101
|
Shakerian N, Mard-Soltani M, Nasri S, Rasaee MJ, Khalili S. Different combinations of monoclonal antibodies and polyclonal antibodies in the design of neonatal hypothyroidism diagnostic kit. Appl Biochem Biotechnol 2022; 194:3167-3181. [PMID: 35349083 DOI: 10.1007/s12010-022-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
Neonatal hypothyroidism is a deficiency of thyroid hormones at birth that can cause lifelong mental and physical disorders in humans. Lack of timely detection could lead to irreversible damage by neonatal hypothyroidism. However, it could be managed quickly and efficiently via timely diagnosis. The screening programs rely on immunoassays to diagnose neonatal hypothyroidism in most countries. This method is time-consuming, needs laboratory equipment, and should be performed by trained and skilled technicians. Given these circumstances, the ELISA method is not a preferable method for the diagnosing of neonatal hypothyroidism. However, it can be used as a confirmatory method in infants with suspected and unknown neonatal hypothyroidism. In the present study, the homemade SR95-1, SR95-2, and SR95-3 anti-β-TSH polyclonal and the commercially available monoclonal antibodies were used to detect β-TSH in a rapid assay kit design hypothyroidism screening. To design the kit, the different combinations of the antibodies were used to establish a sandwich immune-chromatography method. The designed rapid neonatal hypothyroidism tests were used to measure neonatal β-TSH in 100 dry blood samples. This study showed that the best antibody pair in terms of sensitivity is the SR95-1 antibody as capture antibody and the SR95-2 as a conjugated antibody. Using 100 clinical samples, the designed assay was shown to have 94% sensitivity, 83% specificity, and 94% accuracy. The results showed that polyclonal antibodies (SR95-1 as capture) and SR95-2 (as detector) antibodies can detect the reference range of β-TSH in dried blood samples and can be used in the screening of neonatal hypothyroidism.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Sima Nasri
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
102
|
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z. Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022; 147:1273-1293. [PMID: 35113085 DOI: 10.1039/d1an01702k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has become the third leading cause of global death. Insufficiency in early diagnosis and treatment of COPD, especially COPD exacerbations, leads to a tremendous economic burden and medical costs. A cost-effective and timely prevention requires decentralized point-of-care diagnostics at patients' residences at affordable prices. Advances in point-of-care (POC) diagnostics may offer new solutions to reduce medical expenditures by measuring salivary and blood biomarkers. Among them, paper-based analytical devices have been the most promising candidates due to their advantages of being affordable, biocompatible, disposable, scalable, and easy to modify. In this review, we present salivary and blood biomarkers related to COPD endotypes and exacerbations, summarize current technologies to collect human whole saliva and whole blood samples, evaluate state-of-the-art paper-based analytical devices that detect COPD biomarkers in saliva and blood, and discuss existing challenges with outlooks on future paper-based POC systems for COPD diagnosis and management.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.,Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Are Branstad
- University of Southeast Norway (USN), School of Business, Box 235, 3603 Kongsberg, Norway
| | - Lan Huang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| |
Collapse
|
103
|
Davies S, Hu Y, Jiang N, Montelongo Y, Richardson A, Blyth J, Yetisen AK. Reversible photonic hydrogel sensors via holographic interference lithography. Biosens Bioelectron 2022; 207:114206. [PMID: 35339821 DOI: 10.1016/j.bios.2022.114206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 02/02/2023]
Abstract
Continuous monitoring of physiological conditions and biomarkers via optical holographic sensors is an area of growing interest to facilitate the expansion of personalised medicine. Here, a facile laser-induced dual polymerization method is developed to fabricate holographic hydrogel sensors for the continuous and reversible colorimetric determination of pH variations over a physiological range in serum (pH 7-9). Readout parameters simulated through a Finite-difference time-domain Yee's algorithm retrieve the spectral response through expansion. Laser lithography of holographic hydrogel sensor fabrication is achieved via a single 355 nm laser pulse to initiate polymerization of ultrafine hydrogel fringes. Eliminating the requirement for complex processing of toxic components and streamlining the synthetic procedure provides a simpler route to mass production. Optimised pH-responsive hydrogels contain amine bearing functional co-monomers demonstrating reversible Bragg wavelength shifts of 172 nm across the entire visible wavelength range with pH variation from 7.0 to 9.0 upon illumination with broadband light. Photolithographic recording of information shows the ability to convey detailed information to users for qualitative identification of pH. Holographic sensor reversibility over 20 cycles showed minimal variation in replay wavelength supporting reliable and consistent readout, with optimised sensors showing rapid response times of <5 min. The developed sensors demonstrate the application to continuous monitoring in biological fluids, withstanding interference from electrolytes, saccharides, and proteins colorimetrically identifying bovine serum pH over a physiological range. The holographic sensors benefit point-of-care pH analysis of biological analytes which could be applied to the identification of blood gas disorders and wound regeneration monitoring through colorimetric readouts.
Collapse
Affiliation(s)
- Samuel Davies
- Department of Chemical Engineering, Imperial College London, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yunuen Montelongo
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Andreas Richardson
- Department of Chemical Engineering, Imperial College London, London, SW7 2BU, UK
| | - Jeff Blyth
- Department of Chemical Engineering, Imperial College London, London, SW7 2BU, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2BU, UK
| |
Collapse
|
104
|
Kim SK, Sung H, Hwang SH, Kim MN. A New Quantum Dot-Based Lateral Flow Immunoassay for the Rapid Detection of Influenza Viruses. BIOCHIP JOURNAL 2022; 16:175-182. [PMID: 35340454 PMCID: PMC8935104 DOI: 10.1007/s13206-022-00053-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
Rapid and accurate diagnosis of influenza is crucial to contain influenza virus outbreaks. In clinical settings, lateral flow immunoassays (LFIAs) are widely used for rapid influenza antigen detection. The choice of label plays an important role in determining the sensitivity of the LFIA. Quantum dots are one of the most promising fluorescent reporters. Here, we evaluated a novel quantum dot-based assay, QuantumPACK Easy Influenza A + B (QuantumPACK Easy; BioSquare Inc., Korea). A total of 394 nasopharyngeal swab samples, including 94 influenza A virus-positive, 98 influenza B virus-positive, 175 influenza A and B virus-negative, and 27 other respiratory pathogen-positive samples, were collected. Samples were tested with QuantumPACK Easy, Allplex RP real-time RT-PCR assay (Allplex RP; Seegene, Korea), and Sofia Influenza A + B FIA (Sofia; Quidel, CA, USA). The sensitivity and specificity of QuantumPACK Easy was analyzed using the Allplex RP assay. The agreement between QuantumPACK Easy and Sofia assays was also analyzed. The sensitivity of QuantumPACK Easy for influenza A and B was 80.9% and 83.7%, respectively. The specificity of QuantumPACK Easy was 100%. Cross-reactivity with other respiratory pathogens was not observed. Total agreement between QuantumPACK Easy and Sofia was 89.6% (kappa 0.783). The sensitivity of the Sofia assay was 66.0% for influenza A virus and 61.2% for influenza B virus. QuantumPACK Easy had acceptable performance, with better sensitivity than a commercially available antigen detection assay, possibly due to the characteristics of the quantum dot.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea.,Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| |
Collapse
|
105
|
Thangavelu RM, Kadirvel N, Balasubramaniam P, Viswanathan R. Ultrasensitive nano-gold labelled, duplex lateral flow immunochromatographic assay for early detection of sugarcane mosaic viruses. Sci Rep 2022; 12:4144. [PMID: 35264671 PMCID: PMC8907228 DOI: 10.1038/s41598-022-07950-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Sugarcane is one of the important food and bioenergy crops, cultivated all over the world except European continent. Like many other crops, sugarcane production and quality are hampered by various plant pathogens, among them viruses that infect systemically and cause severe impact to cane growth. The viruses are efficiently managed by their elimination through tissue culture combined with molecular diagnostics, which could detect virus titre often low at 10-12 g mL-1. To harmonize the virus diagnostics by molecular methods, we established a nanocatalysis-based high sensitive lateral flow immunochromatographic assay (LFIA) simultaneously to detect two major sugarcane viruses associated with mosaic disease in sugarcane. LFIA is known for poor sensitivity and stability with its signalling conjugates. However, we synthesized positively charged Cysteamine-gold nanoparticles and used them to prepare highly stable to sensitive immunoconjugates and as a colourimetric detection label. Further nanogold signal enhancement was performed on LFIA to obtain a high detection sensitivity, which is higher than the conventional immunoassays. The linear detection range of the nano-LIFA was 10-6 to 10-9 g mL-1, and with the signal enhancement, the LOD reached up to 10-12 g ml-1. This research paper provides relative merits and advancement on nano-LFIA for specific detection of sugarcane viruses in sugarcane for the first time.
Collapse
Affiliation(s)
| | - Nithya Kadirvel
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, India
| | | | - Rasappa Viswanathan
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, India.
| |
Collapse
|
106
|
Wu K, Tonini D, Liang S, Saha R, Chugh VK, Wang JP. Giant Magnetoresistance Biosensors in Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9945-9969. [PMID: 35167743 PMCID: PMC9055838 DOI: 10.1021/acsami.1c20141] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The giant magnetoresistance (GMR) effect has seen flourishing development from theory to application in the last three decades since its discovery in 1988. Nowadays, commercial devices based on the GMR effect, such as hard-disk drives, biosensors, magnetic field sensors, microelectromechanical systems (MEMS), etc., are available in the market, by virtue of the advances in state-of-the-art thin-film deposition and micro- and nanofabrication techniques. Different types of GMR biosensor arrays with superior sensitivity and robustness are available at a lower cost for a wide variety of biomedical applications. In this paper, we review the recent advances in GMR-based biomedical applications including disease diagnosis, genotyping, food and drug regulation, brain and cardiac mapping, etc. The GMR magnetic multilayer structure, spin valve, and magnetic granular structure, as well as fundamental theories of the GMR effect, are introduced at first. The emerging topic of flexible GMR for wearable biosensing is also included. Different GMR pattern designs, sensor surface functionalization, bioassay strategies, and on-chip accessories for improved GMR performances are reviewed. It is foreseen that combined with the state-of-the-art complementary metal-oxide-semiconductor (CMOS) electronics, GMR biosensors hold great promise in biomedicine, particularly for point-of-care (POC) disease diagnosis and wearable devices for real-time health monitoring.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
107
|
Guo H, Yin Z, Namkoong M, Li Y, Nguyen T, Salcedo E, Arizpe I, Tian L. Printed Ultrastable Bioplasmonic Microarrays for Point-of-Need Biosensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10729-10737. [PMID: 35171552 PMCID: PMC9359782 DOI: 10.1021/acsami.1c24458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Paper-based point-of-need (PON) biosensors are attractive for various applications, including food safety, agriculture, disease diagnosis, and drug screening, owing to their low cost and ease of use. However, existing paper-based biosensors mainly rely on biolabels, colorimetric reagents, and biorecognition elements and exhibit limited stability under harsh environments. Here, we report a label-free paper-based biosensor composed of bioplasmonic microarrays for sensitive detection and quantification of protein targets in small volumes of biofluids. Bioplasmonic microarrays were printed using an ultrastable bioplasmonic ink, rendering the PON sensors excellent thermal, chemical, and biological stability for their reliable performance in resource-limited settings. We fabricated silicone hydrophobic barriers and bioplasmonic microarrays with direct writing and droplet jetting approaches on a three-dimensional (3D) nanoporous paper. Direct writing hydrophobic barriers can define hydrophilic channels less than 100 μm wide. High-resolution patterning of hydrophilic test domains enables the handling and analysis of small fluid volumes. We show that the plasmonic sensors based on a vertical flow assay provide similar sensitivity and low limit of detection with a 60 μL sample volume compared to those with 500 μL samples based on an immersion approach and can shorten assay time from 90 to 20 min.
Collapse
Affiliation(s)
- Heng Guo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ze Yin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yixuan Li
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Tan Nguyen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Elizabeth Salcedo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ivanna Arizpe
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
108
|
Czibere L, Burggraf S, Becker M, Durner J, Draenert ME. Verification of lateral flow antigen tests for SARS-CoV-2 by qPCR directly from the test device. Dent Mater 2022; 38:e155-e159. [PMID: 35307210 PMCID: PMC8919771 DOI: 10.1016/j.dental.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Ludwig Czibere
- Laboratory Becker MVZ GbR, Führichstr. 70, 81671 Munich, Germany
| | | | - Marc Becker
- Laboratory Becker MVZ GbR, Führichstr. 70, 81671 Munich, Germany; Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Ludwig-Maximilians-University Munich, Goethestr. 70, 80336 Munich, Germany
| | - Jürgen Durner
- Laboratory Becker MVZ GbR, Führichstr. 70, 81671 Munich, Germany; Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Ludwig-Maximilians-University Munich, Goethestr. 70, 80336 Munich, Germany.
| | - Miriam E Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Ludwig-Maximilians-University Munich, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
109
|
Open-Source, Adaptable, All-in-One Smartphone-Based System for Quantitative Analysis of Point-of-Care Diagnostics. Diagnostics (Basel) 2022; 12:diagnostics12030589. [PMID: 35328142 PMCID: PMC8947044 DOI: 10.3390/diagnostics12030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Point-of-care (POC) diagnostics, in particular lateral flow assays (LFA), represent a great opportunity for rapid, precise, low-cost and accessible diagnosis of disease. Especially with the ongoing coronavirus disease 2019 (COVID-19) pandemic, rapid point-of-care tests are becoming everyday tools for identification and prevention. Using smartphones as biosensors can enhance POC devices as portable, low-cost platforms for healthcare and medicine, food and environmental monitoring, improving diagnosis and documentation in remote, low-resource locations. We present an open-source, all-in-one smartphone-based system for quantitative analysis of LFAs. It consists of a 3D-printed photo box, a smartphone for image acquisition, and an R Shiny software package with modular, customizable analysis workflow for image editing, analysis, data extraction, calibration and quantification of the assays. This system is less expensive than commonly used hardware and software, so it could prove very beneficial for diagnostic testing in the context of pandemics, as well as in low-resource countries.
Collapse
|
110
|
Semi-Automated Microfluidic Device Combined with a MiniPCR-Duplex Lateral Flow Dipstick for Screening and Visual Species Identification of Lymphatic Filariae. MICROMACHINES 2022; 13:mi13020336. [PMID: 35208460 PMCID: PMC8880723 DOI: 10.3390/mi13020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Lymphatic filariasis (LF) is a leading cause of permanent disability worldwide that has been listed as a neglected tropical disease by the World Health Organization. Significant progress made by the Global Program to Eliminate Lymphatic Filariasis (GPELF) has led to a substantial decline in the population of the worm that causes LF infection. Diagnostic assays capable of detecting low levels of parasite presence are needed to diagnose LF. There is also a need for new tools that can be used in areas where multiple filarial species are coendemic and for mass screening or for use in a point-of-care setting. In the present study, we applied our previously developed semi-automated microfluidic device in combination with our recently developed mini polymerase chain reaction (miniPCR) with a duplex lateral flow dipstick (DLFD) (miniPCR-DLFD) for rapid mass screening and visual species identification of lymphatic filariae in human blood. The study samples comprised 20 Brugia malayi microfilariae (mf) positive human blood samples, 14 Wuchereria bancrofti mf positive human blood samples and 100 mf negative human blood samples. Microfilariae detection and visual species identification was performed using the microfluidic device. To identify the species of the mf trapped in the microfluidic chips, DNA of the trapped mf was extracted for miniPCR amplification of W. bancrofti and B. malayi DNA followed by DLFD. Thick blood smear staining for microfilariae detection was used as the gold standard technique. Microfilariae screening and visual species identification using our microfluidic device plus miniPCR-DLFD platform yielded results concordant with those of the gold standard thick blood smear technique. The microfluidic device, the miniPCR and the DLFD are all portable and do not require additional equipment. Use of this screening and visual species identification platform will facilitate reliable, cost-effective, and rapid surveillance for the presence of LF infection in resource-poor settings.
Collapse
|
111
|
Oh HK, Kim K, Park J, Im H, Maher S, Kim MG. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens Bioelectron 2022; 205:114094. [PMID: 35202985 PMCID: PMC8851749 DOI: 10.1016/j.bios.2022.114094] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Lateral flow immunoassays (LFI) have shown great promise for point-of-care (POC) sensing applications, however, its clinical translation is often hindered by insufficient sensitivity for early detection of diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is mainly due to weak absorption signals of single gold nanoparticles (AuNPs). Here, we developed AuNP clusters that maintain the red color of isolated individual AuNPs, but increase the colorimetric readout to improve the detection sensitivity. The plasmon color-preserved (PLASCOP) AuNP clusters is simply made by mixing streptavidin-coated AuNP core with satellite AuNPs coated with biotinylated antibodies. The biotinylated antibody-streptavidin linker forms a gap size over 15 nm to avoid plasmon coupling between AuNPs, thus maintaining the plasmonic color while increasing the overall light absorption. LFI sensing using PLASCOP AuNP clusters composed of 40 nm AuNPs showed a high detection sensitivity for SARS-CoV-2 nucleocapsid proteins with a limit of detection (LOD) of 0.038 ng mL−1, which was 23.8- and 5.9-times lower value than that of single 15 nm and 40 nm AuNP conjugates, respectively. The PLASCOP AuNP clusters-based LFI sensing also shows good specificity for SARS-CoV-2 nucleocapsid proteins from other influenza and coronaviruses. In a clinical feasibility test, we demonstrated that SARS-CoV-2 particles spiked in human saliva could be detected with an LOD of 54 TCID50 mL−1. The developed PLASCOP AuNP clusters are promising colorimetric sensing reporters that present improved sensitivity in LFI sensing for broad POC sensing applications beyond SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Hyun-Kyung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Kihyeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jinhee Park
- GMD BIOTECH, INC, Gwangju, 61005, Republic of Korea
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; GMD BIOTECH, INC, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
112
|
Point of care diagnostics and non-invasive sampling strategy: a review on major advances in veterinary diagnostics. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of point of care diagnostics (POCD) in animal diseases has steadily increased over the years since its introduction. Its potential application to diagnose infectious diseases in remote and resource limited settings have made it an ideal diagnostic in animal disease diagnosis and surveillance. The rapid increase in incidence of emerging infectious diseases requires urgent attention where POCD could be indispensable tools for immediate detection and early warning of a potential pathogen. The advantages of being rapid, easily affordable and the ability to diagnose an infectious disease on spot has driven an intense effort to refine and build on the existing technologies to generate advanced POCD with incremental improvements in analytical performance to diagnose a broad spectrum of animal diseases. The rural communities in developing countries are invariably affected by the burden of infectious animal diseases due to limited access to diagnostics and animal health personnel. Besides, the alarming trend of emerging and transboundary diseases with pathogen spill-overs at livestock-wildlife interfaces has been identified as a threat to the domestic population and wildlife conservation. Under such circumstances, POCD coupled with non-invasive sampling techniques could be successfully deployed at field level without the use of sophisticated laboratory infrastructures. This review illustrates the current and prospective POCD for existing and emerging animal diseases, the status of non-invasive sampling strategies for animal diseases, and the tremendous potential of POCD to uplift the status of global animal health care.
Collapse
|
113
|
Baker AN, Muguruza AR, Richards S, Georgiou PG, Goetz S, Walker M, Dedola S, Field RA, Gibson MI. Lateral Flow Glyco-Assays for the Rapid and Low-Cost Detection of Lectins-Polymeric Linkers and Particle Engineering Are Essential for Selectivity and Performance. Adv Healthc Mater 2022; 11:e2101784. [PMID: 34747143 PMCID: PMC7612396 DOI: 10.1002/adhm.202101784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow immuno-assays, such as the home pregnancy test, are rapid point-of-care diagnostics that use antibody-coated nanoparticles to bind antigens/analytes (e.g., viruses, toxins or hormones). Ease of use, no need for centralized infrastructure and low-cost, makes these devices appealing for rapid disease identification, especially in low-resource environments. Here glycosylated polymer-coated nanoparticles are demonstrated for the sensitive, label-free detection of lectins in lateral flow and flow-through. The systems introduced here use glycans, not antibodies, to provide recognition: a "lateral flow glyco-assay," providing unique biosensing opportunities. Glycans are installed onto polymer termini and immobilized onto gold nanoparticles, providing colloidal stability but crucially also introducing assay tunability and selectivity. Using soybean agglutinin and Ricinus communis agglutinin I (RCA120 ) as model analytes, the impact of polymer chain length and nanoparticle core size are evaluated, with chain length found to have a significant effect on signal generation-highlighting the need to control the macromolecular architecture to tune response. With optimized systems, lectins are detectable at subnanomolar concentrations, comparable to antibody-based systems. Complete lateral flow devices are also assembled to show how these devices can be deployed in the "real world." This work shows that glycan-binding can be a valuable tool in rapid diagnostics.
Collapse
Affiliation(s)
- Alexander N. Baker
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Asier R. Muguruza
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Sarah‐Jane Richards
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Stephen Goetz
- Iceni Diagnostics LtdNorwich Research ParkNorwichNR4 7GJUK
| | - Marc Walker
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Simone Dedola
- Iceni Diagnostics LtdNorwich Research ParkNorwichNR4 7GJUK
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Matthew I. Gibson
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
114
|
Emerging trends in point-of-care sensors for illicit drugs analysis. Talanta 2022; 238:123048. [PMID: 34801905 DOI: 10.1016/j.talanta.2021.123048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Consumption of illicit narcotic drugs and fatal or criminal activities under their influence has become an utmost concern worldwide. These drugs influence an individual's feelings, perceptions, and emotions by altering the state of consciousness and thus can result in serious safety breaches at critical workplaces. Point-of-care drug-testing devices have become the need-of-the-hour for many sections such as the law enforcement agencies, the workplaces, etc. for safety and security. This review focuses on the recent progress on various electrochemical and optical nanosensors developed for the analysis of the most common illicit drugs (or their metabolites) such as tetrahydrocannabinol (THC), cocaine (COC), opioids (OPs), amphetamines & methamphetamine, and benzodiazepine (BZDs). The paper also highlights the sensitivity and selectivity of various sensing modalities along with evolving parameters such as real-time monitoring and measurement via a smart user interface. An overall outlook of recent technological advances in point of care (POC) devices and guided insights and directions for future research is presented.
Collapse
|
115
|
Mao X, Wang Y, Jiang L, Zhang H, Zhao Y, Liu P, Liu J, Hammock BD, Zhang C. A Polydopamine-Coated Gold Nanoparticles Quenching Quantum Dots-Based Dual-Readout Lateral Flow Immunoassay for Sensitive Detection of Carbendazim in Agriproducts. BIOSENSORS 2022; 12:bios12020083. [PMID: 35200343 PMCID: PMC8869244 DOI: 10.3390/bios12020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/12/2023]
Abstract
In this study, a fluorometric and colorimetric dual-readout lateral flow immunoassay (LFIA) using antibody functionalized polydopamine-coated gold nanoparticles (Au@PDAs) as a probe was developed for the detection of carbendazim (CBD). Colloidal gold nanoparticles (AuNPs) were coated with polydopamines (PDA) by the oxidation of dopamine to synthesize Au@PDA nanoparticles. The Au@PDA nanoparticles mediated ZnCdSe/ZnS quantum dots (QDs) fluorescence quenching and recovery, resulting in a reverse fluorescence enhancement detection format of CBD. The CBD detection was obtained by the competition between the CBD and the immobilized antigen for Au@PDAs labelled antibody binding, resulting in a significant fluorescence increase and colorimetry decrease corresponded to the concentration of CBD. Dual readout modes were incorporated into the LFIA using the colorimetry signal under natural light and the fluorescence signal under UV light. The cut-off value in the mode of the colorimetric signal and fluorometric signal for CBD detection was 0.5 μg/mL and 0.0156 μg/mL, respectively. The sensitivity of LFIA of the fluorescence mode was 32 times higher than that of the colorimetry mode. There was negligible cross reactivity obtained by using LFIA for the determination of thiabendazole, benomyl, thiophanate-methyl, and thiophanate-ethyl. Consistent and satisfactory results have been achieved by comparing the results of Au@PDAs-QDs-LFIA and liquid chromatography-tandem mass spectrometry (LC-MS/MS) testing spiked cucumber and strawberry samples, indicating good reliability of the Au@PDAs-QDs-LFIA.
Collapse
Affiliation(s)
- Xinxin Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Lan Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
| | - Hanxiaoya Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Yun Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Pengyan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
| | - Juanjuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Cunzheng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.M.); (L.J.); (J.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.W.); (H.Z.); (Y.Z.); (P.L.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Biology and Food Engineering, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
116
|
Kaur M, Eltzov E. Optimizing Effective Parameters to Enhance the Sensitivity of Vertical Flow Assay for Detection of Escherichia coli. BIOSENSORS 2022; 12:63. [PMID: 35200324 PMCID: PMC8869093 DOI: 10.3390/bios12020063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/01/2023]
Abstract
Vertical flow immunoassays (VFIAs) are considered potential point-of-care testing (POCT) devices compared to lateral flow assays due to their ability to analyze a comparatively large sample volume and ease of multiplexing. However, VFIA devices are limited by low analytical sensitivity when coupled with a visual colorimetric signal. Herein, we carefully analyzed key parameters that accounted for the proper functionality of VFIA that can be modified to enhance the overall sensitivity of VFIA. In particular, we focused on improving the stability of conjugate pads impregnated with capture antibodies, maintaining a controlled flow rate to ensure higher analyte reactivity with capture antibodies, and enhancing the absorption efficiency. The results showed that air-drying of conjugate pads in the presence of 5% (w/v) lactose significantly improved the stability of antibodies during long-term storage. Integration of dissolvable polyvinyl alcohol (PVA) membrane of optimal concentration as a time-barrier film into the sensor delayed the flow of samples, thereby increasing the biorecognition interaction time between immunoreagents for the formation of immuno-complexes, which in turn led to higher sensitivity of the assay. Furthermore, the employment of an absorbent pad with higher water holding capacity significantly reduced the non-specific binding of immunocomplexes, thereby reducing the possibility of false-negative results.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan 50250, Israel;
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Institute, Agricultural Research Organization, Bet Dagan 50250, Israel;
- Agro-Nanotechnology and Advanced Materials Research Center, Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
117
|
Oussou-Azo FA, Futagami T, Vestergaard MCM. Immuno-Dipstick for Colletotrichum gloeosporioides Detection: Towards On-Farm Application. BIOSENSORS 2022; 12:49. [PMID: 35200310 PMCID: PMC8869205 DOI: 10.3390/bios12020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
Early and quick detection of pathogens are crucial for managing the spread of infections in the biomedical, biosafety, food, and agricultural fields. While molecular diagnostics can offer the specificity and reliability in acute infectious diseases, detection of pathogens is often slowed down by the current benchtop molecular diagnoses, which are time consuming, labor intensive, and lack the mobility for application at the point-of-need. In this work, we developed a complete on-farm use detection protocol for the plant-devastating anthracnose agent: Colletotrichum gloeosporioides. Our methods combined a simplified DNA extraction on paper that is compatible with loop-mediated isothermal amplification (LAMP), coupled with paper-based immunoassay lateral flow sensing. Our results offer simple, quick, easy, and a minimally instrumented toolkit for Colletotrichum gloeosporioides detection. This scalable and adaptable platform is a valuable alternative to traditional sensing systems towards on-the-go pathogen detection in food and agriculture, biomedical, and other fields.
Collapse
Affiliation(s)
- Fifame Auriane Oussou-Azo
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mun’delanji Catherine M. Vestergaard
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
118
|
Resmi PE, Suneesh PV, Ramachandran T, Babu TGS. Paper based micro/nanofluidics devices for biomedical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:159-190. [PMID: 35033283 DOI: 10.1016/bs.pmbts.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This chapter details the significance, fabrication and biomedical applications of paper-based microfluidic devices. The first part of the chapter describes the importance of paper diagnostic devices, highlighting pretreatment, dipsticks, lateral flow assays, and microPADs. Various methods followed for the fabrication of the paper analytical devices are discussed in the second part. The last part is about some of the important biomedical applications of paper analytical devices. Finally, the challenges and research gaps in the paper microfluidics for biomedical applications are presented.
Collapse
Affiliation(s)
- P E Resmi
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - P V Suneesh
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Sciences, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - T Ramachandran
- Department of Sciences, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - T G Satheesh Babu
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Sciences, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| |
Collapse
|
119
|
Danthanarayana AN, Brgoch J, Willson RC. Photoluminescent Molecules and Materials as Diagnostic Reporters in Lateral Flow Assays. ACS APPLIED BIO MATERIALS 2022; 5:82-96. [PMID: 35014811 PMCID: PMC9798899 DOI: 10.1021/acsabm.1c01051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lateral flow assay (LFA) is a point-of-care diagnostic test commonly available in an over-the-counter format because of its simplicity, speed, low cost, and portability. The reporter particles in these assays are among their most significant components because they perform the diagnostic readout and dictate the test's sensitivity. Today, gold nanoparticles are frequently used as reporters, but recent work focusing on photoluminescent-based reporter technologies has pushed LFAs to better performance. These efforts have focused specifically on reporters made of organic fluorophores, quantum dots, lanthanide chelates, persistent luminescent phosphors, and upconversion phosphors. In most cases, photoluminescent reporters show enhanced sensitivity compared to conventional gold nanoparticle-based assays. Here, we examine the advantages and disadvantages of these different reporters and highlight their potential benefits in LFAs. Our assessment shows that photoluminescent-based LFAs can not only reach lower detection limits than LFAs with traditional reporters, but they also can be capable of quantitative and multiplex analyte detection. As a result, the photoluminescent reporters make LFAs well-suited for medical diagnostics, the food and agricultural industry, and environmental testing.
Collapse
Affiliation(s)
| | - Jakoah Brgoch
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Richard C Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
120
|
Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals (Basel) 2022; 15:ph15010090. [PMID: 35056148 PMCID: PMC8781427 DOI: 10.3390/ph15010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The lateral flow assay (LFA) is an extensively used paper-based platform for the rapid and on-site detection of different analytes. The method is user-friendly with no need for sophisticated operation and only includes adding sample. Generally, antibodies are employed as the biorecognition elements in the LFA. However, antibodies possess several disadvantages including poor stability, high batch-to-batch variation, long development time, high price and need for ethical approval and cold chain. Because of these limitations, aptamers screened by an in vitro process can be a good alternative to antibodies as biorecognition molecules in the LFA. In recent years, aptamer-based LFAs have been investigated for the detection of different analytes in point-of-care diagnostics. In this review, we summarize the applications of aptamer technology in LFAs in clinical diagnostic rapid tests for the detection of biomarkers, microbial analytes, hormones and antibiotics. Performance, advantages and drawbacks of the developed assays are also discussed.
Collapse
|
121
|
Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods 2022; 301:114461. [PMID: 35031384 DOI: 10.1016/j.jviromet.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Early detection is one of the ways to deal with DNA virus widespread prevalence, and it is necessary to know new diagnostic methods and techniques. Colorimetric assays are one of the most advantageous methods in detecting viruses. These methods are based on color change, which can be seen either with the naked eye or with special devices. The aim of this study is to introduce and evaluate effective colorimetric methods based on amplification, nanoparticle, CRISPR/Cas, and Lateral flow in the diagnosis of DNA viruses and to discuss the effectiveness of each of the updated methods. Compared to the other methods, colorimetric assays are preferred for faster detection, high efficiency, cheaper cost, and high sensitivity and specificity. It is expected that the spread of these viruses can be prevented by identifying and developing new methods.
Collapse
Affiliation(s)
- Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Salasar Moghaddam
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
122
|
Belsare S, Tseng D, Ozcan A, Coté G. Monitoring gestational diabetes at the point-of-care via dual glycated albumin lateral flow assays in conjunction with a handheld reader. Analyst 2022; 147:5518-5527. [DOI: 10.1039/d2an01238c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A dual assay cartridge was developed and used in conjunction with a handheld reader for sensing % glycated albumin to monitor gestational diabetes at home.
Collapse
Affiliation(s)
- Sayali Belsare
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Derek Tseng
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
| | - Gerard Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Texas Engineering Experiment Station Centre for Remote Health Technologies and Systems, College Station, TX, USA
| |
Collapse
|
123
|
Biby A, Wang X, Liu X, Roberson O, Henry A, Xia X. Rapid testing for coronavirus disease 2019 (COVID-19). MRS COMMUNICATIONS 2022; 12:12-23. [PMID: 35075405 PMCID: PMC8769796 DOI: 10.1557/s43579-021-00146-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
Rapid testing, generally refers to the paper-based diagnostic platform known as "lateral flow assay" (LFA), has emerged as a critical asset to the containment of coronavirus disease 2019 (COVID-19) around the world. LFA technology stands out amongst peer platforms due to its cost-effective design, user-friendly interface, and low sample-to-readout times. This article aims to introduce its design, use, and practicality for the purpose of diagnosing SARS-CoV-2 infection. A connection is made from the normal COVID-19 immune response to the design and efficacy of rapid testing. Interference in test results is a challenge shared by most diagnostic platforms and can be rooted in various underlying issues. The current knowledge and situation about interference in rapid COVID-19 tests due to variant strains as well as vaccination are discussed. The cost and societal impact are reviewed as they play important roles in determining how to properly implement public testing practices. Perspectives on improving the performance, especially detection sensitivity, of LFA for COVID-19 are provided.
Collapse
Affiliation(s)
- Alexander Biby
- Department of Chemistry, University of Central Florida, Orlando, FL 32816 USA
| | - Xiaochuan Wang
- School of Social Work, University of Central Florida, Orlando, FL 32816 USA
| | - Xinliang Liu
- School of Global Health Management & Informatics, University of Central Florida, Orlando, FL 32816 USA
| | - Olivia Roberson
- Department of Chemistry, University of Central Florida, Orlando, FL 32816 USA
| | - Allya Henry
- School of Social Work, University of Central Florida, Orlando, FL 32816 USA
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, FL 32816 USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816 USA
| |
Collapse
|
124
|
Kang J, Kang D, Yeom G, Park CJ. Molecular Diagnostic System Using Engineered Fusion Protein-Conjugated Magnetic Nanoparticles. Anal Chem 2021; 93:16804-16812. [PMID: 34886672 DOI: 10.1021/acs.analchem.1c03247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To effectively control the spread of new infectious diseases, there is a need for highly sensitive diagnostic methods to detect viral nucleic acids rapidly. This study outlines a universal and simple detection strategy that uses magnetic nanoparticles (MNPs) and a novel MagR-MazE fusion protein for molecular diagnostics to facilitate sensitive detection. This study has engineered a novel MNP conjugate that can be generated easily, without using many chemical reagents. The technique is a nucleic acid detection method, using MagR-MazE fusion protein-conjugated MNPs, where the results can be visualized with the naked eye, regardless of the oligonucleotide sequences of the target in the lateral flow assay. This method could sensitively detect polymerase chain reaction (PCR) products of 16S ribosomal RNA (rRNA) and the 2019-nCoV-N-positive control gene in 5 min. It shows a low limit of detection (LoD) of 0.013 ng/μL for dsDNA. It is simpler and more rapid, sensitive, and versatile than other techniques, making it suitable for point-of-care testing. The proposed detection system and MNP conjugation strategy using a fusion protein can be widely applied to various fields requiring rapid on-site diagnosis.
Collapse
Affiliation(s)
- Juyoung Kang
- SB BIOSCIENCE Co., Ltd., Daejeon34141, South Korea
| | - Donguk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Gyuho Yeom
- SB BIOSCIENCE Co., Ltd., Daejeon34141, South Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| |
Collapse
|
125
|
He G, Dong T, Yang Z, Jiang Z. Mitigating hook effect in one-step quantitative sandwich lateral flow assay by timed conjugate release. Talanta 2021; 240:123157. [PMID: 34968809 DOI: 10.1016/j.talanta.2021.123157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Sandwich lateral flow assay (LFA) is one of the most successfully commercialized paper-based biosensors, which offers a rapid, low-cost, one-step assay. Despite its advantages, conventional sandwich LFA is fundamentally limited by the high-dose "hook" effect-a phenomenon that occurs at very high analyte concentrations and results in false-negative results. In this paper, we present a novel strategy of automatic timed detection antibody release to mitigate the hook effect in sandwich LFA without additional manual steps. We introduced an intermediate pad treated with saturated sucrose solution to regulate the flow between the nitrocellulose membrane and the conjugate pad in order to delay the reaction between detection antibodies and analytes. Using C-reactive protein (CRP) as a representative analyte, we demonstrated that our strategy exhibited a range of detection 10 times wider than that of our conventional LFA, without sacrificing the limit of detection. Comparing to other published strategies, our work could offer a one-step, cost-effective approach that is closely unified with the benefits of the LFA.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| |
Collapse
|
126
|
Cavalera S, Russo A, Foglia EA, Grazioli S, Colitti B, Rosati S, Nogarol C, Di Nardo F, Serra T, Chiarello M, Baggiani C, Pezzoni G, Brocchi E, Anfossi L. Design of multiplexing lateral flow immunoassay for detection and typing of foot-and-mouth disease virus using pan-reactive and serotype-specific monoclonal antibodies: Evidence of a new hook effect. Talanta 2021; 240:123155. [PMID: 34942474 DOI: 10.1016/j.talanta.2021.123155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
The foot-and-mouth disease (FMD) is the most important transboundary viral disease of livestock in the international context, because of its extreme contagiousness, widespread diffusion, and severe impact on animal trade and animal productions. The rapid and on-field detection of the virus responsible for the FMD represents an urgent demand to efficiently control the diffusion of the infection, especially in low resource setting where the FMD is endemic. Colorimetric lateral flow immunoassay (LFIA) is largely used for the development of rapid tests, due to the extreme simplicity, cost-effectiveness, and on-field operation. In this work, two multiplex LFIA devices were designed for the diagnosis of FMD and the simultaneous identification of major circulating serotypes of the FMD virus. The LFIAs relied on the sandwich-type immunoassay and combined a set of well-characterised monoclonal antibodies (mAb) pairs. One LFIA aimed at detecting and identifying O, A and Asia-1 serotypes, the second device enabled the detection and differentiation of the SAT 1 and SAT 2 serotypes. Both devices also incorporated a broad-specific test line reporting on infection from FMDV, regardless the strain and the serotype involved. Accordingly, five and four reactive zones were arranged in the two devices to achieve a total of six simultaneous analyses. The development of the two multiplex systems highlighted for the first time the relevance of the mAb positioning along the LFIA strip in connection with the use of the same or different mAb as capture and detector ligands. In fact, the excess of detector mAb typically employed for increasing the sensitivity of sandwich immunoassay induced a new type of hook effect when combined with the same ligand used as the capture. This effect strongly impacted assay sensitivity, which could be improved by an intelligent alignment of the mAb pairs along the LFIA strip. The analytical and diagnostic performances of the two LFIAs were studied by testing reference FMDV strains grown in cell cultures and some representative field samples (epithelium homogenates). Almost equivalent sensitivity and specificity to those of a reference Ag-ELISA kit were shown, except for the serotype SAT 2. These simple devices are suitable in endemic regions for in-field diagnosis of FMD accompanied by virus serotyping and, moreover, could be deployed and used for rapid confirmation of secondary outbreaks after FMD incursions in free-areas, thus contributing to promptly implement control measures.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Alida Russo
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy; Tyndall National Institute, University College Cork, Cork, T12 R5CP, Ireland
| | - Efrem Alessandro Foglia
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Santina Grazioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo P. Braccini 5, Grugliasco, TO, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo P. Braccini 5, Grugliasco, TO, Italy
| | - Chiara Nogarol
- In3Diagnostic, Largo P.Braccini, 2, Grugliasco, TO, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Thea Serra
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Matteo Chiarello
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy.
| |
Collapse
|
127
|
Harpaldas H, Arumugam S, Campillo Rodriguez C, Kumar BA, Shi V, Sia SK. Point-of-care diagnostics: recent developments in a pandemic age. LAB ON A CHIP 2021; 21:4517-4548. [PMID: 34778896 PMCID: PMC8860149 DOI: 10.1039/d1lc00627d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we provide an overview of developments in point-of-care (POC) diagnostics during the COVID-19 pandemic. We review these advances within the framework of a holistic POC ecosystem, focusing on points of interest - both technological and non-technological - to POC researchers and test developers. Technologically, we review design choices in assay chemistry, microfluidics, and instrumentation towards nucleic acid and protein detection for severe acute respiratory coronavirus 2 (SARS-CoV-2), and away from the lab bench, developments that supported the unprecedented rapid development, scale up, and deployment of POC devices. We describe common features in the POC technologies that obtained Emergency Use Authorization (EUA) for nucleic acid, antigen, and antibody tests, and how these tests fit into four distinct POC use cases. We conclude with implications for future pandemics, infectious disease monitoring, and digital health.
Collapse
Affiliation(s)
- Harshit Harpaldas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | - Bhoomika Ajay Kumar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Vivian Shi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
128
|
Kabwe KP, Nsibande SA, Lemmer Y, Pilcher LA, Forbes PBC. Synthesis and characterisation of quantum dots coupled to mycolic acids as a water-soluble fluorescent probe for potential lateral flow detection of antibodies and diagnosis of tuberculosis. LUMINESCENCE 2021; 37:278-289. [PMID: 34813145 DOI: 10.1002/bio.4170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022]
Abstract
This work explores the potential use of cadmium-based quantum dots (QDs) coupled to mycolic acids (MAs) as a fluorescent probe to detect anti-MA antibodies which are biomarkers for tuberculosis (TB). The use of free MAs as antigens for the serodiagnosis of TB is known but has not been developed into a point of care test. This study focuses on the synthesis, solubility, and lateral flow of QDs coupled to MAs. Water-soluble CdSe/ZnS QDs capped with l-cysteine were synthesised and covalently coupled to MAs via amide linkages to form a water-soluble fluorescent probe: MA-CdSe/ZnS QDs. The MA-CdSe/ZnS QDs showed broad absorption bands and coupling, confirmed by the presence of amide bonds in the Fourier-transform infrared (FTIR) spectrum, resulting in a blue shift in fluorescence. Powder X-ray diffraction (XRD) revealed a shift and increase in the number of peaks for MA-CdSe/ZnS QDs relative to the L-cys-CdSe/ZnS QDs, suggesting that coupling changed the crystal structure. The average particle size of MA-CdSe/ZnS QDs was ~3.0 nm. Visual paper-based lateral flow of MA-CdSe/ZnS QDs was achieved on strips of nitrocellulose membrane with both water and membrane blocking solution eluents. The highly fluorescent MA-CdSe/ZnS QDs showed good water solubility and lateral flow, which are important properties for fluorescence sensing applications.
Collapse
Affiliation(s)
- Kapambwe P Kabwe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Sifiso A Nsibande
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Lynne A Pilcher
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
129
|
Advanced trap lateral flow immunoassay sensor for the detection of cortisol in human bodily fluids. Sci Rep 2021; 11:22580. [PMID: 34799635 PMCID: PMC8604903 DOI: 10.1038/s41598-021-02084-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Paper-based biosensors based on lateral flow immunoassay (LFI) are promising candidates for POC diagnosis because of their ease of use and rapid target detection. However, the low sensitivity of LFI limits its application, and signal amplification has been used in numerous studies to increase its sensitivity. We developed an advanced trap LFI (α-trapLFI), a simple-to-use sensor, with an additional step for signal amplification. Here, signal amplification is automatically implemented following delayed release of enhancement solution induced by water-soluble polyvinyl alcohol tape. As the polyvinyl alcohol tape is exposed to water, its polymer structure is perturbed (within 5 min), allowing ions to pass through. This new sensor was designed to have a short time delay between the flow of solutions used for the immunoassay and signal amplification. The α-trapLFI was subsequently used to detect cortisol with high sensitivity (9.1 pg∙mL-1) over a broad detection range (0.01-1000 ng∙mL-1) in bodily fluids. Furthermore, an excellent correlation was obtained by analyzing 20 human real saliva samples using this sensor and a conventional ELISA (R2 = 0.90). The new sensor will be helpful in detecting various small molecules for simple, rapid, and portable POC diagnosis of stress disorders.
Collapse
|
130
|
Xiang H, Wen X, Wen Y, Zhang H, Cao S, Huang X, Wu R, Zhao Q. Development and application of a visual microarray for synchronously detecting H5N1, H7N9 and H9N2 avian influenza virus RNA. J Virol Methods 2021; 301:114371. [PMID: 34808230 DOI: 10.1016/j.jviromet.2021.114371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to develop a microarray assay for the simultaneous detection of the H5, H7, H9, N1, N9 and N2 genes of the avian influenza virus (AIV) using a Nanogold-streptavidin and silver-stain-enhanced nucleic acid dot-blot hybridisation system. The conserved sequences of H5 genes from H5N1, H7 genes from H7N9, H9 genes from H9N2, N9 genes from H7N9 and N2 genes from H9N2 AIV were cloned, together with that of N1 obtained commercially, and were used as templates for generating the probes using biotin-labeled primers, which targeted the conserved regions of H5, H7, H9, N1, N9 and N2 genes, respectively. The oligonucleotide probes were diluted using the spotting buffer and ddH2O, and each probe was then spotted to each specific position on the microarray. The PCR products including biotin-labeled lambda, NP, H5, H7, H9, N1, N9 and N2 were mixed, 200 μL of which was then added to the microarray chamber after denaturing. Following a hybridization incubation at 45℃ for 120 min, the microarray was then incubated with nanogold-streptavidin about 4 μg/mL for 30 min. After the supplementary of 200 μL of silver buffer A and silver buffer B in the chamber, the hybridization results were assessed by direct visualization in the dark at room temperature. The microarray assay was optimized and its specificity, sensitivity and stability were evaluated. The optimal conditions comprised a probe concentration of 50 μmol/L, a hybridization temperature of 45℃ and a hybridization time of 2 h. The optimal concentration of nanogold-streptavidin was 4 μg/mL and the optimal staining time was 7 min. The results of specificity evaluation showed that no cross-binding of the probes with each other and no cross-hybridization with Newcastle disease virus, infectious bronchitis virus and infectious laryngotracheitis virus was observed. The optimized microarray assay was significantly more sensitivity than the reverse-transcription PCR assay. The microarray was available after storing at less 90 d at 4 ℃. The optimized microarray assay was validated on clinical specimens and the results showed that it had over 95.6% correlation with reverse-transcription PCR method. Therefore, the microarray assay could be used for the high throughput detection of AIV infections due to H5N1, H7N9 and H9N2.
Collapse
Affiliation(s)
- Hua Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Huanrong Zhang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| |
Collapse
|
131
|
Pollard C, Hudson M, McDonnell JM, Royall PG, Wolff K. Development of a point-of-care test for the detection of MDMA in latent fingerprints using surface plasmon resonance and lateral flow technology. Drug Test Anal 2021; 14:613-621. [PMID: 34766468 DOI: 10.1002/dta.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022]
Abstract
To date, a specific point-of-care test (POCT) for 3,4-methylenedioxymethamphetamine (MDMA, ecstasy, 'E') in latent fingerprints (LFPs) has not been explored. Other POCTs identify MDMA in sweat by detecting the drug as a cross-reactant rather than target analyte, thus decreasing the test's sensitivity. The study's aim was to design a sensitive POCT for the detection of MDMA in LFPs using surface plasmon resonance (SPR) and lateral flow immunoassay (LFA) technology. A high-affinity antibody binding pair was identified using the former technique, deeming the pair suitable for a LFA. Titrations of fluorescently labelled antibody and antigen concentrations were tested to identify a sharp drop-in signal upon the addition of MDMA to allow a clear distinction between negative and positive outcomes. We trialled the LFA by producing dose response curves with MDMA and a group of drugs that share a similar chemical structure to MDMA. These were generated through spiking the LFA with increasing levels of drug (0-400 pg/10 μl of MDMA; 0-10,000 pg/10 μl of cross-reactant). Fluorescent test signals were measured using a cartridge reader. The cut-off (threshold) 60 pg/10 μl calculated better cartridge performance (1.00 sensitivity, 0.95 specificity and 0.98 accuracy), when compared with 40 pg/10 μl. The biggest cross-reactant was PMMA (250%), followed by MDEA (183%), MBDB (167%), MDA (16%) and methamphetamine (16%). A sensitive LFP screening tool requiring no sample preparation was successfully designed.
Collapse
Affiliation(s)
- Caroline Pollard
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, Franklin-Wilkins Building, King's College London, 150 Stamford St, London, United Kingdom, SE1 9NH, UK
| | | | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Paul G Royall
- Institute of Pharmaceutical Science, Franklin-Wilkins Building, King's College London, London, UK
| | - Kim Wolff
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, Franklin-Wilkins Building, King's College London, 150 Stamford St, London, United Kingdom, SE1 9NH, UK
| |
Collapse
|
132
|
Murakami K, Nagatoishi S, Kasahara K, Nagai H, Sasajima Y, Sasaki R, Tsumoto K. Electrostatic-triggered exothermic antibody adsorption to the cellulose nanoparticles. Anal Biochem 2021; 632:114337. [PMID: 34391727 DOI: 10.1016/j.ab.2021.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Antibody-conjugated nanoparticles are used in a fields ranging from medicine to engineering. NanoAct® nanobeads are cellulose nanoparticles used in lateral flow assays that are highly water dispersible. In order to promote the adsorption of antibodies onto NanoAct® particles while maintaining their activity, we analyzed the adsorption onto NanoAct® particles thermodynamically and elucidated the adsorption mechanism. In an immunochromatographic assay, the amount of adsorbed antibody and the color intensity of the test line increased as the pH decreased. The zeta potential of the nanoparticles remained constant at around -30 mV over the pH range from 2 to 10. The model antibody had pI values between 6.2 and 6.8. Isothermal calorimetry analysis showed that adsorption of antibody to the NanoAct® particle is an endothermic reaction under low pH conditions, an exothermic reaction between pH 6 and pH 7, and a weakly exothermic reaction above pH 7. These data indicate that the changes in net charge of the antibody surface as a function of pH influence the pH dependence of antibody adsorption to the negatively charged NanoAct®. This suggests that increased positive charge on the antibody surface will result in a more sensitive NanoAct®-based immunoassay.
Collapse
Affiliation(s)
- Keisuke Murakami
- Biomaterial Business Development Department, Asahi Kasei Corporation, Hibiya Mitsui Tower 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Satoru Nagatoishi
- Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Keisuke Kasahara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hirokazu Nagai
- Biomaterial Business Development Department, Asahi Kasei Corporation, Hibiya Mitsui Tower 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Yoshiyuki Sasajima
- Biomaterial Business Development Department, Asahi Kasei Corporation, Hibiya Mitsui Tower 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Ryo Sasaki
- Biomaterial Business Development Department, Asahi Kasei Corporation, Hibiya Mitsui Tower 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Kouhei Tsumoto
- Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
133
|
Ahmadi A, Mirzaeizadeh Z, Omidfar K. Simultaneous Detection of SARS-CoV-2 IgG/IgM Antibodies, Using Gold Nanoparticles-Based Lateral Flow Immunoassay. Monoclon Antib Immunodiagn Immunother 2021; 40:210-218. [PMID: 34678096 DOI: 10.1089/mab.2021.0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The novel coronavirus disease (COVID-19), known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), exhibits a strong human-to-human transmission infectivity and could cause acute respiratory infections. Therefore, simple and rapid serological testing is urgently needed to recognize positive cases. In this study, a point-of-care serological test based on lateral flow immunoassay (LFIA) was developed and its application for the simultaneous detection of IgM/IgG antibodies against SARS-CoV-2 was evaluated. The recombinant SARS-CoV-2 antigens were conjugated to the produced colloidal gold nanoparticles and used as the detection reagent. This test required only 10-15 minutes to achieve simultaneous qualitative detection of IgM/IgG antibodies specific to SARS-CoV-2 in 20 μL of serum or plasma samples. The clinical performance and reliability of the assay were evaluated by performing the test with 60 samples and comparing the results of these tests with those obtained via real-time polymerase chain reaction. The sensitivity and specificity of our assay were defined to be 90% and 96.6%, respectively. The presented LFIA was sufficiently sensitive and accurate to be used for the rapid diagnosis of coronavirus disease 2019 in laboratories or in patient care settings, particularly in emergency conditions, in which many samples require to be evaluated on time.
Collapse
Affiliation(s)
- Anita Ahmadi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirzaeizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
134
|
Shin K, Kwon SH, Lee SC, Moon YE. Sensitive and Rapid Detection of Citrus Scab Using an RPA-CRISPR/Cas12a System Combined with a Lateral Flow Assay. PLANTS 2021; 10:plants10102132. [PMID: 34685941 PMCID: PMC8539466 DOI: 10.3390/plants10102132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022]
Abstract
Citrus is the most extensively produced fruit tree crop in the world and is grown in over 130 countries. Fungal diseases in citrus can cause significant losses in yield and quality. An accurate diagnosis is critical for determining the best management practices and preventing future losses. In this study, a Recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/associated (Cas) system was established with the integration of a lateral flow assay (LFA) readout system for diagnosis of citrus scab. This detection can be completed within 1 h, is highly sensitive and prevents cross-reactions with other common fungal citrus diseases. Furthermore, the detection system is compatible with crude DNA extracted from infected plant tissue. This RPA-CRISPR/Cas12a-LFA system provides a sensitive, rapid, and cost-effective method with promising and significant practical value for point-of-care diagnosis of citrus scab. To our knowledge, this is the first report to establish an RPA- and CRISPR-based method with LFA for fungal diseases in plants.
Collapse
|
135
|
Phuakrod A, Sripumkhai W, Jeamsaksiri W, Pattamang P, Loymek S, Brindley PJ, Sarasombath PT, Wongkamchai S. A miniPCR-Duplex Lateral Flow Dipstick Platform for Rapid and Visual Diagnosis of Lymphatic Filariae Infection. Diagnostics (Basel) 2021; 11:diagnostics11101855. [PMID: 34679553 PMCID: PMC8534866 DOI: 10.3390/diagnostics11101855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/18/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Lymphatic filariasis (LF) is a neglected major tropical disease that is a leading cause of permanent and long-term disability worldwide. Significant progress made by the Global Programme to Eliminate Lymphatic Filariasis (GPELF) has led to a substantial decrease in the levels of infection. In this limitation, DNA detection of lymphatic filariae could be useful due to it capable of detecting low level of the parasites. In the present study, we developed a diagnostic assay that combines a miniPCR with a duplex lateral flow dipstick (DLFD). The PCR primers were designed based on the HhaI and SspI repetitive noncoding DNA sequences of Brugia malayi and Wuchereria bancrofti, respectively. The limits of detection and crossreactivity of the assay were evaluated. In addition, blood samples were provided by Thais living in a brugian filariasis endemic area. The miniPCR-DLFD assay exhibited a detection limit of 2 and 4 mf per milliliter (mL) of blood for B. malayi as well as W. bancrofti, respectively, and crossamplification was not observed with 11 other parasites. The result obtained from the present study was in accordance with the thick blood smear staining for the known cases. Thus, a miniPCR-DLFD is an alternative tool for the diagnosis of LF in point-of-collection settings with a modest cost (~USD 5) per sample.
Collapse
Affiliation(s)
- Achinya Phuakrod
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Witsaroot Sripumkhai
- Thai Microelectronic Center, National Electronics and Computer Technology Center, Thailand Science Park, Pathum Thani 12110, Thailand; (W.S.); (W.J.); (P.P.)
| | - Wutthinan Jeamsaksiri
- Thai Microelectronic Center, National Electronics and Computer Technology Center, Thailand Science Park, Pathum Thani 12110, Thailand; (W.S.); (W.J.); (P.P.)
| | - Pattaraluck Pattamang
- Thai Microelectronic Center, National Electronics and Computer Technology Center, Thailand Science Park, Pathum Thani 12110, Thailand; (W.S.); (W.J.); (P.P.)
| | - Sumat Loymek
- Office of Disease Prevention and Control, Region 12, Department of Disease Control, The Ministry of Public Health, Songkhla 9000, Thailand;
| | - Paul J. Brindley
- Immunology & Tropical Medicine & Research Center for Neglected Diseases of Poverty, Department of Microbiology, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA;
| | - Patsharaporn T. Sarasombath
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: (P.T.S.); (S.W.); Tel.: +66-2-419-6468 (P.T.S. & S.W.); Fax: +66-2-419-6470 (P.T.S. & S.W.)
| | - Sirichit Wongkamchai
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: (P.T.S.); (S.W.); Tel.: +66-2-419-6468 (P.T.S. & S.W.); Fax: +66-2-419-6470 (P.T.S. & S.W.)
| |
Collapse
|
136
|
Jang M, Kim S, Song J, Kim S. Highly sensitive and rapid detection of porcine circovirus 2 by avidin-biotin complex based lateral flow assay coupled to isothermal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4429-4436. [PMID: 34486596 DOI: 10.1039/d1ay01189h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a new platform for the detection of porcine circovirus 2 was developed by avidin-biotin complex based lateral flow assay (LAMP-LFA). Improved detection sensitivity was attained by using loop mediated isothermal amplification (LAMP) with a low limit of detection (LOD), so the platform can be used to detect even early or asymptomatic stages of infection. LFA, which requires no specialized equipment, facilitates the use of point-of-care (POC) tests. Therefore, by applying LFA, the result can be confirmed accurately with the naked eye. Moreover, this platform has a unique structure using a single-tag detection system. The avidin-biotin interaction is the strongest interaction between proteins and has a higher Kd value than antigen-antibody interactions. Thus, the results are stable and can be clearly confirmed. The high sensitivity of LAMP-LFA enables all steps to be completed in 30 min. As a result, it could be applied to different targets, such as other pathogens. Future POC diagnostic studies are expected to be of great practical benefit.
Collapse
Affiliation(s)
- Minju Jang
- Department of Bionanotechnology, Gachon University, Seongnam, 461-70, Republic of Korea.
| | - SeJin Kim
- R&D Center, Philmedi Ltd, Seongnam, 461-70, Republic of Korea
| | - Junkyu Song
- R&D Center, Philmedi Ltd, Seongnam, 461-70, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam, 461-70, Republic of Korea.
- R&D Center, Philmedi Ltd, Seongnam, 461-70, Republic of Korea
| |
Collapse
|
137
|
Marin M, Nikolic MV, Vidic J. Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr Rev Food Sci Food Saf 2021; 20:5880-5900. [PMID: 34596343 DOI: 10.1111/1541-4337.12839] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Biosensors need to meet the rising food industry demand for sensitive, selective, safe, and fast food safety quality control. Disposable colorimetric sensors based on gold nanoparticles (AuNPs) and localized surface plasmon resonance are low-cost and easy-to-perform devices intended for rapid point-of-need measurements. Recent studies demonstrate various facile and versatile AuNPs-based analytical platforms for the detection of bacteria and their toxins in milk, meat, and other foods. In this review, we introduce the general characteristics and mechanisms of AuNPs calorimetric biosensors, and highlight optimizations needed to strengthen and improve the quality of devices for their application in food matrices.
Collapse
Affiliation(s)
- Marco Marin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| |
Collapse
|
138
|
Srivastav S, Dankov A, Adanalic M, Grzeschik R, Tran V, Pagel-Wieder S, Gessler F, Spreitzer I, Scholz T, Schnierle B, Anastasiou OE, Dittmer U, Schlücker S. Rapid and Sensitive SERS-Based Lateral Flow Test for SARS-CoV2-Specific IgM/IgG Antibodies. Anal Chem 2021; 93:12391-12399. [PMID: 34468139 DOI: 10.1021/acs.analchem.1c02305] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an immune response to COVID-19 infection, patients develop SARS-CoV-2-specific IgM/IgG antibodies. Here, we compare the performance of a conventional lateral flow assay (LFA) with a surface-enhanced Raman scattering (SERS)-based LFA test for the detection of SARS-CoV-2-specific IgM/IgG in sera of COVID-19 patients. Sensitive detection of IgM might enable early serological diagnosis of acute infections. Rapid detection in serum using a custom-built SERS reader is at least an order of magnitude more sensitive than the conventional LFAs with naked-eye detection. For absolute quantification and the determination of the limit of detection (LOD), a set of reference measurements using purified (total) IgM in buffer was performed. In this purified system, the sensitivity of SERS detection is even 7 orders of magnitude higher: the LOD for SERS was ca. 100 fg/mL compared to ca. 1 μg/mL for the naked-eye detection. This outlines the high potential of SERS-based LFAs in point-of-care testing once the interference of serum components with the gold conjugates and the nitrocellulose membrane is minimized.
Collapse
Affiliation(s)
- Supriya Srivastav
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Asen Dankov
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Mujo Adanalic
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Roland Grzeschik
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Vi Tran
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sibylle Pagel-Wieder
- Miprolab-Gesellschaft für mikrobiologische Diagnostik mbH, 37079 Göttingen, Germany
| | - Frank Gessler
- Miprolab-Gesellschaft für mikrobiologische Diagnostik mbH, 37079 Göttingen, Germany
| | - Ingo Spreitzer
- Paul-Ehrlich Institut, Department of Microbiology, 63225 Langen, Germany
| | - Tatjana Scholz
- Paul-Ehrlich Institut, Department of Virology, 63225 Langen, Germany
| | - Barbara Schnierle
- Paul-Ehrlich Institut, Department of Virology, 63225 Langen, Germany
| | - Olympia E Anastasiou
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
139
|
Napione L. Integrated Nanomaterials and Nanotechnologies in Lateral Flow Tests for Personalized Medicine Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2362. [PMID: 34578678 PMCID: PMC8465858 DOI: 10.3390/nano11092362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
The goal of personalized medicine is to target the right treatments to the right patients at the right time. Patients with a variety of cancers and other complex diseases are regularly tested as part of patient care, enabling physicians to personalize patient monitoring and treatment. Among the sought-after diagnostic tools, there is an increasing interest and need for those based on a low-cost, easy, rapid, and accurate method for the detection of specific circulating biomarkers above a detection threshold. Lateral flow tests (LFTs), enhanced by nanotechnology, can fulfil these requirements, providing a significant support to personalized patient monitoring. In this review, after a short historical synopsis of membrane-based lateral flow assays, including a description of a typical configuration of a LFT strip, a careful collection is presented of the best characterized nanotechnology approaches previously reported for the enhancement of target detection performance. The attempt is to offer an overview of currently integrated nanotechnologies in LFTs, fostering the actual future development of advantageous diagnostic devices for patient monitoring.
Collapse
Affiliation(s)
- Lucia Napione
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
140
|
Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. BIOSENSORS-BASEL 2021; 11:bios11090328. [PMID: 34562920 PMCID: PMC8467589 DOI: 10.3390/bios11090328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.
Collapse
|
141
|
Sharma A, Tok AIY, Alagappan P, Liedberg B. Point of care testing of sports biomarkers: Potential applications, recent advances and future outlook. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
142
|
Perju A, Wongkaew N. Integrating high-performing electrochemical transducers in lateral flow assay. Anal Bioanal Chem 2021. [PMID: 33913001 DOI: 10.1007/s00216-021-03301-y/published] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA's performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance. Graphical abstract.
Collapse
Affiliation(s)
- Antonia Perju
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
143
|
Zhang K, Wang J, Liu T, Luo Y, Loh XJ, Chen X. Machine Learning-Reinforced Noninvasive Biosensors for Healthcare. Adv Healthc Mater 2021; 10:e2100734. [PMID: 34165240 DOI: 10.1002/adhm.202100734] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/06/2021] [Indexed: 12/12/2022]
Abstract
The emergence and development of noninvasive biosensors largely facilitate the collection of physiological signals and the processing of health-related data. The utilization of appropriate machine learning algorithms improves the accuracy and efficiency of biosensors. Machine learning-reinforced biosensors are started to use in clinical practice, health monitoring, and food safety, bringing a digital revolution in healthcare. Herein, the recent advances in machine learning-reinforced noninvasive biosensors applied in healthcare are summarized. First, different types of noninvasive biosensors and physiological signals collected are categorized and summarized. Then machine learning algorithms adopted in subsequent data processing are introduced and their practical applications in biosensors are reviewed. Finally, the challenges faced by machine learning-reinforced biosensors are raised, including data privacy and adaptive learning capability, and their prospects in real-time monitoring, out-of-clinic diagnosis, and onsite food safety detection are proposed.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jianwu Wang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Tianyi Liu
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| |
Collapse
|
144
|
Hsiao WWW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. BIOSENSORS 2021; 11:295. [PMID: 34562885 PMCID: PMC8466143 DOI: 10.3390/bios11090295] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Dinh Minh Pham
- GENTIS JSC, 249A, Thuy Khue, Tay Ho, Hanoi 100000, Vietnam;
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hui-Hsin Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; (H.-H.K.); (C.-C.L.)
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.-N.L.); (H.-C.C.); (N.S.); (C.-K.L.)
| |
Collapse
|
145
|
Velasco A, Ramilo-Fernández G, Denis F, Oliveira L, Shum P, Silva H, Sotelo CG. A New Rapid Method for the Authentication of Common Octopus ( Octopus vulgaris) in Seafood Products Using Recombinase Polymerase Amplification (RPA) and Lateral Flow Assay (LFA). Foods 2021; 10:foods10081825. [PMID: 34441601 PMCID: PMC8394702 DOI: 10.3390/foods10081825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The common octopus (Octopus vulgaris) is a highly valued cephalopod species which is marketed with different grades of processing, such as frozen, cooked or even canned, and is likely to be mislabeled. Some molecular methods have been developed for the authentication of these products, but they are either labor-intensive and/or require specialized equipment and personnel. This work describes a newly designed rapid, sensitive and easy-to-use method for the detection of Octopus vulgaris in food products, based on Recombinase Polymerase Amplification (RPA) and a detection using a Lateral Flow assay (LFA). After studying several gene markers, a system of primers and nfo-probe was designed in the COI (Cytochrome Oxidase I) region and was successfully tested in 32 reference samples (covering 14 species) and 32 commercial products, after optimization. The method was also validated in a ring trial with eight European laboratories and represents a useful tool for food authenticity control at all levels of the value chain.
Collapse
Affiliation(s)
- Amaya Velasco
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Pontevedra, Spain; (G.R.-F.); (C.G.S.)
- Correspondence: ; Tel.: +34-986231930
| | - Graciela Ramilo-Fernández
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Pontevedra, Spain; (G.R.-F.); (C.G.S.)
| | - Françoise Denis
- BOREA MNHN, CNRS 8067, SU, IRD 207, UCN, UA-BIOSSE Le Mans Université, 72000 Le Mans, France;
| | - Luís Oliveira
- Instituto Português do Mar e da Atmosfera (IPMA, I.P.), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (L.O.); (H.S.)
| | - Peter Shum
- School of Biological and Environmental Sciences, Liverpool John Moores University (LJMU), Liverpool L2 2QP, UK;
| | - Helena Silva
- Instituto Português do Mar e da Atmosfera (IPMA, I.P.), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (L.O.); (H.S.)
| | - Carmen G. Sotelo
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Pontevedra, Spain; (G.R.-F.); (C.G.S.)
| |
Collapse
|
146
|
A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nat Commun 2021; 12:4586. [PMID: 34321486 PMCID: PMC8319308 DOI: 10.1038/s41467-021-24874-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Heterogeneous immunoassays such as ELISA have become indispensable in modern bioanalysis, yet translation into point-of-care assays is hindered by their dependence on external calibration and multiple washing and incubation steps. Here, we introduce RAPPID (Ratiometric Plug-and-Play Immunodiagnostics), a mix-and-measure homogeneous immunoassay platform that combines highly specific antibody-based detection with a ratiometric bioluminescent readout. The concept entails analyte-induced complementation of split NanoLuc luciferase fragments, photoconjugated to an antibody sandwich pair via protein G adapters. Introduction of a calibrator luciferase provides a robust ratiometric signal that allows direct in-sample calibration and quantitative measurements in complex media such as blood plasma. We developed RAPPID sensors that allow low-picomolar detection of several protein biomarkers, anti-drug antibodies, therapeutic antibodies, and both SARS-CoV-2 spike protein and anti-SARS-CoV-2 antibodies. With its easy-to-implement standardized workflow, RAPPID provides an attractive, fast, and low-cost alternative to traditional immunoassays, in an academic setting, in clinical laboratories, and for point-of-care applications. Many current immunoassays require multiple washing, incubation and optimization steps. Here the authors present Ratiometric Plug-and-Play Immunodiagnostics (RAPPID), a generic assay platform that uses ratiometric bioluminescent detection to allow sandwich immunoassays to be performed directly in solution.
Collapse
|
147
|
Ibrahim EH, Ghramh HA, Kilany M. Development of rapid and cost-effective top-loading device for the detection of anti-SARS-CoV-2 IgG/IgM antibodies. Sci Rep 2021; 11:14926. [PMID: 34290350 PMCID: PMC8295295 DOI: 10.1038/s41598-021-94444-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Infection with SARS-CoV-2, the Betacoronavirus, caused a pandemic that affected the globe negatively. The gold method, RT-PCR, can detect SARS-CoV-2 but it is time-consuming and needs sophisticated equipment and professional personnel. On the other hand, rapid tests offer fast results and can detect anti-SARS-CoV-2 antibodies (Abs). The aim of this study is to develop a new rapid and cost-effective method for the detection of anti-SARS-CoV-2 IgG/IgM Abs. A new top-loading detection device was developed and composed of a small piece of plastic (25 × 25 × 0.5 mm) with an opening in the center, a piece of nitrocellulose (NC) membrane enough to block the opening from one side and adhesive tape to affix the NC to the plastic piece. The NC is blotted with anti-human IgG/IgM and rabbit serum. The device was evaluated against a commercially available IgG/IgM ELISA detection kit using normal, Covid-19-positive, HCV, HBV, and Cytomegalovirus-positive sera. Outcomes demonstrated simplicity, reproducibility, and accuracy of the new device and results can be obtained in less than 5 min. We anticipate our developed assay method to be used widely in point of care before deciding on the use of expensive nucleic acid assays.
Collapse
Affiliation(s)
- Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt.
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mona Kilany
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Microbiology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| |
Collapse
|
148
|
Yang SZ, Liu QA, Liu YL, Weng GJ, Zhu J, Li JJ. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim Acta 2021; 188:258. [PMID: 34268648 DOI: 10.1007/s00604-021-04885-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Pathogenic bacteria have become a huge threat to social health and economy for their frighteningly infectious and lethal capacity. It is quite important to make a diagnosis in advance to prevent infection or allow a rapid treatment after infection. Noble metal nanoparticles, due to their unique physicochemical properties, especially optical properties, have drawn a great attention during the past decades and have been widely applied into all kinds of fields related to human health. By utilizing these noble metal nanoparticles, optical diagnosis platforms towards pathogenic bacteria have emerged continually, providing highly sensitive, selective, and particularly facile detection tools for clinic or point-of-care diagnosis. This review summarizes the recent development in this field. It begins with a brief introduction of pathogenic bacteria and noble metal nanoparticles. And then, optical detection methods are systematically discussed in three distinct aspects. In addition to these proof-of-concept methods, corresponding algorithms and point-of-care detection devices are also described. Finally, the review ends up with subjective views on present limitations and some appropriate advice for future research directions.
Collapse
Affiliation(s)
- Shou-Zhi Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qi-Ao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yan-Ling Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.,Research Institute of Xi'an Jiaotong University, Floor 5, Block A, Jiangning Mansion, No. 328, Wenming Road, Xiaoshan District, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China. .,Research Institute of Xi'an Jiaotong University, Floor 5, Block A, Jiangning Mansion, No. 328, Wenming Road, Xiaoshan District, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
149
|
Pham ATT, Wallace A, Zhang X, Tohl D, Fu H, Chuah C, Reynolds KJ, Ramsey C, Tang Y. Optical-Based Biosensors and Their Portable Healthcare Devices for Detecting and Monitoring Biomarkers in Body Fluids. Diagnostics (Basel) 2021; 11:diagnostics11071285. [PMID: 34359368 PMCID: PMC8307945 DOI: 10.3390/diagnostics11071285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The detection and monitoring of biomarkers in body fluids has been used to improve human healthcare activities for decades. In recent years, researchers have focused their attention on applying the point-of-care (POC) strategies into biomarker detection. The evolution of mobile technologies has allowed researchers to develop numerous portable medical devices that aim to deliver comparable results to clinical measurements. Among these, optical-based detection methods have been considered as one of the common and efficient ways to detect and monitor the presence of biomarkers in bodily fluids, and emerging aggregation-induced emission luminogens (AIEgens) with their distinct features are merging with portable medical devices. In this review, the detection methodologies that use optical measurements in the POC systems for the detection and monitoring of biomarkers in bodily fluids are compared, including colorimetry, fluorescence and chemiluminescence measurements. The current portable technologies, with or without the use of smartphones in device development, that are combined with optical biosensors for the detection and monitoring of biomarkers in body fluids, are also investigated. The review also discusses novel AIEgens used in the portable systems for the detection and monitoring of biomarkers in body fluid. Finally, the potential of future developments and the use of optical detection-based portable devices in healthcare activities are explored.
Collapse
Affiliation(s)
- Anh Tran Tam Pham
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Angus Wallace
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Xinyi Zhang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Damian Tohl
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Hao Fu
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Clarence Chuah
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Karen J. Reynolds
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Carolyn Ramsey
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
| | - Youhong Tang
- Australia-China Science and Research Fund Joint Research Centre for Personal Health Technologies, Flinders University, Tonsley, SA 5042, Australia; (A.T.T.P.); (A.W.); (X.Z.); (D.T.); (H.F.); (K.J.R.); (C.R.)
- Medical Device Research Institute, Flinders University, Tonsley, SA 5042, Australia;
- Correspondence: ; Tel.: +61-8-8201-2138
| |
Collapse
|
150
|
Yang SH, Zhang HY, Huang CC, Tsai YY, Liao SM. Red Zn 2SiO 4:Eu 3+ and Mg 2TiO 4:Mn 4+ nanophosphors for on-site rapid optical detections: Synthesis and characterization. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:588. [PMID: 34276141 PMCID: PMC8271324 DOI: 10.1007/s00339-021-04733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED This study reports the synthesis and characterization of the red nanophosphors Zn2SiO4:Eu3+ (ZSO:Eu3+) and Mg2TiO4:Mn4+ (MTO:Mn4+). The use of phosphors as a fluorescence label for lateral flow immunochromatographic assay (LFIA) has also been described. The optimal photoluminescence (PL) for ZSO:Eu3+ was obtained when it was synthesized with 7 mol% of Eu3+ and annealed at 1100 °C for 1 h. Long fluorescence lifetime (1.01 ms), high activation energy E a (0.28 eV), and low PL degeneration (10% at 110 °C) are the characteristics of ZSO:Eu3+. MTO:Mn4+ also exhibited high PL intensity along with a high E a of 0.32 eV. The emission wavelengths of phosphors are biocompatible with the optical bio-window of tissues. When human immunoglobulin G (human IgG) at a constant concentration of 100 μg/mL was used for detection, the PL ratios of the test line to the control line were 2.15 and 2.28 for the ZSO:Eu3+- and MTO:Mn4+-labeled LFIA, respectively. Thus, the ZSO:Eu3+ and MTO:Mn4+ nanophosphors are capable of human IgG recognition and are the promising candidates as fluorescent labels for on-site rapid optical biodetection. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00339-021-04733-0.
Collapse
Affiliation(s)
- Su-Hua Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| | - Hao-Yu Zhang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan, 701 Taiwan, ROC
| | - Yi-Yan Tsai
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| | - Shun-Ming Liao
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| |
Collapse
|