Neuropeptide Y, a neurotransmitter shown to be an important regulator of adult hippocampal neurogenesis, acts through intracellular nitric oxide to induce an increase in neural progenitor cell proliferation.
Collapse
|
138
|
Agis-Balboa RC, Fischer A. Generating new neurons to circumvent your fears: the role of IGF signaling. Cell Mol Life Sci 2014; 71:21-42. [PMID: 23543251 PMCID: PMC11113432 DOI: 10.1007/s00018-013-1316-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Abstract
Extinction of fear memory is a particular form of cognitive function that is of special interest because of its involvement in the treatment of anxiety and mood disorders. Based on recent literature and our previous findings (EMBO J 30(19):4071-4083, 2011), we propose a new hypothesis that implies a tight relationship among IGF signaling, adult hippocampal neurogenesis and fear extinction. Our proposed model suggests that fear extinction-induced IGF2/IGFBP7 signaling promotes the survival of neurons at 2-4 weeks old that would participate in the discrimination between the original fear memory trace and the new safety memory generated during fear extinction. This is also called "pattern separation", or the ability to distinguish similar but different cues (e.g., context). To understand the molecular mechanisms underlying fear extinction is therefore of great clinical importance.
Collapse
Affiliation(s)
- R C Agis-Balboa
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Grisebach Str. 5, 37077, Göttingen, Germany,
| | | |
Collapse
|
139
|
|
140
|
Wang J, Chai A, Zhou Q, Lv L, Wang L, Yang Y, Xu L. Chronic clomipramine treatment reverses core symptom of depression in subordinate tree shrews. PLoS One 2013; 8:e80980. [PMID: 24312510 PMCID: PMC3846567 DOI: 10.1371/journal.pone.0080980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/18/2013] [Indexed: 11/20/2022] Open
Abstract
Chronic stress is the major cause of clinical depression. The behavioral signs of depression, including anhedonia, learning and memory deficits, and sleep disruption, result from the damaging effects of stress hormones on specific neural pathways. The Chinese tree shrew (Tupaia belangeri chinensis) is an aggressive non-human primate with a hierarchical social structure that has become a well-established model of the behavioral, endocrine, and neurobiological changes associated with stress-induced depression. The tricyclic antidepressant clomipramine treats many of the core symptoms of depression in humans. To further test the validity of the tree shrew model of depression, we examined the effects of clomipramine on depression-like behaviors and physiological stress responses induced by social defeat in subordinate tree shrews. Social defeat led to weight loss, anhedonia (as measured by sucrose preference), unstable fluctuations in locomotor activity, sustained urinary cortisol elevation, irregular cortisol rhythms, and deficient hippocampal long-term potentiation (LTP). Clomipramine ameliorated anhedonia and irregular locomotor activity, and partially rescued the irregular cortisol rhythm. In contrast, weight loss increased, cortisol levels were even higher, and in vitro LTP was still impaired in the clomipramine treatment group. These results demonstrate the unique advantage of the tree shrew social defeat model of depression.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Anping Chai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Qixin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Longbao Lv
- Kunming Primate Research Center of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liping Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yuexiong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (LX); (YY)
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (LX); (YY)
| |
Collapse
|
141
|
Arnone D, McKie S, Elliott R, Juhasz G, Thomas EJ, Downey D, Williams S, Deakin JFW, Anderson IM. State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry 2013; 18:1265-72. [PMID: 23128153 DOI: 10.1038/mp.2012.150] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/20/2012] [Accepted: 09/07/2012] [Indexed: 12/11/2022]
Abstract
Reduced hippocampal volume has been reported in depression and may be involved in the aetiology of depressive symptoms and vulnerability to depressive relapse. Neuroplasticity following antidepressant drug treatment in the hippocampus has been demonstrated in animal models but adaptive changes after such treatment have not been shown in humans. In this study, we determined whether grey matter loss in the hippocampus in depression (1) is present in medication-free depressed (2) changes in response to antidepressant treatment and (3) is present as a stable trait in medication-free remitted patients. Sixty-four medication-free unipolar depressed patients: 39 currently depressed and 25 in remission, and 66 healthy controls (HC) underwent structural magnetic resonance imaging in a cross-sectional and longitudinal design. Thirty-two currently depressed participants were then treated with the antidepressant citalopram for 8 weeks. Adherence to treatment was evaluated by measuring plasma citalopram concentration. We measured regional variation in grey matter concentration by using voxel-based morphometry-Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra. Patients with current depression had bilaterally reduced grey matter in the hippocampus compared with HC and untreated patients in stable remission with the latter groups not differing. An increase in grey matter was observed in the hippocampus following treatment with citalopram in currently depressed patients. Grey matter reduction in the hippocampus appears specific to the depressed state and is a potential biomarker for a depressive episode.
Collapse
Affiliation(s)
- D Arnone
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
There are several investigational drugs in development for the treatment of depression. Some of the novel antidepressants in development target monoaminergic neurotransmission in accordance with the "monoamine hypothesis of depression." However, the current conceptualization of antidepressant actions is that it is the downstream effects on protein synthesis and neuroplasticity that account for therapeutic efficacy, rather than the immediate effects on synaptic monoamine levels. Thus, a number of novel agents in development directly target components of this "neuroplasticity hypothesis of depression," including hypothetically overactive glutamatergic neurotransmission and dysfunctional hypothalamic-pituitary-adrenal (HPA) axis functioning.
Collapse
|
143
|
Lee TTY, Wainwright SR, Hill MN, Galea LAM, Gorzalka BB. Sex, drugs, and adult neurogenesis: sex-dependent effects of escalating adolescent cannabinoid exposure on adult hippocampal neurogenesis, stress reactivity, and amphetamine sensitization. Hippocampus 2013; 24:280-92. [PMID: 24132958 DOI: 10.1002/hipo.22221] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/29/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022]
Abstract
Cannabinoid exposure during adolescence has adverse effects on neuroplasticity, emotional behavior, cognition, and reward sensitivity in adult rats. We investigated whether escalating doses of the cannabinoid receptor 1 (CB1 R) agonist, HU-210, in adolescence would affect adult hippocampal neurogenesis and behavioral processes putatively modulated by hippocampal neurogenesis, in adult male and female Sprague-Dawley rats. Escalating doses of HU-210 (25, 50, and 100 µg/kg), or vehicle were administered from postnatal day (PND) 35 to 46. Animals were left undisturbed until PND 70, when they were treated with 5-bromo-2-deoxyuridine (BrdU; 200 mg/kg) and perfused 21 days later to examine density of BrdU-ir and BrdU/NeuN cells in the dentate gyrus. In another cohort, hypothalamic-pituitary-adrenal (HPA) axis reactivity to an acute restraint stress (30 min; PND 75) and behavioral sensitization to d-amphetamine sulfate (1-2 mg/kg; PND 105-134) were assessed in adulthood. Adolescent HU-210 administration suppressed the density of BrdU-ir cells in the dentate gyrus in adult male, but not adult female rats. Adolescent HU-210 administration also induced significantly higher peak corticosterone levels and reminiscent of the changes in neurogenesis, this effect was more pronounced in adult males than females. However, adolescent cannabinoid treatment resulted in significantly higher stereotypy scores in adult female, but not male, rats. Thus, adolescent CB1 R activation suppressed hippocampal neurogenesis and increased stress responsivity in adult males, but not females, and enhanced amphetamine sensitization in adult female, but not male, rats. Taken together, increased CB1 R activation during adolescence results in sex-dependent, long-term, changes to hippocampal structure and function, an effect that may shed light on differing vulnerabilities to developing disorders following adolescent cannabinoid exposure, based on sex.
Collapse
Affiliation(s)
- Tiffany T-Y Lee
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
144
|
Long term follow-up after multiple hippocampal transection (MHT). Seizure 2013; 22:731-4. [DOI: 10.1016/j.seizure.2013.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 12/14/2022] Open
|
145
|
A possible negative influence of depression on the ability to overcome memory interference. Behav Brain Res 2013; 256:20-6. [DOI: 10.1016/j.bbr.2013.08.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 01/03/2023]
|
146
|
Song bu li decoction, a traditional uyghur medicine, protects cell death by regulation of oxidative stress and differentiation in cultured PC12 cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:687958. [PMID: 24198845 PMCID: PMC3807552 DOI: 10.1155/2013/687958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022]
Abstract
Song Bu Li decoction (SBL) is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia) and heart disorders (arrhythmia and palpitation). Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS) formation. The transcriptional activity of antioxidant response element (ARE), as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF-) induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress.
Collapse
|
147
|
Zonis S, Ljubimov VA, Mahgerefteh M, Pechnick RN, Wawrowsky K, Chesnokova V. p21Cip restrains hippocampal neurogenesis and protects neuronal progenitors from apoptosis during acute systemic inflammation. Hippocampus 2013; 23:1383-94. [PMID: 23966332 DOI: 10.1002/hipo.22192] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/06/2022]
Abstract
Altered neurogenesis in adult hippocampus is implicated in cognition impairment and depression. Inflammation is a potent inhibitor of neurogenesis. The cyclin-dependent kinase inhibitor p21(Cip1) (p21) restrains cell cycle progression and arrests the cell in the G1 phase. We recently showed that p21 is expressed in neuronal progenitors and regulates proliferation of these cells in the subgranular zone of the dentate gyrus of hippocampus where adult neurogenesis occurs. The current study suggests that p21 is induced in vivo in the hippocampus of WT mice in response to acute systemic inflammation caused by LPS injections, restrains neuronal progenitor proliferation and protects these cells from inflammation-induced apoptosis. In intact p21-/- hippocampus, neuronal progenitors proliferate more actively as assessed by BrdU incorporation, and give rise to increased number of DCX positive neuroblasts. However, when mice were treated with LPS, the number of neuroblasts decreased due to induced subgranular zone apoptosis. In vitro, differentiating Tuj-1 positive neuroblasts isolated from p21-/- hippocampus exhibited increased proliferation rate, measured by Ki-67 staining, as compared to WT cells (p<0.05). In WT neuronal progenitors treated with IL-6, the number of p21-positive cells was increased (p<0.05), and this led to Tuj-1(+) cell proliferation restraint, whereas the number of proliferating GFAP(+) astrocytes was increased ~ 2-fold. Thus, when p21 is intact, inflammation might divert neuronal progenitors towards astrogliogenesis by inducing p21. At the same time, when p21 is lacking, no effects of IL-6 on proliferation of Tuj-1(+) cells or GFAP(+) cells are detected in differentiating p21-/- neuronal progenitors. These results underscore the important role of p21 controlling hippocampal neuronal differentiation during inflammation.
Collapse
Affiliation(s)
- Svetlana Zonis
- Department of Medicine, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
148
|
Wang Y, Chang T, Chen YC, Zhang RG, Wang HN, Wu WJ, Peng ZW, Tan QR. Quetiapine add-on therapy improves the depressive behaviors and hippocampal neurogenesis in fluoxetine treatment resistant depressive rats. Behav Brain Res 2013; 253:206-11. [DOI: 10.1016/j.bbr.2013.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/09/2013] [Accepted: 07/14/2013] [Indexed: 12/28/2022]
|
149
|
Ota KT, Duman RS. Environmental and pharmacological modulations of cellular plasticity: role in the pathophysiology and treatment of depression. Neurobiol Dis 2013; 57:28-37. [PMID: 22691453 PMCID: PMC3458126 DOI: 10.1016/j.nbd.2012.05.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/05/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
Atrophy of neurons and gross structural alterations of limbic brain regions, including the prefrontal cortex (PFC) and hippocampus, have been reported in brain imaging and postmortem studies of depressed patients. Preclinical findings have suggested that prolonged negative stress can induce changes comparable to those seen in major depressive disorder (MDD), through dendritic retraction and decreased spine density in PFC and hippocampal CA3 pyramidal neurons. Interestingly, recent studies have suggested that environmental and pharmacological manipulations, including antidepressant medication, exercise, and diet, can block or even reverse many of the molecular changes induced by stress, providing a clear link between these factors and susceptibility to MDD. In this review, we will discuss the environmental and pharmacological factors, as well as the contribution of genetic polymorphisms, involved in the regulation of neuronal morphology and plasticity in MDD and preclinical stress models. In particular, we will highlight the pro-depressive changes incurred by stress and the reversal of these changes by antidepressants, exercise, and diet.
Collapse
Affiliation(s)
- Kristie T Ota
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06508, USA
| | | |
Collapse
|
150
|
Outhred T, Hawkshead BE, Wager TD, Das P, Malhi GS, Kemp AH. Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy. Neurosci Biobehav Rev 2013; 37:1786-800. [PMID: 23886514 DOI: 10.1016/j.neubiorev.2013.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/26/2023]
Abstract
Clinical research has demonstrated differential efficacy of selective serotonin reuptake inhibitors (SSRIs) and norepinephrine reuptake inhibitors (NRIs), which may relate to differential acute effects these medications have on emotional brain processes. Here we present findings from a Multi-Level Kernel Density Analysis meta-analysis that integrates and contrasts activations from disparate fMRI studies in order to examine whether single dose SSRIs and NRIs have different effects on emotion processing tasks in healthy participants. Seven SSRI and four NRI studies were eligible for inclusion. SSRIs decreased amygdala responses, suggesting reduced emotional reactivity to emotional stimuli, whereas NRIs increased frontal and medial activation, suggesting increased emotion regulation. As hypothesised, an interaction of antidepressant and task type was found, such that SSRIs modulated amygdaloid-hippocampal, medial and frontal activity during both the presentation of faces and pictures, whereas NRIs only modulated the activation in medial and frontal regions during the presentation of pictures. Findings are interpreted within a novel model of the differential effects of SSRIs and NRIs on emotion processing.
Collapse
Affiliation(s)
- Tim Outhred
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Royal North Shore Hospital, NSW 2065, Australia; SCAN Research and Teaching Unit, School of Psychology, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|