101
|
Lv J, Dai CB, Wang WF, Sun YH. Genome-wide identification of the ARRs gene family in tobacco (Nicotiana tabacum). Genes Genomics 2021; 43:601-612. [PMID: 33772744 DOI: 10.1007/s13258-021-01039-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The growth of axillary buds determines the shoot branching and morphology of plants, and its initiation and development are regulated by a series of hormonal signals, such as cytokinin. Arabidopsis response regulators (ARRs) can regulate the growth and development, disease resistance and stress resistance of plants by participating in cytokinin signaling. OBJECTIVE To explore the distribution and expression pattern of ARR members in tobacco. METHODS The identification, isoelectric points, molecular weights, protein subcellular localization prediction, multiple sequence alignment, phylogenetic analysis, protein motifs and structures, chromosome distributions of deduced ARR proteins were conducted. The gene expression profiling of various tissues in response to topping, low temperature and drought were analyzed by RNA-seq and qRT-PCR. RESULTS 59 ARR genes from cultivated tobacco (Nicotiana tabacum) were identified, namely NtARRs, including 21 type A NtARRs and 38 type B NtARRs. The 59 NtARRs were expressed mainly in all organs except the fruits. Some representative NtARRs may participate in axillary bud initiation and development, as well as in stress resistance through cytokinin signal transduction. CONCLUSION Understanding the roles of NtARRs in the molecular mechanisms responsible for axillary bud growth and stress tolerance could aid in targeted breeding in crops.
Collapse
Affiliation(s)
- Jing Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chang-Bo Dai
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Wei-Feng Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yu-He Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao City, Shandong Province, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
102
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
103
|
Chuong NN, Hoang XLT, Nghia DHT, Nguyen NC, Thao DTT, Tran TB, Ngoc TTM, Thu NBA, Nguyen QT, Thao NP. Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress. PLANT CELL REPORTS 2021; 40:819-834. [PMID: 33725150 DOI: 10.1007/s00299-021-02677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Duong Hoang Trong Nghia
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Dau Thi Thanh Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tram Bao Tran
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tran Thi My Ngoc
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Quang Thien Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
| |
Collapse
|
104
|
Ren Z, Wang X, Tao Q, Guo Q, Zhou Y, Yi F, Huang G, Li Y, Zhang M, Li Z, Duan L. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment. BMC PLANT BIOLOGY 2021; 21:202. [PMID: 33906598 PMCID: PMC8077928 DOI: 10.1186/s12870-021-02962-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/07/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.
Collapse
Affiliation(s)
- Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qun Tao
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Guanmin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yanxia Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping, Beijing, 102206, China.
| |
Collapse
|
105
|
Bhaskar A, Paul LK, Sharma E, Jha S, Jain M, Khurana JP. OsRR6, a type-A response regulator in rice, mediates cytokinin, light and stress responses when over-expressed in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:98-112. [PMID: 33581623 DOI: 10.1016/j.plaphy.2021.01.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved a complex network of components that sense and respond to diverse signals. In the present study, we have characterized OsRR6, a type-A response regulator, which is part of the two-component sensor-regulator machinery in rice. The expression of OsRR6 is induced by exogenous cytokinin and various abiotic stress treatments, including drought, cold and salinity stress. Organ-specific expression analysis revealed that its expression is high in anther and low in shoot apical meristem. The Arabidopsis plants constitutively expressing OsRR6 (OsRR6OX) exhibited reduced cytokinin sensitivity, adventitious root formation and enhanced anthocyanin accumulation in seeds. OsRR6OX plants were more tolerant to drought and salinity conditions when compared to wild-type. The hypocotyl growth in OsRR6OX seedlings was significantly inhibited under red, far-red and blue-light conditions and also a decline in transcript levels of OsRR6 was observed in rice under the above monochromatic as well as white light treatments. Transcriptome profiling revealed that the genes associated with defense responses and anthocyanin metabolism are up-regulated in OsRR6OX seedlings. Comparative transcriptome analysis showed that the genes associated with phenylpropanoid and triterpenoid biosynthesis are enriched among differentially expressed genes in OsRR6OX seedlings of Arabidopsis, which is in conformity with reanalysis of the transcriptome data performed in rice transgenics for OsRR6. Further, genes like DREB1A/CBF3, COR15A, KIN1, ERD10 and RD29A are significantly upregulated in OsRR6OX seedlings when subjected to ABA and abiotic stress treatments. Thus, a negative regulator of cytokinin signaling, OsRR6, plays a positive role in imparting abiotic stress tolerance.
Collapse
Affiliation(s)
- Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Laju K Paul
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sampoornananda Jha
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Mukesh Jain
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
106
|
An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.plgene.2020.100264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
107
|
Li SM, Zheng HX, Zhang XS, Sui N. Cytokinins as central regulators during plant growth and stress response. PLANT CELL REPORTS 2021; 40:271-282. [PMID: 33025178 DOI: 10.1007/s00299-020-02612-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Cytokinins are a class of phytohormone that participate in the regulation of the plant growth, development, and stress response. In this review, the potential regulating mechanism during plant growth and stress response are discussed. Cytokinins are a class of phytohormone that participate in the regulation of plant growth, physiological activities, and yield. Cytokinins also play a key role in response to abiotic stresses, such as drought, salt and high or low temperature. Through the signal transduction pathway, cytokinins interact with various transcription factors via a series of phosphorylation cascades to regulate cytokinin-target gene expression. In this review, we systematically summarize the biosynthesis and metabolism of cytokinins, cytokinin signaling, and associated gene regulation, and highlight the function of cytokinins during plant development and resistance to abiotic stress. We also focus on the importance of crosstalk between cytokinins and other classes of phytohormones, including auxin, ethylene, strigolactone, and gibberellin. Our aim is to provide a comprehensive overview of recent findings on the mechanisms by which cytokinins act as central regulators of plant development and stress reactions, and highlight topics for future research.
Collapse
Affiliation(s)
- Si-Min Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
108
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
109
|
Rajavel A, Klees S, Schlüter JS, Bertram H, Lu K, Schmitt AO, Gültas M. Unravelling the Complex Interplay of Transcription Factors Orchestrating Seed Oil Content in Brassica napus L. Int J Mol Sci 2021; 22:1033. [PMID: 33494188 PMCID: PMC7864344 DOI: 10.3390/ijms22031033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) and their complex interplay are essential for directing specific genetic programs, such as responses to environmental stresses, tissue development, or cell differentiation by regulating gene expression. Knowledge regarding TF-TF cooperations could be promising in gaining insight into the developmental switches between the cultivars of Brassica napus L., namely Zhongshuang11 (ZS11), a double-low accession with high-oil- content, and Zhongyou821 (ZY821), a double-high accession with low-oil-content. In this regard, we analysed a time series RNA-seq data set of seed tissue from both of the cultivars by mainly focusing on the monotonically expressed genes (MEGs). The consideration of the MEGs enables the capturing of multi-stage progression processes that are orchestrated by the cooperative TFs and, thus, facilitates the understanding of the molecular mechanisms determining seed oil content. Our findings show that TF families, such as NAC, MYB, DOF, GATA, and HD-ZIP are highly involved in the seed developmental process. Particularly, their preferential partner choices as well as changes in their gene expression profiles seem to be strongly associated with the differentiation of the oil content between the two cultivars. These findings are essential in enhancing our understanding of the genetic programs in both cultivars and developing novel hypotheses for further experimental studies.
Collapse
Affiliation(s)
- Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (S.K.); (J.-S.S.); (H.B.); (A.O.S.)
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (S.K.); (J.-S.S.); (H.B.); (A.O.S.)
| | - Johanna-Sophie Schlüter
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (S.K.); (J.-S.S.); (H.B.); (A.O.S.)
| | - Hendrik Bertram
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (S.K.); (J.-S.S.); (H.B.); (A.O.S.)
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology, Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (S.K.); (J.-S.S.); (H.B.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (S.K.); (J.-S.S.); (H.B.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| |
Collapse
|
110
|
Saeedpour A, Jahanbakhsh Godehkahriz S, Lohrasebi T, Esfahani K, Hatef Salmanian A, Razavi K. The Effect of Endogenous Hormones, Total Antioxidant and Total Phenol Changes on Regeneration of Barley Cultivars. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2838. [PMID: 34179198 PMCID: PMC8217535 DOI: 10.30498/ijb.2021.2838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Barley (Hordeum vulgar L.) is a valuable platform for producing recombinant proteins. Before using different barley cultivars as an efficient platform for molecular farming, optimization of cultural conditions and studying the effective factors on the tissue culture are critical. Objectives In this study, we evaluated callus induction, plant regeneration and changes in the levels of total antioxidant, total phenol and endogenous hormones of three Iranian barley cultivars (Reyhan, Yousef and Bahman) and Golden Promise cultivar. Materials and Methods We used immature embryos as explants on MS-based medium containing 3 mg.L-1 2,4-D for callus induction. Calluses were transferred to regeneration media with 2 mg.L-1 BAP. The levels of endogenous hormones were measured using High-Performance Liquid Chromatography system and total antioxidant and total phenols were determined using a spectrophotometer. Results We demonstrated that callus formation was very high in all cultivars (about 91%) and all immature embryo explants had the potential to produce embryogenic calluses. The present study also showed that the regeneration rates among the studied cultivars were very different and the Iranian cultivars showed lower regeneration percentages (about 1.4%) compared to Golden Promise cultivar (about 72.5%). The levels of endogenous hormones in Iranian cultivars and Golden Promise varied distinctly and significant differences in terms of total antioxidants and total phenols were found in the two groups. Conclusions Accumulated evidence suggests that for successful regeneration of recalcitrant cultivars, external treatments should be done in a way to reduce the inhibitory effects of internal factors.
Collapse
Affiliation(s)
- Ali Saeedpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godehkahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Tahmineh Lohrasebi
- Department of Plant Bioproducts, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kasra Esfahani
- Department of Plant Bioproducts, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Plant Bioproducts, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Khadijeh Razavi
- Department of Plant Bioproducts, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
111
|
Li P, Liu J. Protein Phosphorylation in Plant Cell Signaling. Methods Mol Biol 2021; 2358:45-71. [PMID: 34270045 DOI: 10.1007/978-1-0716-1625-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their sessile nature, plants have evolved sophisticated sensory mechanisms to respond quickly and precisely to the changing environment. The extracellular stimuli are perceived and integrated by diverse receptors, such as receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs), and then transmitted to the nucleus by complex cellular signaling networks, which play vital roles in biological processes including plant growth, development, reproduction, and stress responses. The posttranslational modifications (PTMs) are important regulators for the diversification of protein functions in plant cell signaling. Protein phosphorylation is an important and well-characterized form of the PTMs, which influences the functions of many receptors and key components in cellular signaling. Protein phosphorylation in plants predominantly occurs on serine (Ser) and threonine (Thr) residues, which is dynamically and reversibly catalyzed by protein kinases and protein phosphatases, respectively. In this review, we focus on the function of protein phosphorylation in plant cell signaling, especially plant hormone signaling, and highlight the roles of protein phosphorylation in plant abiotic stress responses.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
112
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
113
|
Sertse D, You FM, Ravichandran S, Soto-Cerda BJ, Duguid S, Cloutier S. Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:191-212. [PMID: 33047220 DOI: 10.1007/s00122-020-03691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 05/19/2023]
Abstract
QTNs associated with drought tolerance traits and indices were identified in a flax mini-core collection through multiple GWAS models and phenotyping at multiple locations under irrigated and non-irrigated field conditions. Drought is a critical phenomenon challenging today's agricultural sector. Crop varieties adapted to moisture deficit are becoming vital. Flax can be greatly affected by limiting moisture conditions, especially during the early development and reproductive stages. Here, a mini-core collection comprising genotypes from more than 20 major growing countries was evaluated for 11 drought-related traits in irrigated and non-irrigated fields for 3 years. Heritability of the traits ranged from 44.7 to 86%. Six of the 11 traits showed significant phenotypic difference between irrigated and non-irrigated conditions. A genome-wide association study (GWAS) was performed for these six traits and their corresponding stress indices based on 106 genotypes and 12,316 single nucleotide polymorphisms (SNPs) using six multi-locus and one single-locus models. The SNPs were then assigned to 8050 linkage disequilibrium (LD) blocks to which a restricted two-stage multi-locus multi-allele GWAS was applied. A total of 144 quantitative trait nucleotides (QTNs) and 13 LD blocks were associated with at least one trait or stress index. Of these, 16 explained more than 15% of the genetic variance. Most large-effect QTN loci harbored gene(s) previously predicted to play role(s) in the associated traits. Genes mediating responses to abiotic stresses resided at loci associated with stress indices. Flax genes Lus10009480 and Lus10030150 that are predicted to encode WAX INDUCER1 and STRESS-ASSOCIATED PROTEIN (SAP), respectively, are among the important candidates detected. Accessions with multiple favorable alleles outperformed others for grain yield, thousand seed weight and fiber/biomass in non-irrigated conditions, suggesting their potential usefulness in breeding and genomic selection.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Centre (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Scott Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, Canada
| | - Sylvie Cloutier
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada.
| |
Collapse
|
114
|
Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1195-1214. [PMID: 32920943 DOI: 10.1111/tpj.14988] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Collapse
Affiliation(s)
- Susan M Moenga
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Yunpeng Gai
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Laura M Perilla-Henao
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Douglas R Cook
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
115
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
116
|
Wu J, Yan M, Zhang D, Zhou D, Yamaguchi N, Ito T. Histone Demethylases Coordinate the Antagonistic Interaction Between Abscisic Acid and Brassinosteroid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:596835. [PMID: 33324437 PMCID: PMC7724051 DOI: 10.3389/fpls.2020.596835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/03/2020] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) interacts antagonistically with brassinosteroids (BRs) to control plant growth and development in response to stress. The response to environmental cues includes hormonal control via epigenetic regulation of gene expression. However, the details of the ABA-BR crosstalk remain largely unknown. Here, we show that JUMONJI-C domain containing histone demethylases (JMJs) coordinate the antagonistic interaction between ABA and BR signaling pathways during the post-germination stage in Arabidopsis. BR blocks ABA-mediated seedling arrest through repression of JMJ30. JMJs remove the repressive histone marks from the BRASSINAZOLE RESISTANT1 (BZR1) locus for its activation to balance ABA and BR signaling pathways. JMJs and BZR1 co-regulate genes encoding three membrane proteins, a regulator of vacuole morphology, and two lipid-transfer proteins, each of which play a different role in transport. BZR1 also regulates stimuli-related target genes in a JMJ-independent pathway. Our findings suggest that the histone demethylases integrate ABA and BR signals, leading to changes in growth program after germination.
Collapse
Affiliation(s)
- Jinfeng Wu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dawei Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dinggang Zhou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
117
|
Frank M, Cortleven A, Novák O, Schmülling T. Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress. PLANT, CELL & ENVIRONMENT 2020; 43:2637-2649. [PMID: 32716064 DOI: 10.1111/pce.13860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Recently, a novel type of abiotic stress caused by a prolongation of the light period-coined photoperiod stress-has been described in Arabidopsis. During the night after the prolongation of the light period, stress and cell death marker genes are induced. The next day, strongly stressed plants display a reduced photosynthetic efficiency and leaf cells eventually enter programmed cell death. The phytohormone cytokinin (CK) acts as a negative regulator of this photoperiod stress syndrome. In this study, we show that Arabidopsis wild-type plants increase the CK concentration in response to photoperiod stress. Analysis of cytokinin synthesis and transport mutants revealed that root-derived trans-zeatin (tZ)-type CKs protect against photoperiod stress. The CK signalling proteins ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 2 (AHP2), AHP3 and AHP5 and transcription factors ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), ARR10 and ARR12 are required for the protective activity of CK. Analysis of higher order B-type arr mutants suggested that a complex regulatory circuit exists in which the loss of ARR10 or ARR12 can rescue the arr2 phenotype. Together the results revealed the role of root-derived CK acting in the shoot through the two-component signalling system to protect from the negative consequences of strong photoperiod stress.
Collapse
Affiliation(s)
- Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
118
|
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How Plant Hormones Mediate Salt Stress Responses. TRENDS IN PLANT SCIENCE 2020; 25:1117-1130. [PMID: 32675014 DOI: 10.1016/j.tplants.2020.06.008] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 05/20/2023]
Abstract
Salt stress is one of the major environmental stresses limiting plant growth and productivity. To adapt to salt stress, plants have developed various strategies to integrate exogenous salinity stress signals with endogenous developmental cues to optimize the balance of growth and stress responses. Accumulating evidence indicates that phytohormones, besides controlling plant growth and development under normal conditions, also mediate various environmental stresses, including salt stress, and thus regulate plant growth adaptation. In this review, we mainly discuss and summarize how plant hormones mediate salinity signals to regulate plant growth adaptation. We also highlight how, in response to salt stress, plants build a defense system by orchestrating the synthesis, signaling, and metabolism of various hormones via multiple crosstalks.
Collapse
Affiliation(s)
- Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiangbo Duan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Lu Luo
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
119
|
Exogenous Abscisic Acid Can Influence Photosynthetic Processes in Peas through a Decrease in Activity of H +-ATP-ase in the Plasma Membrane. BIOLOGY 2020; 9:biology9100324. [PMID: 33020382 PMCID: PMC7650568 DOI: 10.3390/biology9100324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Numerous stressors (drought, low and high temperatures, mechanical damages, etc.) act on plants under environmental conditions, suppressing their physiological processes (in particular, photosynthesis). Abscisic acid (ABA) is an important hormone, which participates in increasing plant tolerance to the action of stressors; as a result, treatment by exogenous ABA is a perspective way of regulating the tolerance in agriculture. We investigated the influence of ABA spraying on photosynthetic processes, as well as on their heat tolerance and their regulation by electrical signals propagating after local burning and modifying photosynthesis. It was shown that ABA spraying decreased photosynthetic activity and increased photosynthetic heat tolerance; additionally, the ABA treatment weakened the influence of electrical signals on photosynthesis. We revealed that these responses could be caused by a decrease in activity of H+-ATP-ase, which is an important ion transporter in plant cell plasma membrane that supports efflux of H+ from cytoplasm. As a whole, our results show the potential influence of the ABA treatment on photosynthetic processes, which is related to a decrease in activity of H+-ATP-ase. The result can be potentially useful for development of new methods of management of plant tolerance in agriculture. Abstract Abscisic acid (ABA) is an important hormone in plants that participates in their acclimation to the action of stressors. Treatment by exogenous ABA and its synthetic analogs are a potential way of controlling the tolerance of agricultural plants; however, the mechanisms of influence of the ABA treatment on photosynthetic processes require further investigations. The aim of our work was to investigate the participation of inactivation of the plasma membrane H+-ATP-ase on the influence of ABA treatment on photosynthetic processes and their regulation by electrical signals in peas. The ABA treatment of seedlings was performed by spraying them with aqueous solutions (10−5 M). The combination of a Dual-PAM-100 PAM fluorometer and GFS-3000 infrared gas analyzer was used for photosynthetic measurements; the patch clamp system on the basis of a SliceScope Pro 2000 microscope was used for measurements of electrical activity. It was shown that the ABA treatment stimulated the cyclic electron flow around photosystem I and decreased the photosynthetic CO2 assimilation, the amplitude of burning-induced electrical signals (variation potentials), and the magnitude of photosynthetic responses relating to these signals; in contrast, treatment with exogenous ABA increased the heat tolerance of photosynthesis. An investigation of the influence of ABA treatment on the metabolic component of the resting potential showed that this treatment decreased the activity of the H+-ATP-ase in the plasma membrane. Inhibitor analysis using sodium orthovanadate demonstrated that this decrease may be a mechanism of the ABA treatment-induced changes in photosynthetic processes, their heat tolerance, and regulation by electrical signals.
Collapse
|
120
|
Guo Z, Xu H, Lei Q, Du J, Li C, Wang C, Yang Y, Yang Y, Sun X. The Arabidopsis transcription factor LBD15 mediates ABA signaling and tolerance of water-deficit stress by regulating ABI4 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:510-521. [PMID: 32744432 DOI: 10.1111/tpj.14942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
To survive, sessile plants must adapt to grow and develop when facing water-deficit stress. However, the molecular mechanisms underlying fine-tuning of the antagonistic action between stress response and growth remain to be determined. Here, plants overexpressing Lateral Organ Boundaries Domain 15 (LBD15) showed abscisic acid (ABA) hypersensitivity and tolerance of water-deficit stress, whereas the loss-of-function mutant lbd15 presented decreased sensitivity to ABA and increased sensitivity to water-deficit stress. Further analysis revealed that LBD15 directly binds to the promoter of the ABA signaling pathway gene ABSCISIC ACID INSENSITIVE4 (ABI4) to activate its expression, thereby forming an LBD15-ABI4 cascade to optimally regulate ABA signaling-mediated plant growth and tolerance of water-deficit stress. In addition, drought stress-induced ABA signaling promoted LBD15 expression, which directly activates expression of ABI4 to close stomata. As a result, water loss is reduced, and then water-deficit stress tolerance is increased. The results of this study reveal a molecular mechanism by which LBD15 coordinates and balances plant growth and resistance to water-deficit stress.
Collapse
Affiliation(s)
- Zhaolai Guo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650224, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650224, China
| | - Qidong Lei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650224, China
| | - Jiancan Du
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cheng Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongde Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
121
|
Lucini L, Miras-Moreno B, Busconi M, Marocco A, Gatti M, Poni S. Molecular basis of rootstock-related tolerance to water deficit in Vitis vinifera L. cv. Sangiovese: A physiological and metabolomic combined approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110600. [PMID: 32900438 DOI: 10.1016/j.plantsci.2020.110600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The rootstock M4 (V. vinifera × V. berlandieri) × V. berlandieri cv. Resseguier n.1) is a recent selection reported to confer improved drought tolerance to grafted V. vinifera scions, a very desired feature in the era of global warming. Therefore, a short-term study was performed on a batch of 12 potted cv. Sangiovese vines grafted either on M4 or on the drought susceptible SO4 rootstock. Ecophysiological assessments as whole canopy net CO2 exchange rate (NCER), transpiration (Tc), and pre-dawn leaf water potential (Ψpd) and UHPLC-ESI/QTOF-MS metabolomics were then used to investigate the different vine responses during water limiting conditions. Water stress was induced by applying 50 % of estimated daily water use from days of year 184-208. M4 was able to deliver similar CO2, at a significantly reduced water use, compared to SO4 grafting. In turn, this resulted in enhanced canopy water use efficiency (NCER/Tc ratio) quantified as +15.1 % during water stress and +21.7 % at re-watering. Untargeted metabolomics showed a similar modulation of brassinosteroids and ABA between the two rootstocks, whereas the up accumulation of cytokinins and gibberellins under drought was peculiar of M4 grafted vines. The increase in gibberellins, together with a concurrent down accumulation of chlorophyll precursors and catabolites and an up accumulation of folates in M4 rootstock suggests that the capacity of limiting reactive-oxygen-species and redox imbalance under drought stress was improved. Finally, distinctive osmolyte accumulation patterns could be observed, with SO4 investing more on proline and glycine-betaine content and M4 primarily showing polyols accumulation.
Collapse
Affiliation(s)
- Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Begona Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Gatti
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
122
|
A Synthetic Cytokinin Improves Photosynthesis in Rice under Drought Stress by Modulating the Abundance of Proteins Related to Stomatal Conductance, Chlorophyll Contents, and Rubisco Activity. PLANTS 2020; 9:plants9091106. [PMID: 32867335 PMCID: PMC7569833 DOI: 10.3390/plants9091106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Drought susceptible rice cultivar PTT1 (Pathumthani1) was treated with drought (-72 kPa) and CPPU (N-2-(chloro-4-pyridyl)-N-phenyl urea) @ 5 mg/L at tillering and grain-filling stages. Plants were tested for the effect of synthetic cytokinin on the parameters influencing the process of photosynthesis. Exogenous spray of CPPU improved the stomatal conductance of rice leaves, which was severely reduced by drought. The abundance intensities of proteins, associated with the stomatal conductance (ZEP, NCED4, PYL9, PYL10, ABI5, SnRK4, Phot1, and Phot2), were also in agreement with the positive impact of CPPU on the stomatal conductance under drought stress. Among the photosynthetic pigments, Chl b contents were significantly reduced by drought stress, whereas CPPU treated plants retained the normal contents of Chl b under drought stress. Subsequently, we examined the abundance intensities of chlorophyll synthase and HCR proteins, implicated in the biosynthesis of chlorophyll pigments and the conversion of Chl b to Chl a, respectively. The results indicated a drought-mediated suppression of chlorophyll synthase. However, CPPU treated plants retained normal levels of chlorophyll synthase under drought stress. In addition, drought stress induced HCR proteins, which might be the cause for reduced Chl b contents in drought stressed plants. Further, CPPU treatment helped the plants sustain photosynthesis at a normal rate under drought stress, which was comparable with well-watered plants. The results were further confirmed by examining the abundance intensities of two key proteins, RAF1 and Rubisco activase, implicated in the assembly and activation of Rubisco, respectively. CPPU treatment reversed the drought mediated suppression of these proteins at both of the growth stages of rice under drought stress. Based on the results, it can be suggested that synthetic cytokinins help the plants sustain photosynthesis at a normal rate under drought stress by positively influencing the determinants of photosynthesis at a molecular level.
Collapse
|
123
|
Zhang B, Shao L, Wang J, Zhang Y, Guo X, Peng Y, Cao Y, Lai Z. Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. Autophagy 2020; 17:2093-2110. [PMID: 32804012 DOI: 10.1080/15548627.2020.1810426] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Autophagy is critical for plant defense against necrotrophic pathogens, which causes serious yield loss on crops. However, the post-translational regulatory mechanisms of autophagy pathway in plant resistance against necrotrophs remain poorly understood. In this study, we report that phosphorylation modification on ATG18a, a key regulator of autophagosome formation in Arabidopsis thaliana, constitutes a post-translation regulation of autophagy, which attenuates plant resistance against necrotrophic pathogens. We found that phosphorylation of ATG18a suppresses autophagosome formation and its subsequent delivery into the vacuole, which results in reduced autophagy activity and compromised plant resistance against Botrytis cinerea. In contrast, overexpression of ATG18a dephosphorylation-mimic form increases the accumulation of autophagosomes and complements the plant resistance of atg18a mutant against B. cinerea. Moreover, BAK1, a key regulator in plant resistance, was identified to physically interact with and phosphorylate ATG18a. Mutation of BAK1 blocks ATG18a phosphorylation at four of the five detected phosphorylation sites after B. cinerea infection and strongly activates autophagy, leading to enhanced resistance against B. cinerea. Collectively, the identification of functional phosphorylation sites on ATG18a and the corresponding kinase BAK1 unveiled how plant regulates autophagy during resistance against necrotrophic pathogens.Abbreviations: 35s: the cauliflower mosaic virus 35s promoter; A. thaliana: Arabidopsis thaliana; A. brassicicola: Alternaria brassicicola; ABA: abscisic acid; ATG: autophagy-related; ATG18a: autophagy-related protein 18a in A. thaliana; ATG8a: autophagy-related protein 8a in A. thaliana; ATG8-PE: ATG8 conjugated with PE; B. cinerea: Botrytis cinerea; BAK1: Brassinosteroid insensitive 1-associated receptor kinase1 in A. thaliana; BiFC: biomolecular fluorescence complementation; BIK1: Botrytis-insensitive kinase 1 in A. thaliana; BKK1: BAK1-like 1 in A. thaliana; BR: brassinosteroid; Co-IP: coimmunoprecipitation; dai: days after inoculation; DAMPs: damage-associated molecular patterns; E. coli: Escherochia coli; ER: endoplasmic reticulum; ETI: effector-triggered immunity; GFP: green fluorescent protein; HA: hemagglutinin; IP: immunoprecipitation; LC-MS/MS: liquid chromatography-tandem mass spectrometry; LCI: luciferase complementation imaging; MPK3: mitogen-activated protein kinase 3 in A. thaliana; MPK4: mitogen-activated protein kinase 4 in A. thaliana; MPK6: mitogen-activated protein kinase 6 in A. thaliana; N. benthamiana: Nicotiana benthamiana; NES: nuclear export sequence; PAMP: pathogen-associated molecular pattern; PCR: polymerase chain reaction; PE: phosphatidylethanolamine; PRR: pattern recognition receptor; PtdIns(3,5)P2: phosphatidylinositol (3,5)-biphosphate; PtdIns3P: phosphatidylinositol 3-biphosphate; PTI: PAMP-triggered immunity; qRT-PCR: quantitative reverse transcription PCR; SnRK2.6: SNF1-related protein kinase 2.6 in A. thaliana; TORC1: the rapamycin-sensitive Tor complex1; TRAF: tumor necrosis factor receptor-associated factor; WT: wild type plant; Yc: C-terminal fragment of YFP; YFP: yellow fluorescent protein; Yn: N-terminal fragment of YFP.
Collapse
Affiliation(s)
- Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lu Shao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiali Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- Ecology College, Lishui University, Lishui, China
| | - Xiaoshuang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yujiao Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
124
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
125
|
Yang T, Lian Y, Kang J, Bian Z, Xuan L, Gao Z, Wang X, Deng J, Wang C. The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 Act as Negative Regulators in Response to Drought Stress in Arabidopsis. ACTA ACUST UNITED AC 2020; 61:1477-1492. [DOI: 10.1093/pcp/pcaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Drought represents a major threat to crop growth and yields. Strigolactones (SLs) contribute to regulating shoot branching by targeting the SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2)-LIKE6 (SMXL6), SMXL7 and SMXL8 for degradation in a MAX2-dependent manner in Arabidopsis. Although SLs are implicated in plant drought response, the functions of the SMXL6, 7 and 8 in the SL-regulated plant response to drought stress have remained unclear. Here, we performed transcriptomic, physiological and biochemical analyses of smxl6, 7, 8 and max2 plants to understand the basis for SMXL6/7/8-regulated drought response. We found that three D53 (DWARF53)-Like SMXL members, SMXL6, 7 and 8, are involved in drought response as the smxl6smxl7smxl8 triple mutants showed markedly enhanced drought tolerance compared to wild type (WT). The smxl6smxl7smxl8 plants exhibited decreased leaf stomatal index, cuticular permeability and water loss, and increased anthocyanin biosynthesis during dehydration. Moreover, smxl6smxl7smxl8 were hypersensitive to ABA-induced stomatal closure and ABA responsiveness during and after germination. In addition, RNA-sequencing analysis of the leaves of the D53-like smxl mutants, SL-response max2 mutant and WT plants under normal and dehydration conditions revealed an SMXL6/7/8-mediated network controlling plant adaptation to drought stress via many stress- and/or ABA-responsive and SL-related genes. These data further provide evidence for crosstalk between ABA- and SL-dependent signaling pathways in regulating plant responses to drought. Our results demonstrate that SMXL6, 7 and 8 are vital components of SL signaling and are negatively involved in drought responses, suggesting that genetic manipulation of SMXL6/7/8-dependent SL signaling may provide novel ways to improve drought resistance.
Collapse
Affiliation(s)
- Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jihong Kang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiyuan Bian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhensheng Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianming Deng
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
126
|
Avni A, Golan Y, Shirron N, Shamai Y, Golumbic Y, Danin-Poleg Y, Gepstein S. From Survival to Productivity Mode: Cytokinins Allow Avoiding the Avoidance Strategy Under Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:879. [PMID: 32714345 PMCID: PMC7343901 DOI: 10.3389/fpls.2020.00879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Growth retardation and stress-induced premature plant senescence are accompanied by a severe yield reduction and raise a major agro-economic concern. To improve biomass and yield in agricultural crops under mild stress conditions, the survival must be changed to productivity mode. Our previous successful attempts to delay premature senescence and growth inhibition under abiotic stress conditions by autoregulation of cytokinins (CKs) levels constitute a generic technology toward the development of highly productive plants. Since this technology is based on the induction of CKs synthesis during the age-dependent senescence phase by a senescence-specific promoter (SARK), which is not necessarily regulated by abiotic stress conditions, we developed autoregulating transgenic plants expressing the IPT gene specifically under abiotic stress conditions. The Arabidopsis promoter of the stress-induced metallothionein gene (AtMT) was isolated, fused to the IPT gene and transformed into tobacco plants. The MT:IPT transgenic tobacco plants displayed comparable elevated biomass productivity and maintained growth under drought conditions. To decipher the role and the molecular mechanisms of CKs in reverting the survival transcriptional program to a sustainable plant growth program, we performed gene expression analysis of candidate stress-related genes and found unexpectedly clear downregulation in the CK-overproducing plants. We also investigated kinase activity after applying exogenous CKs to tobacco cell suspensions that were grown in salinity stress. In-gel kinase activity analysis demonstrated CK-dependent deactivation of several stress-related kinases including two of the MAPK components, SIPK and WIPK and the NtOSAK, a member of SnRK2 kinase family, a key component of the ABA signaling cascade. A comprehensive phosphoproteomics analysis of tobacco cells, treated with exogenous CKs under salinity-stress conditions indicated that >50% of the identified phosphoproteins involved in stress responses were dephosphorylated by CKs. We hypothesize that upregulation of CK levels under stress conditions desensitize stress signaling cues through deactivation of kinases that are normally activated under stress conditions. CK-dependent desensitization of environmental stimuli is suggested to attenuate various pathways of the avoidance syndrome including the characteristic growth arrest and the premature senescence while allowing normal growth and metabolic maintenance.
Collapse
Affiliation(s)
- Avishai Avni
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yelena Golan
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Natali Shirron
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yeela Shamai
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yaela Golumbic
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yael Danin-Poleg
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Shimon Gepstein
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, Israel
- Kinneret Academic College, Sea of Galilee, Israel
| |
Collapse
|
127
|
Li T, Lei W, He R, Tang X, Han J, Zou L, Yin Y, Lin H, Zhang D. Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis. PLoS Genet 2020; 16:e1008883. [PMID: 32609718 PMCID: PMC7360063 DOI: 10.1371/journal.pgen.1008883] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/14/2020] [Accepted: 05/24/2020] [Indexed: 11/19/2022] Open
Abstract
Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many levels. While negative regulatory factors that inhibit development and are counteracted by BRs exist in the root meristem, these factors have not been characterized. The functions of UPB1 transcription factor in BR-regulated root growth have not been established, although its role in regulating root are well documented. Here, we found that BIN2 interacts with and phosphorylates the UPB1 transcription factor consequently promoting UPB1 stability and transcriptional activity. Genetic analysis revealed that UPB1 deficiency could partially recover the short-root phenotype of BR-deficient mutants. Expression of a mutated UPB1S37AS41A protein lacking a conserved BIN2 phosphorylation sites can rescue shorter root phenotype of bin2-1 mutant. In addition, UPB1 was repressed by BES1 at the transcriptional level. The paclobutrazol-resistant protein family (PRE2/3) interacts with UPB1 and inhibits its transcriptional activity to promote root meristem development, and BIN2-mediated phosphorylation of UPB1 suppresses its interaction with PRE2/3, and subsequently impairing root meristem development. Taken together, our data elucidate a molecular mechanism by which BR promotes root growth via inhibiting BIN2-UPB1 module. Various physiological and genetic researches have provided ample evidence in support of the role of plant hormones in root development. Brasinosteroids (BR) play important roles in controlling root growth and development, but the mechanism of negatively regulating factors in this process is less well studied. Here, we found BIN2 kinase, a negative component in BR signaling, interacted with and phosphorylated UPB1 to stabilize and promote its binding ability. The upb1-1 mutant was hypersensitive phenotype, while UPB1-overexpression lines showed opposite effects on BR regulated root meristem development, and defect of UPB1 partially suppressed the short-root phenotype in BR-deficient mutants. Moreover, the paclobutrazol-resistant protein family (PRE2/3) interacted with UPB1 and inhibited its transcriptional activity, and this interaction was also inhibited by BIN2 phosphorylation, thus impairing root meristem development. Our findings provide significant insights into BR signaling through BIN2-UPB1 in regulating root meristem.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Wei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ruiyuan He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xiaoya Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jifu Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan, P. R. China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
- * E-mail: (HL); (DZ)
| | - Dawei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
- * E-mail: (HL); (DZ)
| |
Collapse
|
128
|
Zhou P, Zhang X, Fatima M, Ma X, Fang H, Yan H, Ming R. DNA methylome and transcriptome landscapes revealed differential characteristics of dioecious flowers in papaya. HORTICULTURE RESEARCH 2020; 7:81. [PMID: 32528693 PMCID: PMC7261803 DOI: 10.1038/s41438-020-0298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 05/21/2023]
Abstract
Separate sexes in dioecious plants display different morphology and physiological characteristics. The differences between the two sexes lie in their highly differentiated floral characteristics and in sex-related phenotype, which is genetically determined and epigenetically modified. In dioecious papaya (Carica papaya L.), global comparisons of epigenetic DNA methylation and gene expressions were still limited. We conducted bisulfite sequencing of early-stage flowers grown in three seasons (spring, summer and winter) and compared their methylome and transcriptome profiles to investigate the differential characteristics of male and female in papaya. Methylation variances between female and male papaya were conserved among three different seasons. However, combined genome-scale transcriptomic evidence revealed that most methylation variances did not have influence on the expression profiles of neighboring genes, and the differentially expressed genes were most overrepresented in phytohormone signal transduction pathways. Further analyses showed diverse stress-responsive methylation alteration in male and female flowers. Male flower methylation was more responsive to stress whereas female flower methylation varied less under stress. Early flowering of male papaya in spring might be associated with the variation in the transcription of CpSVP and CpAP1 coinciding with their gene-specific hypomethylation. These findings provide insights into the sex-specific DNA methylation and gene expression landscapes of dioecious papaya and a foundation to investigate the correlation between differentiated floral characteristics and their candidate genes.
Collapse
Affiliation(s)
- Ping Zhou
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, 350013 Fuzhou, Fujian China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Xinyi Ma
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Hongkun Fang
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Hansong Yan
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Ray Ming
- College of Life Sciences, FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
129
|
Cotado A, Munné-Bosch S, Pintó-Marijuan M. Strategies for severe drought survival and recovery in a Pyrenean relict species. PHYSIOLOGIA PLANTARUM 2020; 169:276-290. [PMID: 32072645 DOI: 10.1111/ppl.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In the context of future climate change new habitats will be threatened and unique species will be forced to develop different strategies to survive. Saxifraga longifolia Lapeyr. is an endemic species from the Pyrenees with a very particular habitat. We explored the capacity and strategies of S. longifolia plants to face different severities of drought stress under both natural conditions and controlled water stress followed by a re-watering period of 20 days. Our results showed a role for abscisic acid (ABA), salicylic acid (SA) and cytokinins (CKs) in plant survival from drought stress, and as the stress increased, ABA lost significance and SA appeared to be more associated with the response mechanisms. Moreover, photo-oxidative stress markers revealed that both xanthophyll cycles played a photoprotection role with a stronger participation of the lutein epoxide cycle as the stress was more intense. Severe drought decreased the maximum efficiency of photosystem II (Fv /Fm ) below 0.45, being this the limit to survive upon rewatering. Overall, our results proved different strategies of S. longifolia plants to cope with drought stress and suggested a Fv /Fm threshold to predict plant survival in high-mountain environments.
Collapse
Affiliation(s)
- Alba Cotado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
130
|
Ramachandran P, Augstein F, Nguyen V, Carlsbecker A. Coping With Water Limitation: Hormones That Modify Plant Root Xylem Development. FRONTIERS IN PLANT SCIENCE 2020; 11:570. [PMID: 32499804 PMCID: PMC7243681 DOI: 10.3389/fpls.2020.00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/17/2020] [Indexed: 05/23/2023]
Abstract
Periods of drought, that threaten crop production, are expected to become more prominent in large parts of the world, making it necessary to explore all aspects of plant growth and development, to breed, modify and select crops adapted to such conditions. One such aspect is the xylem, where influencing the size and number of the water-transporting xylem vessels, may impact on hydraulic conductance and drought tolerance. Here, we focus on how plants adjust their root xylem as a response to reduced water availability. While xylem response has been observed in a wide array of species, most of our knowledge on the molecular mechanisms underlying xylem plasticity comes from studies on the model plant Arabidopsis thaliana. When grown under water limiting conditions, Arabidopsis rapidly adjusts its development to produce more xylem strands with altered identity in an abscisic acid (ABA) dependent manner. Other hormones such as auxin and cytokinin are essential for vascular patterning and differentiation. Their balance can be perturbed by stress, as evidenced by the effects of enhanced jasmonic acid signaling, which results in similar xylem developmental alterations as enhanced ABA signaling. Furthermore, brassinosteroids and other signaling molecules involved in drought tolerance can also impact xylem development. Hence, a multitude of signals affect root xylem properties and, potentially, influence survival under water limiting conditions. Here, we review the likely entangled signals that govern root vascular development, and discuss the importance of taking root anatomical traits into account when breeding crops for enhanced resilience toward changes in water availability.
Collapse
|
131
|
Chandrasekaran U, Luo X, Zhou W, Shu K. Multifaceted Signaling Networks Mediated by Abscisic Acid Insensitive 4. PLANT COMMUNICATIONS 2020; 1:100040. [PMID: 33367237 PMCID: PMC7748004 DOI: 10.1016/j.xplc.2020.100040] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 05/04/2023]
Abstract
Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.
Collapse
Affiliation(s)
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| |
Collapse
|
132
|
Liu Z, Li H, Gou Z, Zhang Y, Wang X, Ren H, Wen Z, Kang BK, Li Y, Yu L, Gao H, Wang D, Qi X, Qiu L. Genome-wide association study of soybean seed germination under drought stress. Mol Genet Genomics 2020; 295:661-673. [PMID: 32008123 DOI: 10.1007/s00438-020-01646-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
Drought stress, which is increasing with climate change, is a serious threat to agricultural sustainability worldwide. Seed germination is an essential growth phase that ensures the successful establishment and productivity of soybean, which can lose substantial productivity in soils with water deficits. However, only limited genetic information is available about how germinating soybean seeds may exert drought tolerance. In this study, we examined the germinating seed drought-tolerance phenotypes and genotypes of a panel of 259 released Chinese soybean cultivars panel. Based on 4616 Single-Nucleotide Polymorphisms (SNPs), we conducted a mixed-linear model GWAS that identified a total of 15 SNPs associated with at least one drought-tolerance index. Notably, three of these SNPs were commonly associated with two drought-tolerance indices. Two of these SNPs are positioned upstream of genes, and 11 of them are located in or near regions where QTLs have been previously mapped by linkage analysis, five of which are drought-related. The SNPs detected in this study can both drive hypothesis-driven research to deepen our understanding of genetic basis of soybean drought tolerance at the germination stage and provide useful genetic resources that can facilitate the selection of drought stress traits via genomic-assisted selection.
Collapse
Affiliation(s)
- Zhangxiong Liu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huihui Li
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zuowang Gou
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yanjun Zhang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Xingrong Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Honglei Ren
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824, USA
| | - Beom-Kyu Kang
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, 52402, Korea
| | - Yinghui Li
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lili Yu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huawei Gao
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824, USA
| | - Xusheng Qi
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Lijuan Qiu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
133
|
Vissenberg K, Claeijs N, Balcerowicz D, Schoenaers S. Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2412-2427. [PMID: 31993645 PMCID: PMC7178432 DOI: 10.1093/jxb/eraa048] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
The main functions of plant roots are water and nutrient uptake, soil anchorage, and interaction with soil-living biota. Root hairs, single cell tubular extensions of root epidermal cells, facilitate or enhance these functions by drastically enlarging the absorptive surface. Root hair development is constantly adapted to changes in the root's surroundings, allowing for optimization of root functionality in heterogeneous soil environments. The underlying molecular pathway is the result of a complex interplay between position-dependent signalling and feedback loops. Phytohormone signalling interconnects this root hair signalling cascade with biotic and abiotic changes in the rhizosphere, enabling dynamic hormone-driven changes in root hair growth, density, length, and morphology. This review critically discusses the influence of the major plant hormones on root hair development, and how changes in rhizosphere properties impact on the latter.
Collapse
Affiliation(s)
- Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC, Heraklion, Crete, Greece
| | - Naomi Claeijs
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
134
|
Anwar A, Kim JK. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int J Mol Sci 2020; 21:E2695. [PMID: 32295026 PMCID: PMC7216248 DOI: 10.3390/ijms21082695] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The recent rapid climate changes and increasing global population have led to an increased incidence of abiotic stress and decreased crop productivity. Environmental stresses, such as temperature, drought, nutrient deficiency, salinity, and heavy metal stresses, are major challenges for agriculture, and they lead to a significant reduction in crop growth and productivity. Abiotic stress is a very complex phenomenon, involving a variety of physiological and biochemical changes in plant cells. Plants exposed to abiotic stress exhibit enhanced levels of ROS (reactive oxygen species), which are highly reactive and toxic and affect the biosynthesis of chlorophyll, photosynthetic capacity, and carbohydrate, protein, lipid, and antioxidant enzyme activities. Transgenic breeding offers a suitable alternative to conventional breeding to achieve plant genetic improvements. Over the last two decades, genetic engineering/transgenic breeding techniques demonstrated remarkable developments in manipulations of the genes for the induction of desired characteristics into transgenic plants. Transgenic approaches provide us with access to identify the candidate genes, miRNAs, and transcription factors (TFs) that are involved in specific plant processes, thus enabling an integrated knowledge of the molecular and physiological mechanisms influencing the plant tolerance and productivity. The accuracy and precision of this phenomenon assures great success in the future of plant improvements. Hence, transgenic breeding has proven to be a promising tool for abiotic stress improvement in crops. This review focuses on the potential and successful applications, recent progress, and future perspectives of transgenic breeding for improving abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea;
| |
Collapse
|
135
|
Hai NN, Chuong NN, Tu NHC, Kisiala A, Hoang XLT, Thao NP. Role and Regulation of Cytokinins in Plant Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E422. [PMID: 32244272 PMCID: PMC7238249 DOI: 10.3390/plants9040422] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 01/04/2023]
Abstract
Cytokinins (CKs) are key phytohormones that not only regulate plant growth and development but also mediate plant tolerance to drought stress. Recent advances in genome-wide association studies coupled with in planta characterization have opened new avenues to investigate the drought-responsive expression of CK metabolic and signaling genes, as well as their functions in plant adaptation to drought. Under water deficit, CK signaling has evolved as an inter-cellular communication network which is essential to crosstalk with other types of phytohormones and their regulating pathways in mediating plant stress response. In this review, we revise the current understanding of CK involvement in drought stress tolerance. Particularly, a genetic framework for CK signaling and CK crosstalk with abscisic acid (ABA) in the precise monitoring of drought responses is proposed. In addition, the potential of endogenous CK alteration in crops towards developing drought-tolerant crops is also discussed.
Collapse
Affiliation(s)
- Nguyen Ngoc Hai
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Environmental and Life Science, Trent University, Peterborough, ON K9L 0G2 Canada
| | - Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Huu Cam Tu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada;
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (N.N.H.); (N.N.C.); (N.H.C.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
136
|
Mao X, Li Y, Rehman SU, Miao L, Zhang Y, Chen X, Yu C, Wang J, Li C, Jing R. The Sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) Genes Are Multifaceted Players in Plant Growth, Development and Response to Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2020; 61:225-242. [PMID: 31834400 DOI: 10.1093/pcp/pcz230] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 05/28/2023]
Abstract
Reversible protein phosphorylation orchestrated by protein kinases and phosphatases is a major regulatory event in plants and animals. The SnRK2 subfamily consists of plant-specific protein kinases in the Ser/Thr protein kinase superfamily. Early observations indicated that SnRK2s are mainly involved in response to abiotic stress. Recent evidence shows that SnRK2s are multifarious players in a variety of biological processes. Here, we summarize the considerable knowledge of SnRK2s, including evolution, classification, biological functions and regulatory mechanisms at the epigenetic, post-transcriptional and post-translation levels.
Collapse
Affiliation(s)
- Xinguo Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, P. R. China
| | - Yuying Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Agronomy, Henan Agricultural University, Zhengzhou 450016, P. R. China
| | - Shoaib Ur Rehman
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Lili Miao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yanfei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Agronomy, Henan Agricultural University, Zhengzhou 450016, P. R. China
| | - Xin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Chunmei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jingyi Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Chaonan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Ruilian Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
137
|
Zubo YO, Schaller GE. Role of the Cytokinin-Activated Type-B Response Regulators in Hormone Crosstalk. PLANTS 2020; 9:plants9020166. [PMID: 32019090 PMCID: PMC7076656 DOI: 10.3390/plants9020166] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Cytokinin is an important phytohormone that employs a multistep phosphorelay to transduce the signal from receptors to the nucleus, culminating in activation of type-B response regulators which function as transcription factors. Recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies have identified targets of type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) and integrated these into the cytokinin-activated transcriptional network. Primary targets of the type-B ARRs are enriched for genes involved in hormonal regulation, emphasizing the extensive crosstalk that can occur between cytokinin, auxin, abscisic acid, brassinosteroids, gibberellic acid, ethylene, jasmonic acid, and salicylic acid. Examination of hormone-related targets reveals multiple regulatory points including biosynthesis, degradation/inactivation, transport, and signal transduction. Here, we consider this early response to cytokinin in terms of the hormones involved, points of regulatory crosstalk, and physiological significance.
Collapse
|
138
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
139
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
140
|
Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN. Phytohormones Producing Fungal Communities: Metabolic Engineering for Abiotic Stress Tolerance in Crops. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
141
|
Li Y, Liu F, Li P, Wang T, Zheng C, Hou B. An Arabidopsis Cytokinin-Modifying Glycosyltransferase UGT76C2 Improves Drought and Salt Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:560696. [PMID: 33224159 PMCID: PMC7674613 DOI: 10.3389/fpls.2020.560696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/09/2020] [Indexed: 05/10/2023]
Abstract
Drought and salt stresses are common environmental threats that negatively affect rice development and yield. Here we report that the overexpression of AtUGT76C2, a cytokinin glycosyltransferase, in rice modulates cytokinin homeostasis and confers the plants an eminent property in drought and salt tolerance. The transgenic plants exhibit sensitivity to salt and drought stress as well as abscisic acid during the germination stage and the postgermination stage while showing enhanced tolerance to drought and salinity at the young seedling stage and the mature stage. The overexpression of UGT76C2 decreases the endogenous cytokinin level and enhances root growth, which greatly contributes to stress adaptation. In addition, the transgenic plants also show enhanced ROS scavenging activity, reduced ion leakage under salt stress, smaller stomatal opening, and more proline and soluble sugar accumulation, which demonstrate that UGT76C2 acts as an important player in abiotic stress response in rice. To explore the molecular mechanism of UGT76C2 in response to stress adaptation, the expressions of eight stress-responsive genes including OsSOS1, OsPIP2.1, OsDREB2A, OsCOIN, OsABF2, OsRAB16, OsP5CR, and OsP5CS1 were detected, which showed notable upregulation in UGT76C2 overexpression plants under salt and drought stresses. Our results reveal that the ectopic expression of AtUGT76C2 confers the transgenic rice many traits in improving drought and salt stress tolerance in both developmental and physiological levels. It is believed that AtUGT76C2 could be a promising candidate gene for cultivating saline- and drought-tolerant rice.
Collapse
Affiliation(s)
- Yanjie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Fangfei Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Pan Li
- College of Pharmacy>, Liaocheng University, Liaocheng, China
| | - Ting Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Bingkai Hou,
| |
Collapse
|
142
|
Khan R, Zhou P, Ma X, Zhou L, Wu Y, Ullah Z, Wang S. Transcriptome Profiling, Biochemical and Physiological Analyses Provide New Insights towards Drought Tolerance in Nicotiana tabacum L. Genes (Basel) 2019; 10:E1041. [PMID: 31847498 PMCID: PMC6947287 DOI: 10.3390/genes10121041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Drought stress is one of the main factors limiting crop production, which provokes a number of changes in plants at physiological, anatomical, biochemical and molecular level. To unravel the various mechanisms underpinning tobacco (Nicotiana tabacum L.) drought stress tolerance, we conducted a comprehensive physiological, anatomical, biochemical and transcriptome analyses of three tobacco cultivars (i.e., HongHuaDaJinYuan (H), NC55 (N) and Yun Yan-100 (Y)) seedlings that had been exposed to drought stress. As a result, H maintained higher growth in term of less reduction in plant fresh weight, dry weight and chlorophyll content as compared with N and Y. Anatomical studies unveiled that drought stress had little effect on H by maintaining proper leaf anatomy while there were significant changes in the leaf anatomy of N and Y. Similarly, H among the three varieties was the least affected variety under drought stress, with more proline content accumulation and a powerful antioxidant defense system, which mitigates the negative impacts of reactive oxygen species. The transcriptomic analysis showed that the differential genes expression between HongHuaDaJinYuan, NC55 and Yun Yan-100 were enriched in the functions of plant hormone signal transduction, starch and sucrose metabolism, and arginine and proline metabolism. Compared to N and Y, the differentially expressed genes of H displayed enhanced expression in the corresponding pathways under drought stress. Together, our findings offer insights that H was more tolerant than the other two varieties, as evidenced at physiological, biochemical, anatomical and molecular level. These findings can help us to enhance our understanding of the molecular mechanisms through the networks of various metabolic pathways mediating drought stress adaptation in tobacco.
Collapse
Affiliation(s)
- Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China; (R.K.); (L.Z.); (Y.W.); (Z.U.); (S.W.)
| | - Peilu Zhou
- College of Agronomy, Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China;
| | - Xinghua Ma
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China; (R.K.); (L.Z.); (Y.W.); (Z.U.); (S.W.)
| | - Lei Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China; (R.K.); (L.Z.); (Y.W.); (Z.U.); (S.W.)
| | - Yuanhua Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China; (R.K.); (L.Z.); (Y.W.); (Z.U.); (S.W.)
| | - Zia Ullah
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China; (R.K.); (L.Z.); (Y.W.); (Z.U.); (S.W.)
| | - Shusheng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China; (R.K.); (L.Z.); (Y.W.); (Z.U.); (S.W.)
| |
Collapse
|
143
|
Yang T, Lian Y, Wang C. Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20246270. [PMID: 31842355 PMCID: PMC6941112 DOI: 10.3390/ijms20246270] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The α/β hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.
Collapse
Affiliation(s)
| | | | - Chongying Wang
- Correspondence: ; Tel.: +86-0931-8914155; Fax: +86-0931-8914155
| |
Collapse
|
144
|
New Insights into Multistep-Phosphorelay (MSP)/ Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? PLANTS 2019; 8:plants8120590. [PMID: 31835810 PMCID: PMC6963811 DOI: 10.3390/plants8120590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The Arabidopsis multistep-phosphorelay (MSP) is a signaling mechanism based on a phosphorelay that involves three different types of proteins: Histidine kinases, phosphotransfer proteins, and response regulators. Its bacterial equivalent, the two-component system (TCS), is the most predominant device for signal transduction in prokaryotes. The TCS has been extensively studied and is thus generally well-understood. In contrast, the MSP in plants was first described in 1993. Although great advances have been made, MSP is far from being completely comprehended. Focusing on the model organism Arabidopsis thaliana, this review summarized recent studies that have revealed many similarities with bacterial TCSs regarding how TCS/MSP signaling is regulated by protein phosphorylation and dephosphorylation, protein degradation, and dimerization. Thus, comparison with better-understood bacterial systems might be relevant for an improved study of the Arabidopsis MSP.
Collapse
|
145
|
Kumar M, Kesawat MS, Ali A, Lee SC, Gill SS, Kim HU. Integration of Abscisic Acid Signaling with Other Signaling Pathways in Plant Stress Responses and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E592. [PMID: 31835863 PMCID: PMC6963649 DOI: 10.3390/plants8120592] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Plants are immobile and, to overcome harsh environmental conditions such as drought, salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid phytohormone, is a critical signaling mediator that regulates diverse biological processes in various organisms. Significant progress has been made in the determination and characterization of key ABA-mediated molecular factors involved in different stress responses, including stomatal closure and developmental processes, such as seed germination and bud dormancy. Since ABA signaling is a complex signaling network that integrates with other signaling pathways, the dissection of its intricate regulatory network is necessary to understand the function of essential regulatory genes involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, we examine the perception of the stress signal (abiotic and biotic) and the response network of ABA signaling components that transduce the signal to the downstream pathway to respond to stress tolerance, regulation of stomata, and ABA signaling component ubiquitination. Second, ABA signaling in plant development processes, such as lateral root growth regulation, seed germination, and flowering time regulation is investigated. Examining such diverse signal integration dynamics could enhance our understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA signaling networks in plants.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | | | - Asjad Ali
- Southern Cross Plant Science, Southern Cross University, East Lismore NSW 2480, Australia;
| | | | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India;
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| |
Collapse
|
146
|
Gujjar RS, Supaibulwatana K. The Mode of Cytokinin Functions Assisting Plant Adaptations to Osmotic Stresses. PLANTS (BASEL, SWITZERLAND) 2019; 8:E542. [PMID: 31779090 PMCID: PMC6963579 DOI: 10.3390/plants8120542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023]
Abstract
Plants respond to abiotic stresses by activating a specific genetic program that supports survival by developing robust adaptive mechanisms. This leads to accelerated senescence and reduced growth, resulting in negative agro-economic impacts on crop productivity. Cytokinins (CKs) customarily regulate various biological processes in plants, including growth and development. In recent years, cytokinins have been implicated in adaptations to osmotic stresses with improved plant growth and yield. Endogenous CK content under osmotic stresses can be enhanced either by transforming plants with a bacterial isopentenyl transferase (IPT) gene under the control of a stress inducible promoter or by exogenous application of synthetic CKs. CKs counteract osmotic stress-induced premature senescence by redistributing soluble sugars and inhibiting the expression of senescence-associated genes. Elevated CK contents under osmotic stress antagonize abscisic acid (ABA) signaling and ABA mediated responses, delay leaf senescence, reduce reactive oxygen species (ROS) damage and lipid peroxidation, improve plant growth, and ameliorate osmotic stress adaptability in plants.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Division of Crop Improvement, Indian Institute of Sugarcane Research, Lucknow 226002, India
| | | |
Collapse
|
147
|
Tao Y, Chen D, Zou T, Zeng J, Gao F, He Z, Zhou D, He Z, Yuan G, Liu M, Zhao H, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Wang L, Li P, Li S. Defective Leptotene Chromosome 1 (DLC1) encodes a type-B response regulator and is required for rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:556-570. [PMID: 31004552 DOI: 10.1111/tpj.14344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Meiosis is critical for sexual reproduction and the generation of new allelic variations in most eukaryotes. In this study, we report the isolation of a meiotic gene, DLC1, using a map-based cloning strategy. The dlc1 mutant is sterile in both male and female gametophytes due to an earlier defect in the leptotene chromosome and subsequent abnormalities at later stages. DLC1 is strongly expressed in the pollen mother cells (PMCs) and tapetum and encodes a nucleus-located rice type-B response regulator (RR) with transcriptional activity. Further investigations showed that DLC1 interacts with all five putative rice histidine phosphotransfer proteins (HPs) in yeast and planta cells, suggesting a possible participation of the two-component signalling systems (TCS) in rice meiosis. Our results demonstrated that DLC1 is required for rice meiosis and fertility, providing useful information for the role of TCS in rice meiosis.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Zeng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengyan Gao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongshan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongfeng Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
148
|
Yang G, Yu Z, Gao L, Zheng C. SnRK2s at the Crossroads of Growth and Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:672-676. [PMID: 31255544 DOI: 10.1016/j.tplants.2019.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 05/21/2023]
Abstract
Plant subclass III SnRK2 protein kinases are widely recognized as key regulators of abscisic acid signaling and downstream stress responses. Recent research has revealed that SnRK2s function in growth-promoting signaling pathways, suggesting that SnRK2s tightly control the yin-yang relationship between plant growth and stress responses.
Collapse
Affiliation(s)
- Guodong Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
149
|
Batool A, Cheng ZG, Akram NA, Lv GC, Xiong JL, Zhu Y, Ashraf M, Xiong YC. Partial and full root-zone drought stresses account for differentiate root-sourced signal and yield formation in primitive wheat. PLANT METHODS 2019; 15:75. [PMID: 31338115 PMCID: PMC6624928 DOI: 10.1186/s13007-019-0461-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/08/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Partial and full root-zone drought stresses are two widely used methods to induce soil drying in plant container-culture experiments. Two methods might lead to different observational results in plant water relation, such as non-hydraulic root-sourced signal (nHRS). We compared partial and full stress methods to induce nHRS in two diploids (MO1 and MO4) and two tetraploids (DM 22 and DM 31) wheat varieties under pot-culture conditions. Partial root-zone stress (PS) was performed using split-root alternative water supply method (one half wetting and the other drying) to induce the continuous operation of nHRS, and full root-zone stress (FS) was exposed to whole soil block to induce periodic operation of nHRS since jointing stage. RESULTS We tested the two drought methods whether it influenced the nHRS mediated signalling and yield formation in primitive wheat species. Results showed that partial root-zone stress caused more increase in abscisic acid (ABA) production and decline in stomatal closure than full root-zone stress method. The incline in ABA was closely related to triggering reactive oxygen species (ROS) generation, and reducing cytokinin synthesis which, thereby, led to crosstalk with other signalling molecules. Furthermore, PS up-regulated the antioxidant defense system and proline content. Water use efficiency and harvest index was significantly increased in PS, suggesting that PS was more likely to simulate the occurrence of nHRS by increasing the adaptive strategies of plants and closer to natural status of soil drying than FS. CONCLUSION These findings lead us to conclude that partial root-zone stress method is more feasible method to induce nHRS which has great capacity to reduce water consumption and enhance plant adaptation to constantly changing environment. These observations also suggest that different root-zone planting methods can be considered to improve the plant phenotypic plasticity and tolerance in water-limited rainfed environments.
Collapse
Affiliation(s)
- Asfa Batool
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Zheng-Guo Cheng
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | | | - Guang-Chao Lv
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jun-Lan Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Ying Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Muhammad Ashraf
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
- Faculty of Agriculture, The University of Sargodha, Sargodha, 40100 Pakistan
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
150
|
Batool A, Akram NA, Cheng ZG, Lv GC, Ashraf M, Afzal M, Xiong JL, Wang JY, Xiong YC. Physiological and biochemical responses of two spring wheat genotypes to non-hydraulic root-to-shoot signalling of partial and full root-zone drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:11-20. [PMID: 30875531 DOI: 10.1016/j.plaphy.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 05/07/2023]
Abstract
Non-hydraulic root-sourced signal (nHRS) is so far affirmed to be a unique positive early-warning response to drying soil, however its physiological and agronomic implications are still unclear. We designed two contrast methods to induce nHRS in two wheat (Triticum aestivum L.) genotypes released in different decades under pot-culture conditions. Partial root-zone stress (PS) was performed using the method of split-root alternative water supply (one half wetting and the other drying) to induce the continuous operation of nHRS, and full root-zone stress (FS) was subjected to whole root system to periodic operation of nHRS. nHRS-mediated signalling increased abscisic acid (ABA) production and triggered ROS (reactive oxygen species) generation, which, thereby, led to up-regulation of antioxidant defense system. Cytokinin synthesis reduced during drought stress while proline and malodialdehyde (MDA) content were increased. Regardless of drought treatment methods and wheat genotype, a significant decrease in grain yield, root biomass and above-ground biomass (p < 0.05) was observed, without significant changes in root-to-shoot ratio. Harvest index was increased, proposing that more energy was allocated to reproductive organs during the action of nHRS. Moreover, higher water use efficiency was witnessed in PS. The data suggest that nHRS triggered ABA accumulation, thereby closing stomata, and reducing water use and also decreases the production of ROS and improves the antioxidant defence enzymes, thus enhancing drought tolerance. This survey of different-decade genotypes suggests that advances in grain yield and drought tolerance would be made by targeted selection for a wheat genetic resource.
Collapse
Affiliation(s)
- Asfa Batool
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | | | - Zheng-Guo Cheng
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Chao Lv
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Ashraf
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Faculty of Agriculture, The University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Afzal
- Faculty of Agriculture, The University of Sargodha, Sargodha, 40100, Pakistan
| | - Jun-Lan Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jian-Yong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|