101
|
Brewer RA, Gibbs VK, Smith DL. Targeting glucose metabolism for healthy aging. NUTRITION AND HEALTHY AGING 2016; 4:31-46. [PMID: 28035340 PMCID: PMC5166514 DOI: 10.3233/nha-160007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advancing age is the greatest single risk factor for numerous chronic diseases. Thus, the ability to target the aging process can facilitate improved healthspan and potentially lifespan. Lack of adequate glucoregulatory control remains a recurrent theme accompanying aging and chronic disease, while numerous longevity interventions result in maintenance of glucoregulatory control. In this review, we propose targeting glucose metabolism to enhance regulatory control as a means to ameliorate the aging process. We highlight that calorie restriction improves glucoregulatory control and extends both lifespan and healthspan in model organisms, but we also indicate more practical interventions (i.e., calorie restriction mimetics) are desirable for clinical application in humans. Of the calorie restriction mimetics being investigated, we focus on the type 2 diabetes drug acarbose, an α-glucosidase inhibitor that when taken with a meal, results in reduced enzymatic degradation and absorption of glucose from complex carbohydrates. We discuss alternatives to acarbose that yield similar physiologic effects and describe dietary sources (e.g., sweet potatoes, legumes, and berries) of bioactive compounds with α-glucosidase inhibitory activity. We indicate future research should include exploration of how non-caloric compounds like α-glucosidase inhibitors modify macronutrient metabolism prior to disease onset, which may guide nutritional/lifestyle interventions to support health and reduce age-related disease risk.
Collapse
Affiliation(s)
- Rachel A. Brewer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victoria K. Gibbs
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
102
|
Ross C, Salmon A, Strong R, Fernandez E, Javors M, Richardson A, Tardif S. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). Aging (Albany NY) 2016; 7:964-73. [PMID: 26568298 PMCID: PMC4694066 DOI: 10.18632/aging.100843] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapamycin has been shown to extend lifespan in rodent models, but the effects on metabolic health and function have been widely debated in both clinical and translational trials. Prior to rapamycin being used as a treatment to extend both lifespan and healthspan in the human population, it is vital to assess the side effects of the treatment on metabolic pathways in animal model systems, including a closely related non-human primate model. In this study, we found that long-term treatment of marmoset monkeys with orally-administered encapsulated rapamycin resulted in no overall effects on body weight and only a small decrease in fat mass over the first few months of treatment. Rapamycin treated subjects showed no overall changes in daily activity counts, blood lipids, or significant changes in glucose metabolism including oral glucose tolerance. Adipose tissue displayed no differences in gene expression of metabolic markers following treatment, while liver tissue exhibited suppressed G6Pase activity with increased PCK and GPI activity. Overall, the marmosets revealed only minor metabolic consequences of chronic treatment with rapamycin and this adds to the growing body of literature that suggests that chronic and/or intermittent rapamycin treatment results in improved health span and metabolic functioning. The marmosets offer an interesting alternative animal model for future intervention testing and translational modeling.
Collapse
Affiliation(s)
- Corinna Ross
- Department of Arts & Sciences, Texas A&M University San Antonio, San Antonio, TX 78224, USA.,Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA
| | - Adam Salmon
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Randy Strong
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Marty Javors
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Arlan Richardson
- University of Oklahoma Health Sciences Center and the Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA
| | - Suzette Tardif
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78224, USA
| |
Collapse
|
103
|
Metabolic Control of Longevity. Cell 2016; 166:802-821. [DOI: 10.1016/j.cell.2016.07.031] [Citation(s) in RCA: 524] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/15/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
|
104
|
Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent Administration of Rapamycin Extends the Life Span of Female C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2016; 71:876-81. [PMID: 27091134 PMCID: PMC4906329 DOI: 10.1093/gerona/glw064] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/22/2016] [Indexed: 01/10/2023] Open
Abstract
Inhibition of the mTOR (mechanistic target of rapamycin) signaling pathway by the FDA-approved drug rapamycin promotes life span in numerous model organisms and delays age-related disease in mice. However, the utilization of rapamycin as a therapy for age-related diseases will likely prove challenging due to the serious metabolic and immunological side effects of rapamycin in humans. We recently identified an intermittent rapamycin treatment regimen-2mg/kg administered every 5 days-with a reduced impact on glucose homeostasis and the immune system as compared with chronic treatment; however, the ability of this regimen to extend life span has not been determined. Here, we report for the first time that an intermittent rapamycin treatment regimen starting as late as 20 months of age can extend the life span of female C57BL/6J mice. Our work demonstrates that the anti-aging potential of rapamycin is separable from many of its negative side effects and suggests that carefully designed dosing regimens may permit the safer use of rapamycin and its analogs for the treatment of age-related diseases in humans.
Collapse
Affiliation(s)
- Sebastian I Arriola Apelo
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Cassidy P Pumper
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Emma L Baar
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Nicole E Cummings
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin. Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin. Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison.
| |
Collapse
|
105
|
Kucejova B, Duarte J, Satapati S, Fu X, Ilkayeva O, Newgard CB, Brugarolas J, Burgess SC. Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity. Cell Rep 2016; 16:508-519. [PMID: 27346353 DOI: 10.1016/j.celrep.2016.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/28/2016] [Accepted: 05/25/2016] [Indexed: 12/29/2022] Open
Abstract
Dysregulated mitochondrial metabolism during hepatic insulin resistance may contribute to pathophysiologies ranging from elevated glucose production to hepatocellular oxidative stress and inflammation. Given that obesity impairs insulin action but paradoxically activates mTORC1, we tested whether insulin action and mammalian target of rapamycin complex 1 (mTORC1) contribute to altered in vivo hepatic mitochondrial metabolism. Loss of hepatic insulin action for 2 weeks caused increased gluconeogenesis, mitochondrial anaplerosis, tricarboxylic acid (TCA) cycle oxidation, and ketogenesis. However, activation of mTORC1, induced by the loss of hepatic Tsc1, suppressed these fluxes. Only glycogen synthesis was impaired by both loss of insulin receptor and mTORC1 activation. Mice with a double knockout of the insulin receptor and Tsc1 had larger livers, hyperglycemia, severely impaired glycogen storage, and suppressed ketogenesis, as compared to those with loss of the liver insulin receptor alone. Thus, activation of hepatic mTORC1 opposes the catabolic effects of impaired insulin action under some nutritional states.
Collapse
Affiliation(s)
- Blanka Kucejova
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao Duarte
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Santhosh Satapati
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaorong Fu
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shawn C Burgess
- AIRC Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
106
|
Chronic rapamycin treatment on the nutrient utilization and metabolism of juvenile turbot (Psetta maxima). Sci Rep 2016; 6:28068. [PMID: 27305975 PMCID: PMC4910097 DOI: 10.1038/srep28068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 12/04/2022] Open
Abstract
High dietary protein inclusion is necessary in fish feeds and also represents a major cost in the aquaculture industry, which demands improved dietary conversion into body proteins in fish. In mammals, the target of rapamycin (TOR) is a key nutritionally responsive molecule governing postprandial anabolism. However, its physiological significance in teleosts has not been fully examined. In the present study, we examined the nutritional physiology of turbot after chronic rapamycin inhibition. Our results showed that a 6-week inhibition of TOR using dietary rapamycin inclusion (30 mg/kg diet) reduced growth performance and feed utilization. The rapamycin treatment inhibited TOR signaling and reduced expression of key enzymes in glycolysis, lipogenesis, cholesterol biosynthesis, while increasing the expression of enzymes involved in gluconeogenesis. Furthermore, rapamycin treatment increased intestinal goblet cell number in turbot, while the expressions of Notch and Hes1 were down regulated. It was possible that stimulated goblet cell differentiation by rapamycin was mediated through Notch-Hes1 pathway. Therefore, our results demonstrate the important role of TOR signaling in fish nutritional physiology.
Collapse
|
107
|
Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 2016; 86:73-83. [PMID: 27260561 DOI: 10.1016/j.exger.2016.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
108
|
Arriola Apelo SI, Lamming DW. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island. J Gerontol A Biol Sci Med Sci 2016; 71:841-9. [PMID: 27208895 DOI: 10.1093/gerona/glw090] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Rapamycin (sirolimus) is a macrolide immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) protein kinase and extends lifespan in model organisms including mice. Although rapamycin is an FDA-approved drug for select indications, a diverse set of negative side effects may preclude its wide-scale deployment as an antiaging therapy. mTOR forms two different protein complexes, mTORC1 and mTORC2; the former is acutely sensitive to rapamycin whereas the latter is only chronically sensitive to rapamycin in vivo. Over the past decade, it has become clear that although genetic and pharmacological inhibition of mTORC1 extends lifespan and delays aging, inhibition of mTORC2 has negative effects on mammalian health and longevity and is responsible for many of the negative side effects of rapamycin. In this review, we discuss recent advances in understanding the molecular and physiological effects of rapamycin treatment, and we discuss how the use of alternative rapamycin treatment regimens or rapamycin analogs has the potential to mitigate the deleterious side effects of rapamycin treatment by more specifically targeting mTORC1. Although the side effects of rapamycin are still of significant concern, rapid progress is being made in realizing the revolutionary potential of rapamycin-based therapies for the treatment of diseases of aging.
Collapse
Affiliation(s)
- Sebastian I Arriola Apelo
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.
| |
Collapse
|
109
|
Riera CE, Dillin A. Can aging be 'drugged'? Nat Med 2016; 21:1400-5. [PMID: 26646496 DOI: 10.1038/nm.4005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
The engines that drive the complex process of aging are being identified by model-organism research, thereby providing potential targets and rationale for drug studies. Several studies of small molecules have already been completed in animal models with the hope of finding an elixir for aging, with a few compounds showing early promise. What lessons can we learn from drugs currently being tested, and which pitfalls can we avoid in our search for a therapeutic for aging? Finally, we must also ask whether an elixir for aging would be applicable to everyone, or whether we age differently, thus potentially shortening lifespan in some individuals.
Collapse
Affiliation(s)
- Celine E Riera
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Glenn Center for Research on Aging, University of California at Berkeley, Berkeley, California, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Glenn Center for Research on Aging, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
110
|
Kohiyama MF, Lagalwar S. Stabilization and Degradation Mechanisms of Cytoplasmic Ataxin-1. J Exp Neurosci 2016; 9:123-9. [PMID: 27168726 PMCID: PMC4859447 DOI: 10.4137/jen.s25469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022] Open
Abstract
Aggregation-prone proteins in neurodegenerative disease disrupt cellular protein stabilization and degradation pathways. The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by a coding polyglutamine expansion in the Ataxin-1 gene (ATXN1), which gives rise to the aggregation-prone mutant form of ATXN1 protein. Cerebellar Purkinje neurons, preferentially vulnerable in SCA1, produce ATXN1 protein in both cytoplasmic and nuclear compartments. Cytoplasmic stabilization of ATXN1 by phosphorylation and 14-3-3-mediated mechanisms ultimately drive translocation of the protein to the nucleus where aggregation may occur. However, experimental inhibition of phosphorylation and 14-3-3 binding results in rapid degradation of ATXN1, thus preventing nuclear translocation and cellular toxicity. The exact mechanism of cytoplasmic ATXN1 degradation is currently unknown; further investigation of degradation may provide future therapeutic targets. This review examines the present understanding of cytoplasmic ATXN1 stabilization and potential degradation mechanisms during normal and pathogenic states.
Collapse
Affiliation(s)
- Mayumi F Kohiyama
- B.A., Skidmore College Neuroscience Program, Saratoga Springs, NY, USA
| | - Sarita Lagalwar
- Assistant Professor of Neuroscience, Williamson Chair in Neuroscience, Skidmore College Neuroscience Program, Saratoga Springs, NY, USA
| |
Collapse
|
111
|
Tran CM, Mukherjee S, Ye L, Frederick DW, Kissig M, Davis JG, Lamming DW, Seale P, Baur JA. Rapamycin Blocks Induction of the Thermogenic Program in White Adipose Tissue. Diabetes 2016; 65:927-41. [PMID: 26858361 PMCID: PMC4806661 DOI: 10.2337/db15-0502] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/26/2015] [Indexed: 12/13/2022]
Abstract
Rapamycin extends life span in mice, yet paradoxically causes lipid dysregulation and glucose intolerance through mechanisms that remain incompletely understood. Whole-body energy balance can be influenced by beige/brite adipocytes, which are inducible by cold and other stimuli via β-adrenergic signaling in white adipose depots. Induction of beige adipocytes is considered a promising strategy to combat obesity because of their ability to metabolize glucose and lipids, dissipating the resulting energy as heat through uncoupling protein 1. Here, we report that rapamycin blocks the ability of β-adrenergic signaling to induce beige adipocytes and expression of thermogenic genes in white adipose depots. Rapamycin enhanced transcriptional negative feedback on the β3-adrenergic receptor. However, thermogenic gene expression remained impaired even when the receptor was bypassed with a cell-permeable cAMP analog, revealing the existence of a second inhibitory mechanism. Accordingly, rapamycin-treated mice are cold intolerant, failing to maintain body temperature and weight when shifted to 4°C. Adipocyte-specific deletion of the mTORC1 subunit Raptor recapitulated the block in β-adrenergic signaling. Our findings demonstrate a positive role for mTORC1 in the recruitment of beige adipocytes and suggest that inhibition of β-adrenergic signaling by rapamycin may contribute to its physiological effects.
Collapse
Affiliation(s)
- Cassie M Tran
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - David W Frederick
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan Kissig
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James G Davis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joseph A Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
112
|
Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VER, Chivite I, Milà-Guasch M, Pearce W, Solomon I, Angulo-Urarte A, Figueiredo AM, Dewhurst RE, Knox RG, Clark GR, Scudamore CL, Badar A, Kalber TL, Foster J, Stuckey DJ, David AL, Phillips WA, Lythgoe MF, Wilson V, Semple RK, Sebire NJ, Kinsler VA, Graupera M, Vanhaesebroeck B. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci Transl Med 2016; 8:332ra43. [PMID: 27030595 PMCID: PMC5973268 DOI: 10.1126/scitranslmed.aad9982] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/04/2016] [Indexed: 12/23/2022]
Abstract
Venous malformations (VMs) are painful and deforming vascular lesions composed of dilated vascular channels, which are present from birth. Mutations in the TEK gene, encoding the tyrosine kinase receptor TIE2, are found in about half of sporadic (nonfamilial) VMs, and the causes of the remaining cases are unknown. Sclerotherapy, widely accepted as first-line treatment, is not fully efficient, and targeted therapy for this disease remains underexplored. We have generated a mouse model that faithfully mirrors human VM through mosaic expression of Pik3ca(H1047R), a constitutively active mutant of the p110α isoform of phosphatidylinositol 3-kinase (PI3K), in the embryonic mesoderm. Endothelial expression of Pik3ca(H1047R)resulted in endothelial cell (EC) hyperproliferation, reduction in pericyte coverage of blood vessels, and decreased expression of arteriovenous specification markers. PI3K pathway inhibition with rapamycin normalized EC hyperproliferation and pericyte coverage in postnatal retinas and stimulated VM regression in vivo. In line with the mouse data, we also report the presence of activating PIK3CA mutations in human VMs, mutually exclusive with TEK mutations. Our data demonstrate a causal relationship between activating Pik3ca mutations and the genesis of VMs, provide a genetic model that faithfully mirrors the normal etiology and development of this human disease, and establish the basis for the use of PI3K-targeted therapies in VMs.
Collapse
Affiliation(s)
- Sandra D Castillo
- UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| | - Elena Tzouanacou
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK. Institut Pasteur, Département de Biologie du Développement, CNRS URA 2578, 75724 Paris cedex 15, France
| | - May Zaw-Thin
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6BT, UK
| | - Inma M Berenjeno
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Victoria E R Parker
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Iñigo Chivite
- Vascular Signaling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Maria Milà-Guasch
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Wayne Pearce
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Isabelle Solomon
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Ana Angulo-Urarte
- Vascular Signaling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Ana M Figueiredo
- Vascular Signaling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Robert E Dewhurst
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rachel G Knox
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Graeme R Clark
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | | | - Adam Badar
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6BT, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6BT, UK
| | - Julie Foster
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6BT, UK
| | - Anna L David
- UCL Institute for Women's Health, London WC1E 6BT, UK
| | - Wayne A Phillips
- Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia. Department of Surgery (St. Vincent's Hospital), University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6BT, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Robert K Semple
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Neil J Sebire
- UCL Institute of Child Health, London WC1N 1EH, UK. Great Ormond Street Hospital for Children, NHS Foundation Trust, London WC1N 3JH, UK
| | - Veronica A Kinsler
- UCL Institute of Child Health, London WC1N 1EH, UK. Great Ormond Street Hospital for Children, NHS Foundation Trust, London WC1N 3JH, UK
| | - Mariona Graupera
- Vascular Signaling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | | |
Collapse
|
113
|
Impact of rapamycin on status epilepticus induced hippocampal pathology and weight gain. Exp Neurol 2016; 280:1-12. [PMID: 26995324 DOI: 10.1016/j.expneurol.2016.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Growing evidence implicates the dentate gyrus in temporal lobe epilepsy (TLE). Dentate granule cells limit the amount of excitatory signaling through the hippocampus and exhibit striking neuroplastic changes that may impair this function during epileptogenesis. Furthermore, aberrant integration of newly-generated granule cells underlies the majority of dentate restructuring. Recently, attention has focused on the mammalian target of rapamycin (mTOR) signaling pathway as a potential mediator of epileptogenic change. Systemic administration of the mTOR inhibitor rapamycin has promising therapeutic potential, as it has been shown to reduce seizure frequency and seizure severity in rodent models. Here, we tested whether mTOR signaling facilitates abnormal development of granule cells during epileptogenesis. We also examined dentate inflammation and mossy cell death in the dentate hilus. To determine if mTOR activation is necessary for abnormal granule cell development, transgenic mice that harbored fluorescently-labeled adult-born granule cells were treated with rapamycin following pilocarpine-induced status epilepticus. Systemic rapamycin effectively blocked phosphorylation of S6 protein (a readout of mTOR activity) and reduced granule cell mossy fiber axon sprouting. However, the accumulation of ectopic granule cells and granule cells with aberrant basal dendrites was not significantly reduced. Mossy cell death and reactive astrocytosis were also unaffected. These data suggest that anti-epileptogenic effects of mTOR inhibition may be mediated by mechanisms other than inhibition of these common dentate pathologies. Consistent with this conclusion, rapamycin prevented pathological weight gain in epileptic mice, suggesting that rapamycin might act on central circuits or even peripheral tissues controlling weight gain in epilepsy.
Collapse
|
114
|
Shum M, Bellmann K, St-Pierre P, Marette A. Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice. Diabetologia 2016; 59:592-603. [PMID: 26733005 DOI: 10.1007/s00125-015-3839-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS The mammalian target of rapamycin complex 1 (mTORC1)/p70 ribosomal S6 kinase (S6K)1 pathway is overactivated in obesity, leading to inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling and insulin resistance. However, chronic mTORC1 inhibition by rapamycin impairs glucose homeostasis because of robust induction of liver gluconeogenesis. Here, we compared the effect of rapamycin with that of the selective S6K1 inhibitor, PF-4708671, on glucose metabolism in vitro and in vivo. METHODS We used L6 myocytes and FAO hepatocytes to explore the effect of PF-4708671 on the regulation of glucose uptake, glucose production and insulin signalling. We also treated high-fat (HF)-fed obese mice for 7 days with PF-4708671 in comparison with rapamycin to assess glucose tolerance, insulin resistance and insulin signalling in vivo. RESULTS Chronic rapamycin treatment induced insulin resistance and impaired glucose metabolism in hepatic and muscle cells. Conversely, chronic S6K1 inhibition with PF-4708671 reduced glucose production in hepatocytes and enhanced glucose uptake in myocytes. Whereas rapamycin treatment inhibited Akt phosphorylation, PF-4708671 increased Akt phosphorylation in both cell lines. These opposite effects of the mTORC1 and S6K1 inhibitors were also observed in vivo. Indeed, while rapamycin treatment induced glucose intolerance and failed to improve Akt phosphorylation in liver and muscle of HF-fed mice, PF-4708671 treatment improved glucose tolerance and increased Akt phosphorylation in metabolic tissues of these obese mice. CONCLUSIONS/INTERPRETATION Chronic S6K1 inhibition by PF-4708671 improves glucose homeostasis in obese mice through enhanced Akt activation in liver and muscle. Our results suggest that specific S6K1 blockade is a valid pharmacological approach to improve glucose disposal in obese diabetic individuals.
Collapse
Affiliation(s)
- Michael Shum
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5
| | - Kerstin Bellmann
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5
| | - Philippe St-Pierre
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5
| | - André Marette
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, Canada, G1V 4G5.
| |
Collapse
|
115
|
Schreiber KH, O’Leary MN, Kennedy BK. The mTOR Pathway and Aging. HANDBOOK OF THE BIOLOGY OF AGING 2016:55-81. [DOI: 10.1016/b978-0-12-411596-5.00002-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
116
|
Abstract
Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, and Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
117
|
Cai H, Dong LQ, Liu F. Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends Pharmacol Sci 2015; 37:303-317. [PMID: 26700098 DOI: 10.1016/j.tips.2015.11.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
The increasing epidemic of obesity and its comorbidities has spurred research interest in adipose biology and its regulatory functions. Recent studies have revealed that the mechanistic target of rapamycin (mTOR) signaling pathway has a critical role in the regulation of adipose tissue function, including adipogenesis, lipid metabolism, thermogenesis, and adipokine synthesis and/or secretion. Given the importance of mTOR signaling in controlling energy homeostasis, it is not unexpected that deregulated mTOR signaling is associated with obesity and related metabolic disorders. In this review, we highlight current advances in understanding the roles of the mTOR signaling pathway in adipose tissue. We also provide a more nuanced view of how the mTOR signaling pathway regulates adipose tissue biology and function. Finally, we describe approaches to modulate the activity and tissue-specific function of mTOR that may pave the way towards counteracting obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Huan Cai
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Pharmacology, UTHSCSA, San Antonio, TX, USA
| | - Lily Q Dong
- Departments of Cellular Structural Biology, UTHSCSA, San Antonio, TX, USA
| | - Feng Liu
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Pharmacology, UTHSCSA, San Antonio, TX, USA.
| |
Collapse
|
118
|
Affiliation(s)
- Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio and Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
119
|
Khaibullina A, Almeida LE, Wang L, Kamimura S, Wong EC, Nouraie M, Maric I, Albani S, Finkel J, Quezado ZM. Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells Mol Dis 2015; 55:363-72. [DOI: 10.1016/j.bcmd.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 01/23/2023]
|
120
|
Complications of hyperglycaemia with PI3K-AKT-mTOR inhibitors in patients with advanced solid tumours on Phase I clinical trials. Br J Cancer 2015; 113:1541-7. [PMID: 26554652 PMCID: PMC4705886 DOI: 10.1038/bjc.2015.373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 01/17/2023] Open
Abstract
Background: PI3K–AKT–mTOR inhibitors (PAMi) are promising anticancer treatments. Hyperglycaemia is a mechanism-based toxicity of these agents and is becoming increasingly important with their use in larger numbers of patients. Methods: Retrospective case-control study comparing incidence and severity of hyperglycaemia (all grades) between a case group of 387 patients treated on 18 phase I clinical trials with PAMi (78 patients with PI3Ki, 138 with mTORi, 144 with AKTi and 27 with PI3K/mTORi) and a control group of 109 patients treated on 10 phase I clinical trials with agents not directly targeting the PAM pathway. Diabetic patients were excluded in both groups. Results: The incidence of hyperglycaemia was not significantly different between cases and controls (86.6% vs 80.7%, respectively, P=0.129). However, high grade (grade 3–4) hyperglycaemia was more frequent in the PAMi group than in controls (6.7% vs 0%, respectively, P=0.005). The incidence of grade 3–4 hyperglycaemia was greater with AKT and multikinase inhibitors compared with other PAMi (P<0.001). All patients with high-grade hyperglycaemia received antihyperglycemic treatment and none developed severe metabolic complications (diabetic ketoacidosis or hyperosmolar hyperglycemic nonketotic state). High-grade hyperglycaemia was the cause of permanent PAMi discontinuation in nine patients. Conclusions: PI3K–AKT–mTOR inhibitors are associated with small (6.7%) but statistically significant increased risk of high-grade hyperglycaemia compared with non-PAM targeting agents. However, PAMi-induced hyperglycaemia was not found to be associated with severe metabolic complications in this non-diabetic population of patients with advanced cancers.
Collapse
|
121
|
Abstract
The mammalian target of rapamycin (mTOR) inhibitors are drugs, primarily used as immunosuppressors that are now frequently used as antineoplastic therapies in various cancers (such as advanced renal cell carcinoma, advanced breast cancer, progressive pancreatic neuroendocrine tumors). They act on mTOR signaling pathway which plays a key role in regulating cell growth as well as lipid and glucose metabolism. Treatment with mTOR inhibitors is associated with a high incidence of hyperglycemia and new-onset diabetes, ranging from 13% to 50% in the clinical trials in which they have been used as anticancer therapies. The rate of severe hyperglycemia is also increased, ranging from 4 to 12% in the main phase III clinical trials. Due to limited human studies, the pathophysiology of mTOR inhibitor-induced hyperglycemia has not yet been totally clarified. However, data from animal studies suggest that the mechanisms responsible for hyperglycemia with mTOR inhibitors are likely due to the combination of impaired insulin secretion and insulin resistance. Due to the high rate of hyperglycemia associated with the use of mTOR inhibitors, a close and personalized follow-up of blood glucose is recommended in all patients.
Collapse
Affiliation(s)
- Bruno Vergès
- Endocrinology-Diabetology Department, University-Hospital, and, Medicine University, Dijon, France; INSERM CRI 866, Medicine University, Dijon, France; Faculté de Médecine, Université de Nantes, Nantes, France.
| | - Bertrand Cariou
- INSERM CRI 866, Medicine University, Dijon, France; Clinique d'Endocrinologie, l'institut du thorax, CHU de Nantes, Nantes, France; INSERM, UMR1087, l'institut du thorax, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
122
|
Karunadharma PP, Basisty N, Dai DF, Chiao YA, Quarles EK, Hsieh EJ, Crispin D, Bielas JH, Ericson NG, Beyer RP, MacKay VL, MacCoss MJ, Rabinovitch PS. Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects. Aging Cell 2015; 14:547-57. [PMID: 25807975 PMCID: PMC4531069 DOI: 10.1111/acel.12317] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 12/21/2022] Open
Abstract
Calorie restriction (CR) and rapamycin (RP) extend lifespan and improve health across model organisms. Both treatments inhibit mammalian target of rapamycin (mTOR) signaling, a conserved longevity pathway and a key regulator of protein homeostasis, yet their effects on proteome homeostasis are relatively unknown. To comprehensively study the effects of aging, CR, and RP on protein homeostasis, we performed the first simultaneous measurement of mRNA translation, protein turnover, and abundance in livers of young (3 month) and old (25 month) mice subjected to 10-week RP or 40% CR. Protein abundance and turnover were measured in vivo using (2) H3 -leucine heavy isotope labeling followed by LC-MS/MS, and translation was assessed by polysome profiling. We observed 35-60% increased protein half-lives after CR and 15% increased half-lives after RP compared to age-matched controls. Surprisingly, the effects of RP and CR on protein turnover and abundance differed greatly between canonical pathways, with opposite effects in mitochondrial (mt) dysfunction and eIF2 signaling pathways. CR most closely recapitulated the young phenotype in the top pathways. Polysome profiles indicated that CR reduced polysome loading while RP increased polysome loading in young and old mice, suggesting distinct mechanisms of reduced protein synthesis. CR and RP both attenuated protein oxidative damage. Our findings collectively suggest that CR and RP extend lifespan in part through the reduction of protein synthetic burden and damage and a concomitant increase in protein quality. However, these results challenge the notion that RP is a faithful CR mimetic and highlight mechanistic differences between the two interventions.
Collapse
Affiliation(s)
| | - Nathan Basisty
- Department of Pathology, University of WashingtonSeattle, WA, 98195, USA
| | - Dao-Fu Dai
- Department of Pathology, University of WashingtonSeattle, WA, 98195, USA
| | - Ying A Chiao
- Department of Pathology, University of WashingtonSeattle, WA, 98195, USA
| | - Ellen K Quarles
- Department of Pathology, University of WashingtonSeattle, WA, 98195, USA
| | - Edward J Hsieh
- Department of Genome Sciences, University of WashingtonSeattle, WA, 98195, USA
| | - David Crispin
- Department of Pathology, University of WashingtonSeattle, WA, 98195, USA
| | - Jason H Bielas
- Department of Pathology, University of WashingtonSeattle, WA, 98195, USA
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattle, WA, 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattle, WA, 98109, USA
| | - Nolan G Ericson
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattle, WA, 98109, USA
| | - Richard P Beyer
- Department of Environmental Health and Biostatistics, University of WashingtonSeattle, WA, 98195, USA
| | - Vivian L MacKay
- Department of Biochemistry, University of WashingtonSeattle, WA, 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of WashingtonSeattle, WA, 98195, USA
| | - Peter S Rabinovitch
- Department of Pathology, University of WashingtonSeattle, WA, 98195, USA
- Correspondence, Peter S. Rabinovitch, Department of Pathology, University of Washington, 1959 NE Pacific St., HSB-K081, Seattle, WA 98195, USA. Tel.: 206-685-3761; fax: 206-616-8271; e-mail:
| |
Collapse
|
123
|
Liu Y, Diaz V, Fernandez E, Strong R, Ye L, Baur JA, Lamming DW, Richardson A, Salmon AB. Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging (Albany NY) 2015; 6:742-54. [PMID: 25324470 PMCID: PMC4221917 DOI: 10.18632/aging.100688] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The inhibition of mTOR (mechanistic target of rapamycin) by the macrolide rapamycin has many beneficial effects in mice, including extension of lifespan and reduction or prevention of several age-related diseases. At the same time, chronic rapamycin treatment causes impairments in glucose metabolism including hyperglycemia, glucose intolerance and insulin resistance. It is unknown whether these metabolic effects of rapamycin are permanent or whether they can be alleviated. Here, we confirmed that rapamycin causes glucose intolerance and insulin resistance in both inbred and genetically heterogeneous mice fed either low fat or high fat diets, suggesting that these effects of rapamycin are independent of genetic background. Importantly, we also found that these effects were almost completely lost within a few weeks of cessation of treatment, showing that chronic rapamycin treatment does not induce permanent impairment of glucose metabolism. Somewhat surprisingly, chronic rapamycin also promoted increased accumulation of adipose tissue in high fat fed mice. However, this effect too was lost when rapamycin treatment was ended suggesting that this effect of rapamycin is also not permanent. The reversible nature of rapamycin's alterations of metabolic function suggests that these potentially detrimental side-effects might be managed through alternative dosing strategies or concurrent treatment options.
Collapse
Affiliation(s)
- Yuhong Liu
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA
| | - Vivian Diaz
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA
| | - Elizabeth Fernandez
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA. The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA. Departments of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA
| | - Randy Strong
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA. The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA. Departments of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA
| | - Lan Ye
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison WI 53726, USA
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center and Oklahoma City VA Medical Center, Oklahoma OK 73104, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA. The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA. Departments of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA
| |
Collapse
|
124
|
Fischer KE, Gelfond JAL, Soto VY, Han C, Someya S, Richardson A, Austad SN. Health Effects of Long-Term Rapamycin Treatment: The Impact on Mouse Health of Enteric Rapamycin Treatment from Four Months of Age throughout Life. PLoS One 2015; 10:e0126644. [PMID: 25978367 PMCID: PMC4433347 DOI: 10.1371/journal.pone.0126644] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/04/2015] [Indexed: 11/29/2022] Open
Abstract
Rapamycin, an mTOR inhibitor, has been shown to extend lifespan in a range of model organisms. It has been reported to extend lifespan in multiple strains of mice, administered chronically or acutely early or late in life. The ability of rapamycin to extend health (healthspan) as opposed to life is less well documented. To assess the effects chronic rapamycin treatment on healthspan, enteric rapamycin was given to male and female C57BL/6J mice starting at 4 months of age and continued throughout life. Repeated, longitudinal assessments of health in individual animals were made starting at 16 months of age (=12 months of treatment) until death. A number of health parameters were improved (female grip strength, female body mass and reduced sleep fragmentation in both sexes), others showed no significant difference, while at least one (male rotarod performance) was negatively affected. Rapamycin treatment affected many measures of health in a highly sex-specific manner. While sex-specific phenotypic effects of rapamycin treatment have been widely reported, in this study we document sex differences in the direction of phenotypic change. Rapamycin-fed males and females were both significantly different from controls; however the differences were in the opposite direction in measures of body mass, percent fat and resting metabolic rate, a pattern not previously reported.
Collapse
Affiliation(s)
- Kathleen E. Fischer
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Jonathan A. L. Gelfond
- Department of Epidemiology & Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Vanessa Y. Soto
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Chul Han
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, Florida, United States of America
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, Florida, United States of America
| | - Arlan Richardson
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Steven N. Austad
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
125
|
Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci 2015; 1346:33-44. [PMID: 25907074 DOI: 10.1111/nyas.12756] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase, which plays pivotal roles in integrating growth signals on a cellular level. To support proliferation and survival under stress, two interacting complexes that harbor mTOR, mTORC1 and mTORC2, promote the transcription of genes involved in carbohydrate metabolism and lipogenesis, enhance protein translation, and inhibit autophagy. Although rapamycin was originally developed as an inhibitor of T cell proliferation for preventing organ transplant rejection, its molecular target, mTOR, has been subsequently identified as a central regulator of metabolic cues that drive lineage specification in the immune system. Owing to oxidative stress, the activation of mTORC1 has emerged as a central pathway for the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. Paradoxically, mTORC1 has also been identified as a mediator of the Warburg effect that allows cell survival under hypoxia. Rapamycin and new classes of mTOR inhibitors are being developed to block not only transplant rejection and autoimmunity but also to treat obesity and various forms of cancer. Through preventing these diseases, personalized mTOR blockade holds promise to extend life span.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Department of Medicine State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.,Division of Rheumatology, Department of Microbiology and Immunology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| |
Collapse
|
126
|
Barger JL, Anderson RM, Newton MA, da Silva C, Vann JA, Pugh TD, Someya S, Prolla TA, Weindruch R. A conserved transcriptional signature of delayed aging and reduced disease vulnerability is partially mediated by SIRT3. PLoS One 2015; 10:e0120738. [PMID: 25830335 PMCID: PMC4382298 DOI: 10.1371/journal.pone.0120738] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/06/2015] [Indexed: 12/25/2022] Open
Abstract
Aging is the most significant risk factor for a range of diseases, including many cancers, neurodegeneration, cardiovascular disease, and diabetes. Caloric restriction (CR) without malnutrition delays aging in diverse species, and therefore offers unique insights into age-related disease vulnerability. Previous studies suggest that there are shared mechanisms of disease resistance associated with delayed aging, however quantitative support is lacking. We therefore sought to identify a common response to CR in diverse tissues and species and determine whether this signature would reflect health status independent of aging. We analyzed gene expression datasets from eight tissues of mice subjected to CR and identified a common transcriptional signature that includes functional categories of mitochondrial energy metabolism, inflammation and ribosomal structure. This signature is detected in flies, rats, and rhesus monkeys on CR, indicating aspects of CR that are evolutionarily conserved. Detection of the signature in mouse genetic models of slowed aging indicates that it is not unique to CR but rather a common aspect of extended longevity. Mice lacking the NAD-dependent deacetylase SIRT3 fail to induce mitochondrial and anti-inflammatory elements of the signature in response to CR, suggesting a potential mechanism involving SIRT3. The inverse of this transcriptional signature is detected with consumption of a high fat diet, obesity and metabolic disease, and is reversed in response to interventions that decrease disease risk. We propose that this evolutionarily conserved, tissue-independent, transcriptional signature of delayed aging and reduced disease vulnerability is a promising target for developing therapies for age-related diseases.
Collapse
Affiliation(s)
- Jamie L. Barger
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rozalyn M. Anderson
- Department of Medicine, SMPH, University of Wisconsin, Madison, Wisconsin, United States of America
- Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - Michael A. Newton
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cristina da Silva
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
| | - James A. Vann
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Thomas D. Pugh
- Department of Medicine, SMPH, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shinichi Someya
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tomas A. Prolla
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Richard Weindruch
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
- Department of Medicine, SMPH, University of Wisconsin, Madison, Wisconsin, United States of America
- Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| |
Collapse
|
127
|
Portovedo M, Ignacio-Souza LM, Bombassaro B, Coope A, Reginato A, Razolli DS, Torsoni MA, Torsoni AS, Leal RF, Velloso LA, Milanski M. Saturated fatty acids modulate autophagy's proteins in the hypothalamus. PLoS One 2015; 10:e0119850. [PMID: 25786112 PMCID: PMC4364755 DOI: 10.1371/journal.pone.0119850] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell- line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.
Collapse
Affiliation(s)
- Mariana Portovedo
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | | | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Andressa Coope
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Andressa Reginato
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Daniela S. Razolli
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Márcio A. Torsoni
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Adriana S. Torsoni
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Raquel F. Leal
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Licio A. Velloso
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Marciane Milanski
- Faculty of Applied Science, University of Campinas, UNICAMP, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- * E-mail:
| |
Collapse
|
128
|
Ingram DK, Roth GS. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev 2015; 20:46-62. [PMID: 25530568 DOI: 10.1016/j.arr.2014.11.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022]
Abstract
Strong consensus exists regarding the most robust environmental intervention for attenuating aging processes and increasing healthspan and lifespan: calorie restriction (CR). Over several decades, this paradigm has been replicated in numerous nonhuman models, and has been expanded over the last decade to formal, controlled human studies of CR. Given that long-term CR can create heavy challenges to compliance in human diets, the concept of a calorie restriction mimetic (CRM) has emerged as an active research area within gerontology. In past presentations on this subject, we have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake, at least initially. Over 16 years ago, we proposed that glycolytic inhibition could be an effective strategy for developing CRM. The main argument here is that inhibiting energy utilization as far upstream as possible provides the highest chance of generating a broad spectrum of CR-like effects when compared to targeting a singular molecular target downstream. As an initial candidate CRM, 2-deoxyglucose, a known anti-glycolytic, was shown to produce a remarkable phenotype of CR, but further investigation found that this compound produced cardiotoxicity in rats at the doses we had been using. There remains interest in 2DG as a CRM but at lower doses. Beyond the proposal of 2DG as a candidate CRM, the field has grown steadily with many investigators proposing other strategies, including novel anti-glycolytics. Within the realm of upstream targeting at the level of the digestive system, research has included bariatric surgery, inhibitors of fat digestion/absorption, and inhibitors of carbohydrate digestion. Research focused on downstream sites has included insulin receptors, IGF-1 receptors, sirtuin activators, inhibitors of mTOR, and polyamines. In the current review we discuss progress made involving these various strategies and comment on the status and future for each within this exciting research field.
Collapse
Affiliation(s)
- Donald K Ingram
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70809, United States.
| | - George S Roth
- GeroScience, Inc., Pylesville, MD 21132, United States.
| |
Collapse
|
129
|
|
130
|
Goldberg EL, Romero‐Aleshire MJ, Renkema KR, Ventevogel MS, Chew WM, Uhrlaub JL, Smithey MJ, Limesand KH, Sempowski GD, Brooks HL, Nikolich‐Žugich J. Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms. Aging Cell 2015; 14:130-8. [PMID: 25424641 PMCID: PMC4326902 DOI: 10.1111/acel.12280] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 12/05/2022] Open
Abstract
Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan.
Collapse
Affiliation(s)
- Emily L. Goldberg
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Department of Nutritional Sciences College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
| | | | - Kristin R. Renkema
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | | | - Wade M. Chew
- Arizona Cancer Center University of Arizona College of Medicine Tucson AZ USA
| | - Jennifer L. Uhrlaub
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Megan J. Smithey
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Kirsten H. Limesand
- Department of Nutritional Sciences College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
- Arizona Cancer Center University of Arizona College of Medicine Tucson AZ USA
| | | | - Heddwen L. Brooks
- Department of Physiology University of Arizona College of Medicine Tucson AZ USA
| | - Janko Nikolich‐Žugich
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Department of Nutritional Sciences College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
- Arizona Cancer Center University of Arizona College of Medicine Tucson AZ USA
| |
Collapse
|
131
|
Dominick G, Berryman DE, List EO, Kopchick JJ, Li X, Miller RA, Garcia GG. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology 2015; 156:565-75. [PMID: 25456069 PMCID: PMC4298324 DOI: 10.1210/en.2014-1690] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The involvement of mammalian target of rapamycin (mTOR) in lifespan control in invertebrates, calorie-restricted rodents, and extension of mouse lifespan by rapamycin have prompted speculation that diminished mTOR function may contribute to mammalian longevity in several settings. We show here that mTOR complex-1 (mTORC1) activity is indeed lower in liver, muscle, heart, and kidney tissue of Snell dwarf and global GH receptor (GHR) gene-disrupted mice (GHR-/-), consistent with previous studies. Surprisingly, activity of mTORC2 is higher in fasted Snell and GHR-/- than in littermate controls in all 4 tissues tested. Resupply of food enhanced mTORC1 activity in both controls and long-lived mutant mice but diminished mTORC2 activity only in the long-lived mice. Mice in which GHR has been disrupted only in the liver do not show extended lifespan and also fail to show the decline in mTORC1 and increase in mTORC2 seen in mice with global loss of GHR. The data suggest that the antiaging effects in the Snell dwarf and GHR-/- mice are accompanied by both a decline in mTORC1 in multiple organs and an increase in fasting levels of mTORC2. Neither the lifespan nor mTOR effects appear to be mediated by direct GH effects on liver or by the decline in plasma IGF-I, a shared trait in both global and liver-specific GHR-/- mice. Our data suggest that a more complex pattern of hormonal effects and intertissue interactions may be responsible for regulating both lifespan and mTORC2 function in these mouse models of delayed aging.
Collapse
Affiliation(s)
- Graham Dominick
- Department of Molecular, Cellular, and Developmental Biology (G.D.), University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109; Edison Biotechnology Institute (D.E.B., E.O.L., J.J.K.), Ohio University, Athens, Ohio 45701; Department of Pathology (X.L., R.A.M., G.G.G.), University of Michigan School of Medicine Ann Arbor, Michigan 48109; and University of Michigan Geriatrics Center (R.A.M.), Ann Arbor, Michigan 48109
| | | | | | | | | | | | | |
Collapse
|
132
|
Scarpace PJ, Matheny M, Strehler KYE, Toklu HZ, Kirichenko N, Carter CS, Morgan D, Tümer N. Rapamycin Normalizes Serum Leptin by Alleviating Obesity and Reducing Leptin Synthesis in Aged Rats. J Gerontol A Biol Sci Med Sci 2015; 71:891-9. [PMID: 25617379 DOI: 10.1093/gerona/glu230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/17/2014] [Indexed: 01/27/2023] Open
Abstract
This investigation examines whether a low intermittent dose of rapamycin will avoid the hyperlipidemia and diabetes-like syndrome associated with rapamycin while still decreasing body weight and adiposity in aged obese rats. Furthermore, we examined if the rapamycin-mediated decrease in serum leptin was a reflection of decreased adiposity, diminished leptin synthesis, or both. To these ends, rapamycin (1mg/kg) was administered three times a week to 3 and 24-month old rats. Body weight, food intake, body composition, mTORC1 signaling, markers of metabolism, as well as serum leptin levels and leptin synthesis in adipose tissue were examined and compared to that following a central infusion of rapamycin. Our data suggest that the dosing schedule of rapamycin acts on peripheral targets to inhibit mTORC1 signaling, preferentially reducing adiposity and sparing lean mass in an aged model of obesity resulting in favorable outcomes on blood triglycerides, increasing lean/fat ratio, and normalizing elevated serum leptin with age. The initial mechanism underlying the rapamycin responses appears to have a peripheral action and not central. The peripheral rapamycin responses may communicate an excessive nutrients signal to the hypothalamus that triggers an anorexic response to reduce food consumption. This coupled with potential peripheral mechanism serves to decrease adiposity and synthesis of leptin.
Collapse
Affiliation(s)
- Philip J Scarpace
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida.
| | - Michael Matheny
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Kevin Y E Strehler
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Hale Zerrin Toklu
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Nataliya Kirichenko
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Christy S Carter
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, Florida
| | - Drake Morgan
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, Florida
| | - Nihal Tümer
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida. Department of Veterans Affairs Medical Center, Gainesville, Florida
| |
Collapse
|
133
|
Carter CS, Khamiss D, Matheny M, Toklu HZ, Kirichenko N, Strehler KYE, Tümer N, Scarpace PJ, Morgan D. Rapamycin Versus Intermittent Feeding: Dissociable Effects on Physiological and Behavioral Outcomes When Initiated Early and Late in Life. J Gerontol A Biol Sci Med Sci 2015; 71:866-75. [PMID: 25617380 DOI: 10.1093/gerona/glu238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/22/2014] [Indexed: 12/31/2022] Open
Abstract
Rapamycin, an inhibitor of the mammalian target of rapamycin pathway, has been shown to increase mammalian life span; less is known concerning its effect on healthspan. The primary aim of this study was to examine rapamycin's role in the alteration of several physiological and behavioral outcomes compared with the healthspan-inducing effects of intermittent feeding (IF), another life-span-enhancing intervention. Male Fisher 344 × Brown Norway rats (6 and 25 months of age) were treated with rapamycin or IF for 5 weeks. IF and rapamycin reduced food consumption and body weight. Rapamycin increased relative lean mass and decreased fat mass. IF failed to alter fat mass but lowered relative lean mass. Behaviorally, rapamycin resulted in high activity levels in old animals, IF increased levels of "anxiety" for both ages, and grip strength was not significantly altered by either treatment. Rapamycin, not IF, decreased circulating leptin in older animals to the level of young animals. Glucose levels were unchanged with age or treatment. Hypothalamic AMPK and pAMPK levels decreased in both older treated groups. This pattern of results suggests that rapamycin has more selective and healthspan-inducing effects when initiated late in life.
Collapse
Affiliation(s)
| | | | - Michael Matheny
- Department of Pharmacology and Experimental Therapeutics, and
| | - Hale Z Toklu
- Department of Pharmacology and Experimental Therapeutics, and
| | | | | | - Nihal Tümer
- Department of Pharmacology and Experimental Therapeutics, and Department of Veterans Affairs Medical Center, Gainesville, Florida
| | | | - Drake Morgan
- Department of Psychiatry, University of Florida College of Medicine, Gainesville
| |
Collapse
|
134
|
Reifsnyder PC, Doty R, Harrison DE. Rapamycin ameliorates nephropathy despite elevating hyperglycemia in a polygenic mouse model of type 2 diabetes, NONcNZO10/LtJ. PLoS One 2014; 9:e114324. [PMID: 25473963 PMCID: PMC4256216 DOI: 10.1371/journal.pone.0114324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023] Open
Abstract
While rapamycin treatment has been reported to have a putatively negative effect on glucose homeostasis in mammals, it has not been tested in polygenic models of type 2 diabetes. One such mouse model, NONcNZO10/LtJ, was treated chronically with rapamycin (14 ppm encapsulated in diet) and monitored for the development of diabetes. As expected, rapamycin treatment accelerated the onset and severity of hyperglycemia. However, development of nephropathy was ameliorated, as both glomerulonephritis and IgG deposition in the subendothelial tuft were markedly reduced. Insulin production and secretion appeared to be inhibited, suppressing the developing hyperinsulinemia present in untreated controls. Rapamycin treatment also reduced body weight gain. Thus, rapamycin reduced some of the complications of diabetes despite elevating hyperglycemia. These results suggest that multiple factors must be evaluated when assessing the benefit vs. hazard of rapamycin treatment in patients that have overt, or are at risk for, type 2 diabetes. Testing of rapamycin in combination with insulin sensitizers is warranted, as such compounds may ameliorate the putative negative effects of rapamycin in the type 2 diabetes environment.
Collapse
Affiliation(s)
| | - Rosalinda Doty
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - David E. Harrison
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
135
|
Arum O, Boparai RK, Saleh JK, Wang F, Dirks AL, Turner JG, Kopchick JJ, Liu J, Khardori RK, Bartke A. Specific suppression of insulin sensitivity in growth hormone receptor gene-disrupted (GHR-KO) mice attenuates phenotypic features of slow aging. Aging Cell 2014; 13:981-1000. [PMID: 25244225 PMCID: PMC4326932 DOI: 10.1111/acel.12262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 12/20/2022] Open
Abstract
In addition to their extended lifespans, slow-aging growth hormone receptor/binding protein gene-disrupted (knockout) (GHR-KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR-KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β-cells by expressing Igf-1 under the rat insulin promoter 1 (RIP::IGF-1). The RIP::IGF-1 transgene increased circulating insulin content in GHR-KO mice, and thusly fully normalized their insulin sensitivity, without affecting the proliferation of any non-β-cell cell types. Multiple (nonsurvivorship) longevity-associated physiological and endocrinological characteristics of these mice (namely beneficial blood glucose regulatory control, altered metabolism, and preservation of memory capabilities) were partially or completely normalized, thus supporting the causal role of insulin sensitivity for the decelerated senescence of GHR-KO mice. We conclude that a delayed onset and/or decreased pace of aging can be hormonally regulated.
Collapse
Affiliation(s)
- Oge Arum
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Ravneet K. Boparai
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Jamal K. Saleh
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Feiya Wang
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Angela L. Dirks
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - Jeremy G. Turner
- Division of ENT‐Otolaryngology Department of Surgery Southern Illinois University‐School of Medicine Springfield IL 62794USA
| | - John J. Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens OH 45701USA
| | - Jun‐Li Liu
- Fraser Laboratories for Diabetes Research Department of Medicine McGill University Health Centre 687 Pine Avenue West Montreal QC H3A 1A1 Canada
| | - Romesh K. Khardori
- Division of Endocrinology & Metabolism Department of Internal Medicine Eastern Virginia Medical School 700 West Olney Road Norfolk VA 23507 USA
| | - Andrzej Bartke
- Department of Internal Medicine Southern Illinois University‐School of Medicine Springfield IL 62794USA
| |
Collapse
|
136
|
Mizunuma M, Neumann‐Haefelin E, Moroz N, Li Y, Blackwell TK. mTORC2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell 2014; 13:869-78. [PMID: 25040785 PMCID: PMC4172656 DOI: 10.1111/acel.12248] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 01/22/2023] Open
Abstract
The nematode worm Caenorhabditis elegans provides a powerful system for elucidating how genetic, metabolic, nutritional, and environmental factors influence aging. The mechanistic target of rapamycin (mTOR) kinase is important in growth, disease, and aging and is present in the mTORC1 and mTORC2 complexes. In diverse eukaryotes, lifespan can be increased by inhibition of mTORC1, which transduces anabolic signals to stimulate protein synthesis and inhibit autophagy. Less is understood about mTORC2, which affects C. elegans lifespan in a complex manner that is influenced by the bacterial food source. mTORC2 regulates C. elegans growth, reproduction, and lipid metabolism by activating the SGK-1 kinase, but current data on SGK-1 and lifespan seem to be conflicting. Here, by analyzing the mTORC2 component Rictor (RICT-1), we show that mTORC2 modulates longevity by activating SGK-1 in two pathways that affect lifespan oppositely. RICT-1/mTORC2 limits longevity by directing SGK-1 to inhibit the stress-response transcription factor SKN-1/Nrf in the intestine. Signals produced by the bacterial food source determine how this pathway affects SKN-1 and lifespan. In addition, RICT-1/mTORC2 functions in neurons in an SGK-1-mediated pathway that increases lifespan at lower temperatures. RICT-1/mTORC2 and SGK-1 therefore oppose or accelerate aging depending upon the context in which they are active. Our findings reconcile data on SGK-1 and aging, show that the bacterial microenvironment influences SKN-1/Nrf, mTORC2 functions, and aging, and identify two longevity-related mTORC2 functions that involve SGK-regulated responses to environmental cues.
Collapse
Affiliation(s)
- Masaki Mizunuma
- Joslin Diabetes Center Harvard Stem Cell Institute Harvard Medical School Department of Genetics Boston MA 02215USA
- Department of Molecular Biotechnology Graduate School of Advanced Sciences of Matter Hiroshima University Higashi‐Hiroshima 739‐8530 Japan
| | - Elke Neumann‐Haefelin
- Joslin Diabetes Center Harvard Stem Cell Institute Harvard Medical School Department of Genetics Boston MA 02215USA
- Renal Division University Hospital Freiburg Freiburg 79106Germany
| | - Natalie Moroz
- Joslin Diabetes Center Harvard Stem Cell Institute Harvard Medical School Department of Genetics Boston MA 02215USA
- Division of Biological Sciences Department of Genetics and Complex Diseases Harvard School of Public Health Boston MA 02115USA
| | - Yujie Li
- Renal Division University Hospital Freiburg Freiburg 79106Germany
| | - T. Keith Blackwell
- Joslin Diabetes Center Harvard Stem Cell Institute Harvard Medical School Department of Genetics Boston MA 02215USA
| |
Collapse
|
137
|
Kleinert M, Sylow L, Fazakerley DJ, Krycer JR, Thomas KC, Oxbøll AJ, Jordy AB, Jensen TE, Yang G, Schjerling P, Kiens B, James DE, Ruegg MA, Richter EA. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol Metab 2014; 3:630-41. [PMID: 25161886 PMCID: PMC4142396 DOI: 10.1016/j.molmet.2014.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/12/2023] Open
Abstract
The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose homeostasis in part by blocking muscle mTORC2, indicating its importance in muscle metabolism in vivo.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J. Fazakerley
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - James R. Krycer
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Kristen C. Thomas
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Anne-Julie Oxbøll
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Andreas B. Jordy
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Guang Yang
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - David E. James
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | | | - Erik A. Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
138
|
Völkers M, Doroudgar S, Nguyen N, Konstandin MH, Quijada P, Din S, Ornelas L, Thuerauf DJ, Gude N, Friedrich K, Herzig S, Glembotski CC, Sussman MA. PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol Med 2014; 6:57-65. [PMID: 24408966 PMCID: PMC3936489 DOI: 10.1002/emmm.201303183] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Diabetes is a multi-organ disease and diabetic cardiomyopathy can result in heart failure, which is a leading cause of morbidity and mortality in diabetic patients. In the liver, insulin resistance contributes to hyperglycaemia and hyperlipidaemia, which further worsens the metabolic profile. Defects in mTOR signalling are believed to contribute to metabolic dysfunctions in diabetic liver and hearts, but evidence is missing that mTOR activation is causal to the development of diabetic cardiomyopathy. This study shows that specific mTORC1 inhibition by PRAS40 prevents the development of diabetic cardiomyopathy. This phenotype was associated with improved metabolic function, blunted hypertrophic growth and preserved cardiac function. In addition PRAS40 treatment improves hepatic insulin sensitivity and reduces systemic hyperglycaemia in obese mice. Thus, unlike rapamycin, mTORC1 inhibition with PRAS40 improves metabolic profile in diabetic mice. These findings may open novel avenues for therapeutic strategies using PRAS40 directed against diabetic-related diseases.
Collapse
|
139
|
Schindler CE, Partap U, Patchen BK, Swoap SJ. Chronic rapamycin treatment causes diabetes in male mice. Am J Physiol Regul Integr Comp Physiol 2014; 307:R434-43. [PMID: 24965794 DOI: 10.1152/ajpregu.00123.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current evidence indicates that the mammalian target of rapamycin inhibitor rapamycin both increases longevity and, seemingly contradictorily, impairs glucose homeostasis. Most studies exploring the dimensions of this paradox have been based on rapamycin treatment in mice for up to 20 wk. We sought to better understand the metabolic effects of oral rapamycin over a substantially longer period of time in HET3 mice. We observed that treatment with rapamycin for 52 wk induced diabetes in male mice, characterized by hyperglycemia, significant urine glucose levels, and severe glucose and pyruvate intolerance. Glucose intolerance occurred in male mice by 4 wk on rapamycin and could be only partially reversed with cessation of rapamycin treatment. Female mice developed moderate glucose intolerance over 1 yr of rapamycin treatment, but not diabetes. The role of sex hormones in the differential development of diabetic symptoms in male and female mice was further explored. HET3 mice treated with rapamycin for 52 wk were gonadectomized and monitored over 10 wk. Castrated male mice remained glucose intolerant, while ovariectomized females developed significant glucose intolerance over the same time period. Subsequent replacement of 17β-estradiol (E2) in ovariectomized females promoted a recovery of glucose tolerance over a 4-wk period, suggesting the protective role of E2 against rapamycin-induced diabetes. These results indicate that 1) oral rapamycin treatment causes diabetes in male mice, 2) the diabetes is partially reversible with cessation of treatment, and 3) E2 plays a protective role against the development of rapamycin-induced diabetes.
Collapse
Affiliation(s)
| | - Uttara Partap
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Bonnie K Patchen
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Steven J Swoap
- Department of Biology, Williams College, Williamstown, Massachusetts
| |
Collapse
|
140
|
Mulvey L, Sinclair A, Selman C. Lifespan modulation in mice and the confounding effects of genetic background. J Genet Genomics 2014; 41:497-503. [PMID: 25269675 PMCID: PMC4257991 DOI: 10.1016/j.jgg.2014.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 02/04/2023]
Abstract
We are currently in the midst of a revolution in ageing research, with several dietary, genetic and pharmacological interventions now known to modulate ageing in model organisms. Excitingly, these interventions also appear to have beneficial effects on late-life health. For example, dietary restriction (DR) has been shown to slow the incidence of age-associated cardiovascular disease, metabolic disease, cancer and brain ageing in non-human primates and has been shown to improve a range of health indices in humans. While the idea that DR's ability to extend lifespan is often thought of as being universal, studies in a range of organisms, including yeast, mice and monkeys, suggest that this may not actually be the case. The precise reasons underlying these differential effects of DR on lifespan are currently unclear, but genetic background may be an important factor in how an individual responds to DR. Similarly, recent findings also suggest that the responsiveness of mice to specific genetic or pharmacological interventions that modulate ageing may again be influenced by genetic background. Consequently, while there is a clear driver to develop interventions to improve late-life health and vitality, understanding precisely how these act in response to particular genotypes is critical if we are to translate these findings to humans. We will consider of the role of genetic background in the efficacy of various lifespan interventions and discuss potential routes of utilising genetic heterogeneity to further understand how particular interventions modulate lifespan and healthspan.
Collapse
Affiliation(s)
- Lorna Mulvey
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amy Sinclair
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
141
|
Meynet O, Ricci JE. Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol Med 2014; 20:419-27. [PMID: 24916302 DOI: 10.1016/j.molmed.2014.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 01/23/2023]
Abstract
Caloric restriction (CR) is currently the most robust environmental intervention known to increase healthy life and prolong lifespan in several models, from yeast to mice. Although the protective effect of CR on the incidence of cancer is well established, its impact on tumor cell responses to chemotherapeutic treatment is currently being investigated. Interestingly, the molecular mechanisms required to extend lifespan upon reduced food intake are being evaluated, and these mechanisms may offer new opportunities for therapeutic intervention. In addition, new findings suggest a beneficial effect of CR in enhancing the efficiency of tumor cell killing by chemotherapeutic drugs and inducing an anticancer immune response.
Collapse
Affiliation(s)
- Ophélie Meynet
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe "Contrôle Métabolique des Morts Cellulaires", 06204 Cedex 3, Nice, France; Université de Nice Sophia-Antipolis, Faculté de Médecine, 06100, Nice, France
| | - Jean-Ehrland Ricci
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe "Contrôle Métabolique des Morts Cellulaires", 06204 Cedex 3, Nice, France; Université de Nice Sophia-Antipolis, Faculté de Médecine, 06100, Nice, France; Centre Hospitalier Universitaire de Nice, Département d'Anesthésie Réanimation, 06204 Cedex 3, Nice, France.
| |
Collapse
|
142
|
Dai D, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, Chen T, Gu H, Djukovic D, Raftery D, Beyer RP, MacCoss MJ, Rabinovitch PS. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 2014; 13:529-39. [PMID: 24612461 PMCID: PMC4040127 DOI: 10.1111/acel.12203] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2014] [Indexed: 12/11/2022] Open
Abstract
Chronic caloric restriction (CR) and rapamycin inhibit the mechanistic target of rapamycin (mTOR) signaling, thereby regulating metabolism and suppressing protein synthesis. Caloric restriction or rapamycin extends murine lifespan and ameliorates many aging-associated disorders; however, the beneficial effects of shorter treatment on cardiac aging are not as well understood. Using a recently developed deuterated-leucine labeling method, we investigated the effect of short-term (10 weeks) CR or rapamycin on the proteomics turnover and remodeling of the aging mouse heart. Functionally, we observed that short-term CR and rapamycin both reversed the pre-existing age-dependent cardiac hypertrophy and diastolic dysfunction. There was no significant change in the cardiac global proteome (823 proteins) turnover with age, with a median half-life 9.1 days in the 5-month-old hearts and 8.8 days in the 27-month-old hearts. However, proteome half-lives of old hearts significantly increased after short-term CR (30%) or rapamycin (12%). This was accompanied by attenuation of age-dependent protein oxidative damage and ubiquitination. Quantitative proteomics and pathway analysis revealed an age-dependent decreased abundance of proteins involved in mitochondrial function, electron transport chain, citric acid cycle, and fatty acid metabolism as well as increased abundance of proteins involved in glycolysis and oxidative stress response. This age-dependent cardiac proteome remodeling was significantly reversed by short-term CR or rapamycin, demonstrating a concordance with the beneficial effect on cardiac physiology. The metabolic shift induced by rapamycin was confirmed by metabolomic analysis.
Collapse
Affiliation(s)
- Dao‐Fu Dai
- Department of Pathology University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Pabalu P. Karunadharma
- Department of Pathology University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Ying A. Chiao
- Department of Pathology University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Nathan Basisty
- Department of Pathology University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - David Crispin
- Department of Pathology University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Edward J. Hsieh
- Department of Genome Sciences University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Tony Chen
- Department of Pathology University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Haiwei Gu
- Department of Anesthesiology and Pain Medicine University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Richard P. Beyer
- Department of Environmental Health University of Washington 1959 NE Pacific AveSeattle WA 98195USA
| | - Michael J. MacCoss
- Department of Genome Sciences University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| | - Peter S. Rabinovitch
- Department of Pathology University of Washington 1959 NE Pacific Ave Seattle WA 98195 USA
| |
Collapse
|
143
|
Abstract
Knowledge gained over the past 10 years about the mechanisms that underpin autophagy has provided a universal framework for studies of diverse physiological and pathological processes. Of particular interest is the emerging role of autophagy in the maintenance of energy homeostasis, both at the cellular level and within the organism as a whole. Dysregulation of autophagy might contribute to the development of metabolic disorders, including insulin resistance, diabetes mellitus, obesity, atherosclerosis and osteoporosis. The authors of this Review highlight research findings on the regulation of cellular autophagy by nutrients. They also describe the role of autophagy in various tissues in the regulation of energy metabolism and the development of diseases related to altered metabolism. Finally, the potential of pharmacological modulation of autophagy as a treatment for human metabolic disorders is discussed.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Department of Medicine and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul 135-710, Korea
| | - Myung-Shik Lee
- Department of Medicine and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul 135-710, Korea
| |
Collapse
|
144
|
Orr ME, Salinas A, Buffenstein R, Oddo S. Mammalian target of rapamycin hyperactivity mediates the detrimental effects of a high sucrose diet on Alzheimer's disease pathology. Neurobiol Aging 2014; 35:1233-42. [PMID: 24411482 PMCID: PMC3973159 DOI: 10.1016/j.neurobiolaging.2013.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/26/2013] [Accepted: 12/06/2013] [Indexed: 01/25/2023]
Abstract
High sugar consumption and diabetes increase the risk of developing Alzheimer's disease (AD) by unknown mechanisms. Using an animal model of AD, here we show that high sucrose intake induces obesity with changes in central and peripheral insulin signaling. These pre-diabetic changes are associated with an increase in amyloid-β production and deposition. Moreover, high sucrose ingestion exacerbates tau phosphorylation by increasing Cdk5 activity. Mechanistically, the sucrose-mediated increase in AD-like pathology results from hyperactive mammalian target of rapamycin (mTOR), a key nutrient sensor important in regulating energy homeostasis. Specifically, we show that rapamycin, an mTOR inhibitor, prevents the detrimental effects of sucrose in the brain without altering changes in peripheral insulin resistance. Overall, our data suggest that high sucrose intake and dysregulated insulin signaling, which are known to contribute to the occurrence of diabetes, increase the risk of developing AD by upregulating brain mTOR signaling. Therefore, early interventions to modulate mTOR activity in individuals at high risk of developing diabetes may decrease their AD susceptibility.
Collapse
Affiliation(s)
- Miranda E Orr
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Angelica Salinas
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rochelle Buffenstein
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Salvatore Oddo
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Banner Sun Health Research Institute, Sun City, AZ, USA; Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
145
|
Single rapamycin administration induces prolonged downward shift in defended body weight in rats. PLoS One 2014; 9:e93691. [PMID: 24787262 PMCID: PMC4008417 DOI: 10.1371/journal.pone.0093691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/08/2014] [Indexed: 11/19/2022] Open
Abstract
Manipulation of body weight set point may be an effective weight loss and maintenance strategy as the homeostatic mechanism governing energy balance remains intact even in obese conditions and counters the effort to lose weight. However, how the set point is determined is not well understood. We show that a single injection of rapamycin (RAP), an mTOR inhibitor, is sufficient to shift the set point in rats. Intraperitoneal RAP decreased food intake and daily weight gain for several days, but surprisingly, there was also a long-term reduction in body weight which lasted at least 10 weeks without additional RAP injection. These effects were not due to malaise or glucose intolerance. Two RAP administrations with a two-week interval had additive effects on body weight without desensitization and significantly reduced the white adipose tissue weight. When challenged with food deprivation, vehicle and RAP-treated rats responded with rebound hyperphagia, suggesting that RAP was not inhibiting compensatory responses to weight loss. Instead, RAP animals defended a lower body weight achieved after RAP treatment. Decreased food intake and body weight were also seen with intracerebroventricular injection of RAP, indicating that the RAP effect is at least partially mediated by the brain. In summary, we found a novel effect of RAP that maintains lower body weight by shifting the set point long-term. Thus, RAP and related compounds may be unique tools to investigate the mechanisms by which the defended level of body weight is determined; such compounds may also be used to complement weight loss strategy.
Collapse
|
146
|
Makki K, Taront S, Molendi-Coste O, Bouchaert E, Neve B, Eury E, Lobbens S, Labalette M, Duez H, Staels B, Dombrowicz D, Froguel P, Wolowczuk I. Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice. PLoS One 2014; 9:e92684. [PMID: 24710396 PMCID: PMC3977858 DOI: 10.1371/journal.pone.0092684] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
The “mechanistic target of rapamycin” (mTOR) is a central controller of growth, proliferation and/or motility of various cell-types ranging from adipocytes to immune cells, thereby linking metabolism and immunity. mTOR signaling is overactivated in obesity, promoting inflammation and insulin resistance. Therefore, great interest exists in the development of mTOR inhibitors as therapeutic drugs for obesity or diabetes. However, despite a plethora of studies characterizing the metabolic consequences of mTOR inhibition in rodent models, its impact on immune changes associated with the obese condition has never been questioned so far. To address this, we used a mouse model of high-fat diet (HFD)-fed mice with and without pharmacologic mTOR inhibition by rapamycin. Rapamycin was weekly administrated to HFD-fed C57BL/6 mice for 22 weeks. Metabolic effects were determined by glucose and insulin tolerance tests and by indirect calorimetry measures of energy expenditure. Inflammatory response and immune cell populations were characterized in blood, adipose tissue and liver. In parallel, the activities of both mTOR complexes (e. g. mTORC1 and mTORC2) were determined in adipose tissue, muscle and liver. We show that rapamycin-treated mice are leaner, have enhanced energy expenditure and are protected against insulin resistance. These beneficial metabolic effects of rapamycin were associated to significant changes of the inflammatory profiles of both adipose tissue and liver. Importantly, immune cells with regulatory functions such as regulatory T-cells (Tregs) and myeloid-derived suppressor cells (MDSCs) were increased in adipose tissue. These rapamycin-triggered metabolic and immune effects resulted from mTORC1 inhibition whilst mTORC2 activity was intact. Taken together, our results reinforce the notion that controlling immune regulatory cells in metabolic tissues is crucial to maintain a proper metabolic status and, more generally, comfort the need to search for novel pharmacological inhibitors of the mTOR signaling pathway to prevent and/or treat metabolic diseases.
Collapse
Affiliation(s)
- Kassem Makki
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)8199, Lille Pasteur Institute, Lille, France
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Solenne Taront
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)8199, Lille Pasteur Institute, Lille, France
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Olivier Molendi-Coste
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1011, Lille Pasteur Institute, Lille, France
| | - Emmanuel Bouchaert
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1011, Lille Pasteur Institute, Lille, France
| | - Bernadette Neve
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)8199, Lille Pasteur Institute, Lille, France
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Elodie Eury
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)8199, Lille Pasteur Institute, Lille, France
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Stéphane Lobbens
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)8199, Lille Pasteur Institute, Lille, France
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Myriam Labalette
- Lille 2 University, Lille, France
- Immunology Institute, Centre Hospitalier Régional Universitaire (CHRU) Lille and Equipe d'Accueil (EA)2686, Lille 2 University, Lille, France
| | - Hélène Duez
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1011, Lille Pasteur Institute, Lille, France
| | - Bart Staels
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1011, Lille Pasteur Institute, Lille, France
| | - David Dombrowicz
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1011, Lille Pasteur Institute, Lille, France
| | - Philippe Froguel
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)8199, Lille Pasteur Institute, Lille, France
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (PF); (IW)
| | - Isabelle Wolowczuk
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)8199, Lille Pasteur Institute, Lille, France
- Lille 2 University, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- * E-mail: (PF); (IW)
| |
Collapse
|
147
|
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is a master regulator of cell growth and metabolism. Deregulation of the mTOR pathway has been implicated in a number of human diseases such as cancer, diabetes, obesity, neurological diseases, and genetic disorders. Rapamycin, a specific inhibitor of mTOR, has been shown to be useful in the treatment of certain diseases. Here we discuss its mechanism of action and highlight recent findings regarding the effects and limitations of rapamycin monotherapy and the potential utility of combination therapy with rapamycin.
Collapse
Affiliation(s)
- Jing Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sang Gyun Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - John Blenis
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
148
|
Vergès B, Walter T, Cariou B. Endocrine side effects of anti-cancer drugs: effects of anti-cancer targeted therapies on lipid and glucose metabolism. Eur J Endocrinol 2014; 170:R43-55. [PMID: 24154684 DOI: 10.1530/eje-13-0586] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the past years, targeted therapies for cancer have been developed using drugs that have significant metabolic consequences. Among them, the mammalian target of rapamycin (mTOR) inhibitors and, to a much lesser extent, the tyrosine kinase inhibitors (TKIs) are involved. mTOR plays a key role in the regulation of cell growth as well as lipid and glucose metabolism. Treatment with mTOR inhibitors is associated with a significant increase in plasma triglycerides and LDL cholesterol. mTOR inhibitors seem to increase plasma triglycerides by reducing the activity of the lipoprotein lipase which is in charge of the catabolism of triglyceride-rich lipoproteins. The increase in LDL cholesterol observed with mTOR inhibitors seems to be due to a decrease in LDL catabolism secondary to a reduction of LDL receptor expression. In addition, treatment with mTOR inhibitors is associated with a high incidence of hyperglycemia, ranging from 13 to 50% in the clinical trials. The mechanisms responsible for hyperglycemia with new onset diabetes are not clear, but are likely due to the combination of impaired insulin secretion and insulin resistance. TKIs do not induce hyperlipidemia but alter glucose homeostasis. Treatment with TKIs may be associated either with hyperglycemia or hypoglycemia. The molecular mechanism by which TKIs control glucose homeostasis remains unknown. Owing to the metabolic consequences of these agents used as targeted anti-cancer therapies, a specific and personalized follow-up of blood glucose and lipids is recommended when using mTOR inhibitors and of blood glucose when using TKIs.
Collapse
Affiliation(s)
- Bruno Vergès
- Service Endocrinologie, Diabétologie et Maladies Métaboliques, INSERM CRI 866, Hôpital du Bocage, CHU Dijon, Université de Bourgogne, 21000 Dijon, France
| | | | | |
Collapse
|
149
|
Abstract
Dietary restriction (DR) has been shown to extend both median and maximum lifespan in a range of animals, although recent findings suggest that these effects are not universally enjoyed across all animals. In particular, the lifespan effect following DR in mice is highly strain-specific and there is little current evidence that DR induces a positive effect on all-cause mortality in non-human primates. However, the positive effects of DR on health appear to be highly conserved across the vast majority of species, including human subjects. Despite these effects on health, it is highly unlikely that DR will become a realistic or popular life choice for most human subjects given the level of restraint required. Consequently significant research is focusing on identifying compounds that will bestow the benefits of DR without the obligation to adhere to stringent reductions in daily food intake. Several such compounds, including rapamycin, metformin and resveratrol, have been identified as potential DR mimetics. Although these compounds show significant promise, there is a need to properly understand the mechanisms through which these drugs act. This review will discuss the importance in understanding the role that genetic background and heterogeneity play in mediating the lifespan and healthspan effects of DR. It will also provide an overview of the most promising current DR mimetics and their effects on healthy lifespan.
Collapse
|
150
|
Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging. Int J Cell Biol 2013; 2013:638083. [PMID: 24348562 PMCID: PMC3855986 DOI: 10.1155/2013/638083] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022] Open
Abstract
The misfolding, aggregation, and tissue accumulation of proteins are common events in diverse chronic diseases, known as protein misfolding disorders. Many of these diseases are associated with aging, but the mechanism for this connection is unknown. Recent evidence has shown that the formation and accumulation of protein aggregates may be a process frequently occurring during normal aging, but it is unknown whether protein misfolding is a cause or a consequence of aging. To combat the formation of these misfolded aggregates cells have developed complex and complementary pathways aiming to maintain protein homeostasis. These protective pathways include the unfolded protein response, the ubiquitin proteasome system, autophagy, and the encapsulation of damaged proteins in aggresomes. In this paper we review the current knowledge on the role of protein misfolding in disease and aging as well as the implication of deficiencies in the proteostasis cellular pathways in these processes. It is likely that further understanding of the mechanisms involved in protein misfolding and the natural defense pathways may lead to novel strategies for treatment of age-dependent protein misfolding disorders and perhaps aging itself.
Collapse
|