101
|
McDonough LD, Mishra AA, Tosini N, Kakade P, Penumutchu S, Liang SH, Maufrais C, Zhai B, Taur Y, Belenky P, Bennett RJ, Hohl TM, Koh AY, Ene IV. Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract. mBio 2021; 12:e0287821. [PMID: 34724818 PMCID: PMC8561340 DOI: 10.1128/mbio.02878-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a pathobiont that colonizes multiple niches in the body including the gastrointestinal (GI) tract but is also responsible for both mucosal and systemic infections. Despite its prevalence as a human commensal, the murine GI tract is generally refractory to colonization with the C. albicans reference isolate SC5314. Here, we identify two C. albicans isolates, 529L and CHN1, that stably colonize the murine GI tract in three different animal facilities under conditions where SC5314 is lost from this niche. Analysis of the bacterial microbiota did not show notable differences among mice colonized with the three C. albicans strains. We compared the genotypes and phenotypes of these three strains and identified thousands of single nucleotide polymorphisms (SNPs) and multiple phenotypic differences, including their ability to grow and filament in response to nutritional cues. Despite striking filamentation differences under laboratory conditions, however, analysis of cell morphology in the GI tract revealed that the three isolates exhibited similar filamentation properties in this in vivo niche. Notably, we found that SC5314 is more sensitive to the antimicrobial peptide CRAMP, and the use of CRAMP-deficient mice modestly increased the ability of SC5314 to colonize the GI tract relative to CHN1 and 529L. These studies provide new insights into how strain-specific differences impact C. albicans traits in the host and advance CHN1 and 529L as relevant strains to study C. albicans pathobiology in its natural host niche. IMPORTANCE Understanding how fungi colonize the GI tract is increasingly recognized as highly relevant to human health. The animal models used to study Candida albicans commensalism commonly rely on altering the host microbiome (via antibiotic treatment or defined diets) to establish successful GI colonization by the C. albicans reference isolate SC5314. Here, we characterize two C. albicans isolates that can colonize the murine GI tract without antibiotic treatment and can therefore be used as tools for studying fungal commensalism. Importantly, experiments were replicated in three different animal facilities and utilized three different mouse strains. Differential colonization between fungal isolates was not associated with alterations in the bacterial microbiome but rather with distinct responses to CRAMP, a host antimicrobial peptide. This work emphasizes the importance of C. albicans intraspecies variation as well as host antimicrobial defense mechanisms in defining the outcome of commensal interactions.
Collapse
Affiliation(s)
- Liam D. McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Animesh A. Mishra
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicholas Tosini
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Andrew Y. Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Iuliana V. Ene
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
102
|
Shankar J. Food Habit Associated Mycobiota Composition and Their Impact on Human Health. Front Nutr 2021; 8:773577. [PMID: 34881282 PMCID: PMC8645600 DOI: 10.3389/fnut.2021.773577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobiota is not only associated with healthy homeostasis in the human gut but also helps to adapt to the environment. Food habits, alcohol consumption, intake of probiotics, and contaminated food with a mycotoxin, often lead to the alteration in the mycobiota composition. Impaired immunity of the host may affect fungal symbiosis leading to mycosis. The human gut adapts to the commensalism fungi belonging to the phylum Ascomycota and Basidiomycota. Diet habits such as plant-or animal-based, phytoestrogens enriched plant products, fat-rich diets also influence the colonization of certain fungal species in the mammalian gut. Food habits or mycotoxin-contaminated food or fungal peptides have an impact on bacterial-fungal interaction and human health. The mycobiota population such as Fusarium, Humicola, Aspergillus, and Candida are altered due to alcohol intake in alcoholic liver disease. The role of associated gut mycobiota due to irregular bowel habits or lifestyle change has been observed in inflammatory bowel disease. In this review, it has been observed that Saccharomyces, Aspergillus, Fusarium, Cladosporium, Candida, and Malassezia were the common genus in the human mycobiota. Therefore, this study focused on how diet habits and alcohol intake, among others., influence mycobiota composition that may affect the human immune system or overall health.
Collapse
Affiliation(s)
- Jata Shankar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
103
|
Shi HY, Zhu X, Li WL, Mak JWY, Wong SH, Zhu ST, Guo SL, Chan FKL, Zhang ST, Ng SC. Modulation of gut microbiota protects against viral respiratory tract infections: a systematic review of animal and clinical studies. Eur J Nutr 2021; 60:4151-4174. [PMID: 33852069 PMCID: PMC8044287 DOI: 10.1007/s00394-021-02519-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Earlier studies suggest that probiotics have protective effects in the prevention of respiratory tract infections (RTIs). Whether such benefits apply to RTIs of viral origin and mechanisms supporting the effect remain unclear. AIM To determine the role of gut microbiota modulation on clinical and laboratory outcomes of viral RTIs. METHODS We conducted a systematic review of articles published in Embase and MEDLINE through 20 April 2020 to identify studies reporting the effect of gut microbiota modulation on viral RTIs in clinical studies and animal models. The incidence of viral RTIs, clinical manifestations, viral load and immunological outcomes was evaluated. RESULTS We included 58 studies (9 randomized controlled trials; 49 animal studies). Six of eight clinical trials consisting of 726 patients showed that probiotics administration was associated with a reduced risk of viral RTIs. Most commonly used probiotics were Lactobacillus followed by Bifidobacterium and Lactococcus. In animal models, treatment with probiotics before viral challenge had beneficial effects against influenza virus infection by improving infection-induced survival (20/22 studies), mitigating symptoms (21/21 studies) and decreasing viral load (23/25 studies). Probiotics and commensal gut microbiota exerted their beneficial effects through strengthening host immunity. CONCLUSION Modulation of gut microbiota represents a promising approach against viral RTIs via host innate and adaptive immunity regulation. Further research should focus on next generation probiotics specific to viral types in prevention and treatment of emerging viral RTIs.
Collapse
Affiliation(s)
- Hai Yun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Xi Zhu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Lin Li
- Department of Medicine, Division of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joyce W Y Mak
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheng Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Shui Long Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Francis K L Chan
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (MagIC) Limited, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Siew C Ng
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Microbiota I-Center (MagIC) Limited, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
104
|
Li K, Liu X, Zhang X, Liu Z, Yu Y, Zhao J, Wang L, Kong Y, Chen M. Identification microbial glycans substructure associate with disease and species. Carbohydr Polym 2021; 273:118595. [PMID: 34560996 DOI: 10.1016/j.carbpol.2021.118595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
The microbial glycans mediate many significant biological acts, such as pathogen survival, host-microbe interactions, and immune evasion. The systematic study of microbial glycans structure remains challenging because of its high complexity and variability. In this study, we screened all the microbial glycans structures in the CSDB (Carbohydrate Structure Database), disassembled them into substructures, and calculated all the substructures' numbers. The results showed that a large number of glycan substructures are shared among different microorganisms. Further analysis showed that the glycan substructures appeared in specific bacterial groups may be related to the species and pathogenicity of microorganisms. Broadly, these findings provided an alternative approach or clue to discover the hidden information and the biological functions of glycans. The results can be used to detect broad-scope pathogen or prepare broad-spectrum vaccines.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoyu Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Xunlian Zhang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Zhaoxi Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Yue Yu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China; School of Life Sciences, Shandong Normal University, Jinan, Shandong 250,000, China
| | - Jiayu Zhao
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Yun Kong
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Min Chen
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
105
|
Sun S, Xu X, Liang L, Wang X, Bai X, Zhu L, He Q, Liang H, Xin X, Wang L, Lou C, Cao X, Chen X, Li B, Wang B, Zhao J. Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Front Immunol 2021; 12:777665. [PMID: 34899735 PMCID: PMC8652295 DOI: 10.3389/fimmu.2021.777665] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022] Open
Abstract
Lactic acid, a metabolic by-product of host and intestinal microbiota, has been recovered as an active signal molecule in the immune system. In this study, a lactic acid biosynthesis pathway that directly produces lactic acid from glucose rather than ethanol with high production was reconstructed in Saccharomyces cerevisiae. The engineered S. cerevisiae showed anti-inflammatory activity in dextran sulfate sodium (DSS)-induced mice with improved histological damage, increased mucosal barrier, and decreased intestinal immune response. Lactic acid regulated the macrophage polarization state and inhibited the expression of pro-inflammatory cytokines in vivo and in vitro. Increasing the macrophage monocarboxylic acid transporter-mediated active lactic acid uptake suppressed the excessive activation of the NLRP3 inflammasome and the downstream caspase-1 pathway in macrophages. Moreover, lactic acid promoted histone H3K9 acetylation and histone H3K18 lactylation. Meanwhile, the engineered S. cerevisiae altered the diversity and composition of the intestinal microbiota and changed the abundance of metabolic products in mice with colitis. In conclusion, this study shows that the application of engineered S. cerevisiae attenuated DSS-induced colitis in mice via suppressing macrophage pyroptosis and modulating the intestinal microbiota, which is an effective and safe treatment strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiuxiu Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ling Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xue Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qijin He
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Xin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Li Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chenxi Lou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
106
|
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
107
|
Sun S, Sun L, Wang K, Qiao S, Zhao X, Hu X, Chen W, Zhang S, Li H, Dai H, Liu H. The gut commensal fungus, Candida parapsilosis, promotes high fat-diet induced obesity in mice. Commun Biol 2021; 4:1220. [PMID: 34697386 PMCID: PMC8546080 DOI: 10.1038/s42003-021-02753-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 01/07/2023] Open
Abstract
Gut fungi is known to play many important roles in human health regulations. Herein, we investigate the anti-obesity efficacy of the antifungal antibiotics (amphotericin B, fluconazole and 5-fluorocytosine) in the high fat diet-fed (HFD) mice. Supplementation of amphotericin B or fluconazole in water can effectively inhibit obesity and its related disorders, whereas 5-fluorocytosine exhibit little effects. The gut fungus Candida parapsilosis is identified as a key commensal fungus related to the diet-induced obesity by the culture-dependent method and the inoculation assay with C. parapsilosis in the fungi-free mice. In addition, the increase of free fatty acids in the gut due to the production of fungal lipases from C. parapsilosis is confirmed as one mechanism by which C. parapsilosis promotes obesity. The current study demonstrates the gut C. parapsilosis as a causal fungus for the development of diet-induced obesity in mice and highlights the therapeutic strategy targeting the gut fungi. Shanshan Sun, Li Sun, Kai Wang, et al. report that the gut commensal Candida parapsilosis is a causative fungus for the development of high fat-diet induced obesity in mice. Their results suggest that fungi could represent possible targets for combating obesity.
Collapse
Affiliation(s)
- Shanshan Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,The Second Hospital of Anhui Medical University, Hefei, China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanshan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyue Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xiaomin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Wei Chen
- Department of Clinical Nutrition, Dept. of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Hantian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
108
|
Mercurio K, Singh D, Walden E, Baetz K. Global analysis of Saccharomyces cerevisiae growth in mucin. G3 (BETHESDA, MD.) 2021; 11:jkab294. [PMID: 34849793 PMCID: PMC8527512 DOI: 10.1093/g3journal/jkab294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022]
Abstract
Metagenomic profiling of the human gut microbiome has discovered DNA from dietary yeasts like Saccharomyces cerevisiae. However, it is unknown if the S. cerevisiae detected by common metagenomic methods are from dead dietary sources, or from live S. cerevisiae colonizing the gut similar to their close relative Candida albicans. While S. cerevisiae can adapt to minimal oxygen and acidic environments, it has not been explored whether this yeast can metabolize mucin, the large, gel-forming, highly glycosylated proteins representing a major source of carbon in the gut mucosa. We reveal that S. cerevisiae can utilize mucin as their main carbon source, as well as perform both a transcriptome analysis and a chemogenomic screen to identify biological pathways required for this yeast to grow optimally in mucin. In total, 739 genes demonstrate significant differential expression in mucin culture, and deletion of 21 genes impact growth in mucin. Both screens suggest that mitochondrial function is required for proper growth in mucin, and through secondary assays we determine that mucin exposure induces mitogenesis and cellular respiration. We further show that deletion of an uncharacterized ORF, YCR095W-A, led to dysfunction in mitochondrial morphology and oxygen consumption in mucin. Finally, we demonstrate that Yps7, an aspartyl protease and homolog to mucin-degrading proteins in C. albicans, is important for growth on mucin. Collectively, our work serves as the initial step toward establishing how this common dietary fungus can survive in the mucus environment of the human gut.
Collapse
Affiliation(s)
- Kevin Mercurio
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Dylan Singh
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Elizabeth Walden
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
109
|
Sheng B, Chen Y, Sun L, Xu P, Han B, Li X, Yin J, Li T, Guan H, Chen S, Wang Q, Li C, Li S, Jiang X, Wang P, He Q, Wang Y, Xiao W, Yang H. Antifungal Treatment Aggravates Sepsis through the Elimination of Intestinal Fungi. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2796700. [PMID: 34707775 PMCID: PMC8545547 DOI: 10.1155/2021/2796700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Prophylactic antifungal therapy is widely adopted clinically for critical patients and effective in reducing the morbidity of invasive fungal infection and improves outcomes of those diagnosed patients; however, it is not associated with higher overall survival. As intestinal commensal fungi play a fundamental role in the host immune response in health and disease, we propose that antifungal therapy may eliminate intestinal fungi and aggravate another critical syndrome, sepsis. Here, with murine sepsis model, we found that antifungal therapy with fluconazole dismissed intestinal fungal burden and aggravated endotoxin-induced but no gram-positive bacteria-induced sepsis. Nevertheless, antifungal therapy did not exert its detrimental effect on germ-free mice. Moreover, colonizing more commensal fungi in the mouse intestine or administration of fungal cell wall component mannan protected the mice from endotoxin-induced sepsis. On the molecular level, we demonstrated that antifungal therapy aggravated endotoxin sepsis through promoting Gasdermin D cleavage in the distal small intestine. Intestinal colonization with commensal fungi inhibited Gasdermin D cleavage in response to lipopolysaccharide challenge. These findings show that intestinal fungi inhibit Gasdermin D-mediated pyroptosis and protect the mice from endotoxin-induced sepsis. This study demonstrates the protective role of intestinal fungi in the pathogenesis of endotoxin-induced sepsis in the laboratory. It will undoubtedly prompt us to study the relationship between antifungal therapy and sepsis in critical patients who are susceptible to endotoxin-induced sepsis in the future.
Collapse
Affiliation(s)
- Baifa Sheng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Department of Emergency Medicine, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Department of General Surgery, The First Mobile Corps Hospital of PAP, Dingzhou City, 073000 Hebei Province, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Peng Xu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Teming Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Haidi Guan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Qi Wang
- Division of Hematology-Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chuangen Li
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Shiqiang Li
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Xianhong Jiang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Peng Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Qiuyue He
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing 400038, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
110
|
Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021; 12:636131. [PMID: 34630340 PMCID: PMC8493257 DOI: 10.3389/fmicb.2021.636131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The influence of microbiological species has gained increased visibility and traction in the medical domain with major revelations about the role of bacteria on symbiosis and dysbiosis. A large reason for these revelations can be attributed to advances in deep-sequencing technologies. However, the research on the role of fungi has lagged. With the continued utilization of sequencing technologies in conjunction with traditional culture assays, we have the opportunity to shed light on the complex interplay between the bacteriome and the mycobiome as they relate to human health. In this review, we aim to offer a comprehensive overview of the human mycobiome in healthy and diseased states in a systematic way. The authors hope that the reader will utilize this review as a scaffolding to formulate their understanding of the mycobiome and pursue further research.
Collapse
Affiliation(s)
- Kirtishri Mishra
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Laura Bukavina
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mahmoud Ghannoum
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Center for Medical Mycology, and Integrated Microbiome Core, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
111
|
Huang XW, Xu MN, Zheng HX, Wang ML, Li L, Zeng K, Li DD. Pre-exposure to Candida glabrata protects Galleria mellonella against subsequent lethal fungal infections. Virulence 2021; 11:1674-1684. [PMID: 33200667 PMCID: PMC7714416 DOI: 10.1080/21505594.2020.1848107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Commensal fungi are an important part of human microbial community, among which Candida albicans and Candida glabrata are two common opportunistic pathogens. Unlike the high pathogenicity of C. albicans, C. glabrata is reported to show low pathogenicity to the host. Here, by using a Galleria mellonella infection model, we were able to confirm the much lower virulence of C. glabrata than C. albicans. Interestingly, pre-exposure to live C. glabrata (LCG) protects the larvae against subsequent various lethal fungal infections, including C. albicans, Candida tropicalis, and Cryptococcus neoformans. Inconsistently, heat-inactivated C. glabrata (HICG) pre-exposure can only protect against C. albicans or C. tropicalis re-infection, but not C. neoformans. Mechanistically, LCG or HICG pre-exposure enhanced the fungicidal activity of hemocytes against C. albicans or C. tropicalis. Meanwhile, LCG pre-exposure enhanced the humoral immunity by modulating the expression of fungal defending proteins in the cell-free hemolymph, which may contribute to the protection against C. neoformans. Together, this study suggests the important role of C. glabrata in enhancing host immunity, and demonstrates the great potential of G. mellonella model in studying the innate immune responses against infections.
Collapse
Affiliation(s)
- Xiao-Wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Mei-Nian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Huan-Xin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Meng-Lei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - De-Dong Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh , Pittsburgh, PA, USA.,Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
112
|
Alterations of the gut mycobiome in patients with MS. EBioMedicine 2021; 71:103557. [PMID: 34455391 PMCID: PMC8399064 DOI: 10.1016/j.ebiom.2021.103557] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The mycobiome is the fungal component of the gut microbiome and is implicated in several autoimmune diseases. However, its role in MS has not been studied. METHODS In this case-control observational study, we performed ITS sequencing and characterised the gut mycobiome in people with MS (pwMS) and healthy controls at baseline and after six months. FINDINGS The mycobiome had significantly higher alpha diversity and inter-subject variation in pwMS than controls. Saccharomyces and Aspergillus were over-represented in pwMS. Saccharomyces was positively correlated with circulating basophils and negatively correlated with regulatory B cells, while Aspergillus was positively correlated with activated CD16+ dendritic cells in pwMS. Different mycobiome profiles, defined as mycotypes, were associated with different bacterial microbiome and immune cell subsets in the blood. Initial treatment with dimethyl fumarate, a common immunomodulatory therapy which also has fungicidal activity, did not cause uniform gut mycobiome changes across all pwMS. INTERPRETATION There is an alteration of the gut mycobiome in pwMS, compared to healthy controls. Further study is required to assess any causal association of the mycobiome with MS and its direct or indirect interactions with bacteria and autoimmunity. FUNDING This work was supported by the Washington University in St. Louis Institute of Clinical and Translational Sciences, funded, in part, by Grant Number # UL1 TR000448 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (Zhou Y, Piccio, L, Lovett-Racke A and Tarr PI); R01 NS102633-04 (Zhou Y, Piccio L); the Leon and Harriet Felman Fund for Human MS Research (Piccio L and Cross AH). Cantoni C. was supported by the National MS Society Career Transition Fellowship (TA-1805-31003) and by donations from Whitelaw Terry, Jr. / Valerie Terry Fund. Ghezzi L. was supported by the Italian Multiple Sclerosis Society research fellowship (FISM 2018/B/1) and the National Multiple Sclerosis Society Post-Doctoral Fellowship (FG- 1907-34474). Anne Cross was supported by The Manny & Rosalyn Rosenthal-Dr. John L. Trotter MS Center Chair in Neuroimmunology of the Barnes-Jewish Hospital Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
|
113
|
Lv QZ, Li DD, Han H, Yang YH, Duan JL, Ma HH, Yu Y, Chen JY, Jiang YY, Jia XM. Priming with FLO8-deficient Candida albicans induces Th1-biased protective immunity against lethal polymicrobial sepsis. Cell Mol Immunol 2021; 18:2010-2023. [PMID: 33154574 PMCID: PMC7642578 DOI: 10.1038/s41423-020-00576-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
The morphological switch between yeast and hyphae of Candida albicans is essential for its interaction with the host defense system. However, the lack of understanding of host-pathogen interactions during C. albicans infection greatly hampers the development of effective immunotherapies. Here, we found that priming with the C. albicans FLO8-deficient (flo8) mutant, locked in yeast form, protected mice from subsequent lethal C. albicans infection. Deficiency of Dectin-2, a fungus-derived α-mannan recognition receptor, completely blocked flo8 mutant-induced protection. Mechanistically, the flo8 mutant-induced Dectin-2/CARD9-mediated IL-10 production in DCs and macrophages to block thymus atrophy by inhibiting the C. albicans-induced apoptosis of thymic T cells, which facilitated the continuous output of naive T cells from the thymus to the spleen. Continuous recruitment of naive T cells to the spleen enhanced Th1-biased antifungal immune responses. Consequently, depletion of CD4+ T cells or blockade of IL-10 receptor function using specific antibodies in mice completely blocked the protective effects of flo8 mutant priming against C. albicans infection. Moreover, mannans exposed on the surface of the flo8 mutant were responsible for eliciting protective immunity by inhibiting the C. albicans-induced apoptosis of thymic T cells to sustain the number of naive T cells in the spleen. Importantly, priming with the flo8 mutant extensively protected mice from polymicrobial infection caused by cecal ligation and puncture (CLP) by enhancing Th1-biased immune responses. Together, our findings imply that targeting FLO8 in C. albicans elicits protective immune responses against polymicrobial infections and that mannans extracted from the flo8 mutant are potential immunotherapeutic candidate(s) for controlling infectious diseases.
Collapse
Affiliation(s)
- Quan-Zhen Lv
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - De-Dong Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hua Han
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi-Heng Yang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jie-Lin Duan
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hui-Hui Ma
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yao Yu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiang-Ye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan-Ying Jiang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
114
|
Bellotti R, Speth C, Adolph TE, Lass-Flörl C, Effenberger M, Öfner D, Maglione M. Micro- and Mycobiota Dysbiosis in Pancreatic Ductal Adenocarcinoma Development. Cancers (Basel) 2021; 13:cancers13143431. [PMID: 34298645 PMCID: PMC8303110 DOI: 10.3390/cancers13143431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysbiosis of the intestinal flora has emerged as an oncogenic contributor in different malignancies. Recent findings suggest a crucial tumor-promoting role of micro- and mycobiome alterations also in the development of pancreatic ductal adenocarcinoma (PDAC). METHODS To summarize the current knowledge about this topic, a systematic literature search of articles published until October 2020 was performed in MEDLINE (PubMed). RESULTS An increasing number of publications describe associations between bacterial and fungal species and PDAC development. Despite the high inter-individual variability of the commensal flora, some studies identify specific microbial signatures in PDAC patients, including oral commensals like Porphyromonas gingivalis and Fusobacterium nucleatum or Gram-negative bacteria like Proteobacteria. The role of Helicobacter spp. remains unclear. Recent isolation of Malassezia globosa from PDAC tissue suggest also the mycobiota as a crucial player of tumorigenesis. Based on described molecular mechanisms and interactions between the pancreatic tissue and the immune system this review proposes a model of how the micro- and the mycobial dysbiosis could contribute to tumorigenesis in PDAC. CONCLUSIONS The presence of micro- and mycobial dysbiosis in pancreatic tumor tissue opens a fascinating perspective on PDAC oncogenesis. Further studies will pave the way for novel tumor markers and treatment strategies.
Collapse
Affiliation(s)
- Ruben Bellotti
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
- Correspondence: ; Tel.: +43-504-51280 (ext. 809)
| |
Collapse
|
115
|
Amenyogbe N, Adu-Gyasi D, Enuameh Y, Asante KP, Konadu DG, Kaali S, Dosoo D, Panigrahi P, Kollmann TR, Mohn WW, Owusu-Agyei S. Bacterial and Fungal Gut Community Dynamics Over the First 5 Years of Life in Predominantly Rural Communities in Ghana. Front Microbiol 2021; 12:664407. [PMID: 34295315 PMCID: PMC8290483 DOI: 10.3389/fmicb.2021.664407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background Bacterial and fungal microbiotas are increasingly recognized as important in health and disease starting early in life. However, microbiota composition has not yet been investigated in most rural, low-resource settings, and in such settings, bacterial and fungal microbiotas have not been compared. Thus, we applied 16S and ITS2 amplicon sequencing, respectively, to investigate bacterial and fungal fecal microbiotas in rural Ghanaian children cross-sectionally from birth to 5 years of age. Corresponding maternal fecal and breast milk microbiotas were additionally investigated. Results While bacterial communities differed systematically across the age spectrum in composition and diversity, the same was not observed for the fungal microbiota. We also identified a novel and dramatic change in the maternal postpartum microbiota. This change included much higher abundance of Escherichia coli and much lower abundance of Prevotella in the first vs. fourth week postpartum. While infants shared more bacterial taxa with their mother’s stool and breast milk than with those of unrelated mothers, there were far fewer shared fungal taxa. Conclusion Given the known ability of commensal fungi to influence host health, the distinct pattern of their acquisition likely has important health consequences. Similarly, the dynamics of mothers’ bacterial microbiotas around the time of birth may have important consequences for their children’s health. Both topics require further study.
Collapse
Affiliation(s)
- Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada.,Systems Vaccinology, Telethon Kids Institute, Perth, WA, Australia
| | - Dennis Adu-Gyasi
- Research and Development Division, Ghana Health Service, Kintampo Health Research Centre, Kintampo North, Ghana
| | - Yeetey Enuameh
- Research and Development Division, Ghana Health Service, Kintampo Health Research Centre, Kintampo North, Ghana.,Department of Epidemiology and Biostatistics, School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwaku Poku Asante
- Research and Development Division, Ghana Health Service, Kintampo Health Research Centre, Kintampo North, Ghana
| | - Dennis Gyasi Konadu
- Research and Development Division, Ghana Health Service, Kintampo Health Research Centre, Kintampo North, Ghana
| | - Seyram Kaali
- Research and Development Division, Ghana Health Service, Kintampo Health Research Centre, Kintampo North, Ghana
| | - David Dosoo
- Research and Development Division, Ghana Health Service, Kintampo Health Research Centre, Kintampo North, Ghana
| | - Pinaki Panigrahi
- Pediatrics Academic Department, Georgetown University Medical Centre, Washington, DC, United States
| | - Tobias R Kollmann
- Systems Vaccinology, Telethon Kids Institute, Perth, WA, Australia.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Seth Owusu-Agyei
- Research and Development Division, Ghana Health Service, Kintampo Health Research Centre, Kintampo North, Ghana.,Institute of Health Research, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
116
|
Runge S, Rosshart SP. The Mammalian Metaorganism: A Holistic View on How Microbes of All Kingdoms and Niches Shape Local and Systemic Immunity. Front Immunol 2021; 12:702378. [PMID: 34276696 PMCID: PMC8278200 DOI: 10.3389/fimmu.2021.702378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The field of microbiome research has developed rapidly over the past decades and has become a topic of major interest to basic, preclinical, and clinical research, the pharmaceutical industry as well as the general public. The microbiome is a complex and diverse ecosystem and defined as the collection of all host-associated microorganisms and their genes. It is acquired through vertical transmission and environmental exposure and includes microbes of all kingdoms: bacteria, archaea, prokaryotic and eukaryotic viruses, fungi, protozoa, and the meiofauna. These microorganisms co-evolved with their respective hosts over millions of years, thereby establishing a mutually beneficial, symbiotic relationship on all epithelial barriers. Thus, the microbiome plays a pivotal role in virtually every aspect of mammalian physiology, particularly in the development, homeostasis, and function of the immune system. Consequently, the combination of the host genome and the microbial genome, together referred to as the metagenome, largely drives the mammalian phenotype. So far, the majority of studies have unilaterally focused on the gastrointestinal bacterial microbiota. However, recent work illustrating the impact of viruses, fungi, and protozoa on host immunity urges us towards a holistic view of the mammalian microbiome and the appreciation for its non-bacterial kingdoms. In addition, the importance of microbiota on epithelial barriers other than the gut as well as their systemic effects via microbially-derived biologically active compounds is increasingly recognized. Here, we want to provide a brief but comprehensive overview of the most important findings and the current knowledge on how microbes of all kingdoms and microbial niches shape local and systemic immunity in health and disease.
Collapse
Affiliation(s)
- Solveig Runge
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan Patrick Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
117
|
Therapeutic potential of an intestinotrophic hormone, glucagon-like peptide 2, for treatment of type 2 short bowel syndrome rats with intestinal bacterial and fungal dysbiosis. BMC Infect Dis 2021; 21:583. [PMID: 34134659 PMCID: PMC8207711 DOI: 10.1186/s12879-021-06270-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies showed that type 2 short bowel syndrome (SBS) rats were accompanied by severe intestinal bacterial dysbiosis. Limited data are available for intestinal fungal dysbiosis. Moreover, no effective therapeutic drugs are available for these microbiota dysbiosis. The aims of our study were to investigate the therapeutic potential of glucagon-like peptide 2 (GLP-2) for these microbiota dysbiosis in type 2 SBS rats. Methods 8-week-old male SD rats which underwent 80% small bowel resection, ileocecum resection, partial colon resection and jejunocolostomy, were treated with saline (SBS group, n = 5) or GLP-2 (GLP2.SBS group, n = 5). The Sham group rats which underwent transection and re-anastomosis were given a saline placebo (Sham group, n = 5). 16S rRNA and ITS sequencing were applied to evaluate the colonic bacterial and fungal composition at 22 days after surgery, respectively. Results The relative abundance of Actinobacteria, Firmicutes and proinflammatory Proteobacteria increased significantly in SBS group rats, while the relative abundance of Bacteroidetes, Verrucomicrobia and Tenericutes decreased remarkably. GLP-2 treatment significantly decreased Proteus and increased Clostridium relative to the saline treated SBS rats. The diversity of intestinal fungi was significantly increased in SBS rats, accompanied with some fungi abnormally increased and some resident fungi (e.g., Penicillium) significantly decreased. GLP-2 treatment significantly decreased Debaryomyces and Meyerozyma, and increased Penicillium. Moreover, GLP-2 partially restored the bacteria-fungi interkingdom interaction network of SBS rats. Conclusion Our study confirms the bacterial and fungal dysbiosis in type 2 SBS rats, and GLP-2 partially ameliorated these microbiota dysbiosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06270-w.
Collapse
|
118
|
Candida albicans triggers qualitative and temporal responses in gut bacteria. J Mycol Med 2021; 31:101164. [PMID: 34147760 DOI: 10.1016/j.mycmed.2021.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Interactions between commensal intestinal bacteria and fungi are collectively beneficial in maintaining the balance of the gut microflora and preventing gastrointestinal diseases. However, the contributions of specific bacterial species in response to fungal dysbiosis in the gut remain poorly defined. Here, to understand the dynamic changes, we established acute a challenge with Candida albicans in mice treated without antibiotics and analyzed the changes in the diversity of bacteria during the imbalance in intestinal C. albicans with high-throughput amplicon sequencing. Our results showed significant increases in species diversity after the first day of fungal challenge and the restoration of balance among the gut microflora on the third day of challenge. To explore the interactions between the intestinal bacteria and C. albicans, the antifungal activities of bacteria isolated from the mouse feces were also determined. Nineteen aerobic bacteria with antifungal activity were identified with whole 16S rRNA gene sequencing. These bacteria were isolated on the first day of challenge more than on the third day. These results suggested that the commensal intestinal bacteria may protect the host against fungal dysbiosis in the gut by altering their own species diversity. The interaction between bacteria and fungi in the gut may be the key to maintaining the dynamic balance of microorganisms in the context of environmental changes.
Collapse
|
119
|
LeibundGut-Landmann S. Tissue-Resident Memory T Cells in Antifungal Immunity. Front Immunol 2021; 12:693055. [PMID: 34113356 PMCID: PMC8185520 DOI: 10.3389/fimmu.2021.693055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi are an integral part of the mammalian microbiota colonizing most if not all mucosal surfaces and the skin. Maintaining stable colonization on these surfaces is critical for preventing fungal dysbiosis and infection, which in some cases can lead to life threatening consequences. The epithelial barriers are protected by T cells and additional controlling immune mechanisms. Noncirculating memory T cells that reside stably in barrier tissues play an important role for host protection from commensals and recurrent pathogens due to their fast response and local activity, which provides them a strategic advantage. So far, only a few specific examples of tissue resident memory T cells (TRMs) that act against fungi have been reported. This review provides an overview of the characteristics and functional attributes of TRMs that have been established based on human and mouse studies with various microbes. It highlights what is currently known about fungi specific TRMs mediating immunosurveillance, how they have been targeted in preclinical vaccination approaches and how they can promote immunopathology, if not controlled. A better appreciation of the host protective and damaging roles of TRMs might accelerate the development of novel tissue specific preventive strategies against fungal infections and fungi-driven immunopathologies.
Collapse
Affiliation(s)
- Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
120
|
Durmusoglu D, Al’Abri IS, Collins SP, Cheng J, Eroglu A, Beisel CL, Crook N. In Situ Biomanufacturing of Small Molecules in the Mammalian Gut by Probiotic Saccharomyces boulardii. ACS Synth Biol 2021; 10:1039-1052. [PMID: 33843197 DOI: 10.1021/acssynbio.0c00562] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Saccharomyces boulardii is a probiotic yeast that exhibits rapid growth at 37 °C, is easy to transform, and can produce therapeutic proteins in the gut. To establish its ability to produce small molecules encoded by multigene pathways, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements. We next demonstrated efficient (>95%) CRISPR-mediated genome editing in this strain, allowing us to probe engineered gene expression across different genomic sites. We leveraged these strategies to assemble pathways enabling a wide range of vitamin precursor (β-carotene) and drug (violacein) titers. We found that S. boulardii colonizes germ-free mice stably for over 30 days and competes for niche space with commensal microbes, exhibiting short (1-2 day) gut residence times in conventional and antibiotic-treated mice. Using these tools, we enabled β-carotene synthesis (194 μg total) in the germ-free mouse gut over 14 days, estimating that the total mass of additional β-carotene recovered in feces was 56-fold higher than the β-carotene present in the initial probiotic dose. This work quantifies heterologous small molecule production titers by S. boulardii living in the mammalian gut and provides a set of tools for modulating these titers.
Collapse
Affiliation(s)
- Deniz Durmusoglu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ibrahim S. Al’Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Scott P. Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Room 3204, Kannapolis, North Carolina 28081, United States
| | - Abdulkerim Eroglu
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Room 3204, Kannapolis, North Carolina 28081, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, 120 Broughton Drive, Room 351, Raleigh, North Carolina 27695-7622, United States
| | - Chase L. Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg 97080, Germany
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
121
|
Heavey MK, Anselmo AC. Modulating Oral Delivery and Gastrointestinal Kinetics of Recombinant Proteins via Engineered Fungi. AAPS J 2021; 23:76. [PMID: 34009532 PMCID: PMC8195623 DOI: 10.1208/s12248-021-00606-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
A new modality in microbe-mediated drug delivery has recently emerged wherein genetically engineered microbes are used to locally deliver recombinant therapeutic proteins to the gastrointestinal tract. These engineered microbes are often referred to as live biotherapeutic products (LBPs). Despite advanced genetic engineering and recombinant protein expression approaches, little is known on how to control the spatiotemporal dynamics of LBPs and their secreted therapeutics within the gastrointestinal tract. To date, the fundamental pharmacokinetic analyses for microbe-mediated drug delivery systems have not been described. Here, we explore the pharmacokinetics of an engineered, model protein-secreting Saccharomyces cerevisiae, which serves as an ideal organism for the oral delivery of complex, post-translationally modified proteins. We establish three methods to modulate the pharmacokinetics of an engineered, recombinant protein-secreting fungi system: (i) altering oral dose of engineered fungi, (ii) co-administering antibiotics, and (iii) altering recombinant protein secretion titer. Our findings establish the fundamental pharmacokinetics which will be essential in controlling downstream therapeutic response for this new delivery modality.
Collapse
Affiliation(s)
- Mairead K Heavey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, North Carolina, 27599, Chapel Hill, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, North Carolina, 27599, Chapel Hill, USA.
| |
Collapse
|
122
|
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early Life Microbiota and Respiratory Tract Infections. Cell Host Microbe 2021; 28:223-232. [PMID: 32791114 DOI: 10.1016/j.chom.2020.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
Over the last decade, it has become clear that respiratory and intestinal tract microbiota are related to pathogenesis of respiratory tract infections (RTIs). Host and environmental factors can drive respiratory microbiota maturation in early life, which in turn is related to consecutive susceptibility to RTIs. Moreover, during RTIs, including viral bronchiolitis, the local microbiome appears to play an immunomodulatory role through complex interactions, though causality has not yet been fully demonstrated. The microbiota is subsequently associated with recovery after RTIs and can be related to persistent or long-term sequelae. In this Review, we explore the epidemiological evidence supporting these associations and link to mechanistic insights. The long-term consequences of childhood RTIs and the comprehensive role of the microbiota at various stages in RTI pathogenesis call for early life preventative and therapeutic interventions to promote respiratory health.
Collapse
Affiliation(s)
- Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Justyna Binkowska
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
123
|
Healthcare associated diarrhea, not Clostridioides difficile. Curr Opin Infect Dis 2021; 33:319-326. [PMID: 32657969 DOI: 10.1097/qco.0000000000000653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to review the epidemiology, cause, diagnostic evaluation, and management of healthcare-associated diarrhea (HCAD) with particular attention to current epidemiology and recent developments in diagnostics. RECENT FINDINGS Multiplex polymerase chain reaction gastrointestinal panels allow rapid detection of a wide array of potential enteropathogens but the role, yield, and utility of these tests have not been systematically assessed in patients with HCAD. Recent epidemiologic studies reaffirm that HCAD is predominantly a noninfectious condition most often caused by medications or underlying medical conditions, sometimes Clostridioides difficile, and occasionally viruses. Other infections are rare. SUMMARY Clinical assessment remains fundamental to the evaluation of HCAD and targeted testing for C. difficile is sufficient in most patients. Multiplex gastrointestinal panels may have a role in immunocompromised patients but more study is needed. Medication-induced diarrhea is common and underappreciated and not limited to antibiotics, laxatives, and enemas.
Collapse
|
124
|
|
125
|
Duan JL, He HQ, Yu Y, Liu T, Ma SJ, Li F, Jiang YS, Lin X, Li DD, Lv QZ, Ma HH, Jia XM. E3 ligase c-Cbl regulates intestinal inflammation through suppressing fungi-induced noncanonical NF-κB activation. SCIENCE ADVANCES 2021; 7:7/19/eabe5171. [PMID: 33962939 PMCID: PMC8104877 DOI: 10.1126/sciadv.abe5171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Intestinal fungi are critical for modulating host immune homeostasis and underlying mechanisms remain unclear. We show that dendritic cell (DC)-specific deficiency of casitas B-lineage lymphoma (c-Cbl) renders mice susceptible to dextran sodium sulfate (DSS)-induced colitis. Mechanistically, we identify that c-Cbl functions downstream of Dectin-2 and Dectin-3 to mediate the ubiquitination and degradation of noncanonical nuclear factor κB subunit RelB. Thus, c-Cbl deficiency in DCs promotes α-mannan-induced activation of RelB, which suppresses p65-mediated transcription of an anti-inflammatory cytokine gene, il10, thereby aggravating DSS-induced colitis. Moreover, suppressing fungal growth with fluconazole or inhibition of RelB activation in vivo attenuates colitis in mice with DC-specific deletion of c-Cbl. We also demonstrate an interaction between c-Cbl and c-Abl tyrosine kinase and find that treatment with DPH, a c-Abl agonist, synergistically increases fungi-induced c-Cbl activation to restrict colitis. Together, these findings unravel a previously unidentified fungi-induced c-Cbl/RelB axis that sustains intestinal homeostasis and protects against intestinal inflammation.
Collapse
Affiliation(s)
- Jie-Lin Duan
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Hui-Qian He
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yao Yu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Tao Liu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Shu-Jun Ma
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yan-Shan Jiang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University-Peking University Jointed Center for Life Sciences, Beijing 100084, China
| | - De-Dong Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Quan-Zhen Lv
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Hui-Hui Ma
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
126
|
Guo J, Han X, Huang W, You Y, Zhan J. Gut dysbiosis during early life: causes, health outcomes, and amelioration via dietary intervention. Crit Rev Food Sci Nutr 2021; 62:7199-7221. [PMID: 33909528 DOI: 10.1080/10408398.2021.1912706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The colonization and maturation of gut microbiota (GM) is a delicate and precise process, which continues to influence not only infancy and childhood but also adulthood health by affecting immunity. However, many perinatal factors, including gestational age, delivery mode, antibiotic administration, feeding mode, and environmental and maternal factors, can disturb this well-designed process, increasing the morbidity of various gut dysbiosis-related diseases, such as type-1-diabetes, allergies, necrotizing enterocolitis, and obesity. In this review, we discussed the early-life colonization and maturation of the GM, factors influencing this process, and diseases related to the disruption of this process. Moreover, we focused on discussing dietary interventions, including probiotics, oligosaccharides, nutritional supplementation, and exclusive enteral nutrition, in ameliorating early-life dysbiosis and diseases related to it. Furthermore, possible mechanisms, and shortcomings, as well as potential solutions to the drawbacks of dietary interventions, were also discussed.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- Peking University School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
127
|
Lv L, Gu S, Jiang H, Yan R, Chen Y, Chen Y, Luo R, Huang C, Lu H, Zheng B, Zhang H, Xia J, Tang L, Sheng G, Li L. Gut mycobiota alterations in patients with COVID-19 and H1N1 infections and their associations with clinical features. Commun Biol 2021; 4:480. [PMID: 33850296 PMCID: PMC8044104 DOI: 10.1038/s42003-021-02036-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The relationship between gut microbes and COVID-19 or H1N1 infections is not fully understood. Here, we compared the gut mycobiota of 67 COVID-19 patients, 35 H1N1-infected patients and 48 healthy controls (HCs) using internal transcribed spacer (ITS) 3-ITS4 sequencing and analysed their associations with clinical features and the bacterial microbiota. Compared to HCs, the fungal burden was higher. Fungal mycobiota dysbiosis in both COVID-19 and H1N1-infected patients was mainly characterized by the depletion of fungi such as Aspergillus and Penicillium, but several fungi, including Candida glabrata, were enriched in H1N1-infected patients. The gut mycobiota profiles in COVID-19 patients with mild and severe symptoms were similar. Hospitalization had no apparent additional effects. In COVID-19 patients, Mucoromycota was positively correlated with Fusicatenibacter, Aspergillus niger was positively correlated with diarrhoea, and Penicillium citrinum was negatively correlated with C-reactive protein (CRP). In H1N1-infected patients, Aspergillus penicilloides was positively correlated with Lachnospiraceae members, Aspergillus was positively correlated with CRP, and Mucoromycota was negatively correlated with procalcitonin. Therefore, gut mycobiota dysbiosis occurs in both COVID-19 patients and H1N1-infected patients and does not improve until the patients are discharged and no longer require medical attention. Lv et al. associate the gut mycobiota with clinical features and the bacterial microbiota by comparing COVID-19 patients to those infected with H1N1 and healthy controls. They find that gut mycobiota dysbiosis occurs in both COVID-19 patients and those infected with H1N1 and that it does not improve until patients no longer require medical attention, providing insights into a better healthcare guideline.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Luo
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenjie Huang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingling Tang
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guoping Sheng
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
128
|
Fungi of the human gut microbiota: Roles and significance. Int J Med Microbiol 2021; 311:151490. [DOI: 10.1016/j.ijmm.2021.151490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
|
129
|
Affiliation(s)
- Tyson Chiaro
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah, Circle of Hope Drive, Salt Lake City, UT, USA
| |
Collapse
|
130
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
131
|
Iliev ID, Cadwell K. Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases. Gastroenterology 2021; 160:1050-1066. [PMID: 33347881 PMCID: PMC7956156 DOI: 10.1053/j.gastro.2020.06.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
The intestinal microbiota comprises diverse fungal and viral components, in addition to bacteria. These microbes interact with the immune system and affect human physiology. Advances in metagenomics have associated inflammatory and autoimmune diseases with alterations in fungal and viral species in the gut. Studies of animal models have found that commensal fungi and viruses can activate host-protective immune pathways related to epithelial barrier integrity, but can also induce reactions that contribute to events associated with inflammatory bowel disease. Changes in our environment associated with modernization and the COVID-19 pandemic have exposed humans to new fungi and viruses, with unknown consequences. We review the lessons learned from studies of animal viruses and fungi commonly detected in the human gut and how these might affect health and intestinal disease.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine, Skirball Institute, New York University Grossman School of Medicine, New York, New York; Department of Microbiology, New York University Grossman School of Medicine, New York, New York; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, New York.
| |
Collapse
|
132
|
Abstract
The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.
Collapse
Affiliation(s)
- Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| |
Collapse
|
133
|
Understanding Human Microbiota Offers Novel and Promising Therapeutic Options against Candida Infections. Pathogens 2021; 10:pathogens10020183. [PMID: 33572162 PMCID: PMC7915436 DOI: 10.3390/pathogens10020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human fungal pathogens particularly of Candida species are one of the major causes of hospital acquired infections in immunocompromised patients. The limited arsenal of antifungal drugs to treat Candida infections with concomitant evolution of multidrug resistant strains further complicates the management of these infections. Therefore, deployment of novel strategies to surmount the Candida infections requires immediate attention. The human body is a dynamic ecosystem having microbiota usually involving symbionts that benefit from the host, but in turn may act as commensal organisms or affect positively (mutualism) or negatively (pathogenic) the physiology and nourishment of the host. The composition of human microbiota has garnered a lot of recent attention, and despite the common occurrence of Candida spp. within the microbiota, there is still an incomplete picture of relationships between Candida spp. and other microorganism, as well as how such associations are governed. These relationships could be important to have a more holistic understanding of the human microbiota and its connection to Candida infections. Understanding the mechanisms behind commensalism and pathogenesis is vital for the development of efficient therapeutic strategies for these Candida infections. The concept of host-microbiota crosstalk plays critical roles in human health and microbiota dysbiosis and is responsible for various pathologies. Through this review, we attempted to analyze the types of human microbiota and provide an update on the current understanding in the context of health and Candida infections. The information in this article will help as a resource for development of targeted microbial therapies such as pre-/pro-biotics and microbiota transplant that has gained advantage in recent times over antibiotics and established as novel therapeutic strategy.
Collapse
|
134
|
You N, Xu J, Wang L, Zhuo L, Zhou J, Song Y, Ali A, Luo Y, Yang J, Yang W, Zheng M, Xu J, Shao L, Shi J. Fecal Fungi Dysbiosis in Nonalcoholic Fatty Liver Disease. Obesity (Silver Spring) 2021; 29:350-358. [PMID: 33491316 DOI: 10.1002/oby.23073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) can systematically harm more aspects of human health than just the liver. In addition to the potential roles of the gut microbiota in NAFLD, commensal fungi can functionally replace intestinal bacteria in maintaining the host immune response in the gut by reversing disease susceptibility. Therefore, gut commensal fungi should be studied to help understand NAFLD. METHODS The fungal compositions of 79 patients with NAFLD and 34 matched healthy subjects were studied via internal transcribed spacer sequencing. In the NAFLD group, 32 patients underwent liver biopsies to evaluate the associations between gut fungi and NAFLD development. RESULTS The fungal microbiota distribution was skewed in the patients with NAFLD. The relative abundances of Talaromyces, Paraphaeosphaeria, Lycoperdon, Curvularia, Phialemoniopsis, Paraboeremia, Sarcinomyces, Cladophialophora, and Sordaria were higher in patients with NAFLD, whereas the abundances of Leptosphaeria, Pseudopithomyces, and Fusicolla were decreased. Patients with NAFLD exhibited more co-occurring fungal intrakingdom correlations. Several fungi were found to be associated with liver injury, lipid metabolism, and the development of NAFLD. CONCLUSIONS This study found that gut fungi may play some roles in NAFLD development. Research on gut fungi may be of great value in diagnosing and monitoring NAFLD.
Collapse
Affiliation(s)
- Ningning You
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiali Xu
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liyan Wang
- Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Lili Zhuo
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jingxin Zhou
- Department of Hematology, Suqian First People's Hospital, Suqian, Jiangsu, China
| | - Yu Song
- Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Aliaweis Ali
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Luo
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University-Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jin Yang
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University-Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Minghua Zheng
- Nonalcoholic Fatty Liver Disease Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Shao
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University-Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University-Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
135
|
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: From protection to predisposition. Sci Transl Med 2021; 13:13/576/eaba0501. [PMID: 33441423 DOI: 10.1126/scitranslmed.aba0501] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Mucosal surfaces of the upper respiratory tract and gut are physiologically colonized with their own collection of microbes, the microbiota. The normal upper respiratory tract and gut microbiota protects against pneumonia by impeding colonization by potentially pathogenic bacteria and by regulating immune responses. However, antimicrobial therapy and critical care procedures perturb the microbiota, thus compromising its function and predisposing to lung infections (pneumonia). Interindividual variations and age-related alterations in the microbiota also affect vulnerability to pneumonia. We discuss how the healthy microbiota protects against pneumonia and how host factors and medical interventions alter the microbiota, thus influencing susceptibility to pneumonia.
Collapse
Affiliation(s)
- Charlotte Thibeault
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
136
|
Pierce EC, Morin M, Little JC, Liu RB, Tannous J, Keller NP, Pogliano K, Wolfe BE, Sanchez LM, Dutton RJ. Bacterial-fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nat Microbiol 2021; 6:87-102. [PMID: 33139882 PMCID: PMC8515420 DOI: 10.1038/s41564-020-00800-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022]
Abstract
Microbial interactions are expected to be major determinants of microbiome structure and function. Although fungi are found in diverse microbiomes, their interactions with bacteria remain largely uncharacterized. In this work, we characterize interactions in 16 different bacterial-fungal pairs, examining the impacts of 8 different fungi isolated from cheese rind microbiomes on 2 bacteria (Escherichia coli and a cheese-isolated Pseudomonas psychrophila). Using random barcode transposon-site sequencing with an analysis pipeline that allows statistical comparisons between different conditions, we observed that fungal partners caused widespread changes in the fitness of bacterial mutants compared to growth alone. We found that all fungal species modulated the availability of iron and biotin to bacterial species, which suggests that these may be conserved drivers of bacterial-fungal interactions. Species-specific interactions were also uncovered, a subset of which suggested fungal antibiotic production. Changes in both conserved and species-specific interactions resulted from the deletion of a global regulator of fungal specialized metabolite production. This work highlights the potential for broad impacts of fungi on bacterial species within microbiomes.
Collapse
Affiliation(s)
- Emily C Pierce
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Manon Morin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jessica C Little
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roland B Liu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Joanna Tannous
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Laura M Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
137
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
138
|
Gao R, Wang Z, Li H, Cao Z, Gao Z, Chen H, Zhang X, Pan D, Yang R, Zhong H, Shen R, Yin L, Jia Z, Shen T, Qin N, Hu Z, Qin H. Gut microbiota dysbiosis signature is associated with the colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions. J Gastroenterol Hepatol 2020; 35:2109-2121. [PMID: 32337748 DOI: 10.1111/jgh.15077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM The gut microbiota is associated with colorectal lesions in cases of precancer and colorectal cancer (CRC). However, there are apparent differences in studies on the gut microbiota in the pathogenic sequence from precancer to cancer. Here, we characterize the gut microbiota signatures of colorectal precancer and cancer and test their utility in detecting colorectal lesions in two independent Chinese cohorts. METHODS Stool samples collected from patients with precancer and CRC were subjected to 16S ribosomal RNA gene sequencing and metagenomic shotgun sequencing analyses, which revealed the microbial signatures of the two disease stages. RESULTS In comparison with healthy controls, lower microbial richness and diversity were observed in precancer and intensive interbacterial associations were found in CRC. We identified 41 bacteria that showed gradual increases while 12 bacteria showed gradual decreases at the genus level gradually during the development of CRC. Novel CRC-associated pathogenetic species were identified. Species units that contributed to altered microbial functions were identified in CRC patients and healthy controls. The microbial panel showed a comparable ability to fecal immunochemical test (FIT) in detecting CRC. However, the combination of microbes and FIT significantly improved the detection ability and sensitivity of colon lesions based on 18 genera. Microbial network analysis revealed a significant positive correlation among beneficial microbes and a negative correlation in detrimental phenotypes. CONCLUSIONS Microbial dysbiosis was revealed in colorectal lesions. The combination of microbial markers and FIT improved the CRC detection ability, which might assist in the early diagnosis of CRC.
Collapse
Affiliation(s)
- Renyuan Gao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Zhiguo Wang
- Department of General Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hao Li
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Cao
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Zhiguang Gao
- Department of Emergency, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaohui Zhang
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dengdeng Pan
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhong
- Department of Pediatrics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongrong Shen
- Department of Nursing, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyi Jia
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tongyi Shen
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Qin
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqian Hu
- Department of General Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huanlong Qin
- Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
139
|
Lang S, Demir M, Martin A, Jiang L, Zhang X, Duan Y, Gao B, Wisplinghoff H, Kasper P, Roderburg C, Tacke F, Steffen HM, Goeser T, Abraldes JG, Tu XM, Loomba R, Stärkel P, Pride D, Fouts DE, Schnabl B. Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 159:1839-1852. [PMID: 32652145 PMCID: PMC8404510 DOI: 10.1053/j.gastro.2020.07.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alterations in the gut microbiome have been associated with the severity of nonalcoholic fatty liver disease (NAFLD). Previous studies focused exclusively on the bacteria in the microbiome; we investigated changes in the viral microbiome (virome) in patients with NAFLD. METHODS In a prospective, cross-sectional, observational study, we extracted RNA and DNA virus-like particles from fecal samples from 73 patients with NAFLD: 29 patients had an NAFLD Activity Score (NAS) of 0-4, 44 patients had an NAS of 5-8 or liver cirrhosis (LCI), 37 patients had F0-F1 fibrosis, and 36 patients had F2-F4 fibrosis. As controls, 9 individuals without liver disease and 13 patients with mild primary biliary cholangitis were included in the analysis. We performed shotgun metagenomic sequencing of virus-like particles. RESULTS Patients with NAFLD and NAS 5-8/LCI had a significant decrease in intestinal viral diversity compared with patients with NAFLD and NAS 0-4 or control individuals. The presence of more advanced NAFLD was associated with a significant reduction in the proportion of bacteriophages compared with other intestinal viruses. Using multivariate logistic regression analysis with leave-1-out cross validation, we developed a model, including a viral diversity index and simple clinical variables, that identified patients with NAS 5-8/LCI with an area under the curve of 0.95 (95% confidence interval, 0.91-0.99) and F2-F4 fibrosis with an area under the curve of 0.88 (95% confidence interval, 0.80-0.95). Addition of data on viral diversity significantly improved multivariate models, including those based on only clinical parameters or bacterial diversity. CONCLUSIONS In a study of fecal viromes from patients with NAFLD and control individuals, we associated histologic markers of NAFLD severity with significant decreases in viral diversity and proportion of bacteriophages. We developed a model based on fecal viral diversity and clinical data that identifies patients with severe NAFLD and fibrosis more accurately than models based only on clinical or bacterial data.
Collapse
Affiliation(s)
- Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Anna Martin
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hilmar Wisplinghoff
- Wisplinghoff Laboratories, Cologne, Germany,Institute for Virology and Medical Microbiology, University Witten/Herdecke, Witten, Germany,University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Philipp Kasper
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Hans-Michael Steffen
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Tobias Goeser
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Juan G. Abraldes
- Division of Gastroenterology (Liver Unit). Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xin M. Tu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - David Pride
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Pathology, University of California San Diego, La Jolla, CA, USA,Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California; Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, California.
| |
Collapse
|
140
|
Scheffold A, Bacher P, LeibundGut-Landmann S. T cell immunity to commensal fungi. Curr Opin Microbiol 2020; 58:116-123. [PMID: 33120172 DOI: 10.1016/j.mib.2020.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Fungi are an important part of the microbiota in healthy barrier tissues. Fungal dysbiosis in turn is associated with local and distal inflammatory diseases. Recent advances have shed light on the antigen-specific IL-17-dependent mechanisms that regulate fungal commensalism and prevent fungal overgrowth during homeostasis. Progress in our understanding of species-specific differences in fungus-host interactions provides new hypotheses of why Candida albicans-targeting T cells exceed those directed against other fungal species in the human T cell repertoire. Importantly, C. albicans-specific Th17 cells can also contribute to immune pathology in distant organs such as the lung via cross-reaction with heterologous antigens.
Collapse
Affiliation(s)
- Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
141
|
Candida auris Mannans and Pathogen-Host Interplay. Trends Microbiol 2020; 28:954-956. [PMID: 33190684 DOI: 10.1016/j.tim.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
Candida auris, a multidrug-resistant fungal pathogen, is responsible for the recent global outbreaks in hospitalized and long-term care patients with significant mortality. A new study by Bruno et al. delineates innate host immune responses against C. auris and identifies critical roles for fungal mannans and mannoproteins.
Collapse
|
142
|
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, Herrema H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front Immunol 2020; 11:571731. [PMID: 33178196 PMCID: PMC7596417 DOI: 10.3389/fimmu.2020.571731] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has been linked to the development of obesity and type 2 diabetes (T2D). The underlying mechanisms as to how intestinal microbiota may contribute to T2D are only partly understood. It becomes progressively clear that T2D is characterized by a chronic state of low-grade inflammation, which has been linked to the development of insulin resistance. Here, we review the current evidence that intestinal microbiota, and the metabolites they produce, could drive the development of insulin resistance in obesity and T2D, possibly by initiating an inflammatory response. First, we will summarize major findings about immunological and gut microbial changes in these metabolic diseases. Next, we will give a detailed view on how gut microbial changes have been implicated in low-grade inflammation. Lastly, we will critically discuss clinical studies that focus on the interaction between gut microbiota and the immune system in metabolic disease. Overall, there is strong evidence that the tripartite interaction between gut microbiota, host immune system and metabolism is a critical partaker in the pathophysiology of obesity and T2D.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, BC, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
143
|
Lema I, Araújo JR, Rolhion N, Demignot S. Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie 2020; 178:124-136. [PMID: 32949677 DOI: 10.1016/j.biochi.2020.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Although the jejunum is the main intestinal compartment responsible for lipid digestion and absorption, most of the studies assessing the impact of dietary lipids on the intestinal microbiota have been performed in the ileum, colon and faeces. This lack of interest in the jejunum is due to the much lower number of microbes present in this intestinal region and to the difficulty in accessing its lumen, which requires invasive methods. Recently, several recent publications highlighted that the whole jejunal microbiota or specific bacterial members are able to modulate lipid absorption and metabolism in enterocytes. This information reveals new strategies in the development of bacterial- and metabolite-based therapeutic interventions or nutraceutical recommendations to treat or prevent metabolic-related disorders, including obesity, cardiovascular diseases and malnutrition. This review is strictly focused on the following triad: dietary lipids, the jejunal epithelium and the jejunal microbiota. First, we will describe each member of the triad: the structure and functions of the jejunum, the composition of the jejunal microbiota, and dietary lipid handling by enterocytes and by microorganisms. Then, we will present the mechanisms leading to lipid malabsorption in small intestinal bacterial overgrowth (SIBO), a disease in which the jejunal microbiota is altered and which highlights the strong interactions among this triad. We will finally review the recent literature about the interactions among members of the triad, which should encourage research teams to further explore the mechanisms by which specific microbial strains or metabolites, alone or in concert, can mediate, control or modulate lipid absorption in the jejunum.
Collapse
Affiliation(s)
- Ingrid Lema
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France
| | - João Ricardo Araújo
- Nutrition and Metabolism, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal; Center for Health Technology Services Research (CINTESIS), Oporto, Portugal
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France
| | - Sylvie Demignot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, UMR_S 938, F-75012, Paris, France; EPHE, PSL University, F-75014, Paris, France.
| |
Collapse
|
144
|
Interactions between invasive fungi and symbiotic bacteria. World J Microbiol Biotechnol 2020; 36:137. [PMID: 32794072 DOI: 10.1007/s11274-020-02913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Infection rates and mortality associated with the invasive fungi Candida, Aspergillus, and Cryptococcus are increasing rapidly in prevalence. Meanwhile, screening pressure brought about by traditional antifungal drugs has induced an increase in drug resistance of invasive fungi, which creates a great challenge for the preservation of physical health. Development of new drugs and novel strategies are therefore important to meet these growing challenges. Recent studies have confirmed that the dynamic balance of microorganisms in the body is correlated with the occurrence of infectious diseases. This discovery of interactions between bacteria and fungi provides innovative insight for the treatment of invasive fungal infections. However, different invasive fungi and symbiotic bacteria interact with each other through various ways and targets, leading to different effects on their growth, morphology, and virulence. And the mechanism and implication of these interactions remains largely unknown. The present review aims to summarize the research progress into the interaction between invasive fungi and symbiotic bacteria with a focus on the anti-fungal mechanisms of symbiotic bacteria, providing a new strategy against drug-resistant fungal infections.
Collapse
|
145
|
Zhang D, Wang Y, Shen S, Hou Y, Chen Y, Wang T. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11:655-679. [PMID: 32150513 PMCID: PMC7524315 DOI: 10.1080/19490976.2020.1731287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria among microorganisms. What is surprising is that this seemingly small species can trigger huge changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease in different parts of the body. Meanwhile, our body also produces corresponding immune changes upon mycobiota infection. Several recent studies have made a connection between intestinal mycobiota and the human immune system. In this review, we focus on questions related to mycobiota, starting with an introduction of select species, then we summarize the typical diseases caused by mycobiota in different parts of the human body. Moreover, we constructed a framework for the human anti-fungal immune system based on genetics and immunology. Finally, the progression of fungal detection methods is also reviewed.
Collapse
Affiliation(s)
- Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,CONTACT Tingting Wang The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing210093, China
| |
Collapse
|
146
|
Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among Emirati subjects: A pilot study. Sci Rep 2020; 10:9624. [PMID: 32541680 PMCID: PMC7295773 DOI: 10.1038/s41598-020-66598-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) drastically affects the population of Middle East countries with an ever-increasing number of overweight and obese individuals. The precise links between T2DM and gut microbiome composition remain elusive in these populations. Here, we performed 16 S rRNA and ITS2- gene based microbial profiling of 50 stool samples from Emirati adults with or without T2DM. The four major enterotypes initially described in westernized cohorts were retrieved in this Emirati population. T2DM and non-T2DM healthy controls had different microbiome compositions, with an enrichment in Prevotella enterotype in non-T2DM controls whereas T2DM individuals had a higher proportion of the dysbiotic Bacteroides 2 enterotype. No significant differences in microbial diversity were observed in T2DM individuals after controlling for cofounding factors, contrasting with reports from westernized cohorts. Interestingly, fungal diversity was significantly decreased in Bacteroides 2 enterotype. Functional profiling from 16 S rRNA gene data showed marked differences between T2DM and non-T2DM controls, with an enrichment in amino acid degradation and LPS-related modules in T2DM individuals, whereas non-T2DM controls had increased abundance of carbohydrate degradation modules in concordance with enterotype composition. These differences provide an insight into gut microbiome composition in Emirati population and its potential role in the development of diabetes mellitus.
Collapse
|
147
|
Immune-Microbiota Interplay and Colonization Resistance in Infection. Mol Cell 2020; 78:597-613. [DOI: 10.1016/j.molcel.2020.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
148
|
Mycobiome in the Gut: A Multiperspective Review. Mediators Inflamm 2020; 2020:9560684. [PMID: 32322167 PMCID: PMC7160717 DOI: 10.1155/2020/9560684] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.
Collapse
|
149
|
Galloway-Peña JR, Kontoyiannis DP. The gut mycobiome: The overlooked constituent of clinical outcomes and treatment complications in patients with cancer and other immunosuppressive conditions. PLoS Pathog 2020; 16:e1008353. [PMID: 32240277 PMCID: PMC7117661 DOI: 10.1371/journal.ppat.1008353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jessica R. Galloway-Peña
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| |
Collapse
|
150
|
Yeung F, Chen YH, Lin JD, Leung JM, McCauley C, Devlin JC, Hansen C, Cronkite A, Stephens Z, Drake-Dunn C, Fulmer Y, Shopsin B, Ruggles KV, Round JL, Loke P, Graham AL, Cadwell K. Altered Immunity of Laboratory Mice in the Natural Environment Is Associated with Fungal Colonization. Cell Host Microbe 2020; 27:809-822.e6. [PMID: 32209432 DOI: 10.1016/j.chom.2020.02.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/11/2019] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
Free-living mammals, such as humans and wild mice, display heightened immune activation compared with artificially maintained laboratory mice. These differences are partially attributed to microbial exposure as laboratory mice infected with pathogens exhibit immune profiles more closely resembling that of free-living animals. Here, we examine how colonization by microorganisms within the natural environment contributes to immune system maturation by releasing inbred laboratory mice into an outdoor enclosure. In addition to enhancing differentiation of T cell populations previously associated with pathogen exposure, outdoor release increased circulating granulocytes. However, these "rewilded" mice were not infected by pathogens previously implicated in immune activation. Rather, immune system changes were associated with altered microbiota composition with notable increases in intestinal fungi. Fungi isolated from rewilded mice were sufficient in increasing circulating granulocytes. These findings establish a model to investigate how the natural environment impacts immune development and show that sustained fungal exposure impacts granulocyte numbers.
Collapse
Affiliation(s)
- Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Sackler Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jian-Da Lin
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Caroline McCauley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph C Devlin
- Sackler Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christina Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alex Cronkite
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zac Stephens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Charlotte Drake-Dunn
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yi Fulmer
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Disease, Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Disease, Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Kelly V Ruggles
- Division of Translational Medicine, Department of Medicine, New York University Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York Unversity Grossman School of Medicine, New York, NY 10016, USA
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|