101
|
García-Revilla J, Boza-Serrano A, Jin Y, Vadukul DM, Soldán-Hidalgo J, Camprubí-Ferrer L, García-Cruzado M, Martinsson I, Klementieva O, Ruiz R, Aprile FA, Deierborg T, Venero JL. Galectin-3 shapes toxic alpha-synuclein strains in Parkinson's disease. Acta Neuropathol 2023:10.1007/s00401-023-02585-x. [PMID: 37202527 DOI: 10.1007/s00401-023-02585-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.
Collapse
Affiliation(s)
- Juan García-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden.
| | - Antonio Boza-Serrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Yiyun Jin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Devkee M Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Jesús Soldán-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Marta García-Cruzado
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Isak Martinsson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Oxana Klementieva
- Medical Microspecroscopy Lab, Department of Experimental Medical Science, SRA: NanoLund, Multipark, Lund University, BMC B10, 221 84, Lund, Sweden
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Francesco A Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
102
|
Garcia Castro J, Méndez Del Sol H, Rodríguez Fraga O, Hernández Barral M, Serrano López S, Frank García A, Martín Montes Á. CSF Aβ40 Levels Do Not Correlate with the Clinical Manifestations of Alzheimer's Disease. NEURODEGENER DIS 2023; 22:151-158. [PMID: 37231965 DOI: 10.1159/000530907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarker quantification provides physicians with a reliable diagnosis of Alzheimer's disease (AD). However, the relationship between their concentration and disease course has not been clearly elucidated. This work aimed to investigate the clinical and prognostic significance of Aβ40 CSF levels. METHODS A retrospective cohort of 76 patients diagnosed with AD using a decreased Aβ42/Aβ40 ratio was subclassified into hyposecretors (Aβ40 <7,755 pg/mL), normosecretors (Aβ40 7,755-16,715 pg/mL), and hypersecretors (Aβ40 >16,715 pg/mL). Potential differences in AD phenotype, Montreal Cognitive Assessment (MoCA) scores, and Global Deterioration Scale (GDS) stages were assessed. Correlation tests for biomarker concentrations were also performed. RESULTS Participants were classified as hyposecretors (n = 22, median Aβ40 5,870.500 pg/mL, interquartile range [IQR] 1,431), normosecretors (n = 47, median Aβ40 10,817 pg/mL, IQR 3,622), and hypersecretors (n = 7, 19,767 pg/mL, IQR 3,088). The distribution of positive phosphorylated Tau (p-Tau) varied significantly between subgroups and was more common in the normo- and hypersecretor categories (p = 0.003). Aβ40 and p-Tau concentrations correlated positively (ρ = 0.605, p < 0.001). No significant differences were found among subgroups regarding age, initial MoCA score, initial GDS stage, progression to the dementia stage, or changes in the MoCA score. CONCLUSION In this study, we found no significant differences in clinical symptoms or disease progression in AD patients according to their CSF Aβ40 concentration. Aβ40 was positively correlated with p-Tau and total Tau concentrations, supporting their potential interaction in AD pathophysiology.
Collapse
Affiliation(s)
- Jesús Garcia Castro
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain,
| | | | | | - María Hernández Barral
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| | - Soledad Serrano López
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| | - Ana Frank García
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel Martín Montes
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| |
Collapse
|
103
|
Mañucat-Tan NB, Chowdhury A, Cataldi R, Abdullah RZ, Kumita JR, Wyatt AR. Hypochlorite-induced oxidation promotes aggregation and reduces toxicity of amyloid beta 1-42. Redox Biol 2023; 63:102736. [PMID: 37216700 DOI: 10.1016/j.redox.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Exacerbated hypochlorite (OCl-) production is linked to neurodegenerative processes, but there is growing evidence that lower levels of hypochlorite activity are important to protein homeostasis. In this study we characterise the effects of hypochlorite on the aggregation and toxicity of amyloid beta peptide 1-42 (Aβ1-42), a major component of amyloid plaques that form in the brain in Alzheimer's disease. Our results demonstrate that treatment with hypochlorite promotes the formation of Aβ1-42 assemblies ≥100 kDa that have reduced surface exposed hydrophobicity compared to the untreated peptide. This effect is the result of the oxidation of Aβ1-42 at a single site as determined by mass spectrometry analysis. Although treatment with hypochlorite promotes the aggregation of Aβ1-42, the solubility of the peptide is enhanced and amyloid fibril formation is inhibited as assessed by filter trap assay, thioflavin T assay and transmission electron microscopy. The results of in vitro assays using SH-SY5Y neuroblastoma cells show that pre-treatment of Aβ1-42 with a sub-stoichiometric amount of hypochlorite substantially reduces its toxicity. The results of flow cytometry analysis and internalisation assays indicate that hypochlorite-induced modification of Aβ1-42 reduces its toxicity via at least two-distinct mechanism, reducing the total binding of Aβ1-42 to the surface of cells and facilitating the cell surface clearance of Aβ1-42 to lysosomes. Our data is consistent with a model in which tightly regulated production of hypochlorite in the brain is protective against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Noralyn B Mañucat-Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048
| | - Ashfaq Chowdhury
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rodrigo Cataldi
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rafaa Zeineddine Abdullah
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, NSW, Australia, 2500
| | - Janet R Kumita
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Amy R Wyatt
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048.
| |
Collapse
|
104
|
Lee S, Dagar A, Cho I, Kim K, Park IW, Yoon S, Cha M, Shin J, Kim HY, Kim I, Kim Y. 4-Acyl-3,4-dihydropyrrolo[1,2- a]pyrazine Derivative Rescued the Hippocampal-Dependent Cognitive Decline of 5XFAD Transgenic Mice by Dissociating Soluble and Insoluble Aβ Aggregates. ACS Chem Neurosci 2023. [PMID: 37171100 DOI: 10.1021/acschemneuro.2c00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Cerebral amyloid-β (Aβ) deposition is a representative hallmark of Alzheimer's disease (AD). Development of Aβ-clearing small molecules could be an advantageous therapeutic strategy for Aβ clearance considering the advantages in terms of side effects, cost-effectiveness, stability, and oral bioavailability. Here, we report an Aβ-dissociating small molecule, YIAD-0121, a derivative of 4-acyl-3,4-dihydropyrrolo[1,2-a]pyrazine. Through a series of anti-Aβ screening assays, YIAD-0121 was identified to inhibit Aβ aggregation and dissociate preformed Aβ fibrils in vitro. Furthermore, the administration of YIAD-0121 in 5XFAD transgenic AD mice inhibited the increase of cerebral Aβ aggregation and progression of hippocampus-dependent cognitive decline, with ameliorated neuroinflammation.
Collapse
Affiliation(s)
- Songmin Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Anuradha Dagar
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Minhae Cha
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ikyon Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
105
|
Schreiner TG, Schreiner OD, Adam M, Popescu BO. The Roles of the Amyloid Beta Monomers in Physiological and Pathological Conditions. Biomedicines 2023; 11:1411. [PMID: 37239082 PMCID: PMC10216198 DOI: 10.3390/biomedicines11051411] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Amyloid beta peptide is an important biomarker in Alzheimer's disease, with the amyloidogenic hypothesis as one of the central hypotheses trying to explain this type of dementia. Despite numerous studies, the etiology of Alzheimer's disease remains incompletely known, as the pathological accumulation of amyloid beta aggregates cannot fully explain the complex clinical picture of the disease. Or, for the development of effective therapies, it is mandatory to understand the roles of amyloid beta at the brain level, from its initial monomeric stage prior to aggregation in the form of senile plaques. In this sense, this review aims to bring new, clinically relevant data on a subject intensely debated in the literature in the last years. In the first part, the amyloidogenic cascade is reviewed and the possible subtypes of amyloid beta are differentiated. In the second part, the roles played by the amyloid beta monomers in physiological and pathological (neurodegenerative) conditions are illustrated based on the most relevant and recent studies published on this topic. Finally, considering the importance of amyloid beta monomers in the pathophysiology of Alzheimer's disease, new research directions with diagnostic and therapeutic impacts are suggested.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Oliver Daniel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Medical Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Maricel Adam
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
106
|
Majid N, Siddiqi MK, Hassan MN, Malik S, Khan S, Khan RH. Inhibition of primary and secondary nucleation alongwith disruption of amyloid fibrils and alleviation of associated cytotoxicity: A biophysical insight of a novel property of Chlorpropamide (an anti-diabetic drug). BIOMATERIALS ADVANCES 2023; 151:213450. [PMID: 37148596 DOI: 10.1016/j.bioadv.2023.213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Aggregation of physiologically synthesized soluble proteins to insoluble, cytotoxic fibrils is a pre-requisite for pathogenesis of amyloid associated disorders including Alzheimer's disease, non-systemic amyloidosis, Parkinson's disease, etc. Considerable advancement has been made to understand the mechanism behind aggregation process but till date we have no efficient cure and preventive therapy for associated diseases. Strategies to prevent protein aggregation are nevertheless many which have been proved promisingly successful in vitro. One of those is repurposing already approved drugs that saves time and money too and has been employed in this study. Here, for the first time we are reporting the effectiveness of an anti-diabetic drug chlorpropamide (CHL) under dosage conditions, a novel property to inhibit aggregation in human lysozyme (HL) in vitro. Spectroscopic (Turbidity, RLS, ThT, DLS, ANS) and microscopic (CLSM) results demonstrates that CHL has the potency to suppress aggregation in HL up to 70 %. CHL is shown to affect the elongation of fibrils with IC50 value of 88.5 μM as clear from the kinetics results, may be by interacting near/with aggregation prone regions of HL. Hemolytic assay also revealed the reduced cytotoxicity in the presence of CHL. Disruption of amyloid fibrils and inhibition of secondary nucleation in the presence of CHL was also evidenced by ThT, CD and CLSM results with reduced cytotoxicity as confirmed by hemolytic assay. We also performed preliminary studies on α-synuclein fibrillation inhibition and surprisingly found that CHL is not just inhibiting the fibrillation but also stabilizing the protein in its native state. These findings insinuate that CHL (anti-diabetic) possess multiple roles and can be a promising drug for developing therapeutic against non-systemic amyloidosis, Parkinson's disease and other amyloid associated disorders.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Khursheed Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India; Department of Pathology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Seema Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
107
|
Caruso G, Fresta CG, Fidilio A, Lazzara F, Musso N, Cardaci V, Drago F, Caraci F, Bucolo C. Carnosine Counteracts the Molecular Alterations Aβ Oligomers-Induced in Human Retinal Pigment Epithelial Cells. Molecules 2023; 28:3324. [PMID: 37110558 PMCID: PMC10146178 DOI: 10.3390/molecules28083324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related macular degeneration (AMD) has been described as a progressive eye disease characterized by irreversible impairment of central vision, and unfortunately, an effective treatment is still not available. It is well-known that amyloid-beta (Aβ) peptide is one of the major culprits in causing neurodegeneration in Alzheimer's disease (AD). The extracellular accumulation of this peptide has also been found in drusen which lies under the retinal pigment epithelium (RPE) and represents one of the early signs of AMD pathology. Aβ aggregates, especially in the form of oligomers, are able to induce pro-oxidant (oxidative stress) and pro-inflammatory phenomena in RPE cells. ARPE-19 is a spontaneously arising human RPE cell line validated for drug discovery processes in AMD. In the present study, we employed ARPE-19 treated with Aβ oligomers, representing an in vitro model of AMD. We used a combination of methods, including ATPlite, quantitative real-time PCR, immunocytochemistry, as well as a fluorescent probe for reactive oxygen species to investigate the molecular alterations induced by Aβ oligomers. In particular, we found that Aβ exposure decreased the cell viability of ARPE-19 cells which was paralleled by increased inflammation (increased expression of pro-inflammatory mediators) and oxidative stress (increased expression of NADPH oxidase and ROS production) along with the destruction of ZO-1 tight junction protein. Once the damage was clarified, we investigated the therapeutic potential of carnosine, an endogenous dipeptide that is known to be reduced in AMD patients. Our findings demonstrate that carnosine was able to counteract most of the molecular alterations induced by the challenge of ARPE-19 with Aβ oligomers. These new findings obtained with ARPE-19 cells challenged with Aβ1-42 oligomers, along with the well-demonstrated multimodal mechanism of action of carnosine both in vitro and in vivo, able to prevent and/or counteract the dysfunctions elicited by Aβ oligomers, substantiate the neuroprotective potential of this dipeptide in the context of AMD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudia G. Fresta
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Bio-Nanotech Research and Innovation Tower (BRIT), University of Catania, 95123 Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, 20132 Milano, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95123 Catania, Italy
| |
Collapse
|
108
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
109
|
Zhang RL, Lei BX, Wu GY, Wang YY, Huang QH. Protective effects of berberine against β-amyloid-induced neurotoxicity in HT22 cells via the Nrf2/HO-1 pathway. Bioorg Chem 2023; 133:106210. [PMID: 36724611 DOI: 10.1016/j.bioorg.2022.106210] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
Neuronal apoptosis has been found to have a pivotal role in the course of Alzheimer's disease (AD). Berberine (BBR), a potent antioxidant, occurs in plants such as Berberis, Phellodendron chinense, and Hydrastis canadensis. In this study, a neuronal apoptotic model was established in vitro using HT22 cells induced by Aβ25-35 to explore whether BBR contributes to protecting neurons against Aβ25-35-induced neurotoxicity, as well as its potential mechanisms. BBR was applied to HT22 cells for 1 h prior to exposing the cells to Aβ25-35 for 24 h. A CCK-8 assay was utilized to assess cell viability, and Annexin V - fluorescein isothiocyanate (FITC)/propidium iodide and Hoechst 33342 fluorescence staining were used to measure the rate of cell apoptosis. Existing scientific literature was also reviewed to further determine the effects of BBR on ROS production and mitochondrial function in HT22 cells. Furthermore, the expressions of proteins, including cytochrome C, cleaved caspase-3, p-p65, p65, and Nrf2/HO-1 antioxidant axis were assessed by Western blotting. The data indicated that BBR markedly improved cell viability, inhibited apoptosis and intracellular ROS levels, improved mitochondrial membrane potentials, decreased the rate of p-p65/p65, cytochrome C, and cleaved caspase-3, and intensified the activity of Nrf2/HO-1 antioxidants in HT22 cells. Overall, the findings indicated that BBR provides a certain level of neuroprotectiveness in HT22 cells exposed to Aβ25-35 via relieving oxidative stress, as well as by restraining the mitochondrial pathway of cellular apoptosis. In addition, the restraint of NF-κB activity and sensitization of the Nrf2/HO-1 antioxidant axis, which together are intimately involved in the neuroprotection of BBR, may be possible mechanisms accounting for its effectiveness against Aβ25-35in vitro.
Collapse
Affiliation(s)
- Ru-Lan Zhang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Bing-Xi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Guo-Yong Wu
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yuan-Yuan Wang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Qi-Hui Huang
- Department of Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
110
|
Ahlawat J, Wilson DL, Carreon A, Narayan M. Resolving the soluble-to-toxic transformation of amyloidogenic proteins: A method to assess intervention by small-molecules. RESEARCH SQUARE 2023:rs.3.rs-2631727. [PMID: 36945382 PMCID: PMC10029074 DOI: 10.21203/rs.3.rs-2631727/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aβ), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others is associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. Conversely, the dissolution of mature fibrils and toxic amyloidogenic intermediates including oligomers remains the holy grail in the treatment of neurodegenerative disorders. Yet, methods to effectively, and quantitatively, report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. For the first time, we describe the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique permits rapid, inexpensive and quantitative assessment of the fraction of amyloid monomers that form intermediates and mature fibrils. In addition, the method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers or retain amyloid proteins in their monomeric forms. Importantly, our methodological advance diminishes major existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.
Collapse
|
111
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
112
|
Wojtunik-Kulesza K, Rudkowska M, Orzeł-Sajdłowska A. Aducanumab-Hope or Disappointment for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054367. [PMID: 36901797 PMCID: PMC10002282 DOI: 10.3390/ijms24054367] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In June 2021, the world was informed about a new drug for Alzheimer's disease approved by the FDA. Aducanumab (BIIB037, ADU), being a monoclonal antibody IgG1, is the newest AD treatment. The activity of the drug is targeted towards amyloid β, which is considered one of the main causes of Alzheimer's disease. Clinical trials have revealed time- and dose-dependent activity towards Aβ reduction, as well as cognition improvement. Biogen, the company responsible for conducting research and introducing the drug to the market, presents the drug as a solution to cognitive impairment, but its limitations, costs, and side effects are controversial. The framework of the paper focuses on the mechanism of aducanumab's action along with the positive and negative sides of the therapy. The review presents the basis of the amyloid hypothesis that is the cornerstone of therapy, as well as the latest information about aducanumab, its mechanism of action, and the possibility of the use of the drug.
Collapse
Affiliation(s)
- Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
- Correspondence:
| | - Monika Rudkowska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | | |
Collapse
|
113
|
Gabriel JM, Tan T, Rinauro DJ, Hsu CM, Buettner CJ, Gilmer M, Kaur A, McKenzie TL, Park M, Cohen S, Errico S, Wright AK, Chiti F, Vendruscolo M, Limbocker R. EGCG inactivates a pore-forming toxin by promoting its oligomerization and decreasing its solvent-exposed hydrophobicity. Chem Biol Interact 2023; 371:110307. [PMID: 36535315 DOI: 10.1016/j.cbi.2022.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Natural proteinaceous pore-forming agents can bind and permeabilize cell membranes, leading to ion dyshomeostasis and cell death. In the search for antidotes that can protect cells from peptide toxins, we discovered that the polyphenol epigallocatechin gallate (EGCG) interacts directly with melittin from honeybee venom, resulting in the elimination of its binding to the cell membrane and toxicity by markedly lowering the extent of its solvent-exposed hydrophobicity and promoting its oligomerization into larger species. These physicochemical parameters have also been shown to play a key role in the binding to cells of misfolded protein oligomers in a host of neurodegenerative diseases, where oligomer-membrane binding and associated toxicity have been shown to correlate negatively with oligomer size and positively with solvent-exposed hydrophobicity. For melittin, which is not an amyloid-forming protein and has a very distinct mechanism of toxicity compared to misfolded oligomers, we find that the size-hydrophobicity-toxicity relationship also rationalizes the pharmacological attenuation of melittin toxicity by EGCG. These results highlight the importance of the physicochemical properties of pore forming agents in mediating their interactions with cell membranes and suggest a possible therapeutic approach based on compounds with a similar mechanism of action as EGCG.
Collapse
Affiliation(s)
- Justus M Gabriel
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Thomas Tan
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Claire M Hsu
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Caleb J Buettner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Marshall Gilmer
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Amrita Kaur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Tristan L McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Martin Park
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophie Cohen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Silvia Errico
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Aidan K Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| |
Collapse
|
114
|
Cheong DY, Roh S, Park I, Lin Y, Lee YH, Lee T, Lee SW, Lee D, Jung HG, Kim H, Lee W, Yoon DS, Hong Y, Lee G. Proteolysis-driven proliferation and rigidification of pepsin-resistant amyloid fibrils. Int J Biol Macromol 2023; 227:601-607. [PMID: 36543295 DOI: 10.1016/j.ijbiomac.2022.12.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/20/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proteolysis of amyloids is related to prevention and treatment of amyloidosis. What if the conditions for proteolysis were the same to those for amyloid formation? For example, pepsin, a gastric protease is activated in an acidic environment, which, interestingly, is also a condition that induces the amyloid formation. Here, we investigate the competition reactions between proteolysis and synthesis of amyloid under pepsin-activated conditions. The changes in the quantities and nanomechanical properties of amyloids after pepsin treatment were examined by fluorescence assay, circular dichroism and atomic force microscopy. We found that, in the case of pepsin-resistant amyloid, a secondary reaction can be accelerated, thereby proliferating amyloids. Moreover, after this reaction, the amyloid became 32.4 % thicker and 24.2 % stiffer than the original one. Our results suggest a new insight into the proteolysis-driven proliferation and rigidification of pepsin-resistant amyloids.
Collapse
Affiliation(s)
- Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research Headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Hyunji Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea; ASTRION Inc., Seoul 02841, South Korea.
| | - Yoochan Hong
- Department of Medical Devices, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, South Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea.
| |
Collapse
|
115
|
Conti Filho CE, Loss LB, Marcolongo-Pereira C, Rossoni Junior JV, Barcelos RM, Chiarelli-Neto O, da Silva BS, Passamani Ambrosio R, Castro FCDAQ, Teixeira SF, Mezzomo NJ. Advances in Alzheimer's disease's pharmacological treatment. Front Pharmacol 2023; 14:1101452. [PMID: 36817126 PMCID: PMC9933512 DOI: 10.3389/fphar.2023.1101452] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. Several hypotheses emerged from AD pathophysiological mechanisms. However, no neuronal protective or regenerative drug is available nowadays. Researchers still work in drug development and are finding new molecular targets to treat AD. Therefore, this study aimed to summarize main advances in AD pharmacological therapy. Clinical trials registered in the National Library of Medicine database were selected and analyzed accordingly to molecular targets, therapeutic effects, and safety profile. The most common outcome was the lack of efficacy. Only seven trials concluded that tested drugs were safe and induced any kind of therapeutic improvement. Three works showed therapeutic effects followed by toxicity. In addition to aducanumab recent FDA approval, antibodies against amyloid-β (Aβ) showed no noteworthy results. 5-HT6 antagonists, tau inhibitors and nicotinic agonists' data were discouraging. However, anti-Aβ vaccine, BACE inhibitor and anti-neuroinflammation drugs showed promising results.
Collapse
|
116
|
Self-Assembly of Amyloid Fibrils into 3D Gel Clusters versus 2D Sheets. Biomolecules 2023; 13:biom13020230. [PMID: 36830599 PMCID: PMC9953743 DOI: 10.3390/biom13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The deposition of dense fibril plaques represents the pathological hallmark for a multitude of human disorders, including many neurodegenerative diseases. Fibril plaques are predominately composed of amyloid fibrils, characterized by their underlying cross beta-sheet architecture. Research into the mechanisms of amyloid formation has mostly focused on characterizing and modeling the growth of individual fibrils and associated oligomers from their monomeric precursors. Much less is known about the mechanisms causing individual fibrils to assemble into ordered fibrillar suprastructures. Elucidating the mechanisms regulating this "secondary" self-assembly into distinct suprastructures is important for understanding how individual protein fibrils form the prominent macroscopic plaques observed in disease. Whether and how amyloid fibrils assemble into either 2D or 3D supramolecular structures also relates to ongoing efforts on using amyloid fibrils as substrates or scaffolds for self-assembling functional biomaterials. Here, we investigated the conditions under which preformed amyloid fibrils of a lysozyme assemble into larger superstructures as a function of charge screening or pH. Fibrils either assembled into three-dimensional gel clusters or two-dimensional fibril sheets. The latter displayed optical birefringence, diagnostic of amyloid plaques. We presume that pH and salt modulate fibril charge repulsion, which allows anisotropic fibril-fibril attraction to emerge and drive the transition from 3D to 2D fibril self-assembly.
Collapse
|
117
|
Deciphering the Effect of Different Genetic Variants on Hippocampal Subfield Volumes in the General Population. Int J Mol Sci 2023; 24:ijms24021120. [PMID: 36674637 PMCID: PMC9861136 DOI: 10.3390/ijms24021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to disentangle the effects of various genetic factors on hippocampal subfield volumes using three different approaches: a biologically driven candidate gene approach, a hypothesis-free GWAS approach, and a polygenic approach, where AD risk alleles are combined with a polygenic risk score (PRS). The impact of these genetic factors was investigated in a large dementia-free general population cohort from the Study of Health in Pomerania (SHIP, n = 1806). Analyses were performed using linear regression models adjusted for biological and environmental risk factors. Hippocampus subfield volume alterations were found for APOE ε4, BDNF Val, and 5-HTTLPR L allele carriers. In addition, we were able to replicate GWAS findings, especially for rs17178139 (MSRB3), rs1861979 (DPP4), rs7873551 (ASTN2), and rs572246240 (MAST4). Interaction analyses between the significant SNPs as well as the PRS for AD revealed no significant results. Our results confirm that hippocampal volume reductions are influenced by genetic variation, and that different variants reveal different association patterns that can be linked to biological processes in neurodegeneration. Thus, this study underlines the importance of specific genetic analyses in the quest for acquiring deeper insights into the biology of hippocampal volume loss, memory impairment, depression, and neurodegenerative diseases.
Collapse
|
118
|
Bobylev AG, Yakupova EI, Bobyleva LG, Molochkov NV, Timchenko AA, Timchenko MA, Kihara H, Nikulin AD, Gabdulkhakov AG, Melnik TN, Penkov NV, Lobanov MY, Kazakov AS, Kellermayer M, Mártonfalvi Z, Galzitskaya OV, Vikhlyantsev IM. Nonspecific Amyloid Aggregation of Chicken Smooth-Muscle Titin: In Vitro Investigations. Int J Mol Sci 2023; 24:ijms24021056. [PMID: 36674570 PMCID: PMC9861715 DOI: 10.3390/ijms24021056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing β-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMTHMW, ~1500 kDa). As confirmed by X-ray diffraction analysis, under near-physiological conditions, the protein formed amorphous amyloid aggregates with a quaternary cross-β structure within a relatively short time (~60 min). As shown by circular dichroism and Fourier-transform infrared spectroscopy, the quaternary cross-β structure-unlike other amyloidogenic proteins-formed without changes in the SMTHMW secondary structure. SMTHMW aggregates partially disaggregated upon increasing the ionic strength above the physiological level. Based on the data obtained, it is not the complete protein but its particular domains/segments that are likely involved in the formation of intermolecular interactions during SMTHMW amyloid aggregation. The discovered properties of titin position this protein as an object of interest for studying amyloid aggregation in vitro and expanding our views of the fundamentals of amyloidogenesis.
Collapse
Affiliation(s)
- Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Correspondence: (A.G.B.); (I.M.V.)
| | - Elmira I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow Region, Russia
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Nikolay V. Molochkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Alexander A. Timchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Maria A. Timchenko
- Institute for Biological Instrumentation, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Hiroshi Kihara
- Department of Early Childhood Education, Himeji-Hinomoto College, 890 Koro, Kodera-cho, Himeji 679-2151, Japan
| | - Alexey D. Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Azat G. Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Michail Y. Lobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Oxana V. Galzitskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (A.G.B.); (I.M.V.)
| |
Collapse
|
119
|
Cho I, Yoon S, Park S, Hong SW, Cho E, Kim E, Kim HY, Kim Y. Immobilized Amyloid Hexamer Fragments to Map Active Sites of Amyloid-Targeting Chemicals. ACS Chem Neurosci 2023; 14:9-18. [PMID: 36445044 DOI: 10.1021/acschemneuro.2c00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
As amyloid-β (Aβ) peptide is considered a biomarker and pathological culprit of Alzheimer's disease, Aβ-targeting compounds have been investigated for diagnostics development and drug discovery of the disorder. Unlike amyloid plaque targeting agents, such as clinically available amyloid radiotracers intercalating into the β-sheet structures of the aggregates, monomer and oligomer targeting chemicals are difficult to develop, as the transient and polymorphic nature of these peptides impedes their structural understanding. Here, we report a mapping approach to explore targeting residues of Aβ-imaging probes and Aβ-regulating drug candidates by utilizing a set of fragmented Aβ hexamers immobilized on a 96-well microplate in combination with fluorescent full-length Aβ for on-plate aggregation. To evaluate the mapping potential of the peptide plate, we tested previously reported fluorescent imaging agents (CRANAD-28, bis-ANS), aggregation inhibitors (curcumin, scyllo-inositol), and aggregate dissociators (necrostatin-1, sunitinib) targeting Aβ. Our approach enabled mechanistic understanding of compounds targeting nonfibrillar Aβ on an interacting sequence level.
Collapse
Affiliation(s)
- Illhwan Cho
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea
| | - Sunghyun Park
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea
| | - Seung Woo Hong
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea
| | - Eunjung Cho
- Department of Medical Science, Yonsei University College of Medicine, Seoul03722, Republic of Korea.,Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul03722, Republic of Korea.,Brain Korea 21 Four Project for Medical Science, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Eosu Kim
- Department of Medical Science, Yonsei University College of Medicine, Seoul03722, Republic of Korea.,Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea.,Integrated Science and Engineering Division, Yonsei University, Incheon21983, Republic of Korea.,POSTECH-Yonsei Campus, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk37673, Republic of Korea.,Amyloid Solution, Seongnam, Gyeonggi13486, Republic of Korea
| |
Collapse
|
120
|
Khalifa J, Bourgault S, Gaudreault R. Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer's Disease: From Molecular Insights to Physiological Significance. Curr Alzheimer Res 2023; 20:603-617. [PMID: 38270140 DOI: 10.2174/0115672050277001231213073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer's Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.
Collapse
Affiliation(s)
- Jihane Khalifa
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
| | - Roger Gaudreault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| |
Collapse
|
121
|
Kabir ER, Chowdhury NM, Yasmin H, Kabir MT, Akter R, Perveen A, Ashraf GM, Akter S, Rahman MH, Sweilam SH. Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:787-807. [PMID: 36221865 PMCID: PMC10227919 DOI: 10.2174/1570159x20666221010113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.
Collapse
Affiliation(s)
- Eva Rahman Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | | | - Hasina Yasmin
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md. Tanvir Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, Virginia 22030, USA
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
122
|
Conti E, Grana D, Angiulli F, Karantzoulis A, Villa C, Combi R, Appollonio I, Ferrarese C, Tremolizzo L. TSPO Modulates Oligomeric Amyloid-β-Induced Monocyte Chemotaxis: Relevance for Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2023; 95:549-559. [PMID: 37574731 DOI: 10.3233/jad-230239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neuroinflammation is one of the cardinal mechanisms of Alzheimer's disease (AD). with amyloid-β (Aβ) playing a critical role by activating microglia to produce soluble inflammatory mediators, including several chemokines. Peripheral monocytes are, therefore, attracted into the central nervous system (CNS), where they change into blood-born microglia and participate in the attempt of removing toxic Aβ species. The translocator protein-18 kDa (TSPO) is a transmembrane protein overexpressed in response to neuroinflammation and known to regulate human monocyte chemotaxis. OBJECTIVE We aimed to evaluate the role of the oligomeric Aβ1-42 isoform at inducing peripheral monocyte chemotaxis, and the possible involvement of TSPO in this process. METHODS In vitro cell lines, and ex vivo monocytes from consecutive AD patients (n = 60), and comparable cognitively intact controls (n = 30) were used. Chemotaxis analyses were carried out through both μ-slide chambers and Boyden assays, using 125 pM oligomeric Aβ1-42 as chemoattractant. TSPO agonists and antagonists were tested (Ro5-4864, Emapunil, PK11195). RESULTS Oligomeric Aβ directly promoted chemotaxis in all our models. Interestingly, AD monocytes displayed a stronger response (about twofold) with respect to controls. Aβ-induced chemotaxis was prevented by the TSPO antagonist PK11195; the expression of the TSPO and of the C-C chemokine receptor type 2 (CCR2) was unchanged by drug exposure. CONCLUSION Oligomeric Aβ1-42 is able to recruit peripheral monocytes, and we provide initial evidence sustaining a role for TSPO in modulating this process. This data may be of value for future therapeutic interventions aimed at modulating monocytes motility toward the CNS.
Collapse
Affiliation(s)
- Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Denise Grana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Federica Angiulli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Aristotelis Karantzoulis
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Ildebrando Appollonio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| | - Carlo Ferrarese
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| |
Collapse
|
123
|
Molecular insights into the critical role of gallate moiety of green tea catechins in modulating prion fibrillation, cellular internalization, and neuronal toxicity. Int J Biol Macromol 2022; 223:755-765. [PMID: 36368361 DOI: 10.1016/j.ijbiomac.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the β2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and β2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered β-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.
Collapse
|
124
|
Nath AK, Roy M, Dey C, Dey A, Dey SG. Spin state dependent peroxidase activity of heme bound amyloid β peptides relevant to Alzheimer's disease. Chem Sci 2022; 13:14305-14319. [PMID: 36545147 PMCID: PMC9749105 DOI: 10.1039/d2sc05008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The colocalization of heme rich deposits in the senile plaque of Aβ in the cerebral cortex of the Alzheimer's disease (AD) brain along with altered heme homeostasis and heme deficiency symptoms in AD patients has invoked the association of heme in AD pathology. Heme bound Aβ complexes, depending on the concentration of the complex or peptide to heme ratio, exhibit an equilibrium between a high-spin mono-His bound peroxidase-type active site and a low-spin bis-His bound cytochrome b type active site. The high-spin heme-Aβ complex shows higher peroxidase activity than free heme, where compound I is the reactive oxidant. It is also capable of oxidizing neurotransmitters like serotonin in the presence of peroxide, owing to the formation of compound I. The low-spin bis-His heme-Aβ complex on the other hand shows enhanced peroxidase activity relative to high-spin heme-Aβ. It reacts with H2O2 to produce two stable intermediates, compound 0 and compound I, which are characterized by absorption, EPR and resonance Raman spectroscopy. The stability of compound I of low-spin heme-Aβ is accountable for its enhanced peroxidase activity and oxidation of the neurotransmitter serotonin. The effect of the second sphere Tyr10 residue of Aβ on the formation and stability of the intermediates of low-spin heme-Aβ has also been investigated. The higher stability of compound I for low-spin heme-Aβ is likely due to H-bonding interactions involving Tyr10 in the distal pocket.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
125
|
Chu JJ, Ji WB, Zhuang JH, Gong BF, Chen XH, Cheng WB, Liang WD, Li GR, Gao J, Yin Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv 2022; 29:2100-2116. [PMID: 35850622 PMCID: PMC9302016 DOI: 10.1080/10717544.2022.2094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Age is the strongest risk factor for Alzheimer's disease (AD). In recent years, the relationship between aging and AD has been widely studied, with anti-aging therapeutics as the treatment for AD being one of the mainstream research directions. Therapeutics targeting senescent cells have shown improvement in AD symptoms and cerebral pathological changes, suggesting that anti-aging strategies may be a promising alternative for AD treatment. Nanoparticles represent an excellent approach for efficiently crossing the blood-brain barrier (BBB) to achieve better curative function and fewer side effects. Thereby, nanoparticles-based anti-aging treatment may exert potent anti-AD therapeutic efficacy. This review discusses the relationship between aging and AD and the application and prospect of anti-aging strategies and nanoparticle-based therapeutics in treating AD.
Collapse
Affiliation(s)
- Jian-Jian Chu
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bo Ji
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Hua Zhuang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Bao-Feng Gong
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xiao-Han Chen
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Bin Cheng
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Danqi Liang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Gen-Ru Li
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
126
|
Baltutis V, O'Leary PD, Martin LL. Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective. Chempluschem 2022; 87:e202200240. [PMID: 36198638 DOI: 10.1002/cplu.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.
Collapse
Affiliation(s)
- Verity Baltutis
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Paul D O'Leary
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| |
Collapse
|
127
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
128
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
129
|
Mafimoghaddam S, Xu Y, Sherman MB, Orlova EV, Karki P, Orman MA, Vekilov PG. Suppression of amyloid-β fibril growth by drug-engineered polymorph transformation. J Biol Chem 2022; 298:102662. [PMID: 36334629 PMCID: PMC9720346 DOI: 10.1016/j.jbc.2022.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrillization of the protein amyloid β is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.
Collapse
Affiliation(s)
- Sima Mafimoghaddam
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Yuechuan Xu
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Elena V. Orlova
- Department of Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Prashant Karki
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Peter G. Vekilov
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA,Department of Chemistry, University of Houston, Houston, Texas, USA,For correspondence: Peter G. Vekilov
| |
Collapse
|
130
|
Gopalakrishna R, Lin CY, Oh A, Le C, Yang S, Hicks A, Kindy MS, Mack WJ, Bhat NR. cAMP-induced decrease in cell-surface laminin receptor and cellular prion protein attenuates amyloid-β uptake and amyloid-β-induced neuronal cell death. FEBS Lett 2022; 596:2914-2927. [PMID: 35971617 PMCID: PMC9712173 DOI: 10.1002/1873-3468.14467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023]
Abstract
Previous studies have shown that amyloid-β oligomers (AβO) bind with high affinity to cellular prion protein (PrPC ). The AβO-PrPC complex binds to cell-surface co-receptors, including the laminin receptor (67LR). Our current studies revealed that in Neuroscreen-1 cells, 67LR is the major co-receptor involved in the cellular uptake of AβO and AβΟ-induced cell death. Both pharmacological (dibutyryl-cAMP, forskolin and rolipram) and physiological (pituitary adenylate cyclase-activating polypeptide) cAMP-elevating agents decreased cell-surface PrPC and 67LR, thereby attenuating the uptake of AβO and the resultant neuronal cell death. These cAMP protective effects are dependent on protein kinase A, but not dependent on the exchange protein directly activated by cAMP. Conceivably, cAMP protects neuronal cells from AβO-induced cytotoxicity by decreasing cell-surface-associated PrPC and 67LR.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: Department of Integrative Anatomical Sciences, 1333 San Pablo Street, Keck School of Medicine, Los Angeles, CA 90089, USA, Phone: 1 + 323-442-1770; Fax: 1 + 323-442-1771:
| | - Charlotte Y. Lin
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Oh
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Calvin Le
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Seolyn Yang
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandra Hicks
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; James A. Haley VA Medical Center, Tampa, FL 33612, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Narayan R. Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
131
|
Mu L, Xia D, Cai J, Gu B, Liu X, Friedman V, Liu QS, Zhao L. Treadmill Exercise Reduces Neuroinflammation, Glial Cell Activation and Improves Synaptic Transmission in the Prefrontal Cortex in 3 × Tg-AD Mice. Int J Mol Sci 2022; 23:12655. [PMID: 36293516 PMCID: PMC9604030 DOI: 10.3390/ijms232012655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Physical exercise improves memory and cognition in physiological aging and Alzheimer's disease (AD), but the mechanisms remain poorly understood. Here, we test the hypothesis that Aβ oligomer accumulation, neuroinflammation, and glial cell activation may lead to disruption of synaptic transmission in the prefrontal cortex of 3 × Tg-AD Mice, resulting in impairment of learning and memory. On the other hand, treadmill exercise could prevent the pathogenesis and exert neuroprotective effects. Here, we used immunohistochemistry, western blotting, enzyme-linked immunosorbent assay, and slice electrophysiology to analyze the levels of GSK3β, Aβ oligomers (Aβ dimers and trimers), pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), the phosphorylation of CRMP2 at Thr514, and synaptic currents in pyramidal neurons in the prefrontal cortex. We show that 12-week treadmill exercise beginning in three-month-old mice led to the inhibition of GSK3β kinase activity, decreases in the levels of Aβ oligomers, pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), and the phosphorylation of CRMP2 at Thr514, reduction of microglial and astrocyte activation, and improvement of excitatory and inhibitory synaptic transmission of pyramidal neurons in the prefrontal cortex of 3 × Tg-AD Mice. Thus, treadmill exercise reduces neuroinflammation, glial cell activation and improves synaptic transmission in the prefrontal cortex in 3 × Tg-AD mice, possibly related to the inhibition of GSK3β kinase activity.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Exercise Physiology, Guangzhou Sport University, Guangzhou 510500, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Dongdong Xia
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
132
|
Zhou J, Zhang P, Zhang B, Kong Y. White Matter Damage in Alzheimer's Disease: Contribution of Oligodendrocytes. Curr Alzheimer Res 2022; 19:CAR-EPUB-127137. [PMID: 36281858 PMCID: PMC9982194 DOI: 10.2174/1567205020666221021115321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, seriously influencing the quality of life and is a global health problem. Many factors affect the onset and development of AD, but specific mechanisms underlying the disease are unclear. Most studies investigating AD have focused on neurons and the gray matter in the central nervous system (CNS) but have not led to effective treatments. Recently, an increasing number of studies have focused on the white matter (WM). Magnetic resonance imaging and pathology studies have shown different degrees of WM abnormality during the progression of AD. Myelin sheaths, the main component of WM in the CNS, wrap and insulate axons to ensure conduction of the rapid action potential and axonal integrity. WM damage is characterized by progressive degeneration of axons, oligodendrocytes (OLs), and myelin in one or more areas of the CNS. The contributions of OLs to AD progression have, until recently, been largely overlooked. OLs are integral to myelin production, and the proliferation and differentiation of OLs, an early characteristic of AD, provide a promising target for preclinical diagnosis and treatment. However, despite some progress, the key mechanisms underlying the contributions of OLs to AD remain unclear. Given the heavy burden of medical treatment, a better understanding of the pathophysiological mechanisms underlying AD is vital. This review comprehensively summarize the results on WM abnormalities in AD and explores the relationship between OL progenitor cells and the pathogenesis of AD. Finally, the underlying molecular mechanisms and potential future research directions are discussed.
Collapse
Affiliation(s)
- Jinyu Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing-400042, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| | - Bo Zhang
- Department of Basic Medicine, Chongqing Medical and Pharmaceutical College, Chongqing-401331, China
| | - Yuhan Kong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing-400042, China
| |
Collapse
|
133
|
Connor JP, Quinn SD, Schaefer C. Sticker-and-spacer model for amyloid beta condensation and fibrillation. Front Mol Neurosci 2022; 15:962526. [PMID: 36311031 PMCID: PMC9611774 DOI: 10.3389/fnmol.2022.962526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A major pathogenic hallmark of Alzheimer's disease is the presence of neurotoxic plaques composed of amyloid beta (Aβ) peptides in patients' brains. The pathway of plaque formation remains elusive, though some clues appear to lie in the dominant presence of Aβ1 − 42 in these plaques despite Aβ1−40 making up approximately 90% of the Aβ pool. We hypothesize that this asymmetry is driven by the hydrophobicity of the two extra amino acids that are incorporated in Aβ1−42. To investigate this hypothesis at the level of single molecules, we have developed a molecular “sticker-and-spacer lattice model” of unfolded Aβ. The model protein has a single sticker that may reversibly dimerise and elongate into semi-flexible linear chains. The growth is hampered by excluded-volume interactions that are encoded by the hydrophilic spacers but are rendered cooperative by the attractive interactions of hydrophobic spacers. For sufficiently strong hydrophobicity, the chains undergo liquid-liquid phase-separation (LLPS) into condensates that facilitate the nucleation of fibers. We find that a small fraction of Aβ1−40 in a mixture of Aβ1−40 and Aβ1−42 shifts the critical concentration for LLPS to lower values. This study provides theoretical support for the hypothesis that LLPS condensates act as a precursor for aggregation and provides an explanation for the Aβ1−42-enrichment of aggregates in terms of hydrophobic interactions.
Collapse
Affiliation(s)
- Jack P. Connor
- Department of Biology, University of York, York, United Kingdom
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Jack P. Connor
| | - Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Charley Schaefer
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Charley Schaefer
| |
Collapse
|
134
|
Young KA, Mancera RL. Review: Investigating the aggregation of amyloid beta with surface plasmon resonance: Do different approaches yield different results? Anal Biochem 2022; 654:114828. [PMID: 35931183 DOI: 10.1016/j.ab.2022.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid beta into amyloid plaques in the brain is a hallmark characteristic of Alzheimer's disease. Therapeutics aimed at preventing or retarding amyloid formation often rely on detailed characterization of the underlying mechanism and kinetics of protein aggregation. Surface plasmon resonance (SPR) spectroscopy is a robust technique used to determine binding affinity and kinetics of biomolecular interactions. This approach has been used to characterize the mechanism of aggregation of amyloid beta but there are multiple pitfalls that need to be addressed when working with this and other amyloidogenic proteins. The choice of method for analyte preparation and ligand immobilization to a sensor chip can lead to different theoretical and practical implications in terms of the mathematical modelling of binding data, different mechanisms of binding and the presence of different interacting species. This review examines preparation methods for SPR characterisation of the aggregation of amyloid beta and their influence on the findings derived from such studies.
Collapse
Affiliation(s)
- Kimberly A Young
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
135
|
An Y, Jiang D, Zhang N, Jiang W. Cascade primer exchange reaction-based amplification strategy for sensitive and portable detection of amyloid β oligomer using personal glucose meters. Anal Chim Acta 2022; 1232:340440. [DOI: 10.1016/j.aca.2022.340440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
|
136
|
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2022; 42:2075-2095. [PMID: 33934227 DOI: 10.1007/s10571-021-01093-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Exploring the microRNAs and aptamers for their therapeutic role as biological drugs has expanded the horizon of its applicability against various human diseases, explicitly targeting the genetic materials. RNA-based therapeutics are widely being explored for the treatment and diagnosis of multiple diseases, including neurodegenerative disorders (NDD). Latter includes microRNA, aptamers, ribozymes, and small interfering RNAs (siRNAs), which control the gene expression mainly at the transcriptional strata. One RNA transcript translates into different protein types; hence, therapies targeted at the transcriptional sphere may have prominent and more extensive effects than alternative therapeutics. Unlike conventional gene therapy, RNAs, upon delivery, can either altogether abolish or alter the synthesis of the protein of interest, therefore, regulating their activities in a controlled and diverse manner. NDDs like Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, Prion disease, and others are characterized by deposition of misfolded protein such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. Neuroinflammation, one of the perquisites for neurodegeneration, is induced during neurodegenerative pathogenesis. In this review, we discuss microRNAs and aptamers' role as two different RNA-based approaches for their unique ability to regulate protein production at the transcription level, hence offering many advantages over other biologicals. The microRNA acts either by alleviating the malfunctioning RNA expression or by working as a replacement to lost microRNA. On the contrary, aptamer act as a chemical antibody and forms an aptamer-target complex.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
137
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
138
|
Elman-Shina K, Efrati S. Ischemia as a common trigger for Alzheimer’s disease. Front Aging Neurosci 2022; 14:1012779. [PMID: 36225888 PMCID: PMC9549288 DOI: 10.3389/fnagi.2022.1012779] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease has various potential etiologies, all culminating in the accumulation of beta -amyloid derivatives and significant cognitive decline. Vascular-related pathology is one of the more frequent etiologies, especially in persons older than 65 years, as vascular risk factors are linked to both cerebrovascular disease and the development of AD. The vascular patho-mechanism includes atherosclerosis, large and small vessel arteriosclerosis, cortical and subcortical infarcts, white matter lesions, and microbleeds. These insults cause hypoperfusion, tissue ischemia, chronic inflammation, neuronal death, gliosis, cerebral atrophy, and accumulation of beta-amyloid and phosphorylated tau proteins. In preclinical studies, hyperbaric oxygen therapy has been shown to reverse brain ischemia, and thus alleviate inflammation, reverse the accumulation of beta-amyloid, induce regeneration of axonal white matter, stimulate axonal growth, promote blood–brain barrier integrity, reduce inflammatory reactions, and improve brain performance. In this perspective article we will summarize the patho-mechanisms induced by brain ischemia and their contribution to the development of AD. We will also review the potential role of interventions that aim to reverse brain ischemia, and discuss their relevance for clinical practice.
Collapse
Affiliation(s)
- Karin Elman-Shina
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center (Assaf Harofeh), Tzerifin, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Karin Elman-Shina,
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center (Assaf Harofeh), Tzerifin, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Research and Development Unit, Shamir Medical Center (Assaf Harofeh), Tzerifin, Israel
| |
Collapse
|
139
|
Valappil DK, Mini NJ, Dilna A, Nath S. Membrane interaction to intercellular spread of pathology in Alzheimer’s disease. Front Neurosci 2022; 16:936897. [PMID: 36161178 PMCID: PMC9500529 DOI: 10.3389/fnins.2022.936897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer’s disease (AD) is the most prevalent among them. Extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aβ aggregates is considered as a trigger point. Interaction of Aβ peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aβ binding to the lipid membranes initiates formation of oligomers of Aβ species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a “prion-like” fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aβ and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aβ aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Nath
- *Correspondence: Sangeeta Nath, ; orcid.org/0000-0003-0050-0606
| |
Collapse
|
140
|
Zhang H, Zhou W, Li J, Qiu Z, Wang X, Xu H, Wang H, Lu D, Qi R. Senegenin Rescues PC12 Cells with Oxidative Damage Through Inhibition of Ferroptosis. Mol Neurobiol 2022; 59:6983-6992. [PMID: 36068400 DOI: 10.1007/s12035-022-03014-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress is one of the pathological mechanisms of Alzheimer's disease (AD), and ferroptosis has been determined to be involved in neurodegenerative diseases such as AD. Senegenin (Sen) prevents oxidative damage in nerve cells via a mechanism that may be highly related to ferroptosis. However, the mechanism of ferroptosis pathway involvement in AD is unclear. In this study, we established a model of PC12 cytotoxic injury induced by Aβ25-35, and we detected the level of oxidative damage, MMP, and ferroptosis-related protein expression. The results showed that, compared with control group, the level of ROS increased, GPX activities decreased, and MDA levels increased in Aβ25-35 group. Aβ25-35 could induce mitochondrial depolarization in PC12 cells and Fer-1 could not reverse this damage. WB revealed that Aβ25-35 group had increased ACSL4 and PEBP1 proteins, and decreased GPX4 protein. After adding Sen in the model, the level of oxidative damage was reduced, and mitochondrial depolarization was reversed compared with Aβ25-35 group. WB suggested that the expression of ACSL4 and PEBP1 proteins decreased, and the expression of GPX4 protein increased by Sen treatment. In conclusion, we found that Sen exhibits strong neuroprotective activity against Aβ25-35 induced oxidative damage and lipid metabolic associated with ferroptosis. Inhibiting nerve cell ferroptosis might facilitate the future development of strategies to AD.
Collapse
Affiliation(s)
- Heping Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, No. 601 Avenue Huangpu West, Guangzhou, 510632, Guangdong, China
| | - Wei Zhou
- Department of Internal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.,Department of Pathology, Guangzhou Chest Hospital, No. 62 Hengzhigang Rd, Guangzhou, 510095, Guangdong, China
| | - Jianling Li
- Department of Anesthesiology, First Affiliated Hospital of Jinan University, Guangdong, 510630, Guangzhou, China
| | - Zhaohui Qiu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, No. 601 Avenue Huangpu West, Guangzhou, 510632, Guangdong, China.,Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Xiaotong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, No. 601 Avenue Huangpu West, Guangzhou, 510632, Guangdong, China
| | - Hui Xu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, No. 601 Avenue Huangpu West, Guangzhou, 510632, Guangdong, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, No. 601 Avenue Huangpu West, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, No. 601 Avenue Huangpu West, Guangzhou, 510632, Guangdong, China
| | - Renbin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, No. 601 Avenue Huangpu West, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
141
|
Focal-type, but not Diffuse-type, Amyloid Beta Plaques are Correlated with Alzheimer's Neuropathology, Cognitive Dysfunction, and Neuroinflammation in the Human Hippocampus. Neurosci Bull 2022; 38:1125-1138. [PMID: 36028642 PMCID: PMC9554074 DOI: 10.1007/s12264-022-00927-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid beta (Aβ) plaques are one of the hallmarks of Alzheimer’s disease (AD). However, currently available anti-amyloid therapies fail to show effectiveness in the treatment of AD in humans. It has been found that there are different types of Aβ plaque (diffuse and focal types) in the postmortem human brain. In this study, we aimed to investigate the correlations among different types of Aβ plaque and AD-related neuropathological and cognitive changes based on a postmortem human brain bank in China. The results indicated that focal plaques, but not diffuse plaques, significantly increased with age in the human hippocampus. We also found that the number of focal plaques was positively correlated with the severity of AD-related neuropathological changes (measured by the “ABC” scoring system) and cognitive decline (measured by the Everyday Cognitive Insider Questionnaire). Furthermore, most of the focal plaques were co-localized with neuritic plaques (identified by Bielschowsky silver staining) and accompanied by microglial and other inflammatory cells. Our findings suggest the potential of using focal-type but not general Aβ plaques as biomarkers for the neuropathological evaluation of AD.
Collapse
|
142
|
Forloni G, La Vitola P, Balducci C. Oligomeropathies, inflammation and prion protein binding. Front Neurosci 2022; 16:822420. [PMID: 36081661 PMCID: PMC9445368 DOI: 10.3389/fnins.2022.822420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The central role of oligomers, small soluble aggregates of misfolded proteins, in the pathogenesis of neurodegenerative disorders is recognized in numerous experimental conditions and is compatible with clinical evidence. To underline this concept, some years ago we coined the term oligomeropathies to define the common mechanism of action of protein misfolding diseases like Alzheimer, Parkinson or prion diseases. Using simple experimental conditions, with direct application of synthetic β amyloid or α-synuclein oligomers intraventricularly at micromolar concentrations, we could detect differences and similarities in the biological consequences. The two oligomer species affected cognitive behavior, neuronal dysfunction and cerebral inflammatory reactions with distinct mechanisms. In these experimental conditions the proposed mediatory role of cellular prion protein in oligomer activities was not confirmed. Together with oligomers, inflammation at different levels can be important early in neurodegenerative disorders; both β amyloid and α-synuclein oligomers induce inflammation and its control strongly affects neuronal dysfunction. This review summarizes our studies with β-amyloid or α-synuclein oligomers, also considering the potential curative role of doxycycline, a well-known antibiotic with anti-amyloidogenic and anti-inflammatory activities. These actions are analyzed in terms of the therapeutic prospects.
Collapse
|
143
|
Man VH, He X, Wang J. Stable Cavitation Interferes with Aβ 16-22 Oligomerization. J Chem Inf Model 2022; 62:3885-3895. [PMID: 35920625 DOI: 10.1021/acs.jcim.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasound and microbubbles are used for many medical applications nowadays. Scanning ultrasound can remove amyloid-β (Aβ) aggregates in the mouse brain and restores memory in an Alzheimer's disease mouse model. In vitro studies showed that amyloid fibrils are fragmented due to the ultrasound-induced bubble inertial cavitation, and ultrasonic pulses accelerate the depolymerization of Aβ fibrils into monomers at 1 μM of concentration. Under applied ultrasound, microbubbles can be in a stable oscillating state or unstable inertial cavitation state. The latter occurs when ultrasound causes a dramatic change of bubble sizes above a certain acoustic pressure. We have developed and implemented a nonequilibrium molecular dynamics simulation algorithm to the AMBER package, to facilitate the investigation of the molecular mechanism of Aβ oligomerization under stable cavitation. Our results indicated that stable cavitation not only inhibited oligomeric formation, but also prevented the formation of β-rich oligomers. The network analysis of state transitions revealed that stable cavitation altered the oligomerization pathways of Aβ16-22 peptides. Our simulation tool may be applied to optimize the experimental conditions to achieve the best therapeutical effect.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
144
|
Henriquez G, Ahlawat J, Fairman R, Narayan M. Citric Acid-Derived Carbon Quantum Dots Attenuate Paraquat-Induced Neuronal Compromise In Vitro and In Vivo. ACS Chem Neurosci 2022; 13:2399-2409. [PMID: 35942850 DOI: 10.1021/acschemneuro.2c00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The potent environmental herbicide and weedicide paraquat is linked to neuromotor defects and Parkinson's disease (PD). We have evaluated the neuroprotective role of citric acid-sourced carbon quantum dots (Cit-CQDs) on paraquat-insulted human neuroblastoma-derived SH-SY5Y cell lines and on a paraquat-exposed nematode (Caenorhabditis elegans). Our data reveal that Cit-CQDs are able to scavenge free radicals in test tube assays and mitigate paraquat-elevated reactive oxygen species (ROS) levels in SH-SY5Y cells. Furthermore, Cit-CQDs protect the cell line from paraquat, which otherwise elicits cell death. Cit-CQDs-challenged nematodes demonstrate enhanced survival rates 72 h post-paraquat exposure compared to controls. Paraquat ablates dopamine (DA) neurons, which results in compromised locomotor function in nematodes. However, the neurons remained intact when the nematodes were incubated with Cit-CQDs prior to neurotoxicant exposure. The collective data suggest Cit-CQDs offer neuroprotection for cell lines and organisms from xenotoxicant-associated neuronal injury and death. The study suggests Cit-CQDs as a potentially viable green chemistry-synthesized, biobased nanomaterial for intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela Henriquez
- Department of Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
145
|
Khan AN, Nabi F, Ajmal MR, Ali SM, Almutairi FM, Alalawy AI, Khan RH. Moxifloxacin Disrupts and Attenuates Aβ42 Fibril and Oligomer Formation: Plausibly Repositioning an Antibiotic as Therapeutic against Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2529-2539. [PMID: 35930676 DOI: 10.1021/acschemneuro.2c00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aggregation of Aβ42 is established as a key factor in the development of Alzheimer's disease (AD). Consequently, molecules that inhibit aggregation of peptide may lead to therapies to prevent or control AD. Several studies suggest that oligomeric intermediates present during aggregation may be more cytotoxic than fibrils themselves. In this work, we examine the inhibitory activity of an antibiotic MXF on aggregation (fibrils and oligomers) and disaggregation of Aβ42 using various biophysical and microscopic studies. Computational analysis was done to offer mechanistic insight. The amyloid formation of Aβ42 is suppressed by MXF, as demonstrated by the decrease in both the corresponding ThT fluorescence intensity and other biophysical techniques. The lag phase of amyloid formation doubled from 4.53 to 9.66 h in the presence of MXF. The addition of MXF at the completion of the fibrillation reaction, as monitored by ThT, led to a rapid, concentration dependent, exponential decrease in fluorescence signal that was consistent with loss of fibrils. We used TEM to directly demonstrate that MXF caused fibrils to disassemble. Our docking results show that MXF binds to both monomeric and fibrillar forms of Aβ42 with significant affinities. We also observed breaking of fibrils in the presence of MXF through molecular dynamics simulation. These findings suggest that antibiotic MXF could be a promising lead compound with dual role as fibril/oligomer inhibitor and disaggregase for further development as potential repurposed therapeutic against AD.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Fahad M Almutairi
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Adel I Alalawy
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | |
Collapse
|
146
|
Qin P, Ran Y, Liu Y, Wei C, Luan X, Niu H, Peng J, Sun J, Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer's disease. Bioorg Chem 2022; 128:106090. [PMID: 35964505 DOI: 10.1016/j.bioorg.2022.106090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
C-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation. JNK3 is involved in forming amyloid Aβ and neurofibrillary tangles, suggesting that JNK3 may represent a target to develop treatments for AD. Therefore, this review will discuss the roles of JNK3 in the pathogenesis and treatment of AD, and the latest progress in the development of JNK3 inhibitors.
Collapse
Affiliation(s)
- Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoyi Luan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
147
|
Zhao L, Yue Z, Wang Y, Wang J, Ullah I, Muhammad F, Zhou Y, Zhu H, Wang X, Li H. Autophagy activation by Terminalia chebula Retz. reduce Aβ generation by shifting APP processing toward non-amyloidogenic pathway in APPswe transgenic SH-SY5Y cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154245. [PMID: 35696798 DOI: 10.1016/j.phymed.2022.154245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) is a central hallmark of AD. Accumulating evidence suggest that shifting amyloid precursor protein (APP) metabolism pathway to non-amyloidogenic ways and inducing autophagy play key roles in AD pathology. In published reports, there is no research on the APP metabolic process of Terminalia chebula Retz. (T. Chebula). PURPOSE The study aims to assess the effects of T. Chebula in AD transgenic SH-SY5Y cells to determine its underlying mechanisms on reducing Aβ level by regulating APP metabolic process. METHODS The effects of T. Chebula water extract (TWE) on APPswe transgenic SH-SY5Y cells were analyzed by cell viability. ELISA used to quantify extracellular Aβ1-40 and Aβ1-42 generations. Western blot and RT-PCR assays were chosen to detect the expression of proteins and genes. The acridine orange (AO) stain was used to label autophagic-vesicles. RESULTS Treatment with TWE significantly suppressed the Aβ1-40 and Aβ1-42 generations of APPswe transgenic cells. TWE inhibited amyloidogenic pathway by reducing BACE1 expression, and promote non-amyloidogenic pathway by inducing ADAM10 level of APP metabolism. Additionally, TWE induced autophagy in APPswe transgenic cells involved in APP metabolism to shift the balance to non-amyloidogenic pathway. CONCLUSION In summary, our finding first time expounded that TWE can inhibit the generation of Aβ1-40 and Aβ1-42 in APPswe transgenic SH-SY5Y cells, which were regulated APP metabolism tends to non-amyloid metabolism pathway and mediated by autophagy. The results presented a novel finding for AD treatment of traditional natural medicines.
Collapse
Affiliation(s)
- Longhe Zhao
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Zhaorong Yue
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Yanni Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Jiatao Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Inam Ullah
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Fahim Muhammad
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China.
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China; Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China.
| |
Collapse
|
148
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
149
|
Pandey N, Vinod PK. Model scenarios for cell cycle re-entry in Alzheimer's disease. iScience 2022; 25:104543. [PMID: 35747391 PMCID: PMC9209725 DOI: 10.1016/j.isci.2022.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. Aberrant production and aggregation of amyloid beta (Aβ) peptide into plaques is a frequent feature of AD, but therapeutic approaches targeting Aβ accumulation fail to inhibit disease progression. The approved cholinesterase inhibitor drugs are symptomatic treatments. During human brain development, the progenitor cells differentiate into neurons and switch to a postmitotic state. However, cell cycle re-entry often precedes loss of neurons. We developed mathematical models of multiple routes leading to cell cycle re-entry in neurons that incorporate the crosstalk between cell cycle, neuronal, and apoptotic signaling mechanisms. We show that the integration of multiple feedback loops influences disease severity making the switch to pathological state irreversible. We observe that the transcriptional changes associated with this transition are also characteristics of the AD brain. We propose that targeting multiple arms of the feedback loop may bring about disease-modifying effects in AD. Developed mathematical models of cell cycle re-entry in Alzheimer's disease (AD) Integration of multiple feedback loops drives irreversible transition to AD Predicted transcriptional dysregulation is validated using AD gene expression data Inhibition of self-amplifying feedback loops brings about disease-modifying effects
Collapse
Affiliation(s)
- Nishtha Pandey
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032 India
| | - P K Vinod
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032 India
| |
Collapse
|
150
|
Khoury R, Gallop A, Roberts K, Grysman N, Lu J, Grossberg GT. Pharmacotherapy for Alzheimer’s disease: what’s new on the horizon? Expert Opin Pharmacother 2022; 23:1305-1323. [DOI: 10.1080/14656566.2022.2097868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rita Khoury
- Department of Psychiatry and Clinical Psychology, St. Georges Hospital University Medical Center, Beirut, Lebanon
- University of Balamand, Faculty of Medicine, Beirut, Lebanon
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Amy Gallop
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Kelsey Roberts
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Noam Grysman
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Jiaxi Lu
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - George T. Grossberg
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|