101
|
Sammeta SS, Banarase TA, Rahangdale SR, Wankhede NL, Aglawe MM, Taksande BG, Mangrulkar SV, Upaganlawar AB, Koppula S, Kopalli SR, Umekar MJ, Kale MB. Molecular understanding of ER-MT communication dysfunction during neurodegeneration. Mitochondrion 2023; 72:59-71. [PMID: 37495165 DOI: 10.1016/j.mito.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Biological researchers are seeing organelles in a new light. These cellular entities have been believed to be singular and distinctive structures that performed specialized purposes for a very long time. But in recentpast years, scientists have learned that organelles become dynamic and make physical contact. Additionally, Biological processes are regulated by organelles interactions and its alteration play an important role in cell malfunctioning and several pathologies, including neurodegenerative diseases. Mitochondrial-ER contact sites (MERCS) have received considerable attention in the domain of cell homeostasis and dysfunction, specifically in the area of neurodegeneration. This is largely due to the significant role of this subcellular compartment in a diverse array of vital cellular functions, including Ca2+ homeostasis, transport, bioenergetics and turnover, mitochondrial dynamics, apoptotic signaling, ER stress, and inflammation. A significant number of disease-associated proteins were found to physically interact with the ER-Mitochondria (ER-MT) interface, causing structural and/or functional alterations in this compartment. In this review, we summarize current knowledge about the structure and functions of the ER-MT contact sites, as well as the possible repercussions of their alteration in notable neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and fronto-temporal dementia. The constraints and complexities in defining the nature and origin of the highlighted defects in ER-MT communication, as well as their concise contribution to the neurodegenerative process, are illustrated in particular. The possibility of using MERCS as a potential drug target to prevent neuronal damage and ultimately neurodegeneration is the topic of our final discussion.
Collapse
Affiliation(s)
- Shivkumar S Sammeta
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Trupti A Banarase
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
102
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
103
|
Thwe PN, Yeong KY, Choo WS. Anti-Amyloid β Aggregation Activity and Cell Viability Effect of Betacyanins from Red Pitahaya (Hylocereus polyrhizus) for Alzheimer's Disease. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:613-619. [PMID: 37466824 DOI: 10.1007/s11130-023-01081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Betacyanin-rich extract from red beet (Beta vulgaris) was recently reported to inhibit amyloid β (Aβ) aggregation, a main pathological event in Alzheimer's disease. However, the anti-Aβ aggregation effect of individual betacyanin isolates has not been reported before. This study investigated the anti-Aβ aggregation activity and cytotoxicity of betacyanins from red pitahaya or red dragon fruit (Hylocereus polyrhizus). Betacyanin fraction (IC50 = 16.02 ± 1.15 µg/mL) and individual betacyanin isolates exhibited anti-Aβ aggregation activity in a concentration-dependent manner using a thioflavin T fluorescence assay. The highest to lowest IC50 was in the order of betanin (426.30 ± 29.55 µM), phyllocactin (175.22 ± 1.52 µM), and hylocerenin (131.73 ± 5.58 µM), following a trend of increase in functional groups of carboxyl, hydroxyl, and/or carbonyl. Further, the betacyanin fraction of 135.78 µg/mL and below, which were concentrations with an anti-Aβ aggregation effect, were validated as non-neurotoxic based on an in vitro cytotoxicity assay using human neuroblastoma (SH-SY5Y) cells. These findings highlight the potential neuroprotective activity of betacyanins for Alzheimer's disease.
Collapse
Affiliation(s)
- Pan Nu Thwe
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
104
|
Bouvet P, de Gea P, Aimard M, Chounlamountri N, Honnorat J, Delcros JG, Salin PA, Meissirel C. A novel peptide derived from vascular endothelial growth factor prevents amyloid beta aggregation and toxicity. Aging Cell 2023; 22:e13907. [PMID: 37415305 PMCID: PMC10497828 DOI: 10.1111/acel.13907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Amyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity. Using a combination of biochemical, 3D and ultrastructural imaging, and electrophysiological approaches, we demonstrated that BP strongly interacts with Aβo and blocks Aβ fibrillar aggregation process, leading to the formation of Aβ amorphous aggregates. BP further impedes the formation of structured Aβo and prevents their pathogenic binding to synapses. Importantly, acute BP treatment successfully rescues long-term potentiation (LTP) in the APP/PS1 mouse model of AD, at an age when LTP is highly impaired in hippocampal slices. Moreover, BP is also able to block the interaction between Aβo and VEGF, which suggests a dual mechanism aimed at both trapping Aβo and releasing VEGF to alleviate Aβo-induced synaptic damage. Our findings provide evidence for a neutralizing effect of the BP on Aβ aggregation process and pathogenic action, highlighting a potential new therapeutic strategy.
Collapse
Affiliation(s)
- P. Bouvet
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - P. de Gea
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - M. Aimard
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - N. Chounlamountri
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. Honnorat
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. G. Delcros
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Cancérologie de Lyon, Apoptosis, Cancer and Development, Institut PLAsCAN, INSERM U1052, CNRS UMR5286Centre Léon BérardLyonFrance
- Centre de Recherche en Cancérologie de Lyon, Small Molecules for Biological TargetsINSERM U1052 – CNRS UMR5286, ISPB RockefellerLyonFrance
| | - P. A. Salin
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Neurosciences de Lyon, Forgetting Processes and Cortical DynamicsINSERM U1028, CNRS UMR5292BronFrance
| | - C. Meissirel
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
105
|
Bertsch M, Franchi B, Tesi MC, Tora V. The role of A[Formula: see text] and Tau proteins in Alzheimer's disease: a mathematical model on graphs. J Math Biol 2023; 87:49. [PMID: 37646953 PMCID: PMC10468937 DOI: 10.1007/s00285-023-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/25/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
In this Note we study a mathematical model for the progression of Alzheimer's Disease in the human brain. The novelty of our approach consists in the representation of the brain as two superposed graphs where toxic proteins diffuse, the connectivity graph which represents the neural network, and the proximity graph which takes into account the extracellular space. Toxic proteins such as [Formula: see text] amyloid and Tau play in fact a crucial role in the development of Alzheimer's disease and, separately, have been targets of medical treatments. Recent biomedical literature stresses the potential impact of the synergetic action of these proteins. We numerically test various modelling hypotheses which confirm the relevance of this synergy.
Collapse
Affiliation(s)
- Michiel Bertsch
- Department of Mathematics, University of Roma “Tor Vergata”, Rome, Italy
- Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Bruno Franchi
- Department of Mathematics, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Carla Tesi
- Department of Mathematics, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Veronica Tora
- Department of Mathematics, University of Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
106
|
Osborne OM, Naranjo O, Heckmann BL, Dykxhoorn D, Toborek M. Anti-amyloid: An antibody to cure Alzheimer's or an attitude. iScience 2023; 26:107461. [PMID: 37588168 PMCID: PMC10425904 DOI: 10.1016/j.isci.2023.107461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
For more than a century, clinicians have been aware of the devastating neurological condition called Alzheimer's disease (AD). AD is characterized by the presence of abnormal amyloid protein plaques and tau tangles in the brain. The dominant hypothesis, termed the amyloid hypothesis, attributes AD development to excessive cleavage and accumulation of amyloid precursor protein (APP), leading to brain tissue atrophy. The amyloid hypothesis has greatly influenced AD research and therapeutic endeavors. However, despite significant attention, a complete understanding of amyloid and APP's roles in disease pathology, progression, and cognitive impairment remains elusive. Recent controversies and several unsuccessful drug trials have called into question whether amyloid is the only neuropathological factor for treatment. To accomplish disease amelioration, we argue that researchers and clinicians may need to take a compounding approach to target amyloid and other factors in the brain, including traditional pharmaceuticals and holistic therapies.
Collapse
Affiliation(s)
- Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bradlee L. Heckmann
- Department of Immunology, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Byrd Alzheimer’s Center, University of South Florida Health Neuroscience Institute, Tampa, FL 33613, USA
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Asha Therapeutics, Tampa, FL, USA
| | - Derek Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
107
|
Chatterjee T, Das G, Chatterjee BK, Ghosh S, Chakrabarti P. The Role of Protein- L-isoaspartyl Methyltransferase (PIMT) in the Suppression of Toxicity of the Oligomeric Form of Aβ42, in Addition to the Inhibition of Its Fibrillization. ACS Chem Neurosci 2023; 14:2888-2901. [PMID: 37535852 DOI: 10.1021/acschemneuro.3c00281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
The oligomeric form of amyloid-β peptide (Aβ42) plays a crucial role in the pathogenesis of Alzheimer's disease (AD) and is responsible for cognitive deficits. The soluble oligomers are believed to be more toxic compared to the fibril form. Protein-L-isoaspartyl methyltransferase (PIMT) is a repair enzyme that converts aberrant isoAsp residues, formed spontaneously on isomerization of normal Asp and Asn residues, back to typical Asp. It was shown to inhibit the fibrillization of Aβ42 (containing three Asp residues), and here, we investigate its effect on the size, conformation, and toxicity of Aβ42 oligomers (AβO). Far-UV CD indicated a shift in the conformational feature of AβOs from the random coil to β-sheet in the presence of PIMT. Binding of bis-ANS to different AβOs (obtained using different concentrations of Aβ42 monomer) indicated the correlation of size of oligomers to hydrophobicity: the smallest AβO having the highest hydrophobicity is the most toxic. Dynamic light scattering showed an increase in size of AβO with the addition of PIMT, a contrasting role to that on Aβ fibril. Assays using PC12-derived neurons showed the neuroprotective role of PIMT against AβO-induced toxicity. Furthermore, we have elaborated on the molecular mechanism of the antifibrillar action of PIMT and how this function is correlated with its enzymatic activity. PIMT has a more pronounced effect on AβO as compared to a small heat shock protein, pointing to its importance for the amelioration of the adverse effect of both Aβ42 oligomers and fibrils.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700054, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
108
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
109
|
Quick JD, Silva C, Wong JH, Lim KL, Reynolds R, Barron AM, Zeng J, Lo CH. Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration. J Neuroinflammation 2023; 20:185. [PMID: 37543564 PMCID: PMC10403868 DOI: 10.1186/s12974-023-02866-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications.
Collapse
Affiliation(s)
- Joseph D Quick
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Silva
- Faculty of Graduate Studies, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jia Hui Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
110
|
Frese A, Goode C, Zhaliazka K, Holman AP, Dou T, Kurouski D. Length and saturation of fatty acids in phosphatidylserine determine the rate of lysozyme aggregation simultaneously altering the structure and toxicity of amyloid oligomers and fibrils. Protein Sci 2023; 32:e4717. [PMID: 37402649 PMCID: PMC10364468 DOI: 10.1002/pro.4717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Abrupt aggregation of misfolded proteins is the underlying molecular cause of numerous severe pathologies including Alzheimer's and Parkinson's diseases. Protein aggregation yields small oligomers that can later propagate into amyloid fibrils, β-sheet-rich structures with a variety of topologies. A growing body of evidence suggests that lipids play an important role in abrupt aggregation of misfolded proteins. In this study, we investigate the roles of length and saturation of fatty acids (FAs) in phosphatidylserine (PS), an anionic lipid that is responsible for the recognition of apoptotic cells by macrophages, in lysozyme aggregation. We found that both the length and saturation of FAs in PS contribute to the aggregation rate of insulin. PS with 14-carbon-long FAs (14:0) enabled a much stronger acceleration of protein aggregation compared to PS with 18-carbon-long FAs (18:0). Our results demonstrate that the presence of double bonds in FAs accelerated the rate of insulin aggregation relative to PS with fully saturated FAs. Biophysical methods revealed morphological and structural differences in lysozyme aggregates grown in the presence of PS with varying lengths and FA saturation. We also found that such aggregates exerted diverse cell toxicities. These results demonstrate that the length and saturation of FAs in PS can uniquely alter the stability of misfolded proteins on lipid membranes.
Collapse
Affiliation(s)
- Addison Frese
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Cody Goode
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Aidan P. Holman
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
- Department of EntomologyTexas A&M UniversityCollege StationTexasUnited States
| | - Tianyi Dou
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUnited States
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUnited States
| |
Collapse
|
111
|
Leisher S, Bohorquez A, Gay M, Garcia V, Jones R, Baldaranov D, Rafii MS. Amyloid-Lowering Monoclonal Antibodies for the Treatment of Early Alzheimer's Disease. CNS Drugs 2023; 37:671-677. [PMID: 37470978 PMCID: PMC10439019 DOI: 10.1007/s40263-023-01021-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Numerous biomarker studies have clearly demonstrated that AD has a long asymptomatic phase, with the development of pathology occurring at least 2 decades prior to the development of any symptoms. These pathological changes include a stepwise development of amyloid-β (Aβ) plaques, followed by tau neurofibrillary tangles and subsequently extensive neurodegeneration in the brain. In this review, we discuss the first class of drugs intended to be disease modifying to be approved by the US Food and Drug Administration (FDA) for AD-anti-Aβ monoclonal antibodies-and the scientific rationale with which they were developed.
Collapse
Affiliation(s)
- Solana Leisher
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Adriana Bohorquez
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Marcus Gay
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Victoria Garcia
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Renarda Jones
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Dobri Baldaranov
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA.
| |
Collapse
|
112
|
Sharma A, Angnes L, Sattarahmady N, Negahdary M, Heli H. Electrochemical Immunosensors Developed for Amyloid-Beta and Tau Proteins, Leading Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:742. [PMID: 37504140 PMCID: PMC10377038 DOI: 10.3390/bios13070742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Alzheimer's disease (AD) is the most common neurological disease and a serious cause of dementia, which constitutes a threat to human health. The clinical evidence has found that extracellular amyloid-beta peptides (Aβ), phosphorylated tau (p-tau), and intracellular tau proteins, which are derived from the amyloid precursor protein (APP), are the leading biomarkers for accurate and early diagnosis of AD due to their central role in disease pathology, their correlation with disease progression, their diagnostic value, and their implications for therapeutic interventions. Their detection and monitoring contribute significantly to understanding AD and advancing clinical care. Available diagnostic techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are mainly used to validate AD diagnosis. However, these methods are expensive, yield results that are difficult to interpret, and have common side effects such as headaches, nausea, and vomiting. Therefore, researchers have focused on developing cost-effective, portable, and point-of-care alternative diagnostic devices to detect specific biomarkers in cerebrospinal fluid (CSF) and other biofluids. In this review, we summarized the recent progress in developing electrochemical immunosensors for detecting AD biomarkers (Aβ and p-tau protein) and their subtypes (AβO, Aβ(1-40), Aβ(1-42), t-tau, cleaved-tau (c-tau), p-tau181, p-tau231, p-tau381, and p-tau441). We also evaluated the key characteristics and electrochemical performance of developed immunosensing platforms, including signal interfaces, nanomaterials or other signal amplifiers, biofunctionalization methods, and even primary electrochemical sensing performances (i.e., sensitivity, linear detection range, the limit of detection (LOD), and clinical application).
Collapse
Affiliation(s)
- Abhinav Sharma
- Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
113
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
114
|
De Sio S, Waegele J, Bhatia T, Voigt B, Lilie H, Ott M. Inherent Adaptivity of Alzheimer Peptides to Crowded Environments. Macromol Biosci 2023; 23:e2200527. [PMID: 37066978 DOI: 10.1002/mabi.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Amyloid β (Aβ) is the major constituent in senile plaques of Alzheimer's disease in which peptides initially undergo structural conversions to form elongated fibrils. The impact of crowding on the fibrillation pathways of Aβ40 and Aβ42 , the most common peptide isoforms are studied. PEG and Ficoll are used as model crowders to mimic a macromolecular enriched surrounding. The fibrillar growth is monitored with the help of ThT-fluorescence assays in order to extract two rates describing primary and secondary processes of nucleation and growth. Techniques as fluorescence correlation spectroscopy and analytical ultracentrifugation are used to discuss oligomeric states; fibril morphologies are investigated using negative-staining transmission electron microscopy. While excluded volume effects imposed by macromolecular crowding are expected to always increase rates of intermolecular interactions and structural conversion, a vast variety of effects are found depending on the peptide, the crowder, or ionic strength of the solution. While investigations of the obtained rates with respect to a reactant-occluded model are capable to display specific surface interactions with the crowder, the employment of crystallization-like models reveal the crowder-induced entropic gain withΔ Δ G fib crow = - 116 ± 21 k $\Delta \Delta G_{\text{fib}}^{\text{crow}}=-116\pm 21\; k$ J mol-1 per volume fraction of the crowder.
Collapse
Affiliation(s)
- Silvia De Sio
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Jana Waegele
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Twinkle Bhatia
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Bruno Voigt
- Department of Physics, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 7, Halle, 06120, Saxony-Anhalt, Germany
| | - Hauke Lilie
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| | - Maria Ott
- Department of Biotechnology and Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle, 06120, Saxony-Anhalt, Germany
| |
Collapse
|
115
|
Yang X, Yu A, Hu W, Zhang Z, Ruan Y, Kuang H, Wang M. Extraction, Purification, Structural Characteristics, Health Benefits, and Application of the Polysaccharides from Lonicera japonica Thunb.: A Review. Molecules 2023; 28:4828. [PMID: 37375383 DOI: 10.3390/molecules28124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ye Ruan
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
116
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
117
|
Majid N, Khan RH. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int J Biol Macromol 2023; 242:125123. [PMID: 37270122 DOI: 10.1016/j.ijbiomac.2023.125123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Proteins play a major role in the regulation of various cellular functions including the synthesis of structural components. But proteins are stable under physiological conditions only. A slight variation in environmental conditions can cost them huge in terms of conformational stability ultimately leading to aggregation. Under normal conditions, aggregated proteins are degraded or removed from the cell by a quality control system including ubiquitin-proteasomal machinery and autophagy. But they are burdened under diseased conditions or are impaired by the aggregated proteins leading to the generation of toxicity. The misfolding and aggregation of protein such as amyloid-β, α-synuclein, human lysozyme etc., are responsible for certain diseases including Alzheimer, Parkinson, and non- neuropathic systemic amyloidosis respectively. Extensive research has been done to find the therapeutics for such diseases but till now we have got only symptomatic treatment that will reduce the disease severity but will not target the initial formation of nucleus responsible for disease progression and propagation. Hence there is an urgent need to develop the drugs targeting the cause of the disease. For this, a wide knowledge related to misfolding and aggregation under the same heading is required as described in this review alongwith the strategies hypothesized and implemented till now. This will contribute a lot to the work of researchers in the field of neuroscience.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
118
|
Medina-Vera D, Zhao H, Bereczki E, Rosell-Valle C, Shimozawa M, Chen G, de Fonseca FR, Nilsson P, Tambaro S. The Expression of the Endocannabinoid Receptors CB2 and GPR55 Is Highly Increased during the Progression of Alzheimer's Disease in AppNL-G-F Knock-In Mice. BIOLOGY 2023; 12:805. [PMID: 37372090 DOI: 10.3390/biology12060805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The endocannabinoid system (ECS) and associated lipid transmitter-based signaling systems play an important role in modulating brain neuroinflammation. ECS is affected in neurodegenerative disorders, such as Alzheimer's disease (AD). Here we have evaluated the non-psychotropic endocannabinoid receptor type 2 (CB2) and lysophosphatidylinositol G-protein-coupled receptor 55 (GPR55) localization and expression during Aβ-pathology progression. METHODS Hippocampal gene expression of CB2 and GPR55 was explored by qPCR analysis, and brain distribution was evaluated by immunofluorescence in the wild type (WT) and APP knock-in AppNL-G-F AD mouse model. Furthermore, the effects of Aβ42 on CB2 and GPR55 expression were assessed in primary cell cultures. RESULTS CB2 and GPR55 mRNA levels were significantly upregulated in AppNL-G-F mice at 6 and 12 months of age, compared to WT. CB2 was highly expressed in the microglia and astrocytes surrounding the Aβ plaques. Differently, GPR55 staining was mainly detected in neurons and microglia but not in astrocytes. In vitro, Aβ42 treatment enhanced CB2 receptor expression mainly in astrocytes and microglia cells, whereas GPR55 expression was enhanced primarily in neurons. CONCLUSIONS These data show that Aβ pathology progression, particularly Aβ42, plays a crucial role in increasing the expression of CB2 and GPR55 receptors, supporting CB2 and GPR55 implications in AD.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| |
Collapse
|
119
|
Kreutzer AG, Guaglianone G, Yoo S, Parrocha CMT, Ruttenberg SM, Malonis RJ, Tong K, Lin YF, Nguyen JT, Howitz WJ, Diab MN, Hamza IL, Lai JR, Wysocki VH, Nowick JS. Probing differences among Aβ oligomers with two triangular trimers derived from Aβ. Proc Natl Acad Sci U S A 2023; 120:e2219216120. [PMID: 37216514 PMCID: PMC10235986 DOI: 10.1073/pnas.2219216120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The assembly of the β-amyloid peptide (Aβ) to form oligomers and fibrils is closely associated with the pathogenesis and progression of Alzheimer's disease. Aβ is a shape-shifting peptide capable of adopting many conformations and folds within the multitude of oligomers and fibrils the peptide forms. These properties have precluded detailed structural elucidation and biological characterization of homogeneous, well-defined Aβ oligomers. In this paper, we compare the structural, biophysical, and biological characteristics of two different covalently stabilized isomorphic trimers derived from the central and C-terminal regions Aβ. X-ray crystallography reveals the structures of the trimers and shows that each trimer forms a ball-shaped dodecamer. Solution-phase and cell-based studies demonstrate that the two trimers exhibit markedly different assembly and biological properties. One trimer forms small soluble oligomers that enter cells through endocytosis and activate capase-3/7-mediated apoptosis, while the other trimer forms large insoluble aggregates that accumulate on the outer plasma membrane and elicit cellular toxicity through an apoptosis-independent mechanism. The two trimers also exhibit different effects on the aggregation, toxicity, and cellular interaction of full-length Aβ, with one trimer showing a greater propensity to interact with Aβ than the other. The studies described in this paper indicate that the two trimers share structural, biophysical, and biological characteristics with oligomers of full-length Aβ. The varying structural, assembly, and biological characteristics of the two trimers provide a working model for how different Aβ trimers can assemble and lead to different biological effects, which may help shed light on the differences among Aβ oligomers.
Collapse
Affiliation(s)
- Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | | | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | | | | | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Yu-Fu Lin
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH43210
| | - Jennifer T. Nguyen
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA92697
| | - William J. Howitz
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Michelle N. Diab
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Imane L. Hamza
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH43210
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA92697
| |
Collapse
|
120
|
Hafycz JM, Strus E, Naidoo NN. Early and late chaperone intervention therapy boosts XBP1s and ADAM10, restores proteostasis, and rescues learning in Alzheimer's Disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541973. [PMID: 37292838 PMCID: PMC10245863 DOI: 10.1101/2023.05.23.541973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is pervasive among the aging population. Two distinct phenotypes of AD are deficits in cognition and proteostasis, including chronic activation of the unfolded protein response (UPR) and aberrant Aβ production. It is unknown if restoring proteostasis by reducing chronic and aberrant UPR activation in AD can improve pathology and cognition. Here, we present data using an APP knock-in mouse model of AD and several protein chaperone supplementation paradigms, including a late-stage intervention. We show that supplementing protein chaperones systemically and locally in the hippocampus reduces PERK signaling and increases XBP1s, which is associated with increased ADAM10 and decreased Aβ42. Importantly, chaperone treatment improves cognition which is correlated with increased CREB phosphorylation and BDNF. Together, this data suggests that chaperone treatment restores proteostasis in a mouse model of AD and that this restoration is associated with improved cognition and reduced pathology. One-sentence summary Chaperone therapy in a mouse model of Alzheimer's disease improves cognition by reducing chronic UPR activity.
Collapse
|
121
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
122
|
García-Revilla J, Boza-Serrano A, Jin Y, Vadukul DM, Soldán-Hidalgo J, Camprubí-Ferrer L, García-Cruzado M, Martinsson I, Klementieva O, Ruiz R, Aprile FA, Deierborg T, Venero JL. Galectin-3 shapes toxic alpha-synuclein strains in Parkinson's disease. Acta Neuropathol 2023:10.1007/s00401-023-02585-x. [PMID: 37202527 DOI: 10.1007/s00401-023-02585-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.
Collapse
Affiliation(s)
- Juan García-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden.
| | - Antonio Boza-Serrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Yiyun Jin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Devkee M Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Jesús Soldán-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Marta García-Cruzado
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Isak Martinsson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Oxana Klementieva
- Medical Microspecroscopy Lab, Department of Experimental Medical Science, SRA: NanoLund, Multipark, Lund University, BMC B10, 221 84, Lund, Sweden
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Francesco A Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
123
|
Garcia Castro J, Méndez Del Sol H, Rodríguez Fraga O, Hernández Barral M, Serrano López S, Frank García A, Martín Montes Á. CSF Aβ40 Levels Do Not Correlate with the Clinical Manifestations of Alzheimer's Disease. NEURODEGENER DIS 2023; 22:151-158. [PMID: 37231965 DOI: 10.1159/000530907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarker quantification provides physicians with a reliable diagnosis of Alzheimer's disease (AD). However, the relationship between their concentration and disease course has not been clearly elucidated. This work aimed to investigate the clinical and prognostic significance of Aβ40 CSF levels. METHODS A retrospective cohort of 76 patients diagnosed with AD using a decreased Aβ42/Aβ40 ratio was subclassified into hyposecretors (Aβ40 <7,755 pg/mL), normosecretors (Aβ40 7,755-16,715 pg/mL), and hypersecretors (Aβ40 >16,715 pg/mL). Potential differences in AD phenotype, Montreal Cognitive Assessment (MoCA) scores, and Global Deterioration Scale (GDS) stages were assessed. Correlation tests for biomarker concentrations were also performed. RESULTS Participants were classified as hyposecretors (n = 22, median Aβ40 5,870.500 pg/mL, interquartile range [IQR] 1,431), normosecretors (n = 47, median Aβ40 10,817 pg/mL, IQR 3,622), and hypersecretors (n = 7, 19,767 pg/mL, IQR 3,088). The distribution of positive phosphorylated Tau (p-Tau) varied significantly between subgroups and was more common in the normo- and hypersecretor categories (p = 0.003). Aβ40 and p-Tau concentrations correlated positively (ρ = 0.605, p < 0.001). No significant differences were found among subgroups regarding age, initial MoCA score, initial GDS stage, progression to the dementia stage, or changes in the MoCA score. CONCLUSION In this study, we found no significant differences in clinical symptoms or disease progression in AD patients according to their CSF Aβ40 concentration. Aβ40 was positively correlated with p-Tau and total Tau concentrations, supporting their potential interaction in AD pathophysiology.
Collapse
Affiliation(s)
- Jesús Garcia Castro
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain,
| | | | | | - María Hernández Barral
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| | - Soledad Serrano López
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| | - Ana Frank García
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel Martín Montes
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| |
Collapse
|
124
|
Mañucat-Tan NB, Chowdhury A, Cataldi R, Abdullah RZ, Kumita JR, Wyatt AR. Hypochlorite-induced oxidation promotes aggregation and reduces toxicity of amyloid beta 1-42. Redox Biol 2023; 63:102736. [PMID: 37216700 DOI: 10.1016/j.redox.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Exacerbated hypochlorite (OCl-) production is linked to neurodegenerative processes, but there is growing evidence that lower levels of hypochlorite activity are important to protein homeostasis. In this study we characterise the effects of hypochlorite on the aggregation and toxicity of amyloid beta peptide 1-42 (Aβ1-42), a major component of amyloid plaques that form in the brain in Alzheimer's disease. Our results demonstrate that treatment with hypochlorite promotes the formation of Aβ1-42 assemblies ≥100 kDa that have reduced surface exposed hydrophobicity compared to the untreated peptide. This effect is the result of the oxidation of Aβ1-42 at a single site as determined by mass spectrometry analysis. Although treatment with hypochlorite promotes the aggregation of Aβ1-42, the solubility of the peptide is enhanced and amyloid fibril formation is inhibited as assessed by filter trap assay, thioflavin T assay and transmission electron microscopy. The results of in vitro assays using SH-SY5Y neuroblastoma cells show that pre-treatment of Aβ1-42 with a sub-stoichiometric amount of hypochlorite substantially reduces its toxicity. The results of flow cytometry analysis and internalisation assays indicate that hypochlorite-induced modification of Aβ1-42 reduces its toxicity via at least two-distinct mechanism, reducing the total binding of Aβ1-42 to the surface of cells and facilitating the cell surface clearance of Aβ1-42 to lysosomes. Our data is consistent with a model in which tightly regulated production of hypochlorite in the brain is protective against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Noralyn B Mañucat-Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048
| | - Ashfaq Chowdhury
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rodrigo Cataldi
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rafaa Zeineddine Abdullah
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, NSW, Australia, 2500
| | - Janet R Kumita
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Amy R Wyatt
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048.
| |
Collapse
|
125
|
Lee S, Dagar A, Cho I, Kim K, Park IW, Yoon S, Cha M, Shin J, Kim HY, Kim I, Kim Y. 4-Acyl-3,4-dihydropyrrolo[1,2- a]pyrazine Derivative Rescued the Hippocampal-Dependent Cognitive Decline of 5XFAD Transgenic Mice by Dissociating Soluble and Insoluble Aβ Aggregates. ACS Chem Neurosci 2023. [PMID: 37171100 DOI: 10.1021/acschemneuro.2c00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Cerebral amyloid-β (Aβ) deposition is a representative hallmark of Alzheimer's disease (AD). Development of Aβ-clearing small molecules could be an advantageous therapeutic strategy for Aβ clearance considering the advantages in terms of side effects, cost-effectiveness, stability, and oral bioavailability. Here, we report an Aβ-dissociating small molecule, YIAD-0121, a derivative of 4-acyl-3,4-dihydropyrrolo[1,2-a]pyrazine. Through a series of anti-Aβ screening assays, YIAD-0121 was identified to inhibit Aβ aggregation and dissociate preformed Aβ fibrils in vitro. Furthermore, the administration of YIAD-0121 in 5XFAD transgenic AD mice inhibited the increase of cerebral Aβ aggregation and progression of hippocampus-dependent cognitive decline, with ameliorated neuroinflammation.
Collapse
Affiliation(s)
- Songmin Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Anuradha Dagar
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Minhae Cha
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ikyon Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
126
|
Schreiner TG, Schreiner OD, Adam M, Popescu BO. The Roles of the Amyloid Beta Monomers in Physiological and Pathological Conditions. Biomedicines 2023; 11:1411. [PMID: 37239082 PMCID: PMC10216198 DOI: 10.3390/biomedicines11051411] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Amyloid beta peptide is an important biomarker in Alzheimer's disease, with the amyloidogenic hypothesis as one of the central hypotheses trying to explain this type of dementia. Despite numerous studies, the etiology of Alzheimer's disease remains incompletely known, as the pathological accumulation of amyloid beta aggregates cannot fully explain the complex clinical picture of the disease. Or, for the development of effective therapies, it is mandatory to understand the roles of amyloid beta at the brain level, from its initial monomeric stage prior to aggregation in the form of senile plaques. In this sense, this review aims to bring new, clinically relevant data on a subject intensely debated in the literature in the last years. In the first part, the amyloidogenic cascade is reviewed and the possible subtypes of amyloid beta are differentiated. In the second part, the roles played by the amyloid beta monomers in physiological and pathological (neurodegenerative) conditions are illustrated based on the most relevant and recent studies published on this topic. Finally, considering the importance of amyloid beta monomers in the pathophysiology of Alzheimer's disease, new research directions with diagnostic and therapeutic impacts are suggested.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Oliver Daniel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Medical Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Maricel Adam
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
127
|
Majid N, Siddiqi MK, Hassan MN, Malik S, Khan S, Khan RH. Inhibition of primary and secondary nucleation alongwith disruption of amyloid fibrils and alleviation of associated cytotoxicity: A biophysical insight of a novel property of Chlorpropamide (an anti-diabetic drug). BIOMATERIALS ADVANCES 2023; 151:213450. [PMID: 37148596 DOI: 10.1016/j.bioadv.2023.213450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Aggregation of physiologically synthesized soluble proteins to insoluble, cytotoxic fibrils is a pre-requisite for pathogenesis of amyloid associated disorders including Alzheimer's disease, non-systemic amyloidosis, Parkinson's disease, etc. Considerable advancement has been made to understand the mechanism behind aggregation process but till date we have no efficient cure and preventive therapy for associated diseases. Strategies to prevent protein aggregation are nevertheless many which have been proved promisingly successful in vitro. One of those is repurposing already approved drugs that saves time and money too and has been employed in this study. Here, for the first time we are reporting the effectiveness of an anti-diabetic drug chlorpropamide (CHL) under dosage conditions, a novel property to inhibit aggregation in human lysozyme (HL) in vitro. Spectroscopic (Turbidity, RLS, ThT, DLS, ANS) and microscopic (CLSM) results demonstrates that CHL has the potency to suppress aggregation in HL up to 70 %. CHL is shown to affect the elongation of fibrils with IC50 value of 88.5 μM as clear from the kinetics results, may be by interacting near/with aggregation prone regions of HL. Hemolytic assay also revealed the reduced cytotoxicity in the presence of CHL. Disruption of amyloid fibrils and inhibition of secondary nucleation in the presence of CHL was also evidenced by ThT, CD and CLSM results with reduced cytotoxicity as confirmed by hemolytic assay. We also performed preliminary studies on α-synuclein fibrillation inhibition and surprisingly found that CHL is not just inhibiting the fibrillation but also stabilizing the protein in its native state. These findings insinuate that CHL (anti-diabetic) possess multiple roles and can be a promising drug for developing therapeutic against non-systemic amyloidosis, Parkinson's disease and other amyloid associated disorders.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Khursheed Siddiqi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India; Department of Pathology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Seema Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
128
|
Caruso G, Fresta CG, Fidilio A, Lazzara F, Musso N, Cardaci V, Drago F, Caraci F, Bucolo C. Carnosine Counteracts the Molecular Alterations Aβ Oligomers-Induced in Human Retinal Pigment Epithelial Cells. Molecules 2023; 28:3324. [PMID: 37110558 PMCID: PMC10146178 DOI: 10.3390/molecules28083324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related macular degeneration (AMD) has been described as a progressive eye disease characterized by irreversible impairment of central vision, and unfortunately, an effective treatment is still not available. It is well-known that amyloid-beta (Aβ) peptide is one of the major culprits in causing neurodegeneration in Alzheimer's disease (AD). The extracellular accumulation of this peptide has also been found in drusen which lies under the retinal pigment epithelium (RPE) and represents one of the early signs of AMD pathology. Aβ aggregates, especially in the form of oligomers, are able to induce pro-oxidant (oxidative stress) and pro-inflammatory phenomena in RPE cells. ARPE-19 is a spontaneously arising human RPE cell line validated for drug discovery processes in AMD. In the present study, we employed ARPE-19 treated with Aβ oligomers, representing an in vitro model of AMD. We used a combination of methods, including ATPlite, quantitative real-time PCR, immunocytochemistry, as well as a fluorescent probe for reactive oxygen species to investigate the molecular alterations induced by Aβ oligomers. In particular, we found that Aβ exposure decreased the cell viability of ARPE-19 cells which was paralleled by increased inflammation (increased expression of pro-inflammatory mediators) and oxidative stress (increased expression of NADPH oxidase and ROS production) along with the destruction of ZO-1 tight junction protein. Once the damage was clarified, we investigated the therapeutic potential of carnosine, an endogenous dipeptide that is known to be reduced in AMD patients. Our findings demonstrate that carnosine was able to counteract most of the molecular alterations induced by the challenge of ARPE-19 with Aβ oligomers. These new findings obtained with ARPE-19 cells challenged with Aβ1-42 oligomers, along with the well-demonstrated multimodal mechanism of action of carnosine both in vitro and in vivo, able to prevent and/or counteract the dysfunctions elicited by Aβ oligomers, substantiate the neuroprotective potential of this dipeptide in the context of AMD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudia G. Fresta
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Bio-Nanotech Research and Innovation Tower (BRIT), University of Catania, 95123 Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, 20132 Milano, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95123 Catania, Italy
| |
Collapse
|
129
|
Zhang RL, Lei BX, Wu GY, Wang YY, Huang QH. Protective effects of berberine against β-amyloid-induced neurotoxicity in HT22 cells via the Nrf2/HO-1 pathway. Bioorg Chem 2023; 133:106210. [PMID: 36724611 DOI: 10.1016/j.bioorg.2022.106210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
Neuronal apoptosis has been found to have a pivotal role in the course of Alzheimer's disease (AD). Berberine (BBR), a potent antioxidant, occurs in plants such as Berberis, Phellodendron chinense, and Hydrastis canadensis. In this study, a neuronal apoptotic model was established in vitro using HT22 cells induced by Aβ25-35 to explore whether BBR contributes to protecting neurons against Aβ25-35-induced neurotoxicity, as well as its potential mechanisms. BBR was applied to HT22 cells for 1 h prior to exposing the cells to Aβ25-35 for 24 h. A CCK-8 assay was utilized to assess cell viability, and Annexin V - fluorescein isothiocyanate (FITC)/propidium iodide and Hoechst 33342 fluorescence staining were used to measure the rate of cell apoptosis. Existing scientific literature was also reviewed to further determine the effects of BBR on ROS production and mitochondrial function in HT22 cells. Furthermore, the expressions of proteins, including cytochrome C, cleaved caspase-3, p-p65, p65, and Nrf2/HO-1 antioxidant axis were assessed by Western blotting. The data indicated that BBR markedly improved cell viability, inhibited apoptosis and intracellular ROS levels, improved mitochondrial membrane potentials, decreased the rate of p-p65/p65, cytochrome C, and cleaved caspase-3, and intensified the activity of Nrf2/HO-1 antioxidants in HT22 cells. Overall, the findings indicated that BBR provides a certain level of neuroprotectiveness in HT22 cells exposed to Aβ25-35 via relieving oxidative stress, as well as by restraining the mitochondrial pathway of cellular apoptosis. In addition, the restraint of NF-κB activity and sensitization of the Nrf2/HO-1 antioxidant axis, which together are intimately involved in the neuroprotection of BBR, may be possible mechanisms accounting for its effectiveness against Aβ25-35in vitro.
Collapse
Affiliation(s)
- Ru-Lan Zhang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Bing-Xi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Guo-Yong Wu
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yuan-Yuan Wang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Qi-Hui Huang
- Department of Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
130
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
131
|
Ahlawat J, Wilson DL, Carreon A, Narayan M. Resolving the soluble-to-toxic transformation of amyloidogenic proteins: A method to assess intervention by small-molecules. RESEARCH SQUARE 2023:rs.3.rs-2631727. [PMID: 36945382 PMCID: PMC10029074 DOI: 10.21203/rs.3.rs-2631727/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The soluble-to-toxic transformation of intrinsically disordered amyloidogenic proteins such as amyloid beta (Aβ), α-synuclein, mutant Huntingtin Protein (mHTT) and islet amyloid polypeptide (IAPP) among others is associated with disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Type 2 Diabetes (T2D), respectively. Conversely, the dissolution of mature fibrils and toxic amyloidogenic intermediates including oligomers remains the holy grail in the treatment of neurodegenerative disorders. Yet, methods to effectively, and quantitatively, report on the interconversion between amyloid monomers, oligomers and mature fibrils fall short. For the first time, we describe the use of gel electrophoresis to address the transformation between soluble monomeric amyloid proteins and mature amyloid fibrils. The technique permits rapid, inexpensive and quantitative assessment of the fraction of amyloid monomers that form intermediates and mature fibrils. In addition, the method facilitates the screening of small molecules that disintegrate oligomers and fibrils into monomers or retain amyloid proteins in their monomeric forms. Importantly, our methodological advance diminishes major existing barriers associated with existing (alternative) techniques to evaluate fibril formation and intervention.
Collapse
|
132
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
133
|
Wojtunik-Kulesza K, Rudkowska M, Orzeł-Sajdłowska A. Aducanumab-Hope or Disappointment for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054367. [PMID: 36901797 PMCID: PMC10002282 DOI: 10.3390/ijms24054367] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In June 2021, the world was informed about a new drug for Alzheimer's disease approved by the FDA. Aducanumab (BIIB037, ADU), being a monoclonal antibody IgG1, is the newest AD treatment. The activity of the drug is targeted towards amyloid β, which is considered one of the main causes of Alzheimer's disease. Clinical trials have revealed time- and dose-dependent activity towards Aβ reduction, as well as cognition improvement. Biogen, the company responsible for conducting research and introducing the drug to the market, presents the drug as a solution to cognitive impairment, but its limitations, costs, and side effects are controversial. The framework of the paper focuses on the mechanism of aducanumab's action along with the positive and negative sides of the therapy. The review presents the basis of the amyloid hypothesis that is the cornerstone of therapy, as well as the latest information about aducanumab, its mechanism of action, and the possibility of the use of the drug.
Collapse
Affiliation(s)
- Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
- Correspondence:
| | - Monika Rudkowska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | | |
Collapse
|
134
|
Gabriel JM, Tan T, Rinauro DJ, Hsu CM, Buettner CJ, Gilmer M, Kaur A, McKenzie TL, Park M, Cohen S, Errico S, Wright AK, Chiti F, Vendruscolo M, Limbocker R. EGCG inactivates a pore-forming toxin by promoting its oligomerization and decreasing its solvent-exposed hydrophobicity. Chem Biol Interact 2023; 371:110307. [PMID: 36535315 DOI: 10.1016/j.cbi.2022.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Natural proteinaceous pore-forming agents can bind and permeabilize cell membranes, leading to ion dyshomeostasis and cell death. In the search for antidotes that can protect cells from peptide toxins, we discovered that the polyphenol epigallocatechin gallate (EGCG) interacts directly with melittin from honeybee venom, resulting in the elimination of its binding to the cell membrane and toxicity by markedly lowering the extent of its solvent-exposed hydrophobicity and promoting its oligomerization into larger species. These physicochemical parameters have also been shown to play a key role in the binding to cells of misfolded protein oligomers in a host of neurodegenerative diseases, where oligomer-membrane binding and associated toxicity have been shown to correlate negatively with oligomer size and positively with solvent-exposed hydrophobicity. For melittin, which is not an amyloid-forming protein and has a very distinct mechanism of toxicity compared to misfolded oligomers, we find that the size-hydrophobicity-toxicity relationship also rationalizes the pharmacological attenuation of melittin toxicity by EGCG. These results highlight the importance of the physicochemical properties of pore forming agents in mediating their interactions with cell membranes and suggest a possible therapeutic approach based on compounds with a similar mechanism of action as EGCG.
Collapse
Affiliation(s)
- Justus M Gabriel
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Thomas Tan
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Claire M Hsu
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Caleb J Buettner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Marshall Gilmer
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Amrita Kaur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Tristan L McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Martin Park
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophie Cohen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Silvia Errico
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Aidan K Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| |
Collapse
|
135
|
Cheong DY, Roh S, Park I, Lin Y, Lee YH, Lee T, Lee SW, Lee D, Jung HG, Kim H, Lee W, Yoon DS, Hong Y, Lee G. Proteolysis-driven proliferation and rigidification of pepsin-resistant amyloid fibrils. Int J Biol Macromol 2023; 227:601-607. [PMID: 36543295 DOI: 10.1016/j.ijbiomac.2022.12.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/20/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proteolysis of amyloids is related to prevention and treatment of amyloidosis. What if the conditions for proteolysis were the same to those for amyloid formation? For example, pepsin, a gastric protease is activated in an acidic environment, which, interestingly, is also a condition that induces the amyloid formation. Here, we investigate the competition reactions between proteolysis and synthesis of amyloid under pepsin-activated conditions. The changes in the quantities and nanomechanical properties of amyloids after pepsin treatment were examined by fluorescence assay, circular dichroism and atomic force microscopy. We found that, in the case of pepsin-resistant amyloid, a secondary reaction can be accelerated, thereby proliferating amyloids. Moreover, after this reaction, the amyloid became 32.4 % thicker and 24.2 % stiffer than the original one. Our results suggest a new insight into the proteolysis-driven proliferation and rigidification of pepsin-resistant amyloids.
Collapse
Affiliation(s)
- Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research Headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Hyunji Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea; ASTRION Inc., Seoul 02841, South Korea.
| | - Yoochan Hong
- Department of Medical Devices, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, South Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea.
| |
Collapse
|
136
|
Conti Filho CE, Loss LB, Marcolongo-Pereira C, Rossoni Junior JV, Barcelos RM, Chiarelli-Neto O, da Silva BS, Passamani Ambrosio R, Castro FCDAQ, Teixeira SF, Mezzomo NJ. Advances in Alzheimer's disease's pharmacological treatment. Front Pharmacol 2023; 14:1101452. [PMID: 36817126 PMCID: PMC9933512 DOI: 10.3389/fphar.2023.1101452] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. Several hypotheses emerged from AD pathophysiological mechanisms. However, no neuronal protective or regenerative drug is available nowadays. Researchers still work in drug development and are finding new molecular targets to treat AD. Therefore, this study aimed to summarize main advances in AD pharmacological therapy. Clinical trials registered in the National Library of Medicine database were selected and analyzed accordingly to molecular targets, therapeutic effects, and safety profile. The most common outcome was the lack of efficacy. Only seven trials concluded that tested drugs were safe and induced any kind of therapeutic improvement. Three works showed therapeutic effects followed by toxicity. In addition to aducanumab recent FDA approval, antibodies against amyloid-β (Aβ) showed no noteworthy results. 5-HT6 antagonists, tau inhibitors and nicotinic agonists' data were discouraging. However, anti-Aβ vaccine, BACE inhibitor and anti-neuroinflammation drugs showed promising results.
Collapse
|
137
|
Self-Assembly of Amyloid Fibrils into 3D Gel Clusters versus 2D Sheets. Biomolecules 2023; 13:biom13020230. [PMID: 36830599 PMCID: PMC9953743 DOI: 10.3390/biom13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The deposition of dense fibril plaques represents the pathological hallmark for a multitude of human disorders, including many neurodegenerative diseases. Fibril plaques are predominately composed of amyloid fibrils, characterized by their underlying cross beta-sheet architecture. Research into the mechanisms of amyloid formation has mostly focused on characterizing and modeling the growth of individual fibrils and associated oligomers from their monomeric precursors. Much less is known about the mechanisms causing individual fibrils to assemble into ordered fibrillar suprastructures. Elucidating the mechanisms regulating this "secondary" self-assembly into distinct suprastructures is important for understanding how individual protein fibrils form the prominent macroscopic plaques observed in disease. Whether and how amyloid fibrils assemble into either 2D or 3D supramolecular structures also relates to ongoing efforts on using amyloid fibrils as substrates or scaffolds for self-assembling functional biomaterials. Here, we investigated the conditions under which preformed amyloid fibrils of a lysozyme assemble into larger superstructures as a function of charge screening or pH. Fibrils either assembled into three-dimensional gel clusters or two-dimensional fibril sheets. The latter displayed optical birefringence, diagnostic of amyloid plaques. We presume that pH and salt modulate fibril charge repulsion, which allows anisotropic fibril-fibril attraction to emerge and drive the transition from 3D to 2D fibril self-assembly.
Collapse
|
138
|
Deciphering the Effect of Different Genetic Variants on Hippocampal Subfield Volumes in the General Population. Int J Mol Sci 2023; 24:ijms24021120. [PMID: 36674637 PMCID: PMC9861136 DOI: 10.3390/ijms24021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to disentangle the effects of various genetic factors on hippocampal subfield volumes using three different approaches: a biologically driven candidate gene approach, a hypothesis-free GWAS approach, and a polygenic approach, where AD risk alleles are combined with a polygenic risk score (PRS). The impact of these genetic factors was investigated in a large dementia-free general population cohort from the Study of Health in Pomerania (SHIP, n = 1806). Analyses were performed using linear regression models adjusted for biological and environmental risk factors. Hippocampus subfield volume alterations were found for APOE ε4, BDNF Val, and 5-HTTLPR L allele carriers. In addition, we were able to replicate GWAS findings, especially for rs17178139 (MSRB3), rs1861979 (DPP4), rs7873551 (ASTN2), and rs572246240 (MAST4). Interaction analyses between the significant SNPs as well as the PRS for AD revealed no significant results. Our results confirm that hippocampal volume reductions are influenced by genetic variation, and that different variants reveal different association patterns that can be linked to biological processes in neurodegeneration. Thus, this study underlines the importance of specific genetic analyses in the quest for acquiring deeper insights into the biology of hippocampal volume loss, memory impairment, depression, and neurodegenerative diseases.
Collapse
|
139
|
Bobylev AG, Yakupova EI, Bobyleva LG, Molochkov NV, Timchenko AA, Timchenko MA, Kihara H, Nikulin AD, Gabdulkhakov AG, Melnik TN, Penkov NV, Lobanov MY, Kazakov AS, Kellermayer M, Mártonfalvi Z, Galzitskaya OV, Vikhlyantsev IM. Nonspecific Amyloid Aggregation of Chicken Smooth-Muscle Titin: In Vitro Investigations. Int J Mol Sci 2023; 24:ijms24021056. [PMID: 36674570 PMCID: PMC9861715 DOI: 10.3390/ijms24021056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing β-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMTHMW, ~1500 kDa). As confirmed by X-ray diffraction analysis, under near-physiological conditions, the protein formed amorphous amyloid aggregates with a quaternary cross-β structure within a relatively short time (~60 min). As shown by circular dichroism and Fourier-transform infrared spectroscopy, the quaternary cross-β structure-unlike other amyloidogenic proteins-formed without changes in the SMTHMW secondary structure. SMTHMW aggregates partially disaggregated upon increasing the ionic strength above the physiological level. Based on the data obtained, it is not the complete protein but its particular domains/segments that are likely involved in the formation of intermolecular interactions during SMTHMW amyloid aggregation. The discovered properties of titin position this protein as an object of interest for studying amyloid aggregation in vitro and expanding our views of the fundamentals of amyloidogenesis.
Collapse
Affiliation(s)
- Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Correspondence: (A.G.B.); (I.M.V.)
| | - Elmira I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow Region, Russia
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Nikolay V. Molochkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Alexander A. Timchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Maria A. Timchenko
- Institute for Biological Instrumentation, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Hiroshi Kihara
- Department of Early Childhood Education, Himeji-Hinomoto College, 890 Koro, Kodera-cho, Himeji 679-2151, Japan
| | - Alexey D. Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Azat G. Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Michail Y. Lobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Oxana V. Galzitskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (A.G.B.); (I.M.V.)
| |
Collapse
|
140
|
Cho I, Yoon S, Park S, Hong SW, Cho E, Kim E, Kim HY, Kim Y. Immobilized Amyloid Hexamer Fragments to Map Active Sites of Amyloid-Targeting Chemicals. ACS Chem Neurosci 2023; 14:9-18. [PMID: 36445044 DOI: 10.1021/acschemneuro.2c00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
As amyloid-β (Aβ) peptide is considered a biomarker and pathological culprit of Alzheimer's disease, Aβ-targeting compounds have been investigated for diagnostics development and drug discovery of the disorder. Unlike amyloid plaque targeting agents, such as clinically available amyloid radiotracers intercalating into the β-sheet structures of the aggregates, monomer and oligomer targeting chemicals are difficult to develop, as the transient and polymorphic nature of these peptides impedes their structural understanding. Here, we report a mapping approach to explore targeting residues of Aβ-imaging probes and Aβ-regulating drug candidates by utilizing a set of fragmented Aβ hexamers immobilized on a 96-well microplate in combination with fluorescent full-length Aβ for on-plate aggregation. To evaluate the mapping potential of the peptide plate, we tested previously reported fluorescent imaging agents (CRANAD-28, bis-ANS), aggregation inhibitors (curcumin, scyllo-inositol), and aggregate dissociators (necrostatin-1, sunitinib) targeting Aβ. Our approach enabled mechanistic understanding of compounds targeting nonfibrillar Aβ on an interacting sequence level.
Collapse
Affiliation(s)
- Illhwan Cho
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea
| | - Sunghyun Park
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea
| | - Seung Woo Hong
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea
| | - Eunjung Cho
- Department of Medical Science, Yonsei University College of Medicine, Seoul03722, Republic of Korea.,Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul03722, Republic of Korea.,Brain Korea 21 Four Project for Medical Science, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Eosu Kim
- Department of Medical Science, Yonsei University College of Medicine, Seoul03722, Republic of Korea.,Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon21983, Republic of Korea.,Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon21983, Republic of Korea.,Integrated Science and Engineering Division, Yonsei University, Incheon21983, Republic of Korea.,POSTECH-Yonsei Campus, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk37673, Republic of Korea.,Amyloid Solution, Seongnam, Gyeonggi13486, Republic of Korea
| |
Collapse
|
141
|
Khalifa J, Bourgault S, Gaudreault R. Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer's Disease: From Molecular Insights to Physiological Significance. Curr Alzheimer Res 2023; 20:603-617. [PMID: 38270140 DOI: 10.2174/0115672050277001231213073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer's Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.
Collapse
Affiliation(s)
- Jihane Khalifa
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
| | - Roger Gaudreault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| |
Collapse
|
142
|
Kabir ER, Chowdhury NM, Yasmin H, Kabir MT, Akter R, Perveen A, Ashraf GM, Akter S, Rahman MH, Sweilam SH. Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:787-807. [PMID: 36221865 PMCID: PMC10227919 DOI: 10.2174/1570159x20666221010113812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.
Collapse
Affiliation(s)
- Eva Rahman Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | | | - Hasina Yasmin
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md. Tanvir Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, Virginia 22030, USA
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
143
|
Conti E, Grana D, Angiulli F, Karantzoulis A, Villa C, Combi R, Appollonio I, Ferrarese C, Tremolizzo L. TSPO Modulates Oligomeric Amyloid-β-Induced Monocyte Chemotaxis: Relevance for Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2023; 95:549-559. [PMID: 37574731 DOI: 10.3233/jad-230239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neuroinflammation is one of the cardinal mechanisms of Alzheimer's disease (AD). with amyloid-β (Aβ) playing a critical role by activating microglia to produce soluble inflammatory mediators, including several chemokines. Peripheral monocytes are, therefore, attracted into the central nervous system (CNS), where they change into blood-born microglia and participate in the attempt of removing toxic Aβ species. The translocator protein-18 kDa (TSPO) is a transmembrane protein overexpressed in response to neuroinflammation and known to regulate human monocyte chemotaxis. OBJECTIVE We aimed to evaluate the role of the oligomeric Aβ1-42 isoform at inducing peripheral monocyte chemotaxis, and the possible involvement of TSPO in this process. METHODS In vitro cell lines, and ex vivo monocytes from consecutive AD patients (n = 60), and comparable cognitively intact controls (n = 30) were used. Chemotaxis analyses were carried out through both μ-slide chambers and Boyden assays, using 125 pM oligomeric Aβ1-42 as chemoattractant. TSPO agonists and antagonists were tested (Ro5-4864, Emapunil, PK11195). RESULTS Oligomeric Aβ directly promoted chemotaxis in all our models. Interestingly, AD monocytes displayed a stronger response (about twofold) with respect to controls. Aβ-induced chemotaxis was prevented by the TSPO antagonist PK11195; the expression of the TSPO and of the C-C chemokine receptor type 2 (CCR2) was unchanged by drug exposure. CONCLUSION Oligomeric Aβ1-42 is able to recruit peripheral monocytes, and we provide initial evidence sustaining a role for TSPO in modulating this process. This data may be of value for future therapeutic interventions aimed at modulating monocytes motility toward the CNS.
Collapse
Affiliation(s)
- Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Denise Grana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Federica Angiulli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Aristotelis Karantzoulis
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
| | - Ildebrando Appollonio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| | - Carlo Ferrarese
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience (NeuroMi), Italy
- Memory Clinic, Neurology Unit, IRCCS "San Gerardo dei Tintori", Monza, Italy
| |
Collapse
|
144
|
Admane N, Srivastava A, Jamal S, Sharma R, Kundu B, Grover A. Molecular insights into the critical role of gallate moiety of green tea catechins in modulating prion fibrillation, cellular internalization, and neuronal toxicity. Int J Biol Macromol 2022; 223:755-765. [PMID: 36368361 DOI: 10.1016/j.ijbiomac.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the β2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and β2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered β-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Salma Jamal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
145
|
Nath AK, Roy M, Dey C, Dey A, Dey SG. Spin state dependent peroxidase activity of heme bound amyloid β peptides relevant to Alzheimer's disease. Chem Sci 2022; 13:14305-14319. [PMID: 36545147 PMCID: PMC9749105 DOI: 10.1039/d2sc05008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The colocalization of heme rich deposits in the senile plaque of Aβ in the cerebral cortex of the Alzheimer's disease (AD) brain along with altered heme homeostasis and heme deficiency symptoms in AD patients has invoked the association of heme in AD pathology. Heme bound Aβ complexes, depending on the concentration of the complex or peptide to heme ratio, exhibit an equilibrium between a high-spin mono-His bound peroxidase-type active site and a low-spin bis-His bound cytochrome b type active site. The high-spin heme-Aβ complex shows higher peroxidase activity than free heme, where compound I is the reactive oxidant. It is also capable of oxidizing neurotransmitters like serotonin in the presence of peroxide, owing to the formation of compound I. The low-spin bis-His heme-Aβ complex on the other hand shows enhanced peroxidase activity relative to high-spin heme-Aβ. It reacts with H2O2 to produce two stable intermediates, compound 0 and compound I, which are characterized by absorption, EPR and resonance Raman spectroscopy. The stability of compound I of low-spin heme-Aβ is accountable for its enhanced peroxidase activity and oxidation of the neurotransmitter serotonin. The effect of the second sphere Tyr10 residue of Aβ on the formation and stability of the intermediates of low-spin heme-Aβ has also been investigated. The higher stability of compound I for low-spin heme-Aβ is likely due to H-bonding interactions involving Tyr10 in the distal pocket.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
146
|
Chu JJ, Ji WB, Zhuang JH, Gong BF, Chen XH, Cheng WB, Liang WD, Li GR, Gao J, Yin Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv 2022; 29:2100-2116. [PMID: 35850622 PMCID: PMC9302016 DOI: 10.1080/10717544.2022.2094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Age is the strongest risk factor for Alzheimer's disease (AD). In recent years, the relationship between aging and AD has been widely studied, with anti-aging therapeutics as the treatment for AD being one of the mainstream research directions. Therapeutics targeting senescent cells have shown improvement in AD symptoms and cerebral pathological changes, suggesting that anti-aging strategies may be a promising alternative for AD treatment. Nanoparticles represent an excellent approach for efficiently crossing the blood-brain barrier (BBB) to achieve better curative function and fewer side effects. Thereby, nanoparticles-based anti-aging treatment may exert potent anti-AD therapeutic efficacy. This review discusses the relationship between aging and AD and the application and prospect of anti-aging strategies and nanoparticle-based therapeutics in treating AD.
Collapse
Affiliation(s)
- Jian-Jian Chu
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bo Ji
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Hua Zhuang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Bao-Feng Gong
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xiao-Han Chen
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Bin Cheng
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Danqi Liang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Gen-Ru Li
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
147
|
Baltutis V, O'Leary PD, Martin LL. Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective. Chempluschem 2022; 87:e202200240. [PMID: 36198638 DOI: 10.1002/cplu.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.
Collapse
Affiliation(s)
- Verity Baltutis
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Paul D O'Leary
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| |
Collapse
|
148
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
149
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
150
|
Mafimoghaddam S, Xu Y, Sherman MB, Orlova EV, Karki P, Orman MA, Vekilov PG. Suppression of amyloid-β fibril growth by drug-engineered polymorph transformation. J Biol Chem 2022; 298:102662. [PMID: 36334629 PMCID: PMC9720346 DOI: 10.1016/j.jbc.2022.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrillization of the protein amyloid β is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.
Collapse
Affiliation(s)
- Sima Mafimoghaddam
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Yuechuan Xu
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Elena V. Orlova
- Department of Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Prashant Karki
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Peter G. Vekilov
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA,Department of Chemistry, University of Houston, Houston, Texas, USA,For correspondence: Peter G. Vekilov
| |
Collapse
|