101
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
102
|
Elsayed Abouzed DE, Ezelarab HAA, Selim HMRM, Elsayed MMA, El Hamd MA, Aboelez MO. Multimodal modulation of hepatic ischemia/reperfusion-induced injury by phytochemical agents: A mechanistic evaluation of hepatoprotective potential and safety profiles. Int Immunopharmacol 2024; 138:112445. [PMID: 38944946 DOI: 10.1016/j.intimp.2024.112445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a clinically fundamental phenomenon that occurs through liver resection surgery, trauma, shock, and transplantation. AIMS OF THE REVIEW This review article affords an expanded and comprehensive overview of various natural herbal ingredients that have demonstrated hepatoprotective effects against I/R injury through preclinical studies in animal models. MATERIALS AND METHODS For the objective of this investigation, an extensive examination was carried out utilizing diverse scientific databases involving PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate. The investigation was conducted based on specific identifiable terms, such as hepatic ischemia/reperfusion injury, liver resection and transplantation, cytokines, inflammation, NF-kB, interleukins, herbs, plants, natural ingredients, phenolic extract, and aqueous extract. RESULTS Bioactive ingredients derived from ginseng, curcumin, resveratrol, epigallocatechin gallate, quercetin, lycopene, punicalagin, crocin, celastrol, andrographolide, silymarin, and others and their effects on hepatic IRI were discussed. The specific mechanisms of action, signaling pathways, and clinical relevance for attenuation of liver enzymes, cytokine production, immune cell infiltration, oxidative damage, and cell death signaling in rodent studies are analyzed in depth. Their complex molecular actions involve modulation of pathways like TLR4, NF-κB, Nrf2, Bcl-2 family proteins, and others. CONCLUSION The natural ingredients have promising values in the protection and treatment of various chronic aggressive clinical conditions, and that need to be evaluated on humans by clinical studies.
Collapse
Affiliation(s)
- Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt.
| | - Mahmoud M A Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
103
|
Guo P, Gao X, Nelson AL, Huard M, Lu A, Hambright WS, Huard J. TIPE2 gene transfer ameliorates aging-associated osteoarthritis in a progeria mouse model by reducing inflammation and cellular senescence. Mol Ther 2024; 32:3101-3113. [PMID: 39095992 PMCID: PMC11403236 DOI: 10.1016/j.ymthe.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Osteoarthritis (OA) pain is often associated with the expression of tumor necrosis factor alpha (TNF-α), suggesting that TNF-α is one of the main contributing factors that cause inflammation, pain, and OA pathology. Thus, inhibition of TNF-α could potentially improve OA symptoms and slow disease progression. Anti-TNF-α treatments with antibodies, however, require multiple treatments and cannot entirely block TNF-α. TNF-α-induced protein 8-like 2 (TIPE2) was found to regulate the immune system's homeostasis and inflammation through different mechanisms from anti-TNF-α therapies. With a single treatment of adeno-associated virus (AAV)-TIPE2 gene delivery in the accelerated aging Zmpste24-/- (Z24-/-) mouse model, we found differences in Safranin O staining intensity within the articular cartilage (AC) region of the knee between TIPE2-treated mice and control mice. The glycosaminoglycan content (orange-red) was degraded in the Z24-/- cartilage while shown to be restored in the TIPE2-treated Z24-/- cartilage. We also observed that chondrocytes in Z24-/- mice exhibited a variety of senescent-associated phenotypes. Treatment with TIPE2 decreased TNF-α-positive cells, β-galactosidase (β-gal) activity, and p16 expression seen in Z24-/- mice. Our study demonstrated that AAV-TIPE2 gene delivery effectively blocked TNF-α-induced inflammation and senescence, resulting in the prevention or delay of knee OA in our accelerated aging Z24-/- mouse model.
Collapse
Affiliation(s)
- Ping Guo
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
| | - Xueqin Gao
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Anna-Laura Nelson
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Matthieu Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Aiping Lu
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - William Sealy Hambright
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
| |
Collapse
|
104
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
105
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
106
|
Daldrup-Link HE, Suryadevara V, Tanyildizi Y, Nernekli K, Tang JH, Meade TJ. Musculoskeletal imaging of senescence. Skeletal Radiol 2024; 53:1879-1887. [PMID: 38329533 PMCID: PMC11303117 DOI: 10.1007/s00256-024-04585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel "senolytic" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA.
| | - Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Yasemin Tanyildizi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Jian-Hong Tang
- Department of Chemistry, Northwestern University, Evanston, USA
| | - Thomas J Meade
- Department of Chemistry, Northwestern University, Evanston, USA
| |
Collapse
|
107
|
Maher P. The flavonoid fisetin reduces multiple physiological risk factors for dementia. Neurochem Int 2024; 178:105805. [PMID: 39004102 DOI: 10.1016/j.neuint.2024.105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Dementia is a growing problem around the globe as the world's population continues to age. Multiple studies have identified potentially modifiable risk factors for the development of dementia suggesting that addressing some or all of these risk factors might have a significant impact on the aging population worldwide. However, this is not always as straightforward as it seems since many of these risk factors are currently treated with drugs specific to the risk factor. Moreover, since people can have multiple risk factors, addressing each of them individually could be highly problematic as it would likely lead to negative outcomes associated with polypharmacy and, in the long term, could do significant harm. A potential alternative is to identify compounds that have shown efficacy against a number of these different risk factors. As discussed in this review, there is strong evidence that the flavonol fisetin is one such compound. In animal studies it has shown efficacy against many of the risk factors that have been associated with an increased risk of developing dementia and also exhibits direct neuroprotective effects. Thus, further human research on fisetin in the context of dementia risk factors is clearly warranted.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
108
|
Ding Y, Xie D, Xu C, Hu W, Kong B, Jia S, Cao L. Fisetin disrupts mitochondrial homeostasis via superoxide dismutase 2 acetylation in pancreatic adenocarcinoma. Phytother Res 2024; 38:4628-4649. [PMID: 39091056 DOI: 10.1002/ptr.8296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/06/2024] [Accepted: 02/11/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignant tumors with an urgent need for precision medicine strategies. The present study seeks to assess the antitumor effects of fisetin, and characterize its impact on PDAC. Multi-omic approaches include proteomic, transcriptomic, and metabolomic analyses. Further validation includes the assessment of mitochondria-derived reactive oxygen species (mtROS), mitochondrial membrane potential, as well as ATP generation. Molecular docking, immunoprecipitation, and proximity ligation assay were used to detect the interactions among fiseitn, superoxide dismutase 2 (SOD2), and sirtuin 2 (SIRT2). We showed that fisetin disrupted mitochondrial homeostasis and induced SOD2 acetylation in PDAC. Further, we produced site mutants to determine that fisetin-induced mtROS were dependent on SOD2 acetylation. Fisetin inhibited SIRT2 expression, thus blocking SOD2 deacetylation. SIRT2 overexpression could impede fisetin-induced SOD2 acetylation. Additionally, untargeted metabolomic analysis revealed an acceleration of folate metabolism with fisetin. Collectively, our findings suggest that fisetin disrupts mitochondrial homeostasis, eliciting an important cancer-suppressive role; thus, fisetin may serve as a promising therapeutic for PDAC.
Collapse
Affiliation(s)
- Yimin Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dafei Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyi Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binyue Kong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
109
|
Zumerle S, Sarill M, Saponaro M, Colucci M, Contu L, Lazzarini E, Sartori R, Pezzini C, Rinaldi A, Scanu A, Sgrignani J, Locatelli P, Sabbadin M, Valdata A, Brina D, Giacomini I, Rizzo B, Pierantoni A, Sharifi S, Bressan S, Altomare C, Goshovska Y, Giraudo C, Luisetto R, Iaccarino L, Torcasio C, Mosole S, Pasquini E, Rinaldi A, Pellegrini L, Peron G, Fassan M, Masiero S, Giori AM, Dall'Acqua S, Auwerx J, Cippà P, Cavalli A, Bolis M, Sandri M, Barile L, Montopoli M, Alimonti A. Targeting senescence induced by age or chemotherapy with a polyphenol-rich natural extract improves longevity and healthspan in mice. NATURE AGING 2024; 4:1231-1248. [PMID: 38951692 PMCID: PMC11408255 DOI: 10.1038/s43587-024-00663-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.
Collapse
Affiliation(s)
- Sara Zumerle
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Miles Sarill
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Miriam Saponaro
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Liliana Contu
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Roberta Sartori
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Anna Scanu
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Isabella Giacomini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Beatrice Rizzo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Alessandra Pierantoni
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute for Research on Cancer and Aging, Nice, France
| | - Saman Sharifi
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Bressan
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yulia Goshovska
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Giraudo
- Department of Medicine, University of Padova, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Luca Iaccarino
- Department of Medicine, University of Padova, Padova, Italy
| | - Cristina Torcasio
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Stefano Masiero
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pietro Cippà
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Andrea Alimonti
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Medicine, University of Padova, Padova, Italy.
- Institute of Oncology Research (IOR), Bellinzona, Switzerland.
- Università della Svizzera italiana, Lugano, Switzerland.
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| |
Collapse
|
110
|
Kuerec AH, Lim XK, Khoo AL, Sandalova E, Guan L, Feng L, Maier AB. Targeting aging with urolithin A in humans: A systematic review. Ageing Res Rev 2024; 100:102406. [PMID: 39002645 DOI: 10.1016/j.arr.2024.102406] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Urolithin A (UA) is a gut metabolite derived from ellagic acid. This systematic review assesses the potential geroprotective effect of UA in humans. In five studies including 250 healthy individuals, UA (10-1000 mg/day) for a duration ranging from 28 days to 4 months, showed a dose-dependent anti-inflammatory effect and upregulated some mitochondrial genes, markers of autophagy, and fatty acid oxidation. It did not affect mitochondrial maximal adenosine triphosphate production, biogenesis, dynamics, or gut microbiota composition. UA increased muscle strength and endurance, however, had no effect on anthropometrics, cardiovascular outcomes, and physical function. Unrelated adverse events were mild or moderate. Further research across more physiological systems and longer intervention periods is required.
Collapse
Affiliation(s)
- Ajla Hodzic Kuerec
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Xuan K Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Anderson Ly Khoo
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Lihuan Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore
| | - Lei Feng
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, 10 Medical Drive, Singapore 117597, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, Amsterdam 1081 BT, the Netherlands.
| |
Collapse
|
111
|
Dhokia V, Albati A, Smith H, Thomas G, Macip S. A second generation of senotherapies: the development of targeted senolytics, senoblockers and senoreversers for healthy ageing. Biochem Soc Trans 2024; 52:1661-1671. [PMID: 38940746 DOI: 10.1042/bst20231066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Cellular senescence, a form of terminal cell cycle arrest, is as a key driver of organismal ageing and an important factor in age-related diseases. Insights into the senescent phenotype have led to the development of novel therapeutic strategies, collectively known as senotherapies, that aim to ameliorate the detrimental effects of senescent cell accumulation in tissues. The senotherapeutic field has rapidly evolved over the past decade, with clinical translation of the first drugs discovered currently underway. What began as the straightforward removal of senescent cells using repurposed compounds, which were given the name of senolytics, has grown into an expanding field that uses different state of the art approaches to achieve the goal of preventing the build-up of senescent cells in the body. Here, we summarize the emergence of a new generation of senotherapies, based on improving the efficacy and safety of the original senolytics by making them targeted, but also branching out into drugs that prevent senescence (senoblockers) or revert it (senoreversers).The use of nanotechnology, specific antibodies, cell-based approaches and restored immunosurveillance is likely to revolutionize the field of senotherapies in the near future, hopefully allowing it to realize its full clinical potential.
Collapse
Affiliation(s)
- Vinesh Dhokia
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Amal Albati
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Hannah Smith
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Gethin Thomas
- The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, U.K
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
- The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, U.K
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| |
Collapse
|
112
|
Shi Y, Zhang Y, Zhang Y, Yao J, Guo J, Xu X, Wang L. Advances in Nanotherapy for Targeting Senescent Cells. Int J Nanomedicine 2024; 19:8797-8813. [PMID: 39220198 PMCID: PMC11365502 DOI: 10.2147/ijn.s469110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is an inevitable process in the human body, and cellular senescence refers to irreversible cell cycle arrest caused by external aging-promoting mechanisms. Moreover, as age increases, the accumulation of senescent cells limits both the health of the body and lifespan and even accelerates the occurrence and progression of age-related diseases. Therefore, it is crucial to delay the periodic irreversible arrest and continuous accumulation of senescent cells to address the issue of aging. The fundamental solution is targeted therapy focused on eliminating senescent cells or reducing the senescence-associated secretory phenotype. Over the past few decades, the remarkable development of nanomaterials has revolutionized clinical drug delivery pathways. Their unique optical, magnetic, and electrical properties effectively compensate for the shortcomings of traditional drugs, such as low stability and short half-life, thereby maximizing the bioavailability and minimizing the toxicity of drug delivery. This article provides an overview of how nanomedicine systems control drug release and achieve effective diagnosis. By presenting and analyzing recent advances in nanotherapy for targeting senescent cells, the underlying mechanisms of nanomedicine for senolytic and senomorphic therapy are clarified, providing great potential for targeting senescent cells.
Collapse
Affiliation(s)
- Yurou Shi
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yingjie Zhang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
| | - Yaxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiali Yao
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, 310018, People’s Republic of China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
| |
Collapse
|
113
|
Falvino A, Gasperini B, Cariati I, Bonanni R, Chiavoghilefu A, Gasbarra E, Botta A, Tancredi V, Tarantino U. Cellular Senescence: The Driving Force of Musculoskeletal Diseases. Biomedicines 2024; 12:1948. [PMID: 39335461 PMCID: PMC11429507 DOI: 10.3390/biomedicines12091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The aging of the world population is closely associated with an increased prevalence of musculoskeletal disorders, such as osteoporosis, sarcopenia, and osteoarthritis, due to common genetic, endocrine, and mechanical risk factors. These conditions are characterized by degeneration of bone, muscle, and cartilage tissue, resulting in an increased risk of fractures and reduced mobility. Importantly, a crucial role in the pathophysiology of these diseases has been proposed for cellular senescence, a state of irreversible cell cycle arrest induced by factors such as DNA damage, telomere shortening, and mitochondrial dysfunction. In addition, senescent cells secrete pro-inflammatory molecules, called senescence-associated secretory phenotype (SASP), which can alter tissue homeostasis and promote disease progression. Undoubtedly, targeting senescent cells and their secretory profiles could promote the development of integrated strategies, including regular exercise and a balanced diet or the use of senolytics and senomorphs, to improve the quality of life of the aging population. Therefore, our review aimed to highlight the role of cellular senescence in age-related musculoskeletal diseases, summarizing the main underlying mechanisms and potential anti-senescence strategies for the treatment of osteoporosis, sarcopenia, and osteoarthritis.
Collapse
Affiliation(s)
- Angela Falvino
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.F.); (B.G.); (R.B.); (A.B.)
| | - Beatrice Gasperini
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.F.); (B.G.); (R.B.); (A.B.)
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.F.); (B.G.); (R.B.); (A.B.)
| | - Angela Chiavoghilefu
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (A.C.); (E.G.); (U.T.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (A.C.); (E.G.); (U.T.)
| | - Annalisa Botta
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.F.); (B.G.); (R.B.); (A.B.)
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (A.C.); (E.G.); (U.T.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
114
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
115
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
116
|
Panchin AY, Ogmen A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY) 2024; 16:12073-12100. [PMID: 39159129 PMCID: PMC11386927 DOI: 10.18632/aging.206078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Aging is currently viewed as a result of multiple biological processes that manifest themselves independently, reinforce each other and in their totality lead to the aged phenotype. Genetic and pharmaceutical approaches targeting specific underlying causes of aging have been used to extend the lifespan and healthspan of model organisms ranging from yeast to mammals. However, most interventions display only a modest benefit. This outcome is to be expected if we consider that even if one aging process is successfully treated, other aging pathways may remain intact. Hence solving the problem of aging may require targeting not one but many of its underlying causes at once. Here we review the challenges and successes of combination therapies aimed at increasing the lifespan of mammals and propose novel directions for their development. We conclude that both additive and synergistic effects on mammalian lifespan can be achieved by combining interventions that target the same or different hallmarks of aging. However, the number of studies in which multiple hallmarks were targeted simultaneously is surprisingly limited. We argue that this approach is as promising as it is understudied.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Sector of Molecular Evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna Ogmen
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Artem S Blagodatski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Timofey Glinin
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Surgery, Endocrine Neoplasia Laboratory, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
117
|
Arias C, Álvarez-Indo J, Cifuentes M, Morselli E, Kerr B, Burgos PV. Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. Biol Res 2024; 57:51. [PMID: 39118171 PMCID: PMC11312694 DOI: 10.1186/s40659-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, 7500922, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
118
|
Ogrodnik M, Carlos Acosta J, Adams PD, d'Adda di Fagagna F, Baker DJ, Bishop CL, Chandra T, Collado M, Gil J, Gorgoulis V, Gruber F, Hara E, Jansen-Dürr P, Jurk D, Khosla S, Kirkland JL, Krizhanovsky V, Minamino T, Niedernhofer LJ, Passos JF, Ring NAR, Redl H, Robbins PD, Rodier F, Scharffetter-Kochanek K, Sedivy JM, Sikora E, Witwer K, von Zglinicki T, Yun MH, Grillari J, Demaria M. Guidelines for minimal information on cellular senescence experimentation in vivo. Cell 2024; 187:4150-4175. [PMID: 39121846 PMCID: PMC11790242 DOI: 10.1016/j.cell.2024.05.059] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 08/12/2024]
Abstract
Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Juan Carlos Acosta
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza," Pavia, Italy
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Steet SW, Rochester, MN 55905, USA
| | - Cleo L Bishop
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Tamir Chandra
- MRC Human Generics Unit, University of Edinburgh, Edinburgh, UK
| | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesus Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan; Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Diana Jurk
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - João F Passos
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Nadja A R Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada
| | - Karin Scharffetter-Kochanek
- Department f Dermatology and Allergic Diseases, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - John M Sedivy
- Department of Molecular, Cellular Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Kenneth Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA; The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, UK
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, BOKU University, Vienna, Austria.
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
119
|
Ma Y, Ma Z, Zhang Y, Luo C, Huang P, Tong J, Ding H, Liu H. Apigenin and baicalein ameliorate thoracic aortic structural deterioration and cognitive deficit via inhibiting AGEs/RAGE/NF-κB pathway in D-galactose-induced aging rats. Eur J Pharmacol 2024; 976:176660. [PMID: 38795756 DOI: 10.1016/j.ejphar.2024.176660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Apigenin and baicalein are structurally related flavonoids that have been reported to have multiple pharmacological activities. The aim of this study was to investigate the protective effects and potential mechanisms of apigenin and baicalein in D-galactose-induced aging rats. First, apigenin and baicalein showed remarkable antioxidant activity and anti-glycation activity in vitro. Secondly, the protective effects of apigenin and baicalein on aging rats were investigated. We found that apigenin and baicalein supplementation significantly ameliorated aging-related changes such as declines in the spatial learning and memory and histopathological damage of the hippocampus and thoracic aorta. In addition, our data showed that apigenin and baicalein alleviated oxidative stress as illustrated by decreasing MDA level, increasing SOD activity and GSH level. Further data showed that they significantly reduced the accumulation of advanced glycation end products (AGEs), inhibited the expression of RAGE, down-regulated phosphorylated nuclear factor (p-NF-κB (p65)). Our results suggested that the protective effects of apigenin and baicalein on aging rats were at least partially related to the inhibition of AGEs/RAGE/NF-κB pathway and the improvement of oxidative damage. Overall, apigenin and baicalein showed almost equal anti-aging efficacy. Our results provided an experimental basis for the application of apigenin and baicalein to delay the aging process.
Collapse
Affiliation(s)
- Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhenming Ma
- College of Software Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, 610200, China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jing Tong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Honghui Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
120
|
Ahmad A, Braden A, Khan S, Xiao J, Khan MM. Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases. Semin Immunopathol 2024; 46:10. [PMID: 39095660 DOI: 10.1007/s00281-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Anneliesse Braden
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sazzad Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415 Link Building, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
121
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
122
|
Li Y, Baig N, Roncancio D, Elbein K, Lowe D, Kyba M, Arriaga EA. Multiparametric identification of putative senescent cells in skeletal muscle via mass cytometry. Cytometry A 2024; 105:580-594. [PMID: 38995093 PMCID: PMC11719773 DOI: 10.1002/cyto.a.24853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024]
Abstract
Senescence is an irreversible arrest of the cell cycle that can be characterized by markers of senescence such as p16, p21, and KI-67. The characterization of different senescence-associated phenotypes requires selection of the most relevant senescence markers to define reliable cytometric methodologies. Mass cytometry (a.k.a. Cytometry by time of flight, CyTOF) can monitor up to 40 different cell markers at the single-cell level and has the potential to integrate multiple senescence and other phenotypic markers to identify senescent cells within a complex tissue such as skeletal muscle, with greater accuracy and scalability than traditional bulk measurements and flow cytometry-based measurements. This article introduces an analysis framework for detecting putative senescent cells based on clustering, outlier detection, and Boolean logic for outliers. Results show that the pipeline can identify putative senescent cells in skeletal muscle with well-established markers such as p21 and potential markers such as GAPDH. It was also found that heterogeneity of putative senescent cells in skeletal muscle can partly be explained by their cell type. Additionally, autophagy-related proteins ATG4A, LRRK2, and GLB1 were identified as important proteins in predicting the putative senescent population, providing insights into the association between autophagy and senescence. It was observed that sex did not affect the proportion of putative senescent cells among total cells. However, age did have an effect, with a higher proportion observed in fibro/adipogenic progenitors (FAPs), satellite cells, M1 and M2 macrophages from old mice. Moreover, putative senescent cells from muscle of old and young mice show different expression levels of senescence-related proteins, with putative senescent cells of old mice having higher levels of p21 and GAPDH, whereas putative senescent cells of young mice had higher levels of IL-6. Overall, the analysis framework prioritizes multiple senescence-associated proteins to characterize putative senescent cells sourced from tissue made of different cell types.
Collapse
Affiliation(s)
- Yijia Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nameera Baig
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Roncancio
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kris Elbein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dawn Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edgar A. Arriaga
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
123
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
124
|
Hense JD, Garcia DN, Zanini BM, Barreto MM, Perreira GC, Isola JVV, de Brito C, Fornalik M, Mondal SA, Ávila BM, Oliveira TL, Rice HC, Lacy CI, Vaucher RA, Mason JB, Masternak MM, Stout MB, Schneider A. MASLD does not affect fertility and senolytics fail to prevent MASLD progression in male mice. Sci Rep 2024; 14:17332. [PMID: 39068167 PMCID: PMC11283523 DOI: 10.1038/s41598-024-67697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Senescent cells have been linked to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effectiveness of senolytic drugs in reducing liver damage in mice with MASLD is not clear. Additionally, MASLD has been reported to adversely affect male reproductive function. Therefore, this study aimed to evaluate the protective effect of senolytic drugs on liver damage and fertility in male mice with MASLD. Three-month-old male mice were fed a standard diet (SD) or a choline-deficient western diet (WD) until 9 months of age. At 6 months of age mice were randomized within dietary treatment groups into senolytic (dasatinib + quercetin [D + Q]; fisetin [FIS]) or vehicle control treatment groups. We found that mice fed choline-deficient WD had liver damage characteristic of MASLD, with increased liver size, triglycerides accumulation, fibrosis, along increased liver cellular senescence and liver and systemic inflammation. Senolytics were not able to reduce liver damage, senescence and systemic inflammation, suggesting limited efficacy in controlling WD-induced liver damage. Sperm quality and fertility remained unchanged in mice developing MASLD or receiving senolytics. Our data suggest that liver damage and senescence in mice developing MASLD is not reversible by the use of senolytics. Additionally, neither MASLD nor senolytics affected fertility in male mice.
Collapse
Affiliation(s)
- Jessica D Hense
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Mariana M Barreto
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Giulia C Perreira
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Camila de Brito
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Michal Fornalik
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Samim A Mondal
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Department of Endocrinology, JIPMER, Puducherry, 605006, India
| | - Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Heather C Rice
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Charles I Lacy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Rodrigo A Vaucher
- Center for Chemical, Pharmaceutical and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil.
| |
Collapse
|
125
|
Chembukavu SN, Lindsay AJ. Therapy-induced senescence in breast cancer: an overview. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:902-920. [PMID: 39280248 PMCID: PMC11390292 DOI: 10.37349/etat.2024.00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Outcomes for women with breast cancer have improved dramatically in recent decades. However, many patients present with intrinsic drug resistance and others are initially sensitive to anti-cancer drugs but acquire resistance during the course of their treatment, leading to recurrence and/or metastasis. Drug therapy-induced senescence (TIS) is a form of drug resistance characterised by the induction of cell cycle arrest and the emergence of a senescence-associated secretory phenotype (SASP) that can develop in response to chemo- and targeted- therapies. A wide range of anticancer interventions can lead to cell cycle arrest and SASP induction, by inducing genotoxic stress, hyperactivation of signalling pathways or oxidative stress. TIS can be anti-tumorigenic in the short-term, but pro-tumorigenic in the long-term by creating a pro-inflammatory and immunosuppressive microenvironment. Moreover, the SASP can promote angiogenesis and epithelial-mesenchymal transition in neighbouring cells. In this review, we will describe the characteristics of TIS in breast cancer and detail the changes in phenotype that accompany its induction. We also discuss strategies for targeting senescent cancer cells in order to prevent or delay tumour recurrence.
Collapse
Affiliation(s)
- Suraj Narayanan Chembukavu
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
126
|
Hense JD, Isola JVV, Garcia DN, Magalhães LS, Masternak MM, Stout MB, Schneider A. The role of cellular senescence in ovarian aging. NPJ AGING 2024; 10:35. [PMID: 39033161 PMCID: PMC11271274 DOI: 10.1038/s41514-024-00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
This review explores the relationship between ovarian aging and senescent cell accumulation, as well as the efficacy of senolytics to improve reproductive longevity. Reproductive longevity is determined by the age-associated decline in ovarian reserve, resulting in reduced fertility and eventually menopause. Cellular senescence is a state of permanent cell cycle arrest and resistance to apoptosis. Senescent cells accumulate in several tissues with advancing age, thereby promoting chronic inflammation and age-related diseases. Ovaries also appear to accumulate senescent cells with age, which might contribute to aging of the reproductive system and whole organism through SASP production. Importantly, senolytic drugs can eliminate senescent cells and may present a potential intervention to mitigate ovarian aging. Herein, we review the current literature related to the efficacy of senolytic drugs for extending the reproductive window in mice.
Collapse
Affiliation(s)
- Jéssica D Hense
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
127
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
128
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
129
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
130
|
Fang Y, Peck MR, Quinn K, Chapman JE, Medina D, McFadden SA, Bartke A, Hascup KN, Hascup ER. Senolytic Intervention Improves Cognition, Metabolism, and Adiposity in Female APP NL-F/NL-F Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571277. [PMID: 38168356 PMCID: PMC10760014 DOI: 10.1101/2023.12.12.571277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Senescent cells accumulate throughout the body and brain contributing to unhealthy aging and Alzheimer's disease (AD). The APP NL-F/NL-F amyloidogenic AD mouse model exhibits increased markers of senescent cells and the senescence-associated secretory phenotype (SASP) in visceral white adipose tissue before plaque accumulation and cognitive decline. We hypothesized that senolytic intervention would alleviate cellular senescence thereby improving spatial memory in APP NL-F/NL-F mice. Thus, four month old male and female APP NL-F/NL-F mice were treated monthly with vehicle, 5 mg/kg Dasatinib + 50 mg/kg Quercetin, or 100 mg/kg Fisetin. Blood glucose levels, energy metabolism, spatial memory, amyloid burden, and senescent cell markers were assayed. Dasatinib + Quercetin treatment in female APP NL-F/NL-F mice increased oxygen consumption and energy expenditure resulting in decreased body mass. White adipose tissue mass was decreased along with senescence markers, SASP, blood glucose, and plasma insulin and triglycerides. Hippocampal senescence markers and SASP were reduced along with soluble and insoluble amyloid-β (Aβ) 42 and senescence associated-β-gal activity leading to improved spatial memory. Fisetin had negligible effects on these measures in female APP NL-F/NL-F mice while neither senolytic intervention altered these parameters in the male mice. Considering women have a greater risk of dementia, identifying senotherapeutics appropriate for sex and disease stage is necessary for personalized medicine.
Collapse
|
131
|
Qin X, Li H, Zhao H, Fang L, Wang X. Enhancing healthy aging with small molecules: A mitochondrial perspective. Med Res Rev 2024; 44:1904-1922. [PMID: 38483176 DOI: 10.1002/med.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 06/10/2024]
Abstract
The pursuit of enhanced health during aging has prompted the exploration of various strategies focused on reducing the decline associated with the aging process. A key area of this exploration is the management of mitochondrial dysfunction, a notable characteristic of aging. This review sheds light on the crucial role that small molecules play in augmenting healthy aging, particularly through influencing mitochondrial functions. Mitochondrial oxidative damage, a significant aspect of aging, can potentially be lessened through interventions such as coenzyme Q10, alpha-lipoic acid, and a variety of antioxidants. Additionally, this review discusses approaches for enhancing mitochondrial proteostasis, emphasizing the importance of mitochondrial unfolded protein response inducers like doxycycline, and agents that affect mitophagy, such as urolithin A, spermidine, trehalose, and taurine, which are vital for sustaining protein quality control. Of equal importance are methods for modulating mitochondrial energy production, which involve nicotinamide adenine dinucleotide boosters, adenosine 5'-monophosphate-activated protein kinase activators, and compounds like metformin and mitochondria-targeted tamoxifen that enhance metabolic function. Furthermore, the review delves into emerging strategies that encourage mitochondrial biogenesis. Together, these interventions present a promising avenue for addressing age-related mitochondrial degradation, thereby setting the stage for the development of innovative treatment approaches to meet this extensive challenge.
Collapse
Affiliation(s)
- Xiujiao Qin
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Huiying Zhao
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Le Fang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
132
|
Imawari Y, Nakanishi M. Senescence and senolysis in cancer: The latest findings. Cancer Sci 2024; 115:2107-2116. [PMID: 38641866 PMCID: PMC11247613 DOI: 10.1111/cas.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Aging is a life phenomenon that occurs in most living organisms and is a major risk factor for many diseases, including cancer. Cellular senescence is a cellular trait induced by various genomic and epigenetic stresses. Senescent cells are characterized by irreversible cell growth arrest and excessive secretion of inflammatory cytokines (senescence-associated secretory phenotypes, SASP). Chronic tissue microinflammation induced by SASP contributes to the pathogenesis of a variety of age-related diseases, including cancer. Senolysis is a promising new strategy to selectively eliminate senescent cells in order to suppress chronic inflammation, suggesting its potential use as an anticancer therapy. This review summarizes recent findings on the molecular basis of senescence in cancer cells and senolysis.
Collapse
Affiliation(s)
- Yoshimi Imawari
- Division of Cancer Cell Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
| |
Collapse
|
133
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
134
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
135
|
Tchelougou D, Malaquin N, Cardin GB, Desmul J, Turcotte S, Rodier F. Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells. Front Cell Dev Biol 2024; 12:1368711. [PMID: 38946802 PMCID: PMC11211604 DOI: 10.3389/fcell.2024.1368711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.
Collapse
Affiliation(s)
- Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Jordan Desmul
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de chirurgie, Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
136
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
137
|
Vedunova M, Borysova O, Kozlov G, Zharova AM, Morgunov I, Moskalev A. Candidate molecular targets uncovered in mouse lifespan extension studies. Expert Opin Ther Targets 2024; 28:513-528. [PMID: 38656034 DOI: 10.1080/14728222.2024.2346597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Multiple interventions have demonstrated an increase in mouse lifespan. However, non-standardized controls, sex or strain-specific factors, and insufficient focus on targets, hinder the translation of these findings into clinical applications. AREAS COVERED We examined the effects of genetic and drug-based interventions on mice from databases DrugAge, GenAge, the Mouse Phenome Database, and publications from PubMed that led to a lifespan extension of more than 10%, identifying specific molecular targets that were manipulated to achieve the maximum lifespan in mice. Subsequently, we characterized 10 molecular targets influenced by these interventions, with particular attention given to clinical trials and potential indications for each. EXPERT OPINION To increase the translational potential of mice life-extension studies to clinical research several factors are crucial: standardization of mice lifespan research approaches, the development of clear criteria for control and experimental groups, the establishment of criteria for potential geroprotectors, and focusing on targets and their clinical application. Pinpointing the targets affected by geroprotectors helps in understanding species-specific differences and identifying potential side effects, ensuring the safety and effectiveness of clinical trials. Additionally, target review facilitates the optimization of treatment protocols and the evaluation of the clinical feasibility of translating research findings into practical therapies for humans.
Collapse
Affiliation(s)
- Maria Vedunova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Grigory Kozlov
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | - Anna-Maria Zharova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Alexey Moskalev
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Longaevus Technologies LTD, London, United Kingdom
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
138
|
Garcia DN, Hense JD, Zanini BM, Isola JVV, Prosczek JB, Ashiqueali S, Oliveira TL, Mason JB, Schadock IC, Barros CC, Stout MB, Masternak MM, Schneider A. Senolytic treatment fails to improve ovarian reserve or fertility in female mice. GeroScience 2024; 46:3445-3455. [PMID: 38358579 PMCID: PMC11009191 DOI: 10.1007/s11357-024-01089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Senescent cell number increases with age in different tissues, leading to greater senescent cell load, proinflammatory stress, and tissue dysfunction. In the current study, we tested the efficacy of senolytic drugs to reduce ovarian senescence and improve fertility in reproductive age female mice. In the first experiment, 1-month-old C57BL/6 female mice were treated every other week with D + Q (n = 24) or placebo (n = 24). At 3 and 6 months of age, female mice were mated with untreated males to evaluate pregnancy rate and litter size. In the second experiment, 6-month-old C57BL/6 female mice were treated monthly with D + Q (n = 30), fisetin (n = 30), or placebo (n = 30). Females were treated once a month until 11 months of age, then they were mated with untreated males for 30 days to evaluate pregnancy rate and litter size. In the first experiment, D + Q treatment did not affect pregnancy rate (P = 0.68), litter size (P = 0.58), or ovarian reserve (P > 0.05). Lipofuscin staining was lower in females treated with D + Q (P = 0.04), but expression of senescence genes in ovaries was similar. In the second experiment, D + Q or fisetin treatment also did not affect pregnancy rate (P = 0.37), litter size (P = 0.20), or ovarian reserve (P > 0.05). Lipofuscin staining (P = 0.008) and macrophage infiltration (P = 0.002) was lower in fisetin treated females. Overall, treatment with D + Q or fisetin did not affect ovarian reserve or fertility but did decrease some senescence markers in the ovary.
Collapse
Affiliation(s)
- Driele N Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Jessica D Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Jose V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Juliane B Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Thais L Oliveira
- Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Ines C Schadock
- Experimental Toxicology Department, German Institute for Risk Assessment, Berlin, Germany
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Michael B Stout
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil.
| |
Collapse
|
139
|
Klinaki E, Ogrodnik M. In the land of not-unhappiness: On the state-of-the-art of targeting aging and age-related diseases by biomedical research. Mech Ageing Dev 2024; 219:111929. [PMID: 38561164 DOI: 10.1016/j.mad.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.
Collapse
Affiliation(s)
- Eirini Klinaki
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
140
|
Ashiqueali SA, Chaudhari D, Zhu X, Noureddine S, Siddiqi S, Garcia DN, Gostynska A, Stawny M, Rubis B, Zanini BM, Mansoor MAM, Schneider A, Naser SA, Yadav H, Masternak MM. Fisetin modulates the gut microbiota alongside biomarkers of senescence and inflammation in a DSS-induced murine model of colitis. GeroScience 2024; 46:3085-3103. [PMID: 38191834 PMCID: PMC11009197 DOI: 10.1007/s11357-024-01060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.
Collapse
Affiliation(s)
- Sarah A Ashiqueali
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Diptaraj Chaudhari
- University of South Florida Morsani College of Medicine, Neurosurgery & Brain Repair, Tampa, FL, USA
| | - Xiang Zhu
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Sarah Noureddine
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Sarah Siddiqi
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Driele N Garcia
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Aleksandra Gostynska
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Maciej Stawny
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Bianka M Zanini
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Mishfak A M Mansoor
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Augusto Schneider
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Saleh A Naser
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Hariom Yadav
- University of South Florida Morsani College of Medicine, Neurosurgery & Brain Repair, Tampa, FL, USA
| | - Michal M Masternak
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
141
|
Pagliari S, Sicari M, Pansera L, Guidi Nissim W, Mhalhel K, Rastegar S, Germanà A, Cicero N, Labra M, Cannavacciuolo C, Montalbano G, Campone L. A comparative metabolomic investigation of different sections of Sicilian Citrus x limon (L.) Osbeck, characterization of bioactive metabolites, and evaluation of in vivo toxicity on zebrafish embryo. J Food Sci 2024; 89:3729-3744. [PMID: 38709878 DOI: 10.1111/1750-3841.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024]
Abstract
Citrus fruits are a diverse and economically important group of fruit crops known for their distinctive flavors and high nutritional value. Their cultivation and consumption contribute significantly to the global agricultural economy and offer a wide range of health benefits. Among the genetic diversity of citrus species, Citrus x limon (L.) Osbeck is particularly relevant due to its chemical composition and potential health benefits. Two cultivars from the Sicily region (southern Italy) were compared for their phenolic content and preliminary antioxidant activity to select the distinctive extract with potential biological activity. A detailed characterization revealed the occurrence of phenolics, coumarins, and flavonoids. The quantification of metabolites contained in the selected extract was performed by an ultrahigh-performance liquid chromatographic method coupled with an ultraviolet detector. Different concentrations were tested in vivo through the fish embryo acute toxicity test, and the 50% lethal dose of 107,833 µg mL-1 was calculated. Finally, the effect of the extract on hatching was evaluated, and a dose-dependent relationship with the accelerated hatching rate was reported, suggesting a Femminello Zagara Bianca green peel upregulating effect on the hatching enzymes. PRACTICAL APPLICATION: Citrus fruits and their products continue to be one of the natural food sources with the highest waste output. In this study, we demonstrate how food industry waste, particularly lemon peel, is rich in bioactive compounds with anti-inflammatory and antioxidant properties that may be used in the nutraceuticals industry.
Collapse
Affiliation(s)
- Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4life Spin-off Company, University of Messina, Messina, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
142
|
Dutta M, Sarkar S, Karmakar P, Mandal Biswas S. A squalene analog 4,4'-diapophytofluene from coconut leaves having antioxidant and anti-senescence potentialities toward human fibroblasts and keratinocytes. Sci Rep 2024; 14:12593. [PMID: 38824160 PMCID: PMC11144250 DOI: 10.1038/s41598-024-63547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Coconut (Cocos nucifera) leaves, an unutilized resource, enriched with valuable bioactive compounds. Spectral analysis of purified pentane fraction of coconut leaves revealed the presence of a squalene analog named 4,4'-diapophytofluene or in short 4,4'-DPE (C30H46). Pure squalene standard (PSQ) showed cytotoxicity after 8 µg/ml concentration whereas 4,4'-DPE exhibited no cytotoxic effects up to 16 µg/ml concentration. On senescence-induced WI38 cells, 4,4'-DPE displayed better percentage of cell viability (164.5% at 24 h, 159.4% at 48 h and 148% at 72 h) compared to PSQ and BSQ (bio-source squalene) with same time duration. Similar trend of result was found in HaCaT cells. SA-β-gal assay showed that number of β-galactosidase positive cells were significantly decreased in senescent cells (WI38 and HaCaT) after treated with 4,4'-DPE than PSQ, BSQ. Percentage of ROS was increased to 60% in WI38 cells after olaparib treatment. When PSQ, BSQ and 4,4'-DPE were applied separately on these oxidative-stress-induced cells for 48 h, the overall percentage of ROS was decreased to 39.3%, 45.6% and 19.3% respectively. This 4,4'-DPE was found to be more effective in inhibiting senescence by removing ROS as compared to squalene. Therefore, this 4,4'-DPE would be new potent senotherapeutic agent for pharmaceuticals and dermatological products.
Collapse
Affiliation(s)
- Madhurima Dutta
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Swarupa Sarkar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Kolkata, 700032, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Kolkata, 700032, India.
| | - Suparna Mandal Biswas
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India.
| |
Collapse
|
143
|
Watanabe T, Yazaki M, Yazaki T, Furukawa M, Izumo N. Senotherapeutic effect of Agrimonia pilosa Ledeb. in targeting senescent cells in naturally aged mice. FOOD BIOSCI 2024; 59:103903. [DOI: 10.1016/j.fbio.2024.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
144
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
145
|
Li T, Li S, Ma K, Kong J. Application potential of senolytics in clinical treatment. Biogerontology 2024; 25:379-398. [PMID: 38109001 DOI: 10.1007/s10522-023-10084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Of the factors studied in individual ageing, the accumulation of senescent cells has been considered as an essential cause of organ degeneration to eventually initiate age-related diseases. Cellular senescence is attributed to the accumulation of damage for an inducement in the activation of cell cycle inhibitory pathways, resulting the cell permanently withdraw from the cell proliferation cycle. Further, senescent cells will activate the inflammatory factor secretion pathway to promote the development of various age-related diseases. Senolytics, a small molecule compound, can delay disease development and extend mammalian lifespan. The evidence from multiple trials shows that the targeted killing of senescent cells has a significant clinical application for the treatment of age-related diseases. In addition, senolytics are also significant for the development of ageing research in solid organ transplantation, which can fully develop the potential of elderly organs and reduce the age gap between demand and supply. We conclude that the main characteristics of cellular senescence, the anti-ageing drug senolytics in the treatment of chronic diseases and organ transplantation, and the latest clinical progress of related researches in order to provide a theoretical basis for the prevention and treatment of ageing and related diseases.
Collapse
Affiliation(s)
- Tiantian Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Shiyuan Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610207, Sichuan, People's Republic of China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.
| |
Collapse
|
146
|
Simon KE, Russell K, Mondino A, Yang CC, Case BC, Anderson Z, Whitley C, Griffith E, Gruen ME, Olby NJ. A randomized, controlled clinical trial demonstrates improved owner-assessed cognitive function in senior dogs receiving a senolytic and NAD+ precursor combination. Sci Rep 2024; 14:12399. [PMID: 38811634 PMCID: PMC11137034 DOI: 10.1038/s41598-024-63031-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Age-related decline in mobility and cognition are associated with cellular senescence and NAD + depletion in dogs and people. A combination of a novel NAD + precursor and senolytic, LY-D6/2, was examined in this randomized controlled trial. Seventy dogs with mild to moderate cognitive impairment were enrolled and allocated into placebo, low or full dose groups. Primary outcomes were change in cognitive impairment measured with the owner-reported Canine Cognitive Dysfunction Rating (CCDR) scale and change in activity measured with physical activity monitors. Fifty-nine dogs completed evaluations at the 3-month primary endpoint, and 51 reached the 6-month secondary endpoint. There was a significant difference in CCDR score across treatment groups from baseline to the primary endpoint (p = 0.02) with the largest decrease in the full dose group. No difference was detected between groups using in house cognitive testing. There were no significant differences between groups in changes in measured activity. The proportion of dogs that improved in frailty and owner-reported activity levels and happiness was higher in the full dose group than other groups, however this difference was not significant. Adverse events occurred equally across groups. All groups showed improvement in cognition, frailty, and activity suggesting placebo effect and benefits of trial participation. We conclude that LY-D6/2 improves owner-assessed cognitive function over a 3-month period and may have broader, but more subtle effects on frailty, activity and happiness as reported by owners.
Collapse
Affiliation(s)
- Katherine E Simon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Katharine Russell
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Southeast Veterinary Neurology, Miami, FL, USA
| | - Alejandra Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Chin-Chieh Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Beth C Case
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Zachary Anderson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Christine Whitley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Emily Griffith
- Department of Statistics, College of Sciences, North Carolina State University, Raleigh, NC, USA
| | - Margaret E Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|
147
|
Siewe N, Friedman A. Osteoporosis induced by cellular senescence: A mathematical model. PLoS One 2024; 19:e0303978. [PMID: 38805428 PMCID: PMC11132490 DOI: 10.1371/journal.pone.0303978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Osteoporosis is a disease characterized by loss of bone mass, where bones become fragile and more likely to fracture. Bone density begins to decrease at age 50, and a state of osteoporosis is defined by loss of more than 25%. Cellular senescence is a permanent arrest of normal cell cycle, while maintaining cell viability. The number of senescent cells increase with age. Since osteoporosis is an aging disease, it is natural to consider the question to what extend senescent cells induce bone density loss and osteoporosis. In this paper we use a mathematical model to address this question. We determine the percent of bone loss for men and women during age 50 to 100 years, and the results depend on the rate η of net formation of senescent cell, with η = 1 being the average rate. In the case η = 1, the model simulations are in agreement with empirical data. We also consider senolytic drugs, like fisetin and quercetin, that selectively eliminate senescent cells, and assess their efficacy in terms of reducing bone loss. For example, at η = 1, with estrogen hormonal therapy and early treatment with fisetin, bone density loss for women by age 75 is 23.4% (below osteoporosis), while with no treatment with fisetin it is 25.8% (osteoporosis); without even a treatment with estrogen hormonal therapy, bone loss of 25.3% occurs already at age 65.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
148
|
Silva AO, Bitencourt TC, Vargas JE, Fraga LR, Filippi-Chiela E. Modulation of tumor plasticity by senescent cells: Deciphering basic mechanisms and survival pathways to unravel therapeutic options. Genet Mol Biol 2024; 47Suppl 1:e20230311. [PMID: 38805699 PMCID: PMC11132560 DOI: 10.1590/1678-4685-gmb-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 05/30/2024] Open
Abstract
Senescence is a cellular state in which the cell loses its proliferative capacity, often irreversibly. Physiologically, it occurs due to a limited capacity of cell division associated with telomere shortening, the so-called replicative senescence. It can also be induced early due to DNA damage, oncogenic activation, oxidative stress, or damage to other cellular components (collectively named induced senescence). Tumor cells acquire the ability to bypass replicative senescence, thus ensuring the replicative immortality, a hallmark of cancer. Many anti-cancer therapies, however, can lead tumor cells to induced senescence. Initially, this response leads to a slowdown in tumor growth. However, the longstanding accumulation of senescent cells (SnCs) in tumors can promote neoplastic progression due to the enrichment of numerous molecules and extracellular vesicles that constitutes the senescence-associated secretory phenotype (SASP). Among other effects, SASP can potentiate or unlock the tumor plasticity and phenotypic transitions, another hallmark of cancer. This review discusses how SnCs can fuel mechanisms that underlie cancer plasticity, like cell differentiation, stemness, reprogramming, and epithelial-mesenchymal transition. We also discuss the main molecular mechanisms that make SnCs resistant to cell death, and potential strategies to target SnCs. At the end, we raise open questions and clinically relevant perspectives in the field.
Collapse
Affiliation(s)
- Andrew Oliveira Silva
- Faculdade Estácio, Porto Alegre, RS, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
| | - Thais Cardoso Bitencourt
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Jose Eduardo Vargas
- Universidade Federal do Paraná, Departamento de Biologia Celular,
Curitiba, PR, Brazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil
| | - Eduardo Filippi-Chiela
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Porto Alegre, RS, Brazil
| |
Collapse
|
149
|
Wahl D, Clayton ZS. Peripheral vascular dysfunction and the aging brain. Aging (Albany NY) 2024; 16:9280-9302. [PMID: 38805248 PMCID: PMC11164523 DOI: 10.18632/aging.205877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging evidence suggests that several fundamental aging mechanisms (e.g., "hallmarks" of aging), including chronic low-grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and synthetic) intersect with aging "hallmarks" to promote peripheral and/or cerebral vascular health represent a viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with aging might provide a new approach for assessing dementia risk in older adults.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science and Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Zachary S. Clayton
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Geriatric Medicine, Aurora, CO 80045, USA
| |
Collapse
|
150
|
Tufail M, Huang YQ, Hu JJ, Liang J, He CY, Wan WD, Jiang CH, Wu H, Li N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis 2024; 16:1483-1512. [PMID: 38913050 PMCID: PMC12096907 DOI: 10.14336/ad.2024.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|