101
|
Worrell JC, Leslie J, Smith GR, Zaki MYW, Paish HL, Knox A, James ML, Cartwright TN, O'Reilly S, Kania G, Distler O, Distler JHW, Herrick AL, Jeziorska M, Borthwick LA, Fisher AJ, Mann J, Mann DA, Oakley F. cRel expression regulates distinct transcriptional and functional profiles driving fibroblast matrix production in systemic sclerosis. Rheumatology (Oxford) 2021; 59:3939-3951. [PMID: 32725139 DOI: 10.1093/rheumatology/keaa272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.
Collapse
Affiliation(s)
- Julie C Worrell
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Biochemistry Department, Faculty of Pharmacy, Minia University, Egypt
| | - Hannah L Paish
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Michelle L James
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Tyrell N Cartwright
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Steven O'Reilly
- Department of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester
| | - Maria Jeziorska
- Division of Cardiovascular Sciences, University of Manchester, Manchester
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Andrew J Fisher
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Institute of Transplantation, The Freeman Hospital, High Heaton, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| |
Collapse
|
102
|
Fischer KC, Daunt CP, Tremblay CS, Dias S, Vince JE, Jabbour AM. Deletion of IKK2 in haematopoietic cells of adult mice leads to elevated interleukin-6, neutrophilia and fatal gastrointestinal inflammation. Cell Death Dis 2021; 12:28. [PMID: 33414459 PMCID: PMC7791118 DOI: 10.1038/s41419-020-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
The IκB kinase complex, consisting of IKK1, IKK2 and the regulatory subunit NEMO, is required for NF-κB signalling following the activation of several cell surface receptors, such as members of the Tumour Necrosis Factor Receptor superfamily and the Interleukin-1 Receptor. This is critical for haematopoietic cell proliferation, differentiation, survival and immune responses. To determine the role of IKK in the regulation of haematopoiesis, we used the Rosa26Cre-ERT2 Cre/lox recombination system to achieve targeted, haematopoietic cell-restricted deletion of the genes for IKK1 or IKK2 in vivo. We found that the IKK complex plays a critical role in haematopoietic cell development and function. Deletion of IKK2, but not loss of IKK1, in haematopoietic cells led to an expansion of CD11b/Gr-1-positive myeloid cells (neutrophilia), severe anaemia and thrombocytosis, with reduced numbers of long-term haematopoietic stem cells (LT-HSCs), short-term haematopoietic stem cells (ST-HSCs) and multipotential progenitor cells (MPPs), increased circulating interleukin-6 (IL-6) and severe gastrointestinal inflammation. These findings identify distinct functions for the two IKK catalytic subunits, IKK1 and IKK2, in the haematopoietic system.
Collapse
Affiliation(s)
- Karla C. Fischer
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia ,grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, Melbourne, VIC Australia
| | - Carmel P. Daunt
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, Melbourne, VIC Australia
| | - Cédric S. Tremblay
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, Melbourne, VIC Australia
| | - Sheila Dias
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - James E. Vince
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Anissa M. Jabbour
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, Melbourne, VIC Australia
| |
Collapse
|
103
|
Blood Leukocyte Signaling Pathways as Predictors of Severity of Acute Pancreatitis. Pancreas 2021; 50:710-718. [PMID: 34016897 PMCID: PMC8195735 DOI: 10.1097/mpa.0000000000001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Clinical practice lacks biomarkers to predict the severity of acute pancreatitis (AP). We studied if intracellular signaling of circulating leukocytes could predict persistent organ dysfunction (OD) and secondary infections in AP. METHODS A venous blood sample was taken from 174 patients with AP 72 hours or less from onset of symptoms and 31 healthy controls. Phosphorylation levels (p) of appropriately stimulated signal transducer and activator of transcription 1 (STAT1), STAT6, nuclear factor-κB (NF-κB), Akt, and nonstimulated STAT3 in monocytes, neutrophils, and lymphocytes was measured using phosphospecific flow cytometry. RESULTS The patients showed higher pSTAT3 and lower pSTAT1, pSTAT6, pNF-κB, and pAkt than healthy controls. pSTAT3 in all leukocyte subtypes studied increased, and pSTAT1 in monocytes and T cells decreased in an AP severity-wise manner. In patients without OD at sampling, high pSTAT3 in monocytes and T lymphocytes were associated with development of persistent OD. In patients with OD, low interleukin-4-stimulated pSTAT6 in monocytes and neutrophils and Escherichia coli-stimulated pNF-κB in neutrophils predicted OD persistence. High pSTAT3 in monocytes, CD8+ T cells, and neutrophils; low pSTAT1 in monocytes and T cells; and low pNF-κB in lymphocytes predicted secondary infections. CONCLUSIONS Leukocyte STAT3, STAT1, STAT6, and NF-κΒ phosphorylations are potential predictors of AP severity.
Collapse
|
104
|
Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front Immunol 2020; 11:613170. [PMID: 33391283 PMCID: PMC7775495 DOI: 10.3389/fimmu.2020.613170] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Collapse
Affiliation(s)
| | | | - Murray C. H. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
105
|
Hosoya T, Shukla NM, Fujita Y, Yao S, Lao FS, Baba H, Yasuda S, Cottam HB, Carson DA, Hayashi T, Corr M. Identification of Compounds With Glucocorticoid Sparing Effects on Suppression of Chemokine and Cytokine Production by Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Front Pharmacol 2020; 11:607713. [PMID: 33390996 PMCID: PMC7773657 DOI: 10.3389/fphar.2020.607713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years target based drug discovery has expanded our therapeutic armamentarium in the treatment of inflammatory and autoimmune diseases. Despite these advances and adverse effects, glucocorticoids remain reliable agents that are used in many of these diseases. The anti-inflammatory mechanisms of glucocorticoids include the suppression of transcription factor activity like nuclear factor kappa B (NF-κB). By reanalyzing data from two prior high throughput screens (HTS) that utilized a NF-κB reporter construct in THP-1 cells, we identified 1824 small molecule synthetic compounds that demonstrated NF-κB suppressive activities similar to the glucocorticoids included in the original >134,000 compound libraries. These 1824 compounds were then rescreened for attenuating NF-κB activity at 5 and 16 h after LPS stimuli in the NF-κB THP-1 reporter cells. After a “Top X” selection approach 122 hit compounds were further tested for toxicity and suppression of LPS induced CXCL8 release in THP-1 cells. Excluding cytotoxic compounds, the remaining active compounds were grouped into chemotype families using Tanimoto based clustering. Promising representatives from clustered chemotype groups were commercially purchased for further testing. Amongst these index compounds a lead chemotype: 1H-pyrazolo [3,4 d] pyrimidin-4-amine, effectively suppressed CXCL8, and TNF production by THP-1 cells when stimulated with LPS, TNF or IL-1ß. Extending these studies to primary cells, these lead compounds also reduced IL-6 and CXCL8 production by TNF stimulated fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. Importantly a lead 1H-pyrazolo [3,4 d] pyrimidin-4-amine compound demonstrated synergistic effects with dexamethasone when co-administered to TNF stimulated THP-1 cells and RA FLS in suppressing chemokine production. In summary, a cell based HTS approach identified lead compounds that reduced NF-κB activity and chemokine secretion induced by potent immunologic stimuli, and one lead compound that acted synergistically with dexamethasone as an anti-inflammatory agent showing a dose-sparing effect.
Collapse
Affiliation(s)
- Tadashi Hosoya
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States.,Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nikunj M Shukla
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Yuya Fujita
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Fitzgerald S Lao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hiroyuki Baba
- Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
106
|
Dysregulated Immune Responses by ASK1 Deficiency Alter Epithelial Progenitor Cell Fate and Accelerate Metaplasia Development during H. pylori Infection. Microorganisms 2020; 8:microorganisms8121995. [PMID: 33542169 PMCID: PMC7765114 DOI: 10.3390/microorganisms8121995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
The mechanism of H. pylori-induced atrophy and metaplasia has not been fully understood. Here, we demonstrate the novel role of Apoptosis signal-regulating kinase 1 (ASK1) and downstream MAPKs as a regulator of host immune responses and epithelial maintenance against H. pylori infection. ASK1 gene deficiency resulted in enhanced inflammation with numerous inflammatory cells including Gr-1+CD11b+ myeloid-derived suppressor cells (MDSCs) recruited into the infected stomach. Increase of IL-1β release from apoptotic macrophages and enhancement of TH1-polarized immune responses caused STAT1 and NF-κB activation in epithelial cells in ASK1 knockout mice. Dysregulated immune and epithelial activation in ASK1 knockout mice led to dramatic expansion of gastric progenitor cells and massive metaplasia development. Bone marrow transplantation experiments revealed that ASK1 in inflammatory cells is critical for inducing immune disorder and metaplastic changes in epithelium, while ASK1 in epithelial cells regulates cell proliferation in stem/progenitor zone without changes in inflammation and differentiation. These results suggest that H. pylori-induced immune cells may regulate epithelial homeostasis and cell fate as an inflammatory niche via ASK1 signaling.
Collapse
|
107
|
Jacob EM, Borah A, Pillai SC, Kumar DS. Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the Modern Tool for Pharmacotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2460. [PMID: 33316984 PMCID: PMC7764399 DOI: 10.3390/nano10122460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
The human intestine, which harbors trillions of symbiotic microorganisms, may enter into dysbiosis when exposed to a genetic defect or environmental stress. The naissance of chronic inflammation due to the battle of the immune system with the trespassing gut bacteria leads to the rise of inflammatory bowel disease (IBD). Though the genes behind the scenes and their link to the disease are still unclear, the onset of IBD occurs in young adults and has expanded from the Western world into the newly industrialized countries. Conventional drug deliveries depend on a daily heavy dosage of immune suppressants or anti-inflammatory drugs targeted for the treatment of two types of IBD, ulcerative colitis (UC) and Crohn's disease (CD), which are often associated with systemic side effects and adverse toxicities. Advances in oral delivery through nanotechnology seek remedies to overcome the drawbacks of these conventional drug delivery systems through improved drug encapsulation and targeted delivery. In this review, we discuss the association of genetic factors, the immune system, the gut microbiome, and environmental factors like diet in the pathogenesis of IBD. We also review the various physiological concerns required for oral delivery to the gastrointestinal tract (GIT) and new strategies in nanotechnology-derived, colon-targeting drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (E.M.J.); (A.B.); (S.C.P.)
| |
Collapse
|
108
|
The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood 2020; 135:1087-1100. [PMID: 32016282 DOI: 10.1182/blood.2019002282] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infection not only stimulates innate immune responses but also activates coagulation cascades. Overactivation of the coagulation system in bacterial sepsis leads to disseminated intravascular coagulation (DIC), a life-threatening condition. However, the mechanisms by which bacterial infection activates the coagulation cascade are not fully understood. Here we show that type 1 interferons (IFNs), a widely expressed family of cytokines that orchestrate innate antiviral and antibacterial immunity, mediate bacterial infection-induced DIC by amplifying the release of high-mobility group box 1 (HMGB1) into the bloodstream. Inhibition of the expression of type 1 IFNs and disruption of their receptor IFN-α/βR or downstream effector (eg, HMGB1) uniformly decreased gram-negative bacteria-induced DIC. Mechanistically, extracellular HMGB1 markedly increased the procoagulant activity of tissue factor by promoting the externalization of phosphatidylserine to the outer cell surface, where phosphatidylserine assembles a complex of cofactor-proteases of the coagulation cascades. These findings not only provide novel insights into the link between innate immune responses and coagulation, but they also open a new avenue for developing novel therapeutic strategies to prevent DIC in sepsis.
Collapse
|
109
|
Pai P, Sukumar S. HOX genes and the NF-κB pathway: A convergence of developmental biology, inflammation and cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1874:188450. [PMID: 33049277 DOI: 10.1016/j.bbcan.2020.188450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The roles of HOX transcription factors as oncogenes and tumor suppressor genes, and the NF-KB pathway in chronic inflammation, both leading to cancer are well-established. HOX transcription factors are members of an evolutionarily conserved family of proteins required for anteroposterior body axis patterning during embryonic development, and are often dysregulated in cancer. The NF-KB pathway aids inflammation and immunity but it is also important during embryonic development. It is frequently activated in both solid and hematological malignancies. NF-KB and HOX proteins can influence each other through mutual transcriptional regulation, protein-protein interactions, and regulation of upstream and downstream interactors. These interactions have important implications both in homeostasis and in disease. In this review, we summarize the role of HOX proteins in regulating inflammation in homeostasis and disease- with a particular emphasis on cancer. We also describe the relationship between HOX genes and the NF-KB pathway, and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Priya Pai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
110
|
Smart E, Semina SE, Frasor J. Update on the Role of NFκB in Promoting Aggressive Phenotypes of Estrogen Receptor-Positive Breast Cancer. Endocrinology 2020; 161:bqaa152. [PMID: 32887995 PMCID: PMC7521126 DOI: 10.1210/endocr/bqaa152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The majority of breast cancers are diagnosed as estrogen receptor-positive (ER+) and respond well to ER-targeted endocrine therapy. Despite the initial treatability of ER+ breast cancer, this subtype still accounts for the majority of deaths. This is partly due to the changing molecular characteristics of tumors as they progress to aggressive, metastatic, and frequently therapy resistant disease. In these advanced tumors, targeting ER alone is often less effective, as other signaling pathways become active, and ER takes on a redundant or divergent role. One signaling pathway whose crosstalk with ER has been widely studied is the nuclear factor kappa B (NFκB) signaling pathway. NFκB is frequently implicated in ER+ tumor progression to an aggressive disease state. Although ER and NFκB frequently co-repress each other, it has emerged that the 2 pathways can positively converge to play a role in promoting endocrine resistance, metastasis, and disease relapse. This will be reviewed here, paying particular attention to new developments in the field. Ultimately, finding targeted therapies that remain effective as tumors progress remains one of the biggest challenges for the successful treatment of ER+ breast cancer. Although early attempts to therapeutically block NFκB activity frequently resulted in systemic toxicity, there are some effective options. The drugs parthenolide and dimethyl fumarate have both been shown to effectively inhibit NFκB, reducing tumor aggressiveness and reversing endocrine therapy resistance. This highlights the need to revisit targeting NFκB in the clinic to potentially improve outcome for patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Emily Smart
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Svetlana E Semina
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
111
|
Sun J, LaRock DL, Skowronski EA, Kimmey JM, Olson J, Jiang Z, O'Donoghue AJ, Nizet V, LaRock CN. The Pseudomonas aeruginosa protease LasB directly activates IL-1β. EBioMedicine 2020; 60:102984. [PMID: 32979835 PMCID: PMC7511813 DOI: 10.1016/j.ebiom.2020.102984] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary damage by Pseudomonas aeruginosa during cystic fibrosis lung infection and ventilator-associated pneumonia is mediated both by pathogen virulence factors and host inflammation. Impaired immune function due to tissue damage and inflammation, coupled with pathogen multidrug resistance, complicates the management of these deep-seated infections. Pathological inflammation during infection is driven by interleukin-1β (IL-1β), but the molecular processes involved are not fully understood. METHODS We examined IL-1β activation in a pulmonary model infection of Pseudomonas aeruginosa and in vitro using genetics, specific inhibitors, recombinant proteins, and targeted reporters of protease activity and IL-1β bioactivity. FINDINGS Caspase-family inflammasome proteases canonically regulate maturation of this proinflammatory cytokine, but we report that plasticity in IL-1β proteolytic activation allows for its direct maturation by the pseudomonal protease LasB. LasB promotes IL-1β activation, neutrophilic inflammation, and destruction of lung architecture characteristic of severe P. aeruginosa pulmonary infection. INTERPRETATION Preservation of lung function and effective immune clearance may be enhanced by selectively controlling inflammation. Discovery of this IL-1β regulatory mechanism provides a distinct target for anti-inflammatory therapeutics, such as matrix metalloprotease inhibitors that inhibit LasB and limit inflammation and pathology during P. aeruginosa pulmonary infections. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Josh Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States
| | - Elaine A Skowronski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | | | - Joshua Olson
- Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States; Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States; Division of Infectious Diseases, Emory School of Medicine, Atlanta GA, United States; Antimicrobial Resistance Center, Emory University, Atlanta GA, United States.
| |
Collapse
|
112
|
Lo Bello F, Hansbro PM, Donovan C, Coppolino I, Mumby S, Adcock IM, Caramori G. New drugs under development for COPD. Expert Opin Emerg Drugs 2020; 25:419-431. [DOI: 10.1080/14728214.2020.1819982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
113
|
Khurana N, Dodhiawala PB, Bulle A, Lim KH. Deciphering the Role of Innate Immune NF-ĸB Pathway in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12092675. [PMID: 32961746 PMCID: PMC7564842 DOI: 10.3390/cancers12092675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic inflammation is a major mechanism that underlies the aggressive nature and treatment resistance of pancreatic cancer. In many ways, the molecular mechanisms that drive chronic inflammation in pancreatic cancer are very similar to our body’s normal innate immune response to injury or invading microorganisms. Therefore, during cancer development, pancreatic cancer cells hijack the innate immune pathway to foster a chronically inflamed tumor environment that helps shield them from immune attack and therapeutics. While blocking the innate immune pathway is theoretically reasonable, untoward side effects must also be addressed. In this review, we comprehensively summarize the literature that describe the role of innate immune signaling in pancreatic cancer, emphasizing the specific role of this pathway in different cell types. We review the interaction of the innate immune pathway and cancer-driving signaling in pancreatic cancer and provide an updated overview of novel therapeutic opportunities against this mechanism. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with no effective treatment option. A predominant hallmark of PDAC is the intense fibro-inflammatory stroma which not only physically collapses vasculature but also functionally suppresses anti-tumor immunity. Constitutive and induced activation of the NF-κB transcription factors is a major mechanism that drives inflammation in PDAC. While targeting this pathway is widely supported as a promising therapeutic strategy, clinical success is elusive due to a lack of safe and effective anti-NF-κB pathway therapeutics. Furthermore, the cell type-specific contribution of this pathway, specifically in neoplastic cells, stromal fibroblasts, and immune cells, has not been critically appraised. In this article, we highlighted seminal and recent literature on molecular mechanisms that drive NF-κB activity in each of these major cell types in PDAC, focusing specifically on the innate immune Toll-like/IL-1 receptor pathway. We reviewed recent evidence on the signaling interplay between the NF-κB and oncogenic KRAS signaling pathways in PDAC cells and their collective contribution to cancer inflammation. Lastly, we reviewed clinical trials on agents that target the NF-κB pathway and novel therapeutic strategies that have been proposed in preclinical studies.
Collapse
Affiliation(s)
- Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
114
|
Lyu Q, Wawrzyniuk M, Rutten VPMG, van Eden W, Sijts AJAM, Broere F. Hsp70 and NF-kB Mediated Control of Innate Inflammatory Responses in a Canine Macrophage Cell Line. Int J Mol Sci 2020; 21:ijms21186464. [PMID: 32899721 PMCID: PMC7555705 DOI: 10.3390/ijms21186464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of many inflammatory diseases is associated with the uncontrolled activation of nuclear factor kappa B (NF-κB) in macrophages. Previous studies have shown that in various cell types, heat shock protein 70 (Hsp70) plays a crucial role in controlling NF-κB activity. So far, little is known about the role of Hsp70 in canine inflammatory processes. In this study we investigated the potential anti-inflammatory effects of Hsp70 in canine macrophages as well as the mechanisms underlying these effects. To this end, a canine macrophage cell line was stressed with arsenite, a chemical stressor, which upregulated Hsp70 expression as detected by flow cytometry and qPCR. A gene-edited version of this macrophage cell line lacking inducible Hsp70 was generated using CRISPR-Cas9 technology. To determine the effects of Hsp70 on macrophage inflammatory properties, arsenite-stressed wild-type and Hsp70 knockout macrophages were exposed to lipopolysaccharide (LPS), and the expression of the inflammatory cytokines IL-6, IL-1β and tumor necrosis factor-α (TNF-α) and levels of phosphorylated NF-κB were determined by qPCR and Western Blotting, respectively. Our results show that non-toxic concentrations of arsenite induced Hsp70 expression in canine macrophages; Hsp70 upregulation significantly inhibited the LPS-induced expression of the pro-inflammatory mediators TNF-α and IL-6, as well as NF-κB activation in canine macrophages. Furthermore, the gene editing of inducible Hsp70 by CRISPR-Cas9-mediated gene editing neutralized this inhibitory effect of cell stress on NF-κB activation and pro-inflammatory cytokine expression. Collectively, our study reveals that Hsp70 may regulate inflammatory responses through NF-κB activation and cytokine expression in canine macrophages.
Collapse
Affiliation(s)
- Qingkang Lyu
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Magdalena Wawrzyniuk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Victor P. M. G. Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, 0110 Pretoria, South Africa
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
- Correspondence:
| |
Collapse
|
115
|
Mao D, Tian XY, Mao D, Hung SW, Wang CC, Lau CBS, Lee HM, Wong CK, Chow E, Ming X, Cao H, Ma RC, Chan PKS, Kong APS, Li JJX, Rutter GA, Tam WH, Chan JCN. A polysaccharide extract from the medicinal plant Maidong inhibits the IKK-NF-κB pathway and IL-1β-induced islet inflammation and increases insulin secretion. J Biol Chem 2020; 295:12573-12587. [PMID: 32605924 PMCID: PMC7476719 DOI: 10.1074/jbc.ra120.014357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022] Open
Abstract
The herb dwarf lilyturf tuber (Maidong, Ophiopogonis Radix) is widely used in Chinese traditional medicine to manage diabetes and its complications. However, the role of Maidong polysaccharide extract (MPE) in pancreatic β-cell function is unclear. Here, we investigated whether MPE protects β-cell function and studied the underlying mechanisms. We treated db/db and high-fat diet (HFD)-induced obese mice with 800 or 400 mg/kg MPE or water for 4 weeks, followed by an oral glucose tolerance test. Pancreas and blood were collected for molecular analyses, and clonal MIN6 β-cells and primary islets from HFD-induced obese mice and normal chow diet-fed mice were used in additional analyses. In vivo, MPE both increased insulin secretion and reduced blood glucose in the db/db mice but increased only insulin secretion in the HFD-induced obese mice. MPE substantially increased the β-cell area in both models (3-fold and 2-fold, p < 0.01, for db/db and HFD mice, respectively). We observed reduced nuclear translocation of the p65 subunit of NF-κB in islets of MPE-treated db/db mice, coinciding with enhanced glucose-stimulated insulin secretion (GSIS). In vitro, MPE potentiated GSIS and decreased interleukin 1β (IL-1β) secretion in MIN6 β-cells. Incubation of MIN6 cells with tumor necrosis factor α (TNFα), interferon-γ, and IL-1β amplified IL-1β secretion and inhibited GSIS. These effects were partially reversed with MPE or the IκB kinase β inhibitor PS1145, coinciding with reduced activation of p65 and p-IκB in the NF-κB pathway. We conclude that MPE may have potential for therapeutic development for β-cell protection.
Collapse
Affiliation(s)
- Dandan Mao
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Di Mao
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Sze Wan Hung
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Chinese University of Hong Kong, Hong Kong, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,Phase 1 Clinical Trial Centre, Chinese University of Hong Kong, Hong Kong, China
| | - Xing Ming
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Huanyi Cao
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ronald C. Ma
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,Hong Kong Institute of Diabetes and Obesity, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Paul K. S. Chan
- Department of Medical Microbiology, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Alice P. S. Kong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,Hong Kong Institute of Diabetes and Obesity, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Joshua J. X. Li
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Guy A. Rutter
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom,Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,Hong Kong Institute of Diabetes and Obesity, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China,For correspondence: Juliana C. N. Chan,
| |
Collapse
|
116
|
Ma Q, Fan Q, Xu J, Bai J, Han X, Dong Z, Zhou X, Liu Z, Gu Z, Wang C. Calming Cytokine Storm in Pneumonia by Targeted Delivery of TPCA-1 Using Platelet-Derived Extracellular Vesicles. MATTER 2020; 3:287-301. [PMID: 32835220 PMCID: PMC7242942 DOI: 10.1016/j.matt.2020.05.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/03/2020] [Accepted: 05/16/2020] [Indexed: 05/18/2023]
Abstract
Pneumonia can cause high morbidity and mortality because of uncontrolled inflammation in the lung tissue. Calming the cytokine storm may be one key to saving the life of patients with severe pneumonia. Here, inspired by the intrinsic affinity of platelets to the site of inflammation, we have engineered platelet-derived extracellular vesicles (PEVs) for pneumonia-targeted drug delivery. It is demonstrated that PEVs that are easily generated from the activated platelets can selectively target pneumonia in the mouse model with acute lung injury (ALI). By loading with [5-(p-fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1), which can inhibit the production of inflammatory factors, the PEVs significantly improve therapeutic benefits by inhibiting the infiltration of pulmonary inflammatory cells and calming local cytokine storm compared with the free drug-treated group. Furthermore, we find that PEVs could serve as a broad platform that can selectively target various inflammatory sites, including chronic atherosclerotic plaque, rheumatoid arthritis, and wounds associated with skin.
Collapse
Affiliation(s)
- Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinyu Bai
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiao Han
- Department of Bioengineering and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaozhong Zhou
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhen Gu
- Department of Bioengineering and California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
117
|
Cunningham SJ, Feng L, Allen TK, Reddy TE. Functional Genomics of Healthy and Pathological Fetal Membranes. Front Physiol 2020; 11:687. [PMID: 32655414 PMCID: PMC7325962 DOI: 10.3389/fphys.2020.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
Premature preterm rupture of membranes (PPROM), rupture of fetal membranes before 37 weeks of gestation, is the leading identifiable cause of spontaneous preterm births. Often there is no obvious cause that is identified in a patient who presents with PPROM. Identifying the upstream molecular events that lead to fetal membrane weakening presents potentially actionable mechanisms which could lead to the identification of at-risk patients and to the development of new therapeutic interventions. Functional genomic studies have transformed understanding of the role of gene regulation in diverse cells and tissues involved health and disease. Here, we review the results of those studies in the context of fetal membranes. We will highlight relevant results from major coordinated functional genomics efforts and from targeted studies focused on individual cell or tissue models. Studies comparing gene expression and DNA methylation between healthy and pathological fetal membranes have found differential regulation between labor and quiescent tissue as well as in preterm births, preeclampsia, and recurrent pregnancy loss. Whole genome and exome sequencing studies have identified common and rare fetal variants associated with preterm births. However, few fetal membrane tissue studies have modeled the response to stimuli relevant to pregnancy. Fetal membranes are readily adaptable to cell culture and relevant cellular phenotypes are readily observable. For these reasons, this is now an unrealized opportunity for genomic studies isolating the effect of cell signaling cascades and mapping the fetal membrane responses that lead to PPROM and other pregnancy complications.
Collapse
Affiliation(s)
- Sarah J Cunningham
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| | - Terrence K Allen
- Department of Anesthesiology, Duke University Hospital, Durham, NC, United States
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.,University Program in Genetics and Genomics, Duke University, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| |
Collapse
|
118
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
119
|
Hypomethylation of IL1RN and NFKB1 genes is linked to the dysbalance in IL1β/IL-1Ra axis in female patients with type 2 diabetes mellitus. PLoS One 2020; 15:e0233737. [PMID: 32470060 PMCID: PMC7259508 DOI: 10.1371/journal.pone.0233737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation has received considerable attention in the pathogenesis of type 2 diabetes mellitus (T2DM). Supporting this concept, enhanced expression of interleukin (IL)-1β and increased infiltration of macrophages are observed in pancreatic islets of patients with T2DM. Although IL-1 receptor antagonist (IL-1Ra) plays a major role in controlling of IL-1β-mediated inflammation, its counteraction effects and epigenetic alterations in T2DM are less studied. Thus, we aimed to analyze the DNA methylation status in IL1RN, RELA (p65) and NFKB1 (p50) genes in peripheral blood mononuclear cells (PBMCs) from treated T2DM patients (n = 35) and age-/sex- matched healthy controls (n = 31). Production of IL-1β and IL-1Ra was analyzed in plasma and supernatants from LPS-induced PBMCs. Immunomodulatory effects of IL-1β and IL-1Ra were studied on THP-1 cells. Average DNA methylation level of IL1RN and NFKB1 gene promoters was significantly decreased in T2DM patients in comparison with healthy controls (P< 0.05), which was associated with the increased IL-1Ra (P< 0.001) and IL-1β (P = 0.039) plasma levels in T2DM patients. Negative association between average methylation of IL1RN gene and IL-1Ra plasma levels were observed in female T2DM patients. Methylation of NFKB1 gene was negatively correlated with IL-1Ra levels in the patients and positively with IL-1β levels in female patients. LPS-stimulated PBMCs from female patients failed to raise IL-1β production, while the cells from healthy females increased IL-1β production in comparison with unstimulated cells (P< 0.001). Taken together, the findings suggest that hypomethylation of IL1RN and NFKB1 gene promoters may promote the increased IL-1β/IL-1Ra production and regulate chronic inflammation in T2DM. Further studies are necessary to elucidate the causal direction of these associations and potential role of IL-1Ra in anti-inflammatory processes in treated patients with T2DM.
Collapse
|
120
|
Liang X, Wu T, Wang Y, Wei T, Zou L, Bai C, Liu N, Zhang T, Xue Y, Tang M. CdTe and CdTe@ZnS quantum dots induce IL-1ß-mediated inflammation and pyroptosis in microglia. Toxicol In Vitro 2020; 65:104827. [PMID: 32179110 DOI: 10.1016/j.tiv.2020.104827] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 11/28/2022]
Abstract
CdTe quantum dots (QDs) are still widely considered as excellent fluorescent probes because of their far more superior optical performance and fluorescence efficiency than non‑cadmium QDs. Thus, it is important to find ways to control their toxicity. In this study, CdTe QDs and CdTe@ZnS QDs both could cause IL-1ß-mediated inflammation following with pyroptosis in BV2 cells, but the toxic effects caused by CdTe@ZnS QDs was weaker than CdTe QDs, which demonstrated the partial protection of ZnS shell. When investigating the molecular mechanisms of QDs causing the inflammatory injury, the findings suggested that cadmium-containing QDs exposure activated NF-κB that participated in the NLRP3 inflammasome priming and pro-IL-1ß expression. After that, QDs-induced excessive ROS generation triggered the NLRP3 inflammasome activation and resulted in active caspase-1 to process pro-IL-1ß into mature IL-1ß release and inflammatory cell death, i.e. pyroptosis. Fortunately, the inhibitions of caspase-1, NF-κB and ROS or knocking down of NLRP3 all effectively attenuated the increases in the IL-1ß secretion and cell death caused by QDs in BV2 cells. This study provided two methods to alleviate the toxicity of cadmium-containing QDs, in which one is to encapsulate bare-core QDs with a shell and the other is to inhibit their toxic pathways. Since the latter way is more effective than the former one, it is significant to evaluate QDs through a mechanism-based risk assessment to identify controllable toxic targets.
Collapse
Affiliation(s)
- Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
121
|
miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia 2020; 34:2648-2659. [PMID: 32107471 DOI: 10.1038/s41375-020-0767-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Myelofibrosis (MF) occurs as part of the natural history of polycythemia vera (PV) and essential thrombocythemia (ET), and remarkably shortens survival. Although JAK2V617F and CALR allele burden are the main transformation risk factors, inflammation plays a critical role by driving clonal expansion toward end-stage disease. NF-κB is a key mediator of inflammation-induced carcinogenesis. Here, we explored the involvement of miR-146a, a brake in NF-κB signaling, in MPN susceptibility and progression. rs2910164 and rs2431697, that affect miR-146a expression, were analyzed in 967 MPN (320 PV/333 ET/314 MF) patients and 600 controls. We found that rs2431697 TT genotype was associated with MF, particularly with post-PV/ET MF (HR = 1.5; p < 0.05). Among 232 PV/ET patients (follow-up time=8.5 years), 18 (7.8%) progressed to MF, being MF-free-survival shorter for rs2431697 TT than CC + CT patients (p = 0.01). Multivariate analysis identified TT genotype as independent predictor of MF progression. In addition, TT (vs. CC + CT) patients showed increased plasma inflammatory cytokines. Finally, miR-146a-/- mice showed significantly higher Stat3 activity with aging, parallel to the development of the MF-like phenotype. In conclusion, we demonstrated that rs2431697 TT genotype is an early predictor of MF progression independent of the JAK2V617F allele burden. Low levels of miR-146a contribute to the MF phenotype by increasing Stat3 signaling.
Collapse
|
122
|
Ingawale DK, Mandlik SK. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol Immunotoxicol 2020; 42:59-73. [PMID: 32070175 DOI: 10.1080/08923973.2020.1728765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological intrinsic host response to injury meant for removal of noxious stimuli and maintenance of homeostasis. It is a defensive body mechanism that involves immune cells, blood vessels and molecular mediators of inflammation. Glucocorticoids (GCs) are steroidal hormones responsible for regulation of homeostatic and metabolic functions of body. Synthetic GCs are the most useful anti-inflammatory drugs used for the treatment of chronic inflammatory diseases such as asthma, chronic obstructive pulmonary disease (COPD), allergies, multiple sclerosis, tendinitis, lupus, atopic dermatitis, ulcerative colitis, rheumatoid arthritis and osteoarthritis whereas, the long term use of GCs are associated with many side effects. The anti-inflammatory and immunosuppressive (desired) effects of GCs are usually mediated by transrepression mechanism whereas; the metabolic and toxic (undesired) effects are usually manifested by transactivation mechanism. Though GCs are most potent anti-inflammatory and immunosuppressive drugs, the common problem associated with their use is GC resistance. Several research studies are rising to comprehend these mechanisms, which would be helpful in improving the GC resistance in asthma and COPD patients. This review aims to focus on identification of new drug targets in inflammation which will be helpful in the resolution of inflammation. The ample understanding of GC mechanisms of action helps in the development of novel anti-inflammatory drugs for the treatment of inflammatory and autoimmune disease with reduced side effects and minimal toxicity.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
123
|
Hennig P, Fenini G, Di Filippo M, Beer HD. Electrophiles Against (Skin) Diseases: More Than Nrf2. Biomolecules 2020; 10:E271. [PMID: 32053878 PMCID: PMC7072181 DOI: 10.3390/biom10020271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The skin represents an indispensable barrier between the organism and the environment and is the first line of defense against exogenous insults. The transcription factor NRF2 is a central regulator of cytoprotection and stress resistance. NRF2 is activated in response to oxidative stress by reactive oxygen species (ROS) and electrophiles. These electrophiles oxidize specific cysteine residues of the NRF2 inhibitor KEAP1, leading to KEAP1 inactivation and, subsequently, NRF2 activation. As oxidative stress is associated with inflammation, the NRF2 pathway plays important roles in the pathogenesis of common inflammatory diseases and cancer in many tissues and organs, including the skin. The electrophile and NRF2 activator dimethyl fumarate (DMF) is an established and efficient drug for patients suffering from the common inflammatory skin disease psoriasis and the neuro-inflammatory disease multiple sclerosis (MS). In this review, we discuss possible molecular mechanisms underlying the therapeutic activity of DMF and other NRF2 activators. Recent evidence suggests that electrophiles not only activate NRF2, but also target other inflammation-associated pathways including the transcription factor NF-κB and the multi-protein complexes termed inflammasomes. Inflammasomes are central regulators of inflammation and are involved in many inflammatory conditions. Most importantly, the NRF2 and inflammasome pathways are connected at different levels, mainly antagonistically.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
124
|
NF-κB-p62-NRF2 survival signaling is associated with high ROR1 expression in chronic lymphocytic leukemia. Cell Death Differ 2020; 27:2206-2216. [PMID: 31992855 DOI: 10.1038/s41418-020-0496-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Progression of chronic lymphocytic leukemia (CLL) and resistance to therapy are affected by tumor microenvironmental factors. One such factor is B-cell activating factor (BAFF), a cytokine that is produced mainly by nurse-like cells (NLC) and enhances CLL cells survival and modulates response to therapy. In CLL cells, BAFF activates NF-κB signaling, but how NF-κB supports CLL survival is not entirely clear. In this study we show that BAFF induces accumulation of the signaling and autophagy adaptor p62/SQSTM1 in a manner dependent on NF-κB activation. p62 potentiates mTORC1 signaling and activates NRF2, the master regulator of the anti-oxidant response. We found that expression of NRF2 target genes, such as NAD(P)H quinone oxidoreductase 1 (NQO1), is particularly enriched in CLL cells with high ROR1 surface expression (ROR1Hi). ROR1Hi CLL cells with elevated NQO1 expression exhibit resistance to drugs that induce ROS accumulation, such venetoclax. However, such cells are more sensitive to compound 29h, a pro-drug that only becomes active after being metabolized by NQO1. Accordingly, 29h sensitizes high NQO1 CLL cells to venetoclax. Collectively, our study unravels a previously unknown signaling network through which the NF-κB-p62-NRF2 axis protects ROR1-high CLL cells from ROS-inducing therapeutics.
Collapse
|
125
|
Wan Z, Wang X, Liu M, Zuo J, Xu Y, Han X, Vanhnaseng P, Miao J. Role of Toll-like receptor 2 against Streptococcus uberis infection in primary mouse mammary epithelial cells. Int Immunopharmacol 2020; 79:106142. [PMID: 31931293 DOI: 10.1016/j.intimp.2019.106142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Mammary epithelial cells (MECs) play an important role against Streptococcus uberis infection which is one of the main causes of bovine mastitis and a potential threat to human health. Toll-like receptors (TLRs) and their mediated signaling pathways are critical in both innate and infection responses, yet their roles in anti-S. uberis infection in MECs remains poorly defined. In this work we investigated the regulatory mechanisms of TLR2 in inflammatory responses, where WT and TLR2-/- mice were euthanized at 15-18 days gestation, and mammary gland tissues were collected aseptically. The mouse MECs (MMECs) were isolated by combined digestion with type I collagenase, hyaluronidase and trypsin. We challenged MMECs with S. uberis and quantified antioxidant capacity as well as reactive oxygen species (ROS), proinflammatory cytokines and cell damage at different times. The loss of TLR2 function in MMECs results in more serious cell damage, increased cell adhesion, and significantly decreased ROS and mitochondrial ROS (mROS) with bactericidal function in response to S. uberis infection. Moreover, it was observed that the antioxidant capacity declined, and the production of TLR2-mediated cytokines (except CXC ligand 15) also were reduced. We demonstrated that TLR2 can mediate cellular anti-infective processes in MMECs by regulating the production of ROS and mROS and the secretion of cytokines. The results suggest an unpredicted role of TLR2 in MMECs in response to S. uberis infection.
Collapse
Affiliation(s)
- Zhixin Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xudong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Phoutapane Vanhnaseng
- Animal Science Center at Biotechnology and Ecology Institute, Ministry of Science and Technology of Laos, Vientiane 01000, Laos
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safty, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
126
|
Zhang T, Gaffrey MJ, Thomas DG, Weber TJ, Hess BM, Weitz KK, Piehowski PD, Petyuk VA, Moore RJ, Qian WJ, Thrall BD. A proteome-wide assessment of the oxidative stress paradigm for metal and metal-oxide nanomaterials in human macrophages. NANOIMPACT 2020; 17:100194. [PMID: 32133426 PMCID: PMC7055704 DOI: 10.1016/j.impact.2019.100194] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Responsible implementation of engineered nanomaterials (ENMs) into commercial applications is an important societal issue, driving demand for new approaches for rapid and comprehensive evaluation of their bioactivity and safety. An essential part of any research focused on identifying potential hazards of ENMs is the appropriate selection of biological endpoints to evaluate. Herein, we use a tiered strategy employing both targeted biological assays and untargeted quantitative proteomics to elucidate the biological responses of human THP-1 derived macrophages across a library of metal/metal oxide ENMs, raised as priority ENMs for investigation by NIEHS's Nanomaterial Health Implications Research (NHIR) program. Our results show that quantitative cellular proteome profiles readily distinguish ENM types based on their cytotoxic potential according to induction of biological processes and pathways involved in the cellular antioxidant response, TCA cycle, oxidative stress, endoplasmic reticulum stress, and immune responses as major processes impacted. Interestingly, bioinformatics analysis of differentially expressed proteins also revealed new biological processes that were influenced by all ENMs independent of their cytotoxic potential. These included biological processes that were previously implicated as mechanisms cells employ as adaptive responses to low levels of oxidative stress, including cell adhesion, protein translation and protein targeting. Unsupervised clustering revealed the most striking proteome changes that differentiated ENM classes highlight a small subset of proteins involved in the oxidative stress response (HMOX1), protein chaperone functions (HS71B, DNJB1), and autophagy (SQSTM), providing a potential new panel of markers of ENM-induced cellular stress. To our knowledge, the results represent the most comprehensive profiling of the biological responses to a library of ENMs conducted using quantitative mass spectrometry-based proteomics. The results provide a basis to identify the patterns of a diverse set of cellular pathways and biological processes impacted by ENM exposure in an important immune cell type, laying the foundation for multivariate, pathway-level structure activity assessments of ENMs in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Dennis G Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Thomas J Weber
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Becky M Hess
- Signatures Sciences and Technology Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| |
Collapse
|
127
|
Abstract
Ptpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6∆PMN) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/β release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis. Loss of Ripk1 accelerated disease onset, whereas combined deletion of caspase-8 and either Ripk3 or Mlkl strongly protected Ptpn6∆PMN mice. Ptpn6∆PMN neutrophils displayed increased p38 mitogen-activated protein kinase-dependent Ripk1-independent IL-1 and tumor necrosis factor production, and were prone to cell death. Together, these data emphasize dual functions for Ptpn6 in the negative regulation of p38 mitogen-activated protein kinase activation to control tumor necrosis factor and IL-1α/β expression, and in maintaining Ripk1 function to prevent caspase-8- and Ripk3-Mlkl-dependent cell death and concomitant IL-1α/β release.
Collapse
|
128
|
Wang Z, Wilson CM, Mendelev N, Ge Y, Galfalvy H, Elder G, Ahlers S, Yarnell AM, LoPresti ML, Kamimori GH, Carr W, Haghighi F. Acute and Chronic Molecular Signatures and Associated Symptoms of Blast Exposure in Military Breachers. J Neurotrauma 2019; 37:1221-1232. [PMID: 31621494 PMCID: PMC7232647 DOI: 10.1089/neu.2019.6742] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Injuries from exposure to explosions rose dramatically during the Iraq and Afghanistan wars, which motivated investigations of blast-related neurotrauma and operational breaching. In this study, military “breachers” were exposed to controlled, low-level blast during a 10-day explosive breaching course. Using an omics approach, we assessed epigenetic, transcriptional, and inflammatory profile changes in blood from operational breaching trainees, with varying levels of lifetime blast exposure, along with daily self-reported symptoms (with tinnitus, headaches, and sleep disturbances as the most frequently reported). Although acute exposure to blast did not confer epigenetic changes, specifically in DNA methylation, differentially methylated regions (DMRs) with coordinated gene expression changes associated with lifetime cumulative blast exposures were identified. The accumulative effect of blast showed increased methylation of PAX8 antisense transcript with coordinated repression of gene expression, which has been associated with sleep disturbance. DNA methylation analyses conducted in conjunction with reported symptoms of tinnitus in the low versus high blast incidents groups identified DMRS in KCNE1 and CYP2E1 genes. KCNE1 and CYP2E1 showed the expected inverse correlation between DNA methylation and gene expression, which have been previously implicated in noise-related hearing loss. Although no significant transcriptional changes were observed in samples obtained at the onset of the training course relative to chronic cumulative blast, we identified a large number of transcriptional perturbations acutely pre- versus post-blast exposure. Acutely, 67 robustly differentially expressed genes (fold change ≥1.5), including UFC1 and YOD1 ubiquitin-related proteins, were identified. Inflammatory analyses of cytokines and chemokines revealed dysregulation of MCP-1, GCSF, HGF, MCSF, and RANTES acutely after blast exposure. These data show the importance of an omics approach, revealing that transcriptional and inflammatory biomarkers capture acute low-level blast overpressure exposure, whereas DNA methylation marks encapsulate chronic long-term symptoms.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Caroline M Wilson
- Medical Epigenetics, James J. Peters VA Medical Center, Bronx, New York, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Natalia Mendelev
- Medical Epigenetics, James J. Peters VA Medical Center, Bronx, New York, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hanga Galfalvy
- Medical Epigenetics, James J. Peters VA Medical Center, Bronx, New York, USA.,Department of Biostatistics in Psychiatry, Columbia University, New York, New York, USA
| | - Gregory Elder
- Neurology Service, James J. Peters VA Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen Ahlers
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Angela M Yarnell
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Gary H Kamimori
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Fatemeh Haghighi
- Medical Epigenetics, James J. Peters VA Medical Center, Bronx, New York, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
129
|
Ai J, Ketabchi N, Verdi J, Gheibi N, Khadem Haghighian H, Kavianpour M. Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways. Cancer Cell Int 2019; 19:329. [PMID: 31827403 PMCID: PMC6894473 DOI: 10.1186/s12935-019-1038-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver disease worldwide. Molecular changes in HCC collectively contribute to Wnt/β-catenin, as a tumor proliferative signaling pathway, toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), as well as the c-Jun NH2-terminal kinase (JNK), predominant signaling pathways linked to the release of tumor-promoting cytokines. It should also be noted that the Hippo signaling pathway plays an important role in organ size control, particularly in promoting tumorigenesis and HCC development. Nowadays, mesenchymal stromal cells (MSCs)-based therapies have been the subject of in vitro, in vivo, and clinical studies for liver such as cirrhosis, liver failure, and HCC. At present, despite the importance of basic molecular pathways of malignancies, limited information has been obtained on this background. Therefore, it can be difficult to determine the true concept of interactions between MSCs and tumor cells. What is known, these cells could migrate toward tumor sites so apply effects via paracrine interaction on HCC cells. For example, one of the inhibitory effects of MSCs is the overexpression of dickkopf-related protein 1 (DKK-1) as an important antagonist of the Wnt signaling pathway. A growing body of research challenging the therapeutic roles of MSCs through the secretion of various trophic factors in HCC. This review illustrates the complex behavior of MSCs and precisely how their inhibitory signals interface with HCC tumor cells.
Collapse
Affiliation(s)
- Jafar Ai
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Ketabchi
- 2Department of Medical Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nematollah Gheibi
- 3Department of Physiology and Medical Physics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Khadem Haghighian
- 4Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maria Kavianpour
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,5Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
130
|
Tan P, He L, Xing C, Mao J, Yu X, Zhu M, Diao L, Han L, Zhou Y, You MJ, Wang HY, Wang RF. Myeloid loss of Beclin 1 promotes PD-L1hi precursor B cell lymphoma development. J Clin Invest 2019; 129:5261-5277. [PMID: 31503548 PMCID: PMC6877338 DOI: 10.1172/jci127721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Beclin 1 (Becn1) is a key molecule in the autophagy pathway and has been implicated in cancer development. Due to the embryonic lethality of homozygous Becn1-deficient mice, the precise mechanisms and cell type-specific roles of Becn1 in regulating inflammation and cancer immunity remain elusive. Here, we report that myeloid-deficient Becn1 (Becn1ΔM) mice developed neutrophilia, were hypersusceptible to LPS-induced septic shock, and had a high risk of developing spontaneous precursor B cell (pre-B cell) lymphoma with elevated expression of immunosuppressive molecules programmed death ligand 1 (PD-L1) and IL-10. Becn1 deficiency resulted in the stabilization of MEKK3 and aberrant p38 activation in neutrophils, and mediated neutrophil-B cell interaction through Cxcl9/Cxcr3 chemotaxis. Neutrophil-B cell interplay further led to the activation of IL-21/STAT3/IRF1 and CD40L/ERK signaling and PD-L1 expression; therefore, it suppressed CD8+ T cell function. Ablation of p38 in Becn1ΔM mice prevented neutrophil inflammation and B cell tumorigenesis. Importantly, the low expression of Becn1 in human neutrophils was significantly correlated with the PD-L1 levels in pre-B acute lymphoblastic lymphoma (ALL) patients. Our findings have identified myeloid Becn1 as a key regulator of cancer immunity and therapeutic target for pre-B cell lymphomas.
Collapse
Affiliation(s)
- Peng Tan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Lian He
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jingrong Mao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
- Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Motao Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
131
|
Qiu X, Cheng X, Zhang J, Yuan C, Zhao M, Yang X. Ethyl pyruvate confers protection against endotoxemia and sepsis by inhibiting caspase-11-dependent cell pyroptosis. Int Immunopharmacol 2019; 78:106016. [PMID: 31796383 DOI: 10.1016/j.intimp.2019.106016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/10/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022]
Abstract
Ethyl pyruvate exertsa special protectiveeffecton endotoxin-induced endotoxemia and experimental sepsis, but the underlying mechanism remains elusive. Werecently demonstrated that ethyl pyruvate inhibited caspase-11-mediated macrophage pyroptotic cell death. GasderminDis akeymolecule incaspase-11 mediated non-canonical inflammasome-inducedpyroptosis. We proved that ethyl pyruvate significantly decreased caspase-11 and gasdermin D-mediated pyroptosis induced by cytoplasmic lipopolysaccharide (LPS) and bacterial outer membrane vesicles (OMVs). Ethyl pyruvate treatment offered effective protection against lethal endotoxemia and reduced the release of IL-1α and IL-1β. Similarresults were observed in the mousececal ligation and puncture (CLP)peritonitissepsismodel. These findings identified ethyl pyruvate as an inhibitor against LPS-mediated activation of cytoplasmic caspase-11 and gasdermin D. This mechanism is believed to contribute tothe further explanation of theprotectiveactionof ethyl pyruvate in experimental sepsis and endotoxemia and the potential application of ethyl pyruvate for rescuing sepsis.
Collapse
Affiliation(s)
- Xianhui Qiu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Xiaoye Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jing Zhang
- Department of Pediatric, Hunan Provincial Maternal and Child Health Hospital Changsha, Changsha 410000, PR China
| | - Chuang Yuan
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Minyi Zhao
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410000, PR China.
| | - Xinyu Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410000, PR China.
| |
Collapse
|
132
|
Wu T, Liang X, He K, Wei T, Wang Y, Zou L, Bai C, Liu N, Zhang T, Xue Y, Tang M. The role of NLRP3 inflammasome activation in the neuroinflammatory responses to Ag 2Se quantum dots in microglia. NANOSCALE 2019; 11:20820-20836. [PMID: 31657406 DOI: 10.1039/c9nr06778g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silver selenide quantum dots (Ag2Se QDs) provide bright prospects for the application of QDs in the field of biomedicine because they contain low-toxic compounds and show great advantages in the imaging of deep tissues and tiny vascular structures. However, the biosafety of these novel QDs has not been thoroughly evaluated, especially in one main target for toxicity-the central nervous system (CNS). Our previous studies have suggested severe inflammatory responses to cadmium-containing QDs in the hippocampus, which gives us a hint regarding the risk assessment of Ag2Se QDs. In this study, microglial activation followed by enhanced levels of pro-inflammatory cytokines was observed in the hippocampus of mice intravenously injected with Ag2Se QDs. When using the microglial BV2 cells to investigate the underlying mechanisms, we found that the NLRP3 inflammasome activation was involved in the IL-1β-mediated inflammation induced by Ag2Se QDs. On the one hand, Ag2Se QD-activated NF-κB participated in the NLRP3 inflammasome priming and assembly as well as the pro-IL-1β upregulation. On the other hand, Ag2Se QD-induced ROS generation, particularly mtROS, triggered the NLRP3 inflammasome activation and resulted in active caspase-1 to process pro-IL-1β into mature IL-1β release. These findings not only indicated that it is important to evaluate the biosafety of novel QDs, even those containing low-toxic compounds, but also provided an unbiased and mechanism-based risk assessment of similar nanoparticles.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Keyu He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Yan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| |
Collapse
|
133
|
l-Serine Lowers the Inflammatory Responses during Pasteurella multocida Infection. Infect Immun 2019; 87:IAI.00677-19. [PMID: 31570555 PMCID: PMC6867830 DOI: 10.1128/iai.00677-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Pasteurella multocida causes a variety of infectious diseases in various species of mammals and birds, resulting in enormous economic loss to the modern livestock and poultry industry. However, the mechanism of host-pathogen interaction is unclear. Here, we found that l-serine levels were significantly decreased in murine lungs infected with P. multocida. Pasteurella multocida causes a variety of infectious diseases in various species of mammals and birds, resulting in enormous economic loss to the modern livestock and poultry industry. However, the mechanism of host-pathogen interaction is unclear. Here, we found that l-serine levels were significantly decreased in murine lungs infected with P. multocida. Exogenous l-serine supplementation significantly increased the survival rate of mice and decreased the colonization of P. multocida in the lungs of mice. Notably, l-serine decreased the macrophage- and neutrophil-mediated inflammatory responses in mice during P. multocida infection.
Collapse
|
134
|
Wang P, Qi X, Xu G, Liu J, Guo J, Li X, Ma X, Sun H. CCL28 promotes locomotor recovery after spinal cord injury via recruiting regulatory T cells. Aging (Albany NY) 2019; 11:7402-7415. [PMID: 31557129 PMCID: PMC6781990 DOI: 10.18632/aging.102239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023]
Abstract
Background: Chemokines play a key role in post-traumatic inflammation and secondary injury after spinal cord injury (SCI). CCL28, the chemokine CC-chemokine ligand 28, is involved in the epithelial and mucosal immunity. However, whether CCL28 participates in the physiopathologic processes after SCI remains unclear. Results: CCL28 is upregulated in the spinal cord after SCI. In addition, neutralizing antibodies against IL-1β or TNF-α, or treatment of ML120B, a selective inhibitor of IKK-β, remarkably decrease CCL28 upregulation, suggesting that CCL28 upregulation relies on NF-κB pathway activated by IL-1β and TNF-α after SCI. Moreover, CD4+CD25+FOXP3+ regulatory T (Treg) cells that express CCR10, a receptor of CCL28, are enriched in the spinal cord after SCI. We further demonstrate that the spinal cord recruits Treg cells through CCL28-CCR10 axis, which in turn function to suppress immune response and promote locomotor recovery after SCI. In contrast, neutralizing CCL28 or CCR10 reduces Treg cell recruitment and delays locomotor recovery. Methods: The neutralizing antibodies and recombinant CCL28 were injected intraspinally into the mice prior to SCI, which was established via hemitransection. RT-qPCR analysis was performed to determine transcript level, and Western blot analysis and ELISA assay were used to detect protein expression. Immune cells were analyzed by flow cytometry and visualized by immunofluorescence. The chemotaxis was assessed by in vitro transwell migration assay. The mouse locomotor activity was assessed via the Basso Mouse Scale (BMS) system. Conclusions: These results indicate that NF-κB pathway-regulated CCL28 production plays a protective role after SCI through recruiting CCR10-expressing and immunosuppressive Treg cells, and suggest that interfering CCL28-CCR10 axis might be of potential clinical benefit in improving SCI recovery.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Neurosurgery, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | - Xiangbei Qi
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | - Guohui Xu
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | - Jianning Liu
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | - Jichao Guo
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | - Xu Li
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | - Xinzhe Ma
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| | - Hui Sun
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
135
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
136
|
Mackos AR, Allen JM, Kim E, Ladaika CA, Gharaibeh RZ, Moore C, Parry NMA, Boyaka PN, Bailey MT. Mice Deficient in Epithelial or Myeloid Cell Iκκβ Have Distinct Colonic Microbiomes and Increased Resistance to Citrobacter rodentium Infection. Front Immunol 2019; 10:2062. [PMID: 31552024 PMCID: PMC6746829 DOI: 10.3389/fimmu.2019.02062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
The colonic microenvironment, stemming from microbial, immunologic, stromal, and epithelial factors, serves as an important determinant of the host response to enteric pathogenic colonization. Infection with the enteric bacterial pathogen Citrobacter rodentium elicits a strong mucosal Th1-mediated colitis and monocyte-driven inflammation activated via the classical NF-κB pathway. Research has focused on leukocyte-mediated signaling as the main driver for C. rodentium-induced colitis, however we hypothesize that epithelial cell NF-κB also contributes to the exacerbation of infectious colitis. To test this hypothesis, compartmentalized classical NF-κB defective mice, via the deletion of IKKβ in either intestinal epithelial cells (IKKβΔIEC) or myeloid-derived cells (IKKβΔMY), and wild type (WT) mice were challenged with C. rodentium. Both pathogen colonization and colonic histopathology were significantly reduced in IKKβ-deficient mice compared to WT mice. Interestingly, colonic IL-10, RegIIIγ, TNF-α, and iNOS gene expression were increased in IKKβ-deficient mice in the absence of bacterial challenge. This was associated with increased p52, which is involved with activation of NF-κβ through the alternative pathway. IKKβ-deficient mice also had distinct differences in colonic tissue-associated and luminal microbiome that may confer protection against C. rodentium. Taken together, these data demonstrate that classical NF-κB signaling can lead to enhanced enteric pathogen colonization and resulting colonic histopathology.
Collapse
Affiliation(s)
- Amy R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Jacob M Allen
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Chris A Ladaika
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Raad Z Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States.,Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, United States
| | - Cathy Moore
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Nicola M A Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
137
|
Schroder WA, Hirata TD, Le TT, Gardner J, Boyle GM, Ellis J, Nakayama E, Pathirana D, Nakaya HI, Suhrbier A. SerpinB2 inhibits migration and promotes a resolution phase signature in large peritoneal macrophages. Sci Rep 2019; 9:12421. [PMID: 31455834 PMCID: PMC6712035 DOI: 10.1038/s41598-019-48741-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
SerpinB2 (plasminogen activator inhibitor type 2) has been called the "undecided serpin" with no clear consensus on its physiological role, although it is well described as an inhibitor of urokinase plasminogen activator (uPA). In macrophages, pro-inflammatory stimuli usually induce SerpinB2; however, expression is constitutive in Gata6+ large peritoneal macrophages (LPM). Interrogation of expression data from human macrophages treated with a range of stimuli using a new bioinformatics tool, CEMiTool, suggested that SerpinB2 is most tightly co- and counter-regulated with genes associated with cell movement. Using LPM from SerpinB2-/- and SerpinB2R380A (active site mutant) mice, we show that migration on Matrigel was faster than for their wild-type controls. Confocal microscopy illustrated that SerpinB2 and F-actin staining overlapped in focal adhesions and lamellipodia. Genes associated with migration and extracellular matrix interactions were also identified by RNA-Seq analysis of migrating RPM from wild-type and SerpinB2R380A mice. Subsequent gene set enrichment analyses (GSEA) suggested SerpinB2 counter-regulates many Gata6-regulated genes associated with migration. These data argue that the role of SerpinB2 in macrophages is inhibition of uPA-mediated plasmin generation during cell migration. GSEA also suggested that SerpinB2 expression (likely via ensuing modulation of uPA-receptor/integrin signaling) promotes the adoption of a resolution phase signature.
Collapse
Affiliation(s)
- Wayne A Schroder
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Thiago D Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Jonathan Ellis
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Dilan Pathirana
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.
| |
Collapse
|
138
|
Apocynin alleviates lung injury by suppressing NLRP3 inflammasome activation and NF-κB signaling in acute pancreatitis. Int Immunopharmacol 2019; 75:105821. [PMID: 31437787 DOI: 10.1016/j.intimp.2019.105821] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/31/2019] [Accepted: 08/11/2019] [Indexed: 02/08/2023]
Abstract
Mounting evidence has demonstrated that acute pancreatitis (AP) is one of the causes of multiple organ damage. NADPH (nicotinamide adenine dinucleotide phosphate) act as a substrate of NADPH oxidase (NOX) to generate reactive oxygen species (ROS), but the role NADPH oxidase signaling pathway plays in AP-induced acute lung injury remains unclear. Apocynin, an inhibitor of NOX, is highly effective in suppressing the production of ROS. Here, we used rat model of severe acute pancreatitis (SAP) to explore whether the NOX inhibitor apocynin produced protective effects in against SAP-induced lung injury via inhibition of inflammation and oxidation. We observed that apocynin significantly attenuated severe acute pancreatitis-induced increase of NOX2, NOX4 and ROS expressions in lung tissues. In addition, the phosphorylation and degradation of IκBα, and the nuclear localization of NF-κB p65 in SAP-induced lung injury were also inhibited after using apocynin. Simultaneously, down-regulation of NOX suppressed the levels of inflammasome proteins including NLRP3, ASC, pro-Caspase-1 and cleaved-Caspase-1 in the lung. Serum levels of TNF-α, interleukin (IL)-1β and IL-6 were also reduced. Our findings suggest that beyond anti-oxidative effects, apocynin may also have anti-inflammatory effects by suppressing NLRP3 inflammasome activation and NF-κB signaling in acute pancreatitis. Therefore, apocynin may have therapeutic potential in the treatment of SAP and SAP-induced lung injury.
Collapse
|
139
|
Sanchez-Lopez E, Zhong Z, Stubelius A, Sweeney SR, Booshehri LM, Antonucci L, Liu-Bryan R, Lodi A, Terkeltaub R, Lacal JC, Murphy AN, Hoffman HM, Tiziani S, Guma M, Karin M. Choline Uptake and Metabolism Modulate Macrophage IL-1β and IL-18 Production. Cell Metab 2019; 29:1350-1362.e7. [PMID: 30982734 PMCID: PMC6675591 DOI: 10.1016/j.cmet.2019.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Choline is a vitamin-like nutrient that is taken up via specific transporters and metabolized by choline kinase, which converts it to phosphocholine needed for de novo synthesis of phosphatidylcholine (PC), the main phospholipid of cellular membranes. We found that Toll-like receptor (TLR) activation enhances choline uptake by macrophages and microglia through induction of the choline transporter CTL1. Inhibition of CTL1 expression or choline phosphorylation attenuated NLRP3 inflammasome activation and IL-1β and IL-18 production in stimulated macrophages. Mechanistically, reduced choline uptake altered mitochondrial lipid profile, attenuated mitochondrial ATP synthesis, and activated the energy sensor AMP-activated protein kinase (AMPK). By potentiating mitochondrial recruitment of DRP1, AMPK stimulates mitophagy, which contributes to termination of NLRP3 inflammasome activation. Correspondingly, choline kinase inhibitors ameliorated acute and chronic models of IL-1β-dependent inflammation.
Collapse
Affiliation(s)
- Elsa Sanchez-Lopez
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Zhenyu Zhong
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA; Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390, USA
| | - Alexandra Stubelius
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Shannon R Sweeney
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA
| | - Laela M Booshehri
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, 92037, USA
| | - Laura Antonucci
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ru Liu-Bryan
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA; VA San Diego Healthcare System, University of California San Diego, La Jolla, CA, 92037, USA
| | - Alessia Lodi
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA; Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA
| | - Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA; VA San Diego Healthcare System, University of California San Diego, La Jolla, CA, 92037, USA
| | - Juan Carlos Lacal
- Translational Oncology, Department of Oncology, Hospital Universitario Fuenlabrada, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Anne N Murphy
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Hal M Hoffman
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA, 92037, USA
| | - Stefano Tiziani
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA; Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78723-3092, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723-3092, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
140
|
Ritter B, Greten FR. Modulating inflammation for cancer therapy. J Exp Med 2019; 216:1234-1243. [PMID: 31023715 PMCID: PMC6547855 DOI: 10.1084/jem.20181739] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/08/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
A link between chronic inflammation and development of tumors is well established. Moreover, it has become evident that tumorigenesis is not a cell autonomous disease, and an inflammatory microenvironment is a prerequisite of basically all tumors, including those that emerge in the absence of overt inflammation. This knowledge has led to the development of anti-inflammatory concepts to treat and prevent cancer. In contrast, immunotherapies, in particular checkpoint inhibitors, representing the most significant progress in the therapy of several malignancies depend on the presence of a pro-inflammatory "hot" environment. Here, we discuss pro- and anti-inflammatory concepts for the treatment of cancer.
Collapse
Affiliation(s)
- Birgit Ritter
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
141
|
Li ZW, Sun B, Gong T, Guo S, Zhang J, Wang J, Sugawara A, Jiang M, Yan J, Gurary A, Zheng X, Gao B, Xiao SY, Chen W, Ma C, Farrar C, Zhu C, Chan OTM, Xin C, Winnicki A, Winnicki J, Tang M, Park R, Winnicki M, Diener K, Wang Z, Liu Q, Chu CH, Arter ZL, Yue P, Alpert L, Hui GS, Fei P, Turkson J, Yang W, Wu G, Tao A, Ramos JW, Moisyadi S, Holcombe RF, Jia W, Birnbaumer L, Zhou X, Chu WM. GNAI1 and GNAI3 Reduce Colitis-Associated Tumorigenesis in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2. Gastroenterology 2019; 156:2297-2312. [PMID: 30836096 PMCID: PMC6628260 DOI: 10.1053/j.gastro.2019.02.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/06/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Interleukin 6 (IL6) and tumor necrosis factor contribute to the development of colitis-associated cancer (CAC). We investigated these signaling pathways and the involvement of G protein subunit alpha i1 (GNAI1), GNAI2, and GNAI3 in the development of CAC in mice and humans. METHODS B6;129 wild-type (control) or mice with disruption of Gnai1, Gnai2, and/or Gnai3 or conditional disruption of Gnai2 in CD11c+ or epithelial cells were given dextran sulfate sodium (DSS) to induce colitis followed by azoxymethane (AOM) to induce carcinogenesis; some mice were given an antibody against IL6. Feces were collected from mice, and the compositions of microbiomes were analyzed by polymerase chain reactions. Dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) isolated from spleen and colon tissues were analyzed by flow cytometry. We performed immunoprecipitation and immunoblot analyses of colon tumor tissues, MDSCs, and mouse embryonic fibroblasts to study the expression levels of GNAI1, GNAI2, and GNAI3 and the interactions of GNAI1 and GNAI3 with proteins in the IL6 signaling pathway. We analyzed the expression of Gnai2 messenger RNA by CD11c+ cells in the colonic lamina propria by PrimeFlow, expression of IL6 in DCs by flow cytometry, and secretion of cytokines in sera and colon tissues by enzyme-linked immunosorbent assay. We obtained colon tumor and matched nontumor tissues from 83 patients with colorectal cancer having surgery in China and 35 patients with CAC in the United States. Mouse and human colon tissues were analyzed by histology, immunoblot, immunohistochemistry, and/or RNA-sequencing analyses. RESULTS GNAI1 and GNAI3 (GNAI1;3) double-knockout (DKO) mice developed more severe colitis after administration of DSS and significantly more colonic tumors than control mice after administration of AOM plus DSS. Development of increased tumors in DKO mice was not associated with changes in fecal microbiomes but was associated with activation of nuclear factor (NF) κB and signal transducer and activator of transcription (STAT) 3; increased levels of GNAI2, nitric oxide synthase 2, and IL6; increased numbers of CD4+ DCs and MDSCs; and decreased numbers of CD8+ DCs. IL6 was mainly produced by CD4+/CD11b+, but not CD8+, DCs in DKO mice. Injection of DKO mice with a blocking antibody against IL6 reduced the expansion of MDSCs and the number of tumors that developed after CAC induction. Incubation of MDSCs or mouse embryonic fibroblasts with IL6 induced activation of either NF-κB by a JAK2-TRAF6-TAK1-CHUK/IKKB signaling pathway or STAT3 by JAK2. This activation resulted in expression of GNAI2, IL6 signal transducer (IL6ST, also called GP130) and nitric oxide synthase 2, and expansion of MDSCs; the expression levels of these proteins and expansion of MDSCs were further increased by the absence of GNAI1;3 in cells and mice. Conditional disruption of Gnai2 in CD11c+ cells of DKO mice prevented activation of NF-κB and STAT3 and changes in numbers of DCs and MDSCs. Colon tumor tissues from patients with CAC had reduced levels of GNAI1 and GNAI3 and increased levels of GNAI2 compared with normal tissues. Further analysis of a public human colorectal tumor DNA microarray database (GSE39582) showed that low Gani1 and Gnai3 messenger RNA expression and high Gnai2 messenger RNA expression were significantly associated with decreased relapse-free survival. CONCLUSIONS GNAI1;3 suppresses DSS-plus-AOM-induced colon tumor development in mice, whereas expression of GNAI2 in CD11c+ cells and IL6 in CD4+/CD11b+ DCs appears to promote these effects. Strategies to induce GNAI1;3, or block GNAI2 and IL6, might be developed for the prevention or therapy of CAC in patients.
Collapse
Affiliation(s)
- Zhi-Wei Li
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ting Gong
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Sheng Guo
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; Department of Endocrine, Genetics and Metabolism, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Zhang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; Department of Pediatrics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junlong Wang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Atsushi Sugawara
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Junjun Yan
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Alexandra Gurary
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Xin Zheng
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Bifeng Gao
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shu-Yuan Xiao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pathology, University of Chicago, Chicago, Illinois
| | - Wenlian Chen
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chi Ma
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Christine Farrar
- The Microscopy, Imaging, and Flow Cytometry Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chenjun Zhu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Owen T M Chan
- Pathology Core, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Can Xin
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Andrew Winnicki
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - John Winnicki
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Mingxin Tang
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ryan Park
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Mary Winnicki
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Katrina Diener
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zhanwei Wang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Qicai Liu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; Department of Cardiology and Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Catherine H Chu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Zhaohui L Arter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Peibin Yue
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Lindsay Alpert
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - George S Hui
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Peiwen Fei
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - James Turkson
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Wentian Yang
- Department of Orthopedics, Rhode Island Hospital, Brown University Alpert Medical School, Providence, Rhode Island
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Randall F Holcombe
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Wei Jia
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; Institute for Biomedical Research (BIOMED), Universidad Católica Argentina, Buenos Aires, Argentina
| | - Xiqiao Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen-Ming Chu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
142
|
Naz S, Islam M, Tabassum S, Fernandes NF, Carcache de Blanco EJ, Zia M. Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.088] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
143
|
Spörrer M, Prochnicki A, Tölle RC, Nyström A, Esser PR, Homberg M, Athanasiou I, Zingkou E, Schilling A, Gerum R, Thievessen I, Winter L, Bruckner-Tuderman L, Fabry B, Magin TM, Dengjel J, Schröder R, Kiritsi D. Treatment of keratinocytes with 4-phenylbutyrate in epidermolysis bullosa: Lessons for therapies in keratin disorders. EBioMedicine 2019; 44:502-515. [PMID: 31078522 PMCID: PMC6603805 DOI: 10.1016/j.ebiom.2019.04.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Missense mutations in keratin 5 and 14 genes cause the severe skin fragility disorder epidermolysis bullosa simplex (EBS) by collapsing of the keratin cytoskeleton into cytoplasmic protein aggregates. Despite intense efforts, no molecular therapies are available, mostly due to the complex phenotype of EBS, comprising cell fragility, diminished adhesion, skin inflammation and itch. Methods We extensively characterized KRT5 and KRT14 mutant keratinocytes from patients with severe generalized EBS following exposure to the chemical chaperone 4-phenylbutyrate (4-PBA). Findings 4-PBA diminished keratin aggregates within EBS cells and ameliorated their inflammatory phenotype. Chemoproteomics of 4-PBA-treated and untreated EBS cells revealed reduced IL1β expression- but also showed activation of Wnt/β-catenin and NF-kB pathways. The abundance of extracellular matrix and cytoskeletal proteins was significantly altered, coinciding with diminished keratinocyte adhesion and migration in a 4-PBA dose-dependent manner. Interpretation Together, our study reveals a complex interplay of benefits and disadvantages that challenge the use of 4-PBA in skin fragility disorders.
Collapse
Affiliation(s)
- Marina Spörrer
- Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ania Prochnicki
- Institute of Neuropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Regine C Tölle
- Department of Biology, University of Fribourg, Switzerland
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Homberg
- Institute of Biology and SIKT, University of Leipzig, Leipzig, Germany
| | - Ioannis Athanasiou
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eleni Zingkou
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Achim Schilling
- Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Experimental Otolaryngology, ENT Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Richard Gerum
- Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Lilli Winter
- Institute of Neuropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas M Magin
- Institute of Biology and SIKT, University of Leipzig, Leipzig, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Switzerland; Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rolf Schröder
- Institute of Neuropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
144
|
Tornatore L, Capece D, D'Andrea D, Begalli F, Verzella D, Bennett J, Acton G, Campbell EA, Kelly J, Tarbit M, Adams N, Bannoo S, Leonardi A, Sandomenico A, Raimondo D, Ruvo M, Chambery A, Oblak M, Al-Obaidi MJ, Kaczmarski RS, Gabriel I, Oakervee HE, Kaiser MF, Wechalekar A, Benjamin R, Apperley JF, Auner HW, Franzoso G. Clinical proof of concept for a safe and effective NF-κB-targeting strategy in multiple myeloma. Br J Haematol 2019; 185:588-592. [PMID: 30255568 DOI: 10.1111/bjh.15569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Laura Tornatore
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daria Capece
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniel D'Andrea
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Federica Begalli
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniela Verzella
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Jason Bennett
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Gary Acton
- Cancer Research UK Centre for Drug Development, London, UK
| | | | | | | | | | - Selina Bannoo
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Antonio Leonardi
- Department of Molecular Medicine, University of Naples Federico II, Naples, Italy
| | | | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Menotti Ruvo
- IBB-CNR and CIRPeB, "Federico II" University of Naples, Naples, Italy
| | - Angela Chambery
- DiSTABiF, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Metod Oblak
- West Middlesex University Hospital, Isleworth, Greater London, UK
| | - Magda J Al-Obaidi
- Haematology Department, Chelsea and Westminster Hospital, London, UK
| | | | - Ian Gabriel
- Haematology Department, Chelsea and Westminster Hospital, London, UK
| | | | - Martin F Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Reuben Benjamin
- Department of Haematology, King's College Hospital, London, UK
| | | | - Holger W Auner
- Centre for Haematology, Imperial College London, London, UK
- Cancer Cell Protein Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Guido Franzoso
- CCSI, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
145
|
Huang Y, Wan T, Pang N, Zhou Y, Jiang X, Li B, Gu Y, Huang Y, Ye X, Lian H, Zhang Z, Yang L. Cannabidiol protects livers against nonalcoholic steatohepatitis induced by high‐fat high cholesterol diet via regulating NF‐κB and NLRP3 inflammasome pathway. J Cell Physiol 2019; 234:21224-21234. [DOI: 10.1002/jcp.28728] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yuanling Huang
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Ting Wan
- Department of Nutrition Huizhou First People's Hospital Huizhou Guangdong People's Republic of China
| | - Nengzhi Pang
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Yujia Zhou
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Xuye Jiang
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Bangyan Li
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Yingying Gu
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Yufeng Huang
- Department of Radiology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong People's Republic of China
| | - Xiaodie Ye
- Department of Radiology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong People's Republic of China
| | - Hui Lian
- Department of Radiology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong People's Republic of China
| | - Zhenfeng Zhang
- Department of Radiology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong People's Republic of China
| | - Lili Yang
- Guangdong Provincial Key Laboratory of Food, Department of Nutrition, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
146
|
Tornatore L, Capece D, D'Andrea D, Begalli F, Verzella D, Bennett J, Acton G, Campbell EA, Kelly J, Tarbit M, Adams N, Bannoo S, Leonardi A, Sandomenico A, Raimondo D, Ruvo M, Chambery A, Oblak M, Al-Obaidi MJ, Kaczmarski RS, Gabriel I, Oakervee HE, Kaiser MF, Wechalekar A, Benjamin R, Apperley JF, Auner HW, Franzoso G. Preclinical toxicology and safety pharmacology of the first-in-class GADD45β/MKK7 inhibitor and clinical candidate, DTP3. Toxicol Rep 2019; 6:369-379. [PMID: 31080744 PMCID: PMC6502747 DOI: 10.1016/j.toxrep.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
Aberrant NF-κB activity drives oncogenesis and cell survival in multiple myeloma (MM) and many other cancers. However, despite an aggressive effort by the pharmaceutical industry over the past 30 years, no specific IκBα kinase (IKK)β/NF-κB inhibitor has been clinically approved, due to the multiple dose-limiting toxicities of conventional NF-κB-targeting drugs. To overcome this barrier to therapeutic NF-κB inhibition, we developed the first-in-class growth arrest and DNA-damage-inducible (GADD45)β/mitogen-activated protein kinase kinase (MKK)7 inhibitor, DTP3, which targets an essential, cancer-selective cell-survival module downstream of the NF-κB pathway. As a result, DTP3 specifically kills MM cells, ex vivo and in vivo, ablating MM xenografts in mice, with no apparent adverse effects, nor evident toxicity to healthy cells. Here, we report the results from the preclinical regulatory pharmacodynamic (PD), safety pharmacology, pharmacokinetic (PK), and toxicology programmes of DTP3, leading to the approval for clinical trials in oncology. These results demonstrate that DTP3 combines on-target-selective pharmacology, therapeutic anticancer efficacy, favourable drug-like properties, long plasma half-life and good bioavailability, with no target-organs of toxicity and no adverse effects preclusive of its clinical development in oncology, upon daily repeat-dose administration in both rodent and non-rodent species. Our study underscores the clinical potential of DTP3 as a conceptually novel candidate therapeutic selectively blocking NF-κB survival signalling in MM and potentially other NF-κB-driven cancers.
Collapse
Affiliation(s)
- Laura Tornatore
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daria Capece
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniel D'Andrea
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Federica Begalli
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniela Verzella
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Jason Bennett
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Gary Acton
- Cancer Research UK Centre for Drug Development, London, UK
| | | | | | | | | | - Selina Bannoo
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Antonio Leonardi
- Department of Molecular Medicine, University of Naples Federico II, Naples, Italy
| | | | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Menotti Ruvo
- IBB-CNR and CIRPeB, "Federico II" University of Naples, Naples, Italy
| | - Angela Chambery
- DiSTABiF, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Metod Oblak
- West Middlesex University Hospital, Isleworth, Greater London, UK
| | | | | | - Ian Gabriel
- Haematology Department, Chelsea and Westminster Hospital, London, UK
| | | | - Martin F. Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Reuben Benjamin
- Department of Haematology, King's College Hospital, London, UK
| | | | - Holger W. Auner
- Centre for Haematology, Imperial College, London, UK
- Cancer Cell Protein Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Guido Franzoso
- CCSI, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
147
|
NLRP3/ASC/Caspase-1 axis and serine protease activity are involved in neutrophil IL-1β processing during Streptococcus pneumoniae infection. Biochem Biophys Res Commun 2019; 513:675-680. [PMID: 30982580 DOI: 10.1016/j.bbrc.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023]
Abstract
Streptococcus pneumoniae is a pathogenic bacterium that can cause severe invasive diseases, such as pneumonia, otitis media and meningitis. The pro-inflammatory cytokine, IL-1β, has been reported to play important role in host defense against S. pneumoniae. The mechanism of IL-1β maturation and secretion in macrophages has been well studied. However, the precise mechanism of IL-1β processing within neutrophils upon S. pneumoniae infection remains unclear. In this study, mouse peritoneal neutrophils from C57BL/6 WT and inflammasome components knockout mice were infected by S. pneumoniae in vitro. The results showed that NLRP3 inflammasome is critically involved in neutrophil IL-1β secretion, while the AIM2 and NLRC4 inflammasomes were dispensable. Moreover, the upstream kinase, JNK, modulates ASC oligomerization and consequent caspase-1 activation and IL-1β secretion. Additionally, neutrophil serine proteases also participate in IL-1β secretion by mediating ASC oligomerization and caspase-1 activation. Taken together, these findings indicated that both the NLRP3 inflammasome-related pathway and neutrophil serine protease mediate IL-1β processing upon S. pneumoniae infection.
Collapse
|
148
|
Zhou Q, Jiang X, Yan W, Dou X. Transgelin 2 overexpression inhibits cervical cancer cell invasion and migration. Mol Med Rep 2019; 19:4919-4926. [PMID: 30942422 DOI: 10.3892/mmr.2019.10116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/05/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qun Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xuelu Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Wei Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaoqing Dou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
149
|
PPAR- γ Activation Exerts an Anti-inflammatory Effect by Suppressing the NLRP3 Inflammasome in Spinal Cord-Derived Neurons. Mediators Inflamm 2019; 2019:6386729. [PMID: 31015796 PMCID: PMC6444263 DOI: 10.1155/2019/6386729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/26/2018] [Accepted: 02/02/2019] [Indexed: 12/15/2022] Open
Abstract
Persistent inflammation disrupts functional recovery after spinal cord injury (SCI). Peroxisome proliferator-activated receptor gamma (PPAR-γ) activation promotes functional recovery in SCI rats by inhibiting inflammatory cascades and increasing neuronal survival. We sought to clarify the relationship between PPAR-γ activation and NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome suppression, and the role of NF-κB in activating the NLRP3 inflammasome in neurons. In SCI rats, we found that rosiglitazone (PPAR-γ agonist) inhibited the expression of caspase-1. In in vitro neurons, G3335 (PPAR-γ antagonist) reversed the rosiglitazone-induced inhibition of caspase-1, interleukin 1 (IL-1β), and interleukin 6 (IL-6). Rosiglitazone inhibited the expression of NLRP3, caspase-1, IL-1β, and IL-6. However, the activator of NLRP3 could counteract this inhibition induced by PPAR-γ activation. NF-κB did not participate in the process of rosiglitazone-induced inhibition of NLRP3. Consistent with our in vitro results, we verified that locomotor recovery of SCI rats in vivo was regulated via PPAR-γ, NLRP3, and NF-κB. These results suggest that PPAR-γ activation exerts an anti-inflammatory effect by suppressing the NLRP3 inflammasome—but not NF-κB—in neurons and that PPAR-γ activation is a promising therapeutic target for SCI.
Collapse
|
150
|
Drexel M, Kirchmair J, Santos‐Sierra S. INH14, a Small-Molecule Urea Derivative, Inhibits the IKKα/β-Dependent TLR Inflammatory Response. Chembiochem 2019; 20:710-717. [PMID: 30447158 PMCID: PMC6680106 DOI: 10.1002/cbic.201800647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 11/30/2022]
Abstract
N-(4-Ethylphenyl)-N'-phenylurea (INH14) is a fragment-like compound that inhibits the toll-like receptor 2 (TLR2)-mediated inflammatory activity and other inflammatory pathways (i.e., TLR4, TNF-R and IL-1R). In this study, we determined the molecular target of INH14. Overexpression of proteins that are part of the TLR2 pathway in cells treated with INH14 indicated that the target lay downstream of the complex TAK1/TAB1. Immunoblot assays showed that INH14 decreased IkBα degradation in cells activated by lipopeptide (TLR2 ligand). These data indicated the kinases IKKα and/or IKKβ as the targets of INH14, which was confirmed with kinase assays (IC50 IKKα=8.97 μm; IC50 IKKβ=3.59 μm). Furthermore, in vivo experiments showed that INH14 decreased TNFα formed after lipopeptide-induced inflammation, and treatment of ovarian cancer cells with INH14 led to a reduction of NF-kB constitutive activity and a reduction in the wound-closing ability of these cells. These results demonstrate that INH14 decreases NF-kB activation through the inhibition of IKKs. Optimization of INH14 could lead to potent inhibitors of IKKs that might be used as antiinflammatory drugs.
Collapse
Affiliation(s)
- Meinrad Drexel
- Department of PharmacologyMedical University of Innsbruck6020InnsbruckAustria
| | - Johannes Kirchmair
- Department of ChemistryUniversity of Bergen5020BergenNorway
- Computational Biology Unit (CBU)University of Bergen5020BergenNorway
- Zentrum für BioinformatikBundesstrasse 4320146HamburgGermany
| | - Sandra Santos‐Sierra
- Section of Biochemical PharmacologyMedical University InnsbruckPeter Mayr Strasse 16020InnsbruckAustria
| |
Collapse
|