101
|
Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol 2020; 72:104-118. [PMID: 31541681 DOI: 10.1016/j.jhep.2019.08.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Hepatic resection and liver transplantation with adjuvant chemo- and radiotherapy are the mainstay of hepatocellular carcinoma (HCC) treatment, but the 5-year survival rate remains poor because of frequent recurrence and intrahepatic metastasis. Only sorafenib and lenvatinib are currently approved for the first-line treatment of advanced, unresected HCC, but they yield modest survival benefits. Thus, there is a need to identify new therapeutic targets to improve current HCC treatment modalities. METHODS The HCC tumor model was generated by hydrodynamic transfection of AKT1 and β-catenin (CTNNB1) oncogenes. Cancer cells with stemness properties were characterized following isolation using side population (SP) and CD44 surface markers by flow cytometry. The effect of Jak/Stat inhibitors was analyzed in vitro by using tumorsphere culture and in vivo using an allograft mouse model. RESULTS Co-activation of both Wnt/β-catenin and Akt/mTOR pathways was found in 14.4% of our HCC patient cohort. More importantly, these patients showed poorer survival than those with either Wnt/β-catenin or Akt/mTOR pathway activation alone, demonstrating the clinical relevance of our study. In addition, we observed that Akt/β-catenin tumors contained a subpopulation of cells with stem/progenitor-like characteristics identified through SP analysis and expression of the cancer stem cell-like marker CD44, which may contribute to tumor self-renewal and drug resistance. Consequently, we identified small molecule inhibitors of the Jak/Stat pathway that demonstrated efficacy in mitigating tumor proliferation and formation in Akt/β-catenin-driven HCC. CONCLUSIONS In conclusion, we have shown that Akt/β-catenin tumors contain a subpopulation of tumor-initiating cells with stem/progenitor-like characteristics which can be effectively targeted with inhibitors of the Jak/Stat pathway, demonstrating that inhibition of the Jak/Stat pathway could be an alternative method to overcome drug resistance and effectively treat Akt/β-catenin-driven HCC tumors. LAY SUMMARY The prognosis for patients with hepatocellular carcinoma is poor, partly because of the lack of effective treatment options for those with more advanced disease. In this study, we identified a subpopulation of cancer cells with stem cell-like properties that were critical for tumor maintenance and growth in a mouse model of hepatocellular carcinoma. Through further experiments, we demonstrated that the Jak/Stat pathway is a promising therapeutic target in hepatocellular carcinoma.
Collapse
|
102
|
Successful stories of drug repurposing for cancer therapy in hepatocellular carcinoma. DRUG REPURPOSING IN CANCER THERAPY 2020. [PMCID: PMC7471801 DOI: 10.1016/b978-0-12-819668-7.00008-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
103
|
Hou J, Zhang H, Sun B, Karin M. The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications. J Hepatol 2020; 72:167-182. [PMID: 31449859 DOI: 10.1016/j.jhep.2019.08.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
Basic and clinical studies have demonstrated the efficacy of immunotherapy, a technical and conceptual breakthrough that has revolutionised cancer treatment. Hepatocellular carcinoma (HCC), a deadly malignancy with aetiologic diversity and a chronic course, is strongly influenced by the immune system, and was recently found to partially benefit from immune-checkpoint inhibitor therapy. Notably, HCC onco-immunology depends on diverse genetic and environmental factors that together shape cancer-promoting inflammation and immune dysfunction - critical processes that control HCC malignant progression and response to therapy. Herein, we summarise the current understanding of liver and HCC onco-immunology obtained through basic studies with mouse models and clinical practice in humans. In particular, we discuss preclinical and clinical findings that implicate immunomodulation as a major factor in HCC development and explain the basis for HCC-targeting immunotherapy.
Collapse
Affiliation(s)
- Jiajie Hou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Haiyan Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
104
|
Zhang M, Chua MS, Hu J, Li H, Zhang S, Wu L, Han B. High Inflammatory Factor Grading Predicts Poor Disease-Free Survival in AJCC Stage I-II Hepatocellular Carcinoma Patients After R0 Resection. Cancer Manag Res 2019; 11:10623-10632. [PMID: 31908534 PMCID: PMC6927565 DOI: 10.2147/cmar.s230386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose In this study, we established the inflammatory factor grade system (IFGs) based on the hepatocellular carcinoma (HCC) microenvironment to investigate the role of inflammatory factor grade (IFG) in predicting the prognosis of patients with American Joint Committee on Cancer (AJCC) stage I-II. Patients and methods We enrolled 87 HCC patients with AJCC stage I-II who underwent R0 resection between 2000 and 2012 and had paraffin-embedded specimens. Immunohistochemistry (IHC) was performed to investigate the expression of 12 inflammatory factors and then to establish the IFGs (grade A or B) based on the IHC data. Subsequently, Kaplan-Meier and Cox univariate/multivariate survival analyses were performed to examine the potential prognostic significance. Results Higher IFG (IFG-B) is significantly associated with greater tumor size (P=0.037), and IFG-B predicts a worse disease-free survival (DFS, P<0.001). Moreover, a platelet count (PLT) ≤100×109/L, tumor size ≥5 cm, poor tumor differentiation, and IFG-B are independent risk factors for DFS. Conclusion Overall, by establishing a grading system for the level of inflammatory factors in the HCC microenvironment, IFG-B can effectively predict poor DFS in AJCC stage I-II HCC patients after R0 resection.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Mei-Sze Chua
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jie Hu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Liqun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
105
|
Horiguchi H, Kadomatsu T, Kurahashi R, Hara C, Miyata K, Baba M, Osumi H, Terada K, Araki K, Takai T, Kamba T, Linehan WM, Moroishi T, Oike Y. Dual functions of angiopoietin-like protein 2 signaling in tumor progression and anti-tumor immunity. Genes Dev 2019; 33:1641-1656. [PMID: 31727773 PMCID: PMC6942048 DOI: 10.1101/gad.329417.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies suggest that tumor cell-derived ANGPTL2 has tumor-promoting function. Here, we conducted mechanistic analysis comparing ANGPTL2 function in cancer progression in a murine syngeneic model of melanoma and a mouse model of translocation renal cell carcinoma (tRCC). ANGPTL2 deficiency in tumor cells slowed tRCC progression, supporting a tumor-promoting role. However, systemic ablation of ANGPTL2 accelerated tRCC progression, supporting a tumor-suppressing role. The syngeneic model also demonstrated a tumor-suppressing role of ANGPTL2 in host tumor microenvironmental cells. Furthermore, the syngeneic model showed that PDGFRα+ fibroblasts in the tumor microenvironment express abundant ANGPTL2 and contribute to tumor suppression. Moreover, host ANGPTL2 facilitates CD8+ T-cell cross-priming and enhances anti-tumor immune responses. Importantly, ANGPTL2 activates dendritic cells through PIR-B-NOTCH signaling and enhances tumor vaccine efficacy. Our study provides strong evidence that ANGPTL2 can function in either tumor promotion or suppression, depending on what cell type it is expressed in.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ryoma Kurahashi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Chiaki Hara
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Hironobu Osumi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Thoracic Surgery, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Molecular Enzymology, Faculty of Life sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| |
Collapse
|
106
|
Wu L, Tang Q, Yin X, Yan D, Tang M, Xin J, Pan Q, Ma C, Yan S. The Therapeutic Potential of Adipose Tissue-Derived Mesenchymal Stem Cells to Enhance Radiotherapy Effects on Hepatocellular Carcinoma. Front Cell Dev Biol 2019; 7:267. [PMID: 31781559 PMCID: PMC6861425 DOI: 10.3389/fcell.2019.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have investigated strategies to improve the clinical efficacy of radiotherapy (RT) against hepatocellular carcinoma (HCC), yet the prognosis remains poor. Human adipose tissue-derived mesenchymal stem cells (AT-MSCs), easily accessible and abundant in quantity, have represented as an attractive therapeutic tool for the stem cell-based treatment for cancer diseases. Through direct co-culture and indirect separate culture experiments, we showed that AT-MSCs could enhance inhibitory effect of RT on reducing HCC cell growth, migration and invasion in both in vitro and in vivo experiments. RNA-sequencing analysis revealed a noticeable interferon-induced transmembrane 1 (IFITM1)-induced tumor gene signature. Gain and loss of mechanistic studies indicated that mechanism was attributed to downregulated expression of signal transducer and activator of transcription 3 (STAT3) and matrix metallopeptidases (MMPs) and upregulated expression of P53 and caspases. Collectively, our findings suggest that AT-MSCs might enhance the therapeutic effects of RT on HCC, providing a rationale for AT-MSCs and RT combination therapy as a new remedy for HCC.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuying Tang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - DanFang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengmeng Tang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoling Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
107
|
Song H, Yang Z, Jiang M, Zhang G, Gao Y, Shen Z, Wu ZS, Lou Y. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Talanta 2019; 204:29-35. [DOI: 10.1016/j.talanta.2019.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/02/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
|
108
|
Jak-Stat Signaling Induced by Interleukin-6 Family Cytokines in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111704. [PMID: 31683891 PMCID: PMC6896168 DOI: 10.3390/cancers11111704] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. It can be caused by chronic liver cell injury with resulting sustained inflammation, e.g., triggered by infections with hepatitis viruses B (HBV) and C (HCV). Death of hepatocytes leads to the activation of compensatory mechanisms, which can ultimately result in liver fibrosis and cirrhosis. Another common feature is the infiltration of the liver with inflammatory cells, which secrete cytokines and chemokines that act directly on the hepatocytes. Among several secreted proteins, members of the interleukin-6 (IL-6) family of cytokines have emerged as important regulatory proteins that might constitute an attractive target for therapeutic intervention. The IL-6-type cytokines activate multiple intracellular signaling pathways, and especially the Jak/STAT cascade has been shown to be crucial for HCC development. In this review, we give an overview about HCC pathogenesis with respect to IL-6-type cytokines and the Jak/STAT pathway. We highlight the role of mutations in genes encoding several proteins involved in the cytokine/Jak/STAT axis and summarize current knowledge about IL-6 family cytokines in this context. We further discuss possible anti-cytokine therapies for HCC patients in comparison to already established therapies.
Collapse
|
109
|
Giannini EG, Aglitti A, Borzio M, Gambato M, Guarino M, Iavarone M, Lai Q, Levi Sandri GB, Melandro F, Morisco F, Ponziani FR, Rendina M, Russo FP, Sacco R, Viganò M, Vitale A, Trevisani F. Overview of Immune Checkpoint Inhibitors Therapy for Hepatocellular Carcinoma, and The ITA.LI.CA Cohort Derived Estimate of Amenability Rate to Immune Checkpoint Inhibitors in Clinical Practice. Cancers (Basel) 2019; 11:cancers11111689. [PMID: 31671581 PMCID: PMC6896125 DOI: 10.3390/cancers11111689] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Despite progress in our understanding of the biology of hepatocellular carcinoma (HCC), this tumour remains difficult-to-cure for several reasons, starting from the particular disease environment where it arises—advanced chronic liver disease—to its heterogeneous clinical and biological behaviour. The advent, and good results, of immunotherapy for cancer called for the evaluation of its potential application also in HCC, where there is evidence of intra-hepatic immune response activation. Several studies advanced our knowledge of immune checkpoints expression in HCC, thus suggesting that immune checkpoint blockade may have a strong rationale even in the treatment of HCC. According to this background, initial studies with tremelimumab, a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor, and nivolumab, a programmed cell death protein 1 (PD-1) antibody, showed promising results, and further studies exploring the effects of other immune checkpoint inhibitors, alone or with other drugs, are currently underway. However, we are still far from the identification of the correct setting, and sequence, where these drugs might be used in clinical practice, and their actual applicability in real-life is unknown. This review focuses on HCC immunobiology and on the potential of immune checkpoint blockade therapy for this tumour, with a critical evaluation of the available trials on immune checkpoint blocking antibodies treatment for HCC. Moreover, it assesses the potential applicability of immune checkpoint inhibitors in the real-life setting, by analysing a large, multicentre cohort of Italian patients with HCC.
Collapse
Affiliation(s)
- Edoardo G Giannini
- Gastroenterology Unit, Department of Internal Medicine, Università di Genova, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Andrea Aglitti
- Department of Medicine and Surgery, Internal Medicine and Hepatology Unit, University of Salerno, 84084 Fisciano, Italy.
| | - Mauro Borzio
- Unità Operativa Complessa (UOC) Gastroenterologia ed Endoscopia Digestiva, ASST (Azienda Socio Sanitaria Territoriale) Melegnano Martesana, 20063 Milan, Italy.
| | - Martina Gambato
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, 35124 Padua, Italy.
| | - Maria Guarino
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy.
| | - Massimo Iavarone
- CRC "A. M. and A. Migliavacca" Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Quirino Lai
- Liver Transplantation Program, Sapienza University, 00185 Rome, Italy.
| | | | - Fabio Melandro
- Dipartimento Assistenziale Integrato di Chirurgia Generale, Unità Operativa Complessa Epatica e Trapianto Fegato, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy.
| | - Filomena Morisco
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Maria Rendina
- UOC Gastroenterologia Universitaria, Dipartimento Emergenza e trapianti di organo, Azienda Policlinico-Universita' di Bari, 70124 Bari, Italy.
| | - Francesco Paolo Russo
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, 35124 Padua, Italy.
| | - Rodolfo Sacco
- UOC Gastroenterologia ed Endoscopia Digestiva, Azienda Ospedaliera Universitaria "Ospedali Riuniti", 71122 Foggia, Italy.
| | - Mauro Viganò
- Division of Hepatology, Ospedale San Giuseppe, University of Milan, 20122 Milan, Italy.
| | - Alessandro Vitale
- UOC di Chirurgia Epatobiliare, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche, Azienda Università di Padova, 35124 Padua, Italy.
| | - Franco Trevisani
- Dipartimento di Scienze Mediche e Chirurgiche Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy.
| |
Collapse
|
110
|
Hu YS, Han X, Liu XH. STAT3: A Potential Drug Target for Tumor and Inflammation. Curr Top Med Chem 2019; 19:1305-1317. [PMID: 31218960 DOI: 10.2174/1568026619666190620145052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
STAT (Signal Transducers and Activators of Transcription) is a cellular signal transcription factor involved in the regulation of many cellular activities, such as cell differentiation, proliferation, angiogenesis in normal cells. During the study of the STAT family, STAT3 was found to be involved in many diseases, such as high expression and sustained activation of STAT3 in tumor cells, promoting tumor growth and proliferation. In the study of inflammation, it was found that it plays an important role in the anti-inflammatory and repairing of damage tissues. Because of the important role of STAT3, a large number of studies have been obtained. At the same time, after more than 20 years of development, STAT3 has also been used as a target for drug therapy. And the discovery of small molecule inhibitors also promoted the study of STAT3. Since STAT3 has been extensively studied in inflammation and tumor regulation, this review presents the current state of research on STAT3.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xu Han
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
111
|
Lee C, Cheung ST. STAT3: An Emerging Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111646. [PMID: 31731457 PMCID: PMC6895841 DOI: 10.3390/cancers11111646] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem and its treatment options have been limited. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor important for various cellular processes. Overexpression and constitutive activation of STAT3 have been frequently found in HCC and associated with poor prognosis. Ample evidence has shown that STAT3 plays pivotal roles in the initiation, progression, metastasis and immune suppression of HCC. Thus, STAT3 has attracted attention as a novel therapeutic target in HCC. Clinical trials have investigated STAT3-targeted therapeutics either as monotherapy or in combination with chemotherapeutic agents, immune checkpoint inhibitors and alternative targeted drugs. Some of these studies have yielded encouraging results. Particularly, napabucasin—a cancer stemness inhibitor targeting STAT3-driven gene transcription—has stood out with its promising clinical efficacy and safety profile. Nonetheless, clinical investigations of STAT3-targeted therapies in HCC are limited and more efforts are strongly urged to evaluate their clinical performance in HCC. Here, we provide a comprehensive review of the roles of STAT3 in HCC and follow by comprehensive analysis of STAT3 targeted strategies.
Collapse
Affiliation(s)
- Carol Lee
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China;
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3505-1121
| |
Collapse
|
112
|
An IKK/NF-κB Activation/p53 Deletion Sequence Drives Liver Carcinogenesis and Tumor Differentiation. Cancers (Basel) 2019; 11:cancers11101410. [PMID: 31546614 PMCID: PMC6827060 DOI: 10.3390/cancers11101410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Most liver tumors arise on the basis of chronic liver diseases that trigger inflammatory responses. Besides inflammation, subsequent defects in the p53-signaling pathway frequently occurs in liver cancer. In this study, we analyzed the consequences of inflammation and p53 loss in liver carcinogenesis. Methods: We used inducible liver-specific transgenic mouse strains to analyze the consequences of NF-κB/p65 activation mimicking chronic inflammation and subsequent p53 loss. Results: Ikk2ca driven NF-κB/p65 activation in mice results in liver fibrosis, the formation of ectopic lymphoid structures and carcinogenesis independent of p53 expression. Subsequent deletion of Trp53 led to an increased tumor formation, metastasis and a shift in tumor differentiation towards intrahepatic cholangiocarcinoma. In addition, loss of Trp53 in an inflammatory liver resulted in elevated chromosomal instability and indicated a distinct aberration pattern. Conclusions: In conclusion, activation of NF-κB/p65 mimicking chronic inflammation provokes the formation of liver carcinoma. Collateral disruption of Trp53 supports tumor progression and influences tumor differentiation and heterogeneity.
Collapse
|
113
|
Hepatic Stress Response in HCV Infection Promotes STAT3-Mediated Inhibition of HNF4A- miR-122 Feedback Loop in Liver Fibrosis and Cancer Progression. Cancers (Basel) 2019; 11:cancers11101407. [PMID: 31547152 PMCID: PMC6827087 DOI: 10.3390/cancers11101407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection compromises the natural defense mechanisms of the liver leading to a progressive end stage disease such as cirrhosis and hepatocellular carcinoma (HCC). The hepatic stress response generated due to viral replication in the endoplasmic reticulum (ER) undergoes a stepwise transition from adaptive to pro-survival signaling to improve host cell survival and liver disease progression. The minute details of hepatic pro-survival unfolded protein response (UPR) signaling that contribute to HCC development in cirrhosis are unknown. This study shows that the UPR sensor, the protein kinase RNA-like ER kinase (PERK), mediates the pro-survival signaling through nuclear factor erythroid 2-related factor 2 (NRF2)-mediated signal transducer and activator of transcription 3 (STAT3) activation in a persistent HCV infection model of Huh-7.5 liver cells. The NRF2-mediated STAT3 activation in persistently infected HCV cell culture model resulted in the decreased expression of hepatocyte nuclear factor 4 alpha (HNF4A), a major liver-specific transcription factor. The stress-induced inhibition of HNF4A expression resulted in a significant reduction of liver-specific microRNA-122 (miR-122) transcription. It was found that the reversal of hepatic adaptive pro-survival signaling and restoration of miR-122 level was more efficient by interferon (IFN)-based antiviral treatment than direct-acting antivirals (DAAs). To test whether miR-122 levels could be utilized as a biomarker of hepatic adaptive stress response in HCV infection, serum miR-122 level was measured among healthy controls, and chronic HCV patients with or without cirrhosis. Our data show that serum miR-122 expression level remained undetectable in most of the patients with cirrhosis (stage IV fibrosis), suggesting that the pro-survival UPR signaling increases the risk of HCC through STAT3-mediated suppression of miR-122. In conclusion, our data indicate that hepatic pro-survival UPR signaling suppresses the liver-specific HNF4A and its downstream target miR-122 in cirrhosis. These results provide an explanation as to why cirrhosis is a risk factor for the development of HCC in chronic HCV infection.
Collapse
|
114
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
115
|
Mishra N, Mishra S. Signal transducer and activator of transcriptions (STATs)-at the crossroads of obesity-linked non-alcoholic steatohepatitis and hepatocellular carcinoma. Hepatobiliary Surg Nutr 2019; 8:407-410. [PMID: 31489316 DOI: 10.21037/hbsn.2019.03.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nivida Mishra
- Faculty of Science, University of Manitoba, Winnipeg, Canada
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Department of Internal Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
116
|
Takakura K, Oikawa T, Nakano M, Saeki C, Torisu Y, Kajihara M, Saruta M. Recent Insights Into the Multiple Pathways Driving Non-alcoholic Steatohepatitis-Derived Hepatocellular Carcinoma. Front Oncol 2019; 9:762. [PMID: 31456946 PMCID: PMC6700399 DOI: 10.3389/fonc.2019.00762] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic syndrome with fatty liver is spreading on a worldwide scale. Correspondingly, the number of patients with the hepatic phenotype of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in its advanced states, non-alcoholic steatohepatitis (NASH), and the subsequent hepatocellular carcinoma (HCC) derived from NASH (NASH-HCC) is increasing remarkably. A large-scale epidemiological study revealed that obesity can be a risk factor of such cancers as HCC. Moreover, despite the ongoing trends of declining cancer incidence and mortality for most cancer types, HCC has experienced a markedly increased rate of both. Considering the differences in liver-related mortality among NAFLD patients, NASH, and NASH-HCC should be included in the objectives of initiatives to manage NAFLD patients and their progression to the advanced stages. Unfortunately, research has yet to make a crucial drug discovery for the effective treatment of NASH and NASH-HCC, although it is urgently needed. The latest widespread concept of the “multiple parallel hits hypothesis,” whereby multiple factors contribute concurrently to disease pathogenesis has led to advances in the elucidation of hepatic and systemic molecular mechanisms driving NASH and the subsequent NASH-HCC progression; the results are not only extensive but promising for therapeutics. Here, we have summarized the myriad landmark discoveries of recent research into the pathogenic processes underlying NASH-HCC development and with the greatest possibility for a new generation of pharmaceutical products for interference and treatment.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Nakano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
117
|
Czauderna C, Castven D, Mahn FL, Marquardt JU. Context-Dependent Role of NF-κB Signaling in Primary Liver Cancer-from Tumor Development to Therapeutic Implications. Cancers (Basel) 2019; 11:cancers11081053. [PMID: 31349670 PMCID: PMC6721782 DOI: 10.3390/cancers11081053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory cell death is a major risk factor for the development of diverse cancers including liver cancer. Herein, disruption of the hepatic microenvironment as well as the immune cell composition are major determinants of malignant transformation and progression in hepatocellular carcinomas (HCC). Considerable research efforts have focused on the identification of predisposing factors that promote induction of an oncogenic field effect within the inflammatory liver microenvironment. Among the most prominent factors involved in this so-called inflammation-fibrosis-cancer axis is the NF-κB pathway. The dominant role of this pathway for malignant transformation and progression in HCC is well documented. Pathway activation is significantly linked to poor prognostic traits as well as stemness characteristics, which places modulation of NF-κB signaling in the focus of therapeutic interventions. However, it is well recognized that the mechanistic importance of the pathway for HCC is highly context and cell type dependent. While constitutive pathway activation in an inflammatory etiological background can significantly promote HCC development and progression, absence of NF-κB signaling in differentiated liver cells also significantly enhances liver cancer development. Thus, therapeutic targeting of NF-κB as well as associated family members may not only exert beneficial effects but also negatively impact viability of healthy hepatocytes and/or cholangiocytes, respectively. The review presented here aims to decipher the complexity and paradoxical functions of NF-κB signaling in primary liver and non-parenchymal cells, as well as the induced molecular alterations that drive HCC development and progression with a particular focus on (immune-) therapeutic interventions.
Collapse
Affiliation(s)
- Carolin Czauderna
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Darko Castven
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Friederike L Mahn
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany.
| |
Collapse
|
118
|
Otto PI, Guimarães SEF, Verardo LL, Azevedo ALS, Vandenplas J, Sevillano CA, Marques DBD, Pires MDFA, de Freitas C, Verneque RS, Martins MF, Panetto JCC, Carvalho WA, Gobo DOR, da Silva MVGB, Machado MA. Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle. J Dairy Sci 2019; 102:8148-8158. [PMID: 31279558 DOI: 10.3168/jds.2018-15305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Heat stress is an important issue in the global dairy industry. In tropical areas, an alternative to overcome heat stress is the use of crossbred animals or synthetic breeds, such as the Girolando. In this study, we performed a genome-wide association study (GWAS) and post-GWAS analyses for heat stress in an experimental Gir × Holstein F2 population. Rectal temperature (RT) was measured in heat-stressed F2 animals, and the variation between 2 consecutive RT measurements (ΔRT) was used as the dependent variable. Illumina BovineSNP50v1 BeadChip (Illumina Inc., San Diego, CA) and single-SNP approach were used for GWAS. Post-GWAS analyses were performed by gene ontology terms enrichment and gene-transcription factor (TF) networks, generated from enriched TF. The breed origin of marker alleles in the F2 population was assigned using the breed of origin of alleles (BOA) approach. Heritability and repeatability estimates (± standard error) for ΔRT were 0.13 ± 0.08 and 0.29 ± 0.06, respectively. Association analysis revealed 6 SNP significantly associated with ΔRT. Genes involved with biological processes in response to heat stress effects (LIF, OSM, TXNRD2, and DGCR8) were identified as putative candidate genes. After performing the BOA approach, the 10% of F2 animals with the lowest breeding values for ΔRT were classified as low-ΔRT, and the 10% with the highest breeding values for ΔRT were classified as high-ΔRT. On average, 49.4% of low-ΔRT animals had 2 alleles from the Holstein breed (HH), and 39% had both alleles from the Gir breed (GG). In high-ΔRT animals, the average proportion of animals for HH and GG were 1.4 and 50.2%, respectively. This study allowed the identification of candidate genes for ΔRT in Gir × Holstein crossbred animals. According to the BOA approach, Holstein breed alleles could be associated with better response to heat stress effects, which could be explained by the fact that Holstein animals are more affected by heat stress than Gir animals and thus require a genetic architecture to defend the body from the deleterious effects of heat stress. Future studies can provide further knowledge to uncover the genetic architecture underlying heat stress in crossbred cattle.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Lucas L Verardo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Jeremie Vandenplas
- Wageningen University and Research Animal Breeding and Genomics, Wageningen 6700, the Netherlands
| | - Claudia A Sevillano
- Wageningen University and Research Animal Breeding and Genomics, Wageningen 6700, the Netherlands; Topigs Norsvin Research Center, Beuningen 6640, the Netherlands
| | - Daniele B D Marques
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Célio de Freitas
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil
| | - Rui S Verneque
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil
| | | | | | | | - Diego O R Gobo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Marco A Machado
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil.
| |
Collapse
|
119
|
STAT3 isoforms: Alternative fates in cancer? Cytokine 2019; 118:27-34. [DOI: 10.1016/j.cyto.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/04/2023]
|
120
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
121
|
Tang D, Zhao L, Peng C, Ran K, Mu R, Ao Y. LncRNA CRNDE promotes hepatocellular carcinoma progression by upregulating SIX1 through modulating miR‐337‐3p. J Cell Biochem 2019; 120:16128-16142. [PMID: 31099050 DOI: 10.1002/jcb.28894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Tang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Lijin Zhao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Cijun Peng
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Kaiqiong Ran
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Rui Mu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Yu Ao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| |
Collapse
|
122
|
Ponziani FR, Nicoletti A, Gasbarrini A, Pompili M. Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol 2019; 11:1758835919848184. [PMID: 31205505 PMCID: PMC6535703 DOI: 10.1177/1758835919848184] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is involved in the maintenance of the homeostasis of the human body and its alterations are associated with the development of different pathological conditions. The liver is the organ most exposed to the influence of the gut microbiota, and recently important connections between the intestinal flora and hepatocellular carcinoma (HCC) have been described. In fact, HCC is commonly associated with liver cirrhosis and develops in a microenvironment where inflammation, immunological alterations, and cellular aberrations are dramatically evident. Prevention and diagnosis in the earliest stages are still the most effective weapons in fighting this tumor. Animal models show that the gut microbiota can be involved in the promotion and progression of HCC directly or through different pathogenic mechanisms. Recent data in humans have confirmed these preclinical findings, shedding new light on HCC pathogenesis. Limitations due to the different experimental design, the ethnic and hepatological setting make it difficult to compare the results and draw definitive conclusions, but these studies lay the foundations for a pathogenetic redefinition of HCC. Therefore, it is evident that the characterization of the gut microbiota and its modulation can have an enormous diagnostic, preventive, and therapeutic potential, especially in patients with early stage HCC.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- Division of Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome, 00168, Italy
| | - Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
123
|
Wang L, Yang H, Zamperone A, Diolaiti D, Palmbos PL, Abel EV, Purohit V, Dolgalev I, Rhim AD, Ljungman M, Hadju CH, Halbrook CJ, Bar-Sagi D, di Magliano MP, Crawford HC, Simeone DM. ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes Dev 2019; 33:641-655. [PMID: 31048544 PMCID: PMC6546061 DOI: 10.1101/gad.323303.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of β-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.
Collapse
Affiliation(s)
- Lidong Wang
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Huibin Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Andrea Zamperone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Daniel Diolaiti
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ethan V Abel
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vinee Purohit
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Igor Dolgalev
- Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Andrew D Rhim
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christina H Hadju
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dafna Bar-Sagi
- Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Howard C Crawford
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA.,Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
124
|
Modulation of the IL-6-Signaling Pathway in Liver Cells by miRNAs Targeting gp130, JAK1, and/or STAT3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:419-433. [PMID: 31026677 PMCID: PMC6479786 DOI: 10.1016/j.omtn.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/19/2022]
Abstract
Interleukin-6 (IL-6)-type cytokines share the common receptor glycoprotein 130 (gp130), which activates a signaling cascade involving Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) transcription factors. IL-6 and/or its signaling pathway is often deregulated in diseases, such as chronic liver diseases and cancer. Thus, the identification of compounds inhibiting this pathway is of interest for future targeted therapies. We established novel cellular screening systems based on a STAT-responsive reporter gene (Cypridina luciferase). Of a library containing 538 microRNA (miRNA) mimics, several miRNAs affected hyper-IL-6-induced luciferase activities. When focusing on candidate miRNAs specifically targeting 3′ UTRs of signaling molecules of this pathway, we identified, e.g., miR-3677-5p as a novel miRNA affecting protein expression of both STAT3 and JAK1, whereas miR-16-1-3p, miR-4473, and miR-520f-3p reduced gp130 surface expression. Interestingly, combination treatment with 2 or 3 miRNAs targeting gp130 or different signaling molecules of the pathway did not increase the inhibitory effects on phospho-STAT3 levels and STAT3 target gene expression compared to treatment with single mimics. Taken together, we identified a set of miRNAs of potential therapeutic value for cancer and inflammatory diseases, which directly target the expression of molecules within the IL-6-signaling pathway and can dampen inflammatory signal transduction.
Collapse
|
125
|
Zhang J, Han C, Ungerleider N, Chen W, Song K, Wang Y, Kwon H, Ma W, Wu T. A Transforming Growth Factor-β and H19 Signaling Axis in Tumor-Initiating Hepatocytes That Regulates Hepatic Carcinogenesis. Hepatology 2019; 69:1549-1563. [PMID: 30014520 PMCID: PMC6335184 DOI: 10.1002/hep.30153] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023]
Abstract
Functions of transforming growth factor-β (TGF-β) in the liver vary depending on specific cell types and their temporal response to TGF-β during different stages of hepatocarcinogenesis (HCG). Through analysis of tumor tissues from hepatocellular carcinoma (HCC) patients, we were able to cluster hepatic epithelial cell-derived TGF-β gene signatures in association with distinct clinical prognoses. To delineate the role of hepatic epithelial TGF-β signaling in HCC development, we used an experimental system in which tumor-initiating hepatocytes (TICs) were isolated from TGF-β receptor II floxed mice (Tgfbr2fl/fl ) and transplanted into syngeneic C57BL/6J mice by splenic injection. Recipient mice were then administered Cre-expressing adenovirus (Ad-Cre) to inactivate Tgfbr2 in transplanted TICs. After latency, Tgfbr2-inactivated TICs formed larger and more tumor nodules in recipient livers compared to TICs without Tgfbr2 inactivation. In vitro analyses revealed that treatment of cultured TICs with TGF-β inhibited expression of progenitor cell factors (including SRY (sex determining region Y)-box 2 [Sox2]). RNA sequencing (RNA-seq) analysis identified H19 as one of the most up-regulated long noncoding RNA (lncRNA) in association with Tgfbr2 inactivation in TICs. Tgfbr2 inactivation by Ad-Cre led to a 5-fold increase of H19 expression in TICs. Accordingly, TGF-β treatment reduced H19 expression. We observed that forced overexpression of Sox2 in TICs increased transcription of H19, whereas knockdown of Sox2 decreased it. Furthermore, depletion of H19 reduced the progenitor property of TICs in vitro and decreased their tumorigenic potential in vivo. Finally, we observed a low level of H19 mRNA expression in human HCC tissues from patients with the epithelial TGF-β gene signature in association with favorable prognosis. Conclusion: Our findings describe a TGF-β and H19 signaling axis by Sox2 in TICs that importantly regulates HCG.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Hyunjoo Kwon
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
126
|
Miethe C, Zamora M, Torres L, Raign KG, Groll CJ, Price RS. Characterizing the differential physiological effects of adipocytokines visfatin and resistin in liver cancer cells. Horm Mol Biol Clin Investig 2019; 38:/j/hmbci.ahead-of-print/hmbci-2018-0068/hmbci-2018-0068.xml. [PMID: 30917102 DOI: 10.1515/hmbci-2018-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Background Obesity, a major public health concern, increases the risk of developing liver cancer which is the leading cause of cancer-related deaths worldwide. Obesity is associated with increased adiposity and macrophage infiltration both of which promote secretion of adipokines and cytokines in the tumor microenvironment. Specifically, visfatin and resistin have been detected at higher levels in the serum of obese individuals and liver tumors. However, the contribution of these adipocytokines in the progression of liver cancer remains unclear. Materials and methods The objective of this study was to characterize the effects of visfatin and resistin on HepG2, SNU-449 and HuH7 liver cancer cells. Cells exposed to visfatin and resistin were analyzed for fatty acid synthase protein, and phosphorylation of Akt and ERK tumorigenic signaling pathways, cell viability, lipogenesis, reactive oxygen species (ROS), matrix metallopeptidase 9 (MMP-9) enzyme activity and invasion. Results HepG2, SNU-449, and HuH7 liver cancer cells treated with visfatin and resistin increased cell viability, invasion, FASN protein, and Akt and ERK phosphorylation. Visfatin and resistin selectively increased ROS production in HepG2 and SNU-449 cells while there was no statistical difference in HuH7 cells. Visfatin and resistin stimulated lipogenesis in HepG2 cells while visfatin increased lipogenesis in SNU-449 cells, and visfatin nor resistin had an effect on lipogenesis in HuH7 cells. Lastly, visfatin and resistin increased MMP-9 enzyme activity in HepG2 and HuH-7 cells but only visfatin increased MMP-9 activity in SNU-449 cells. Conclusions Future studies are needed to determine if inhibition of ERK and Akt suppresses the visfatin and resistin-induced invasive liver cancer phenotype.
Collapse
Affiliation(s)
- Candace Miethe
- Texas State University, Family and Consumer Sciences, Nutrition, San Marcos, TX, USA
| | - Megan Zamora
- Texas State University, Family and Consumer Sciences, Nutrition, San Marcos, TX, USA
| | - Linda Torres
- Texas State University, Family and Consumer Sciences, Nutrition, San Marcos, TX, USA
| | - Kelsie G Raign
- Texas State University, Family and Consumer Sciences, Nutrition, San Marcos, TX, USA
| | - Curissa J Groll
- Texas State University, Family and Consumer Sciences, Nutrition, San Marcos, TX, USA
| | - Ramona S Price
- Texas State University, Family and Consumer Sciences, Nutrition, San Marcos, TX, USA.,Ramona Salcedo Price, 601 University Dr, San Marcos, TX 78666, USA, Phone: +512-245-6202
| |
Collapse
|
127
|
Liang S, Ma HY, Zhong Z, Dhar D, Liu X, Xu J, Koyama Y, Nishio T, Karin D, Karin G, Mccubbin R, Zhang C, Hu R, Yang G, Chen L, Ganguly S, Lan T, Karin M, Kisseleva T, Brenner DA. NADPH Oxidase 1 in Liver Macrophages Promotes Inflammation and Tumor Development in Mice. Gastroenterology 2019; 156:1156-1172.e6. [PMID: 30445007 PMCID: PMC6409207 DOI: 10.1053/j.gastro.2018.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although there are associations among oxidative stress, reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation, and hepatocellular carcinoma (HCC) development, it is not clear how NOX contributes to hepatocarcinogenesis. We studied the functions of different NOX proteins in mice after administration of a liver carcinogen. METHODS Fourteen-day-old Nox1-/- mice, Nox4-/- mice, Nox1-/-Nox4-/- (double-knockout) mice, and wild-type (WT) C57BL/6 mice were given a single intraperitoneal injection of diethylnitrosamine (DEN) and liver tumors were examined at 9 months. We also studied the effects of DEN in mice with disruption of Nox1 specifically in hepatocytes (Nox1ΔHep), hepatic stellate cells (Nox1ΔHep), or macrophages (Nox1ΔMac). Some mice were also given injections of the NOX1-specific inhibitor ML171. To study the acute effects of DEN, 8-12-week-old mice were given a single intraperitoneal injection, and liver and serum were collected at 72 hours. Liver tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and immunoblots. Hepatocytes and macrophages were isolated from WT and knockout mice and analyzed by immunoblots. RESULTS Nox4-/- mice and WT mice developed liver tumors within 9 months after administration of DEN, whereas Nox1-/- mice developed 80% fewer tumors, which were 50% smaller than those of WT mice. Nox1ΔHep and Nox1ΔHSC mice developed liver tumors of the same number and size as WT mice, whereas Nox1ΔMac developed fewer and smaller tumors, similar to Nox1-/- mice. After DEN injection, levels of tumor necrosis factor, interleukin 6 (IL6), and phosphorylated signal transducer and activator of transcription 3 were increased in livers from WT, but not Nox1-/- or Nox1ΔMac, mice. Conditioned medium from necrotic hepatocytes induced expression of NOX1 in cultured macrophages, followed by expression of tumor necrosis factor, IL6, and other inflammatory cytokines; this medium did not induce expression of IL6 or cytokines in Nox1ΔMac macrophages. WT mice given DEN followed by ML171 developed fewer and smaller liver tumors than mice given DEN followed by vehicle. CONCLUSIONS In mice given injections of a liver carcinogen (DEN), expression of NOX1 by macrophages promotes hepatic tumorigenesis by inducing the production of inflammatory cytokines. We propose that upon liver injury, damage-associated molecular patterns released from dying hepatocytes activate liver macrophages to produce cytokines that promote tumor development. Strategies to block NOX1 or these cytokines might be developed to slow hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsiao-Yen Ma
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhenyu Zhong
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Debanjan Dhar
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xiao Liu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jun Xu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yukinori Koyama
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Nishio
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniel Karin
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Karin
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Mccubbin
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cuili Zhang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,School of Public Health, Shandong University, Jinan, 250012, China
| | - Ronglin Hu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Chen
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Souradipta Ganguly
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California.
| | - David A. Brenner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.,Correspondence: To whom correspondence should be addressed. ;
| |
Collapse
|
128
|
Walker S, Wankell M, Ho V, White R, Deo N, Devine C, Dewdney B, Bhathal P, Govaere O, Roskams T, Qiao L, George J, Hebbard L. Targeting mTOR and Src restricts hepatocellular carcinoma growth in a novel murine liver cancer model. PLoS One 2019; 14:e0212860. [PMID: 30794695 PMCID: PMC6386388 DOI: 10.1371/journal.pone.0212860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Liver cancer is a poor prognosis cancer with limited treatment options. To develop a new therapeutic approach, we derived HCC cells from a known model of murine hepatocellular carcinoma (HCC). We treated adiponectin (APN) knock-out mice with the carcinogen diethylnitrosamine, and the resulting tumors were 7-fold larger than wild-type controls. Tumors were disassociated from both genotypes and their growth characteristics evaluated. A52 cells from APN KO mice had the most robust growth in vitro and in vivo, and presented with pathology similar to the parental tumor. All primary tumors and cell lines exhibited activity of the mammalian target of Rapamycin (mTOR) and Src pathways. Subsequent combinatorial treatment, with the mTOR inhibitor Rapamycin and the Src inhibitor Dasatinib reduced A52 HCC growth 29-fold in vivo. Through protein and histological analyzes we observed activation of these pathways in human HCC, suggesting that targeting both mTOR and Src may be a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Sarah Walker
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | - Vikki Ho
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Rose White
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Nikita Deo
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Carol Devine
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Brittany Dewdney
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | | | - Olivier Govaere
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Leuven, Belgium
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Leuven, Belgium
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Lionel Hebbard
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
- * E-mail:
| |
Collapse
|
129
|
Chen J, Wu Y, Li S, Wu H, Li L. [10-gingerol inhibits proliferation of hepatocellular carcinoma HepG2 cells via Src/STAT3 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1002-1007. [PMID: 30187878 DOI: 10.3969/j.issn.1673-4254.2018.08.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the inhibitory effect of 10-gingerol on the proliferation of hepatocellular carcinoma HepG2 cells and the role of Src/STAT3 signaling pathway in mediating the effect. METHODS SYBYL-X2.1 software was used to simulate the interaction between 10-gingerol and Src. HepG2 cells treated with 10-gingerol at 1, 3, 10 or μol/L for 24 h were assessed for cell viability using MTT assay, and EdU staining was used to detect the cell proliferation and calculate the number of positive cells. The expressions of p-Src and p-STAT3 were detected using Western blotting, and the mRNA expressions of the target genes of STAT3 (cyclin D1 and CMCC) were detected using qPCR. RESULTS 10-gingerol was capable of forming hydrogen bond with such Src residues as TRY-340, MET-341, MET-314, ASP-404, and ILE-336. MTT assay showed that 10-gingerol at 3 and 10 μmol/L significantly lowered the viability of HepG2 cells (P < 0.001). Treatment with 1, 3, and 10 μmol/L 10-gingerol significantly reduces the number of EdU-positive HepG 2 cells (P < 0.001). Western blotting showed that 10-gingerol at 3 and 10 μmol/L significantly decreased the phosphorylation levels of Src and STAT3 in HepG2 cells (P < 0.01). 10-gingerol at 1, 3, and 10 μmol/L significantly decreased the mRNA expressions of cyclin D1 and CMCC as shown by qPCR (P < 0.01). CONCLUSIONS 10-gingerol can dose-dependently inhibit the proliferation of HepG2 cells and suppress the activation of Src and STAT3.
Collapse
Affiliation(s)
- Jianxin Chen
- Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523059, China; Department of Basic Medical Sciences
| | - Yifen Wu
- Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523059, China; Department of Basic Medical Sciences
| | - Shuji Li
- Department of Health Management, Nanfang Hospital
| | - Hongyuan Wu
- Southern Medical University, Guangzhou 510515, China
| | - Libo Li
- Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan 523059, China; Department of Basic Medical Sciences
| |
Collapse
|
130
|
Abstract
Hepatocellular carcinoma (HCC) is associated with chronic inflammation and fibrosis arising from different etiologies, including hepatitis B and C and alcoholic and nonalcoholic fatty liver diseases. The inflammatory cytokines tumor necrosis factor-α and interleukin-6 and their downstream targets nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 drive inflammation-associated HCC. Further, while adaptive immunity promotes immune surveillance to eradicate early HCC, adaptive immune cells, such as CD8+ T cells, Th17 cells, and B cells, can also stimulate HCC development. Thus, the role of the hepatic immune system in HCC development is a highly complex topic. This review highlights the role of cytokine signals, NF-κB, JNK, innate and adaptive immunity, and hepatic stellate cells in HCC and discusses whether these pathways could be therapeutic targets. The authors will also discuss cholangiocarcinoma and liver metastasis because biliary inflammation and tumor-associated stroma are essential for cholangiocarcinoma development and because primary tumor-derived inflammatory mediators promote the formation of a "premetastasis niche" in the liver.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - So Yeon Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
131
|
Wei D, Shen B, Wang W, Zhou Y, Yang X, Lu G, Yang J, Shao Y. MicroRNA‑199a‑5p functions as a tumor suppressor in oral squamous cell carcinoma via targeting the IKKβ/NF‑κB signaling pathway. Int J Mol Med 2019; 43:1585-1596. [PMID: 30720059 PMCID: PMC6414152 DOI: 10.3892/ijmm.2019.4083] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to have a significant role in the progression of several types of cancer, including oral squamous cell carcinoma (OSCC). However, the biological function and regulatory mechanisms of miRNAs in OSCC remain to be fully elucidated. The aim of the present study was to investigate the role of miRNAs in OSCC and the relevant mechanism. Using a microarray, it was found that miRNA (miR)-199a-5p was one of the most downregulated miRNAs in OSCC tissues. A low expression of miR-199a-5p was closely associated with tumor differentiation, lymph node metastasis, tumor-node-metastasis stage, and overall survival rate. Functionally, the overexpression of miR-199a-5p suppressed cell proliferation, induced G0/G1 cell cycle arrest, and promoted the apoptosis of Tca8113 and SCC-4 cells. Subsequently, inhibitor of nuclear factor-κB (NF-κB) kinase β (IKKβ), an important regulator of NF-κB activation, was identified as a direct target of miR-199-5p. An inverse correlation was found between miR-199a-5p and IKKβ in tumor tissues. Further investigations revealed that the overexpression of IKKβ efficiently abrogated the influences caused by the overexpression of miR-199a-5p. It was also found that the miR-199a-5p-mediated anticancer effects were dependent on the inhibition of NF-κB activation. These findings indicate that miR-199a-5p functions as a tumor suppressor through regulation of the NF-κB pathway by targeting IKKβ in OSCC.
Collapse
Affiliation(s)
- Dongyi Wei
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Baohong Shen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Weixin Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yanjun Zhou
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaodong Yang
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Guangjian Lu
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jianbin Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yuebao Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
132
|
Jiao Y, Yang H, Qian J, Gong Y, Liu H, Wu S, Cao L, Tang L. miR‑3664‑5P suppresses the proliferation and metastasis of gastric cancer by attenuating the NF‑κB signaling pathway through targeting MTDH. Int J Oncol 2019; 54:845-858. [PMID: 30628643 PMCID: PMC6365029 DOI: 10.3892/ijo.2019.4680] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and fatal types of cancers worldwide and the specific mechanism has not been completely elucidated. microRNA (miR)‑3664‑5P has rarely been studied and the aim of the present study was to assess an association between miR‑3664‑5P and GC. Differences in miR‑3664‑5P expression in 100 GC (0.1846±0.08276) and paired normal tissues (0.4382±0.1595) were detected using reverse transcription‑quantitative polymerase chain reaction assays (P<0.001). 5‑Ethynyl‑2‑deoxyuridine, Cell Counting Kit‑8, transwell and flow cytometry assays were performed in vitro and the results were further verified using a mouse xenotransplantation and a lung metastasis model in vivo. miR‑3664‑5P was significantly downregulated in GC tissues when compared with normal tissues and positively associated with the prognosis of patients with GC (P<0.001). Overexpression of miR‑3664‑5P suppressed and miR‑3664‑5P knockdown promoted the proliferation and metastasis of GC cells in vitro and in vivo. Following the application of bioinformatic algorithms and luciferase reporter assays, metadherin (MTDH) was confirmed as the target gene of miR‑3664‑5P. miR‑3664‑5P reduced MTDH expression and downregulated the nuclear factor (NF)‑κB signaling pathway. Rescue experiments demonstrated that suppression of MTDH restored the effect of miR‑3664‑5P inhibitors on GC cell lines. The results suggested that miR‑3664‑5P suppressed the proliferation and metastasis of GC cells by attenuating the NF‑κB signaling pathway via MTDH targeting. Consequently, miR‑3664‑5P may have potential to be an independent prognostic factor and biomarker in GC.
Collapse
Affiliation(s)
- Yuwen Jiao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yu Gong
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Hanyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Siyuan Wu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liang Cao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
133
|
Zhu PL, Fu XQ, Li JK, Tse AKW, Guo H, Yin CL, Chou JY, Wang YP, Liu YX, Chen YJ, Hossen MJ, Zhang Y, Pan SY, Zhao ZJ, Yu ZL. Antrodia camphorata Mycelia Exert Anti-liver Cancer Effects and Inhibit STAT3 Signaling in vitro and in vivo. Front Pharmacol 2018; 9:1449. [PMID: 30618745 PMCID: PMC6304454 DOI: 10.3389/fphar.2018.01449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the major form of primary liver cancer, is a common cause of cancer-related death worldwide. Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in HCC and has been proposed as a chemotherapeutic target for HCC. Antrodia camphorata (AC), a medicinal mushroom unique to Taiwan, is traditionally used for treating HCC. Whereas natural AC is scarce, cultured AC mycelia are becoming alternatives. In this study, we investigated the anti-HCC effects of the ethyl acetate fraction of an ethanolic extract of AC mycelia (EEAC), particularly exploring the involvement of STAT3 signaling in these effects. We found that EEAC reduced cell viability, induced apoptosis, and retarded migration and invasion in cultured HepG2 and SMMC-7721 cells. Immunoblotting results showed that EEAC downregulated protein levels of phosphorylated and total STAT3 and JAK2 (an upstream kinase of STAT3) in HCC cells. Real-time PCR analyses showed that STAT3, but not JAK2, mRNA levels were decreased by EEAC. EEAC also lowered the protein level of nuclear STAT3, decreased the transcriptional activity of STAT3, and downregulated protein levels of STAT3-targeted molecules, including anti-apoptotic proteins Bcl-xL and Bcl-2, and invasion-related proteins MMP-2 and MMP-9. Over-activation of STAT3 in HCC cells diminished the cytotoxic effects of EEAC. In SMMC-7721 cell-bearing mice, EEAC (100 mg/kg, i.g. for 18 days) significantly inhibited tumor growth. Consistent with our in vitro data, EEAC induced apoptosis and suppressed JAK2/STAT3 activation/phosphorylation in the tumors. Taken together, EEAC exerts anti-HCC effects both in vitro and in vivo; and inhibition of STAT3 signaling is, at least in part, responsible for these effects. We did not observe significant toxicity of EEAC in normal human liver-derived cells, nude mice and rats. Our results provide a pharmacological basis for developing EEAC as a safe and effective agent for HCC management.
Collapse
Affiliation(s)
- Pei-Li Zhu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun-Kui Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui Guo
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ya-Ping Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Yu-Xi Liu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Muhammad Jahangir Hossen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yi Zhang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Si-Yuan Pan
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zong-Jie Zhao
- Shenzhen Union Assets Biological Technology Co., Ltd., Shenzhen, China
| | - Zhi-Ling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| |
Collapse
|
134
|
Ding HR, Wang JL, Ren HZ, Shi XL. Lipometabolism and Glycometabolism in Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1287127. [PMID: 31205932 PMCID: PMC6530156 DOI: 10.1155/2018/1287127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
The liver is the main metabolic organ in the body especially in lipometabolism and glycometabolism. Carbohydrates and fats disorders can result in insulin resistance in the liver. Metabolic imbalance can even lead to life-threatening conditions. Therefore, it is essential to maintain the normal metabolic function of the liver. When the liver is in a pathological state, liver metabolism homeostasis is damaged, and metabolic disorders will further aggravate liver disease. Consequently, it is essential to determine the relationship between liver diseases and metabolic disorders. Here we review a lot of evidence that liver diseases are closely related to lipometabolism and glycometabolism. Although the disorder of the liver metabolism is caused by different liver diseases, the break of metabolic balance is determined by changes in the state of the liver. We discuss the relationship between liver disease and metabolic changes, outline the process of how metabolic changes are regulated by liver diseases, and describe the role which metabolic changes play in the process and prognosis of liver disease.
Collapse
Affiliation(s)
- Hao-ran Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing-lin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
135
|
Robertson CL, Mendoza RG, Jariwala N, Dozmorov M, Mukhopadhyay ND, Subler MA, Windle JJ, Lai Z, Fisher PB, Ghosh S, Sarkar D. Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Res 2018; 78:6436-6446. [PMID: 30181179 PMCID: PMC6239947 DOI: 10.1158/0008-5472.can-18-0659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023]
Abstract
Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
136
|
Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol 2018; 15:699-714. [PMID: 30323319 DOI: 10.1038/s41575-018-0069-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing recognition of an association between obesity and many cancer types exists, but how the myriad of local and systemic effects of obesity affect key cellular and non-cellular processes within the tumour microenvironment (TME) relevant to carcinogenesis, tumour progression and response to therapies remains poorly understood. The TME is a complex cellular environment in which the tumour exists along with blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, signalling molecules and the extracellular matrix. Obesity, in particular visceral obesity, might fuel the dysregulation of key pathways relevant to both the adipose microenvironment and the TME, which interact to promote carcinogenesis in at-risk epithelium. The tumour-promoting effects of obesity can occur at the local level as well as systemically via circulating inflammatory, growth factor and metabolic mediators associated with adipose tissue inflammation, as well as paracrine and autocrine effects. This Review explores key pathways linking visceral obesity and gastrointestinal cancer, including inflammation, hypoxia, altered stromal and immune cell function, energy metabolism and angiogenesis.
Collapse
|
137
|
Interleukin-1α as an intracellular alarmin in cancer biology. Semin Immunol 2018; 38:3-14. [PMID: 30554608 DOI: 10.1016/j.smim.2018.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
|
138
|
Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell 2018; 175:1289-1306.e20. [PMID: 30454647 PMCID: PMC6242467 DOI: 10.1016/j.cell.2018.09.053] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC. Obesity promotes hepatic STAT-1 and STAT-3 signaling Obesity promotes STAT-1-dependent T cell-infiltration, NASH, and fibrosis Obesity promotes NASH-independent STAT-3-dependent HCC
Collapse
|
139
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
140
|
Ding WZ, Han GY, Jin HH, Zhan CF, Ji Y, Huang XL. Anti-IL-20 monoclonal antibody suppresses hepatocellular carcinoma progression. Oncol Lett 2018; 16:6156-6162. [PMID: 30333881 DOI: 10.3892/ol.2018.9402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 08/30/2018] [Indexed: 02/05/2023] Open
Abstract
Interleukin (IL)-20 is a member of the IL-10 family of cytokines, which has been reported to participate in autoimmune inflammatory diseases. However, the potential role of IL-20 in hepatocellular carcinoma (HCC) progression has not yet been investigated. In the present study, it was observed that IL-20 mRNA and protein levels were markedly increased in the HCC tissues examined via reverse transcription-quantitative polymerase chain reaction and immunohistochemical staining. In addition, IL-20 expression was significantly associated with tumor size, metastasis, TNM stage and poor prognosis in patients with HCC. Mouse recombinant IL-20 (mIL-20) enhanced liver cancer cell proliferation, migration and invasion in vitro, while the anti-IL-20 monoclonal antibody (mAb) attenuated the effect of mIL-20, inhibiting cancer cell migration and invasion in vitro and suppressing cell growth in vitro and in vivo. This was detected by Cell Counting Kit-8, colony formation, Transwell assays and a xenograft tumor nude mouse model. Western blotting revealed that IL-20 promoted HCC progression through inducing transforming growth factor-β and matrix metalloproteinase 9 expression and enhancing the phosphorylation of Jun N-terminal kinase and signal transducer and activator of transcription 3. The results of the present study indicated that IL-20 promotes HCC development. In addition, anti-IL-20 mAb may attenuate the effect of IL-20 and suppress liver tumorigenesis in vitro and in vivo, indicating that anti-IL-20 mAbs may potentially serve as effective therapeutic agents for HCC.
Collapse
Affiliation(s)
- Wen-Zhou Ding
- Department of Hepatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Guo-Yong Han
- Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui-Han Jin
- Department of Hepatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Chuan-Fei Zhan
- Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan Ji
- Department of Hepatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xin-Li Huang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
141
|
Mittenbühler MJ, Sprenger HG, Gruber S, Wunderlich CM, Kern L, Brüning JC, Wunderlich FT. Hepatic leptin receptor expression can partially compensate for IL-6Rα deficiency in DEN-induced hepatocellular carcinoma. Mol Metab 2018; 17:122-133. [PMID: 30224299 PMCID: PMC6197506 DOI: 10.1016/j.molmet.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Objective The current obesity pandemic represents a major health burden, given that it predisposes to the development of numerous obesity-associated disorders. The obesity-derived adipokines not only impair systemic insulin action but also increase the incidence of hepatocellular carcinoma (HCC), a highly prevalent cancer with poor prognosis. Thus, worldwide incidences of HCC are expected to further increase, and defining the molecular as well as cellular mechanisms will allow for establishing new potential treatment options. The adipose tissue of obese individuals increases circulating leptin and interleukin-6 (IL-6) levels, which both share similar signaling capacities such as Signal Transducer and Activator of Transcription 3 (STAT3) and Phosphoinositide 3-kinase (PI3K)/Akt activation. While mouse models with deficient IL-6 signaling show an ameliorated but not absent Diethylnitrosamine (DEN)-induced HCC development, the morbid obesity in mice with mutant leptin signaling complicates the dissection of hepatic leptin receptor (LEPR) and IL-6 signaling in HCC development. Here we have investigated the function of compensating hepatic LEPR expression in HCC development of IL-6Rα-deficient mice. Methods We generated and characterized a mouse model of hepatic LEPR deficiency that was intercrossed with IL-6Rα-deficient mice. Cohorts of single and double knockout mice were subjected to the DEN-HCC model to ascertain liver cancer development and characterize metabolic alterations. Results We demonstrate that both high-fat diet (HFD)-induced obesity and IL-6Rα deficiency induce hepatic Lepr expression. Consistently, double knockout mice show a further reduction in tumor burden in DEN-induced HCC when compared to control and single LepRL−KO/IL-6Rα knock out mice, whereas metabolism remained largely unaltered between the genotypes. Conclusions Our findings reveal a compensatory role for hepatic LEPR in HCC development of IL-6Rα-deficient mice and suggest hepatocyte-specific leptin signaling as promoter of HCC under obese conditions. High fat diet feeding induces LEPR expression in hepatocytes. IL-6Rα deficiency induces LEPR expression in hepatocytes. Hepatic LEPR deficiency fails to affect body composition and metabolism. Hepatic LEPR deficiency ameliorates HCC burden in IL-6Rα-deficient mice.
Collapse
Affiliation(s)
- Melanie J Mittenbühler
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Hans-Georg Sprenger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany; Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Sabine Gruber
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Lara Kern
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany.
| |
Collapse
|
142
|
Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma. Proc Natl Acad Sci U S A 2018; 115:9282-9287. [PMID: 30150405 DOI: 10.1073/pnas.1807155115] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.
Collapse
|
143
|
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets. J Leukoc Biol 2018; 104:987-1002. [DOI: 10.1002/jlb.ma1217-499rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
|
144
|
D'Amico S, Shi J, Martin BL, Crawford HC, Petrenko O, Reich NC. STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis. Genes Dev 2018; 32:1175-1187. [PMID: 30135074 PMCID: PMC6120712 DOI: 10.1101/gad.311852.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 01/02/2023]
Abstract
A dichotomy exists regarding the role of signal transducer and activator of transcription 3 (STAT3) in cancer. Functional and genetic studies demonstrate either an intrinsic requirement for STAT3 or a suppressive effect on common types of cancer. These contrasting actions of STAT3 imply context dependency. To examine mechanisms that underlie STAT3 function in cancer, we evaluated the impact of STAT3 activity in KRAS-driven lung and pancreatic cancer. Our study defines a fundamental and previously unrecognized function of STAT3 in the maintenance of epithelial cell identity and differentiation. Loss of STAT3 preferentially associates with the acquisition of mesenchymal-like phenotypes and more aggressive tumor behavior. In contrast, persistent STAT3 activation through Tyr705 phosphorylation confers a differentiated epithelial morphology that impacts tumorigenic potential. Our results imply a mechanism in which quantitative differences of STAT3 Tyr705 phosphorylation, as compared with other activation modes, direct discrete outcomes in tumor progression.
Collapse
Affiliation(s)
- Stephen D'Amico
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan 48109, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Oleksi Petrenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
145
|
Fujiwara N, Nakagawa H, Enooku K, Kudo Y, Hayata Y, Nakatsuka T, Tanaka Y, Tateishi R, Hikiba Y, Misumi K, Tanaka M, Hayashi A, Shibahara J, Fukayama M, Arita J, Hasegawa K, Hirschfield H, Hoshida Y, Hirata Y, Otsuka M, Tateishi K, Koike K. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity. Gut 2018; 67:1493-1504. [PMID: 29437870 PMCID: PMC6039238 DOI: 10.1136/gutjnl-2017-315193] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Metabolic reprogramming of tumour cells that allows for adaptation to their local environment is a hallmark of cancer. Interestingly, obesity-driven and non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) mouse models commonly exhibit strong steatosis in tumour cells as seen in human steatohepatitic HCC (SH-HCC), which may reflect a characteristic metabolic alteration. DESIGN Non-tumour and HCC tissues obtained from diethylnitrosamine-injected mice fed either a normal or a high-fat diet (HFD) were subjected to comprehensive metabolome analysis, and the significance of obesity-mediated metabolic alteration in hepatocarcinogenesis was evaluated. RESULTS The extensive accumulation of acylcarnitine species was seen in HCC tissues and in the serum of HFD-fed mice. A similar increase was found in the serum of patients with NASH-HCC. The accumulation of acylcarnitine could be attributed to the downregulation of carnitine palmitoyltransferase 2 (CPT2), which was also seen in human SH-HCC. CPT2 downregulation induced the suppression of fatty acid β-oxidation, which would account for the steatotic changes in HCC. CPT2 knockdown in HCC cells resulted in their resistance to lipotoxicity by inhibiting the Src-mediated JNK activation. Additionally, oleoylcarnitine enhanced sphere formation by HCC cells via STAT3 activation, suggesting that acylcarnitine accumulation was a surrogate marker of CPT2 downregulation and directly contributed to hepatocarcinogenesis. HFD feeding and carnitine supplementation synergistically enhanced HCC development accompanied by acylcarnitine accumulation in vivo. CONCLUSION In obesity-driven and NASH-driven HCC, metabolic reprogramming mediated by the downregulation of CPT2 enables HCC cells to escape lipotoxicity and promotes hepatocarcinogenesis.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655,Corresponding Author: Hayato Nakagawa, Department of Gastroenterology, The University of Tokyo, 7-3-1, Bunkyo-ku Hongo, Tokyo, 113-8655, , Tel: +81-3-3815-5411; Fax: +81-3-3814-0021
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655,Corresponding Author: Hayato Nakagawa, Department of Gastroenterology, The University of Tokyo, 7-3-1, Bunkyo-ku Hongo, Tokyo, 113-8655, , Tel: +81-3-3815-5411; Fax: +81-3-3814-0021
| | - Kenichiro Enooku
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yotaro Kudo
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Takuma Nakatsuka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yasuo Tanaka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Ryosuke Tateishi
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yohko Hikiba
- Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation 2-2-6 Nihonbashibakurocho, Chuo-ku, Tokyo 103-0002
| | - Kento Misumi
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Mariko Tanaka
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Akimasa Hayashi
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Junji Shibahara
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Masashi Fukayama
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Hadassa Hirschfield
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences. Icahn School of Medicine at Mount Sinai, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences. Icahn School of Medicine at Mount Sinai, USA
| | - Yoshihiro Hirata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Motoyuki Otsuka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Keisuke Tateishi
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| |
Collapse
|
146
|
Wu Y, Shan B, Dai J, Xia Z, Cai J, Chen T, Lv S, Feng Y, Zheng L, Wang Y, Liu J, Fang J, Xie D, Rui L, Liu J, Liu Y. Dual role for inositol-requiring enzyme 1α in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice. Hepatology 2018; 68:533-546. [PMID: 29506314 DOI: 10.1002/hep.29871] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/18/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
UNLABELLED Obesity is associated with both endoplasmic reticulum (ER) stress and chronic metabolic inflammation. ER stress activates the unfolded protein response (UPR) and has been implicated in a variety of cancers, including hepatocellular carcinoma (HCC). It is unclear whether individual UPR pathways are mechanistically linked to HCC development, however. Here we report a dual role for inositol-requiring enzyme 1α (IRE1α), the ER-localized UPR signal transducer, in obesity-promoted HCC development. We found that genetic ablation of IRE1α in hepatocytes not only markedly reduced the occurrence of diethylnitrosamine (DEN)-induced HCC in liver-specific IRE1α knockout (LKO) mice when fed a normal chow (NC) diet, but also protected against the acceleration of HCC progression during high-fat diet (HFD) feeding. Irrespective of their adiposity states, LKO mice showed decreased hepatocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation, even in the face of increased hepatic apoptosis. Furthermore, IRE1α abrogation blunted obesity-associated activation of hepatic inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway, leading to reduced production of the tumor-promoting inflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). Importantly, higher IRE1α expression along with elevated STAT3 phosphorylation was also observed in the tumor tissues from human HCC patients, correlating with their poorer survival rate. CONCLUSION IRE1α acts in a feed-forward loop during obesity-induced metabolic inflammation to promote HCC development through STAT3-mediated hepatocyte proliferation. (Hepatology 2018).
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Bo Shan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Jianli Dai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Zhixiong Xia
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Tianwei Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Songya Lv
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yuxiong Feng
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Fang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Dong Xie
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai, China
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, the University of Michigan Medical School, Ann Arbor, MI
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, China
| |
Collapse
|
147
|
Liu JJ, Li Y, Chen WS, Liang Y, Wang G, Zong M, Kaneko K, Xu R, Karin M, Feng GS. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol 2018; 69:79-88. [PMID: 29505847 PMCID: PMC6008184 DOI: 10.1016/j.jhep.2018.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Shp2 is an SH2-tyrosine phosphatase acting downstream of receptor tyrosine kinases (RTKs). Most recent data demonstrated a liver tumor-suppressing role for Shp2, as ablating Shp2 in hepatocytes aggravated hepatocellular carcinoma (HCC) induced by chemical carcinogens or Pten loss. We further investigated the effect of Shp2 deficiency on liver tumorigenesis driven by classical oncoproteins c-Met (receptor for HGF), β-catenin and PIK3CA. METHODS We performed hydrodynamic tail vein injection of two pairs of plasmids expressing c-Met and ΔN90-β-catenin (MET/CAT), or c-Met and PIK3CAH1047R (MET/PIK), into WT and Shp2hep-/- mice. We compared liver tumor loads and investigated the pathogenesis and molecular mechanisms involved using multidisciplinary approaches. RESULTS Despite the induction of oxidative and metabolic stresses, Shp2 deletion in hepatocytes suppressed hepatocarcinogenesis driven by overexpression of oncoproteins MET/CAT or MET/PIK. Shp2 loss inhibited proliferative signaling from c-Met, Wnt/β-catenin, Ras/Erk and PI3K/Akt pathways, but triggered cell senescence following exogenous expression of the oncogenes. CONCLUSIONS Shp2, acting downstream of RTKs, is positively required for hepatocyte-intrinsic tumorigenic signaling from these oncoproteins, even if Shp2 deficiency induces a tumor-promoting hepatic microenvironment. These data suggest a new and more effective therapeutic strategy for HCCs driven by oncogenic RTKs and other upstream molecules, by inhibiting Shp2 and also suppressing any tumor-enhancing stromal factors produced because of Shp2 inhibition. LAY SUMMARY Primary liver cancer is a malignant disease with poor prognosis, largely because there are limited systemic therapies available. We show here that a cytoplasmic tyrosine phosphatase Shp2 is required for liver tumorigenesis. This tumorigenesis is driven by two oncoproteins that are implicated in human liver cancer. This, together with our previous studies, uncovers the complexity of liver tumorigenesis, by elucidating the pro- and anti-tumor effects of Shp2 in mouse models. This data can be used to guide new therapies.
Collapse
Affiliation(s)
- Jacey J. Liu
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yanjie Li
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA,Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wendy S. Chen
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yan Liang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Min Zong
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kota Kaneko
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, 3rd affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
148
|
Differential Sensitivity of Human Hepatocellular Carcinoma Xenografts to an IGF-II Neutralizing Antibody May Involve Activated STAT3. Transl Oncol 2018; 11:971-978. [PMID: 29933129 PMCID: PMC6020079 DOI: 10.1016/j.tranon.2018.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is highly refractory to current therapeutics used in the clinic. DX-2647, a recombinant human antibody, potently neutralizes the action of insulin-like growth factor-II (IGF-II), a ligand for three cell-surface receptors (IGF-IR, insulin receptor A and B isoforms, and the cation-independent mannose-6-phosphate receptor) which is overexpressed in primary human HCC. DX-2647 impaired the growth of tumor xenografts of the HCC cell line, Hep3B; however, xenografts of the HCC cell line, HepG2, were largely unresponsive to DX-2647 treatment. Analysis of a number of aspects of the IGF signaling axis in both cell lines did not reveal any significant differences between the two. However, while DX-2647 abolished phospho (p)-IGF-IR, p-IR and p-AKT signaling in both cell lines, HepG2 showed high levels of p-STAT3, which was unaffected by DX-2647 treatment and was absent from the Hep3B cell line. The driver of p-STAT3 was found to be a secreted cytokine, and treatment of HepG2 cells with a pan- JAK kinase inhibitor resulted in a loss of p-STAT3. These findings implicate the activation of STAT3 as one pathway that may mediate resistance to IGF-II-targeted therapy in HCC.
Collapse
|
149
|
Lee J, Liao R, Wang G, Yang BH, Luo X, Varki NM, Qiu SJ, Ren B, Fu W, Feng GS. Preventive Inhibition of Liver Tumorigenesis by Systemic Activation of Innate Immune Functions. Cell Rep 2018; 21:1870-1882. [PMID: 29141219 DOI: 10.1016/j.celrep.2017.10.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Liver cancer has become the second most deadly malignant disease, with no efficient targeted or immune therapeutic agents available yet. While dissecting the roles of cytoplasmic signaling molecules in hepatocarcinogenesis using an inducible mouse gene targeting system, Mx1-cre, we identified a potent liver tumor-inhibitory effect of synthetic double-stranded RNA (dsRNA), polyinosinic-polycytidylic acid (pIC), an inducer of the Mx1-cre system. Injection of pIC at the pre-cancer stage robustly suppressed liver tumorigenesis either induced by chemical carcinogens or by Pten loss and associated hepatosteatosis. The immunostimulatory dsRNA inhibited liver cancer initiation, apparently by boosting multiple anti-tumor activities of innate immunity, including induction of immunoregulatory cytokines, activation of NK cells and dendritic cells, and reprogramming of macrophage polarization. This study paves the way for the development of preventive and early interfering strategies for liver cancer to reduce the rapidly increasing incidences of liver cancer in an ever-growing population with chronic liver disorders.
Collapse
Affiliation(s)
- Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liao
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gaowei Wang
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bi-Huei Yang
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Xiaolin Luo
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Ren
- Ludwig Cancer Research Institute, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics and Institute for Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA 92093-0983, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
150
|
Dhar D, Antonucci L, Nakagawa H, Kim JY, Glitzner E, Caruso S, Shalapour S, Yang L, Valasek MA, Lee S, Minnich K, Seki E, Tuckermann J, Sibilia M, Zucman-Rossi J, Karin M. Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell 2018; 33:1061-1077.e6. [PMID: 29894692 PMCID: PMC6005359 DOI: 10.1016/j.ccell.2018.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
How fully differentiated cells that experience carcinogenic insults become proliferative cancer progenitors that acquire multiple initiating mutations is not clear. This question is of particular relevance to hepatocellular carcinoma (HCC), which arises from differentiated hepatocytes. Here we show that one solution to this problem is provided by CD44, a hyaluronic acid receptor whose expression is rapidly induced in carcinogen-exposed hepatocytes in a STAT3-dependent manner. Once expressed, CD44 potentiates AKT activation to induce the phosphorylation and nuclear translocation of Mdm2, which terminates the p53 genomic surveillance response. This allows DNA-damaged hepatocytes to escape p53-induced death and senescence and respond to proliferative signals that promote fixation of mutations and their transmission to daughter cells that go on to become HCC progenitors.
Collapse
Affiliation(s)
- Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Hayato Nakagawa
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Gastroenterology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Stefano Caruso
- Inserm UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75010 Paris, France
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Ling Yang
- Department of Medicine, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark A Valasek
- Department of Pathology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Sooyeon Lee
- Institute for Comparative Molecular Endocrinology (CME), University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kerstin Minnich
- Leibniz Institute of Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ekihiro Seki
- Department of Medicine, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Medicine, Cedars-Sinai, 8700 Beverly Boulevard, Davis Building, Los Angeles, CA 90048, USA
| | - Jan Tuckermann
- Institute for Comparative Molecular Endocrinology (CME), University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany; Leibniz Institute of Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75010 Paris, France
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Pathology, University of California San Diego, School of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA; Moores Cancer Center, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0723, USA.
| |
Collapse
|