101
|
Clemmensen A, Loft M, Kjaer A, Andersen TL. Editorial for “Application of
3D Multi‐Echo
Balanced Steady State Free Precession and Hyperpolarized [
1‐
13
C
] Pyruvate to Quantify Prostate Cancer Metabolism”. J Magn Reson Imaging 2022; 57:1876-1877. [PMID: 36326566 DOI: 10.1002/jmri.28483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andreas Clemmensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Mathias Loft
- Cluster for Molecular Imaging, Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Andreas Kjaer
- Cluster for Molecular Imaging, Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology and Nuclear Medicine Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| |
Collapse
|
102
|
Minami N, Hong D, Stevers N, Barger CJ, Radoul M, Hong C, Chen L, Kim Y, Batsios G, Gillespie AM, Pieper RO, Costello JF, Viswanath P, Ronen SM. Imaging biomarkers of TERT or GABPB1 silencing in TERT-positive glioblastoma. Neuro Oncol 2022; 24:1898-1910. [PMID: 35460557 PMCID: PMC9629440 DOI: 10.1093/neuonc/noac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND TERT promoter mutations are observed in 80% of wild-type IDH glioblastoma (GBM). Moreover, the upstream TERT transcription factor GABPB1 was recently identified as a cancer-specific therapeutic target for tumors harboring a TERT promoter mutation. In that context, noninvasive imaging biomarkers are needed for the detection of TERT modulation. METHODS Multiple GBM models were investigated as cells and in vivo tumors and the impact of TERT silencing, either directly or by targeting GABPB1, was determined using 1H and hyperpolarized 13C magnetic resonance spectroscopy (MRS). Changes in associated metabolic enzymes were also investigated. RESULTS 1H-MRS revealed that lactate and glutathione (GSH) were the most significantly altered metabolites when either TERT or GABPB1 was silenced, and lactate and GSH levels were correlated with cellular TERT expression. Consistent with the drop in lactate, 13C-MRS showed that hyperpolarized [1-13C]lactate production from [1-13C]pyruvate was also reduced when TERT was silenced. Mechanistically, the reduction in GSH was associated with a reduction in pentose phosphate pathway flux, reduced activity of glucose-6-phosphate dehydrogenase, and reduced NADPH. The drop in lactate and hyperpolarized lactate were associated with reductions in glycolytic flux, NADH, and expression/activity of GLUT1, monocarboxylate transporters, and lactate dehydrogenase A. CONCLUSIONS Our study indicates that MRS-detectable GSH, lactate, and lactate production could serve as metabolic biomarkers of response to emerging TERT-targeted therapies for GBM with activating TERT promoter mutations. Importantly these biomarkers are readily translatable to the clinic, and thus could ultimately improve GBM patient management.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Lee Chen
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Russel O Pieper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
103
|
Hu JY, Kim Y, Autry AW, Frost MM, Bok RA, Villanueva-Meyer JE, Xu D, Li Y, Larson PEZ, Vigneron DB, Gordon JW. Kinetic analysis of multi-resolution hyperpolarized 13 C human brain MRI to study cerebral metabolism. Magn Reson Med 2022; 88:2190-2197. [PMID: 35754148 PMCID: PMC9420752 DOI: 10.1002/mrm.29354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To investigate multi-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring kinetic conversion rates in the human brain. METHODS HP [1-13 C]pyruvate MRI was acquired in 6 subjects with a multi-resolution EPI sequence at 7.5 × 7.5 mm2 resolution for pyruvate and 15 × 15 mm2 resolution for lactate and bicarbonate. With the same lactate data, 2 quantitative maps of pyruvate-to-lactate conversion (kPL ) maps were generated: 1 using 7.5 × 7.5 mm2 resolution pyruvate data and the other using synthetic 15 × 15 mm2 resolution pyruvate data to simulate a standard constant resolution acquisition. To examine local kPL values, 4 voxels were manually selected in each study representing brain tissue near arteries, brain tissue near veins, white matter, and gray matter. RESULTS High resolution 7.5 × 7.5 mm2 pyruvate images increased the spatial delineation of brain structures and decreased partial volume effects compared to coarser resolution 15 × 15 mm2 pyruvate images. Voxels near arteries, veins and in white matter exhibited higher calculated kPL for multi-resolution images. CONCLUSION Acquiring HP 13 C pyruvate metabolic data with a multi-resolution approach minimized partial volume effects from vascular pyruvate signals while maintaining the SNR of downstream metabolites. Higher resolution pyruvate images for kinetic fitting resulted in increased kinetic rate values, particularly around the superior sagittal sinus and cerebral arteries, by reducing extracellular pyruvate signal contributions from adjacent blood vessels. This HP 13 C study showed that acquiring pyruvate with finer resolution improved the quantification of kinetic rates throughout the human brain.
Collapse
Affiliation(s)
- Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Mary M Frost
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
104
|
Salnikov OG, Trofimov IA, Pravdivtsev AN, Them K, Hövener JB, Chekmenev EY, Koptyug IV. Through-Space Multinuclear Magnetic Resonance Signal Enhancement Induced by Parahydrogen and Radiofrequency Amplification by Stimulated Emission of Radiation. Anal Chem 2022; 94:15010-15017. [PMID: 36264746 PMCID: PMC10007960 DOI: 10.1021/acs.analchem.2c02929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarized (i.e., polarized far beyond the thermal equilibrium) nuclear spins can result in the radiofrequency amplification by stimulated emission of radiation (RASER) effect. Here, we show the utility of RASER to amplify nuclear magnetic resonance (NMR) signals of solute and solvent molecules in the liquid state. Specifically, parahydrogen-induced RASER was used to spontaneously enhance nuclear spin polarization of protons and heteronuclei (here 19F and 31P) in a wide range of molecules. The magnitude of the effect correlates with the T1 relaxation time of the target nuclear spins. A series of control experiments validate the through-space dipolar mechanism of the RASER-assisted polarization transfer between the parahydrogen-polarized compound and to-be-hyperpolarized nuclei of the target molecule. Frequency-selective saturation of the RASER-active resonances was used to control the RASER and the amplitude of spontaneous polarization transfer. Spin dynamics simulations support our experimental RASER studies. The enhanced NMR sensitivity may benefit various NMR applications such as mixture analysis, metabolomics, and structure determination.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090 Novosibirsk, Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 14 Leninskiy Pr., 119991 Moscow, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| |
Collapse
|
105
|
Park H, Chen J, Dimitrov IE, Park JM, Wang Q. Design and Characterization of Hyperpolarized 15N-BBCP as a H 2O 2-Sensing Probe. ACS Sens 2022; 7:2928-2933. [PMID: 36255172 PMCID: PMC9908030 DOI: 10.1021/acssensors.2c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogen peroxide (H2O2) is a type of reactive oxygen species that regulates essential biological processes. Despite the central role of H2O2 in pathophysiological states, available molecular probes for assessing H2O2 in vivo are still limited. This work develops hyperpolarized 15N-boronobenzyl-4-cyanopyridinium (15N-BBCP) as a rationally designed molecular probe for detecting H2O2. The 15N-BBCP demonstrated favorable physicochemical and biochemical properties for H2O2 detection and dynamic nuclear polarization, allowing noninvasive detection of H2O2. In particular, 15N-BBCP and the products possessed long spin-lattice relaxation times and spectrally resolvable 15N chemical shift differences. The performance of hyperpolarized 15N-BBCP was demonstrated both in vitro and in vivo with time-resolved 15N-MRS. This study highlights a promising approach to designing a reaction-based 15N-labeled molecular imaging agent for detecting oxidative stress in vivo.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University, Durham, NC 27708
| | - Jun Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ivan E. Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Philips Healthcare, Dallas, TX 75390
| | - Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, NC 27708
| |
Collapse
|
106
|
Radaelli A, Ortiz D, Michelotti A, Roche M, Hata R, Sando S, Bonny O, Gruetter R, Yoshihara HAI. Hyperpolarized (1- 13C)Alaninamide Is a Multifunctional In Vivo Sensor of Aminopeptidase N Activity, pH, and CO 2. ACS Sens 2022; 7:2987-2994. [PMID: 36194687 DOI: 10.1021/acssensors.2c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spin hyperpolarization enables real-time metabolic imaging of carbon-13-labeled substrates. While hyperpolarized l-(1-13C)alaninamide is a probe of the cell-surface tumor marker aminopeptidase-N (APN, CD13), its activity in vivo has not been described. Scanning the kidneys of rats infused with hyperpolarized alaninamide shows both conversion to [1-13C]alanine and several additional spectral peaks with distinct temporal dynamics. The (1-13C)alaninamide chemical shift is pH-sensitive, with a pKa of 7.9 at 37 °C, and the peaks correspond to at least three different compartments of pH 7.46 ± 0.02 (1), 7.21 ± 0.02 (2), and 6.58 ± 0.05 (3). An additional peak was assigned to the carboxyamino adduct formed by reaction with dissolved CO2. Spectroscopic imaging showed nonuniform distribution, with the low-pH signal more concentrated in the inner medulla. Treatment with the diuretic acetazolamide resulted in significant pH shifts in compartment 1 to 7.38 ± 0.03 (p = 0.0057) and compartment 3 to 6.80 ± 0.05 (p = 0.0019). While the pH of compartment 1 correlates with blood pH, the pH of compartment 3 did not correspond to the pH of urine. In vitro experiments show that alaninamide readily enters blood cells and can detect intracellular pH. While carbamate formation depends on pH and pCO2, the carbamate-to-alaninamide ratio did not correlate with either arterial blood pH or pCO2, suggesting that it may reflect variations in tissue pH and pCO2. This study demonstrates the feasibility of using hyperpolarized sensors to simultaneously image enzyme activity, pCO2, and pH in vivo.
Collapse
Affiliation(s)
- Alice Radaelli
- Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, EPFL, 1015Lausanne, Switzerland
| | - Daniel Ortiz
- Mass Spectrometry Platform, Institute of Chemical Sciences and Engineering (ISIC), EPFL, 1015Lausanne, Switzerland
| | | | - Maxime Roche
- CortecNet, 7 Avenue du Hoggar, 91940Les Ulis, France
| | - Ryunosuke Hata
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo113-8656, Japan
| | - Olivier Bonny
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), 1011Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, EPFL, 1015Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, EPFL, 1015Lausanne, Switzerland
| |
Collapse
|
107
|
Park H, Eriksson S, Warren WS, Wang Q. Design, synthesis and evaluation of 15N- and 13C-labeled molecular probes as hyperpolarized nitric oxide sensors. Bioorg Med Chem 2022; 72:116969. [PMID: 36029732 PMCID: PMC9648624 DOI: 10.1016/j.bmc.2022.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule involved in a wide range of biological processes. Development of non-invasive, real-time detection of NO is greatly desired yet remains challenging. Here we report the design and development of novel 15N- and 13C-labeled NO-sensing probes for hyperpolarized nuclear magnetic resonance (HP-NMR) studies. These probes undergo selective and rapid reaction with NO to generate in situ AZO-products that can be monitored with distinguishable NMR signals as a read-out. This study also allows for a direct comparison of the 15N and 13C nuclei performances in hyperpolarized reaction-based probes. The simple and general SABRE-SHEATH hyperpolarization method works on the 15N- and 13C-NO-sensing probes. Measured long spin-lattice relaxation (T1) values, especially for 15N-NO probes, will allow for real-time reaction-based imaging of NO.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Shannon Eriksson
- Department of Chemistry, Duke University, Durham, NC 27708, USA; School of Medicine, Duke University, Durham, NC 27708, USA
| | - Warren S Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA; Department of Physics, Radiology and Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
108
|
Adelabu I, Ettedgui J, Joshi SM, Nantogma S, Chowdhury MRH, McBride S, Theis T, Sabbasani VR, Chandrasekhar M, Sail D, Yamamoto K, Swenson RE, Krishna MC, Goodson BM, Chekmenev EY. Rapid 13C Hyperpolarization of the TCA Cycle Intermediate α-Ketoglutarate via SABRE-SHEATH. Anal Chem 2022; 94:13422-13431. [PMID: 36136056 PMCID: PMC9907724 DOI: 10.1021/acs.analchem.2c02160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
α-Ketoglutarate is a key biomolecule involved in a number of metabolic pathways─most notably the TCA cycle. Abnormal α-ketoglutarate metabolism has also been linked with cancer. Here, isotopic labeling was employed to synthesize [1-13C,5-12C,D4]α-ketoglutarate with the future goal of utilizing its [1-13C]-hyperpolarized state for real-time metabolic imaging of α-ketoglutarate analytes and its downstream metabolites in vivo. The signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH) hyperpolarization technique was used to create 9.7% [1-13C] polarization in 1 minute in this isotopologue. The efficient 13C hyperpolarization, which utilizes parahydrogen as the source of nuclear spin order, is also supported by favorable relaxation dynamics at 0.4 μT field (the optimal polarization transfer field): the exponential 13C polarization buildup constant Tb is 11.0 ± 0.4 s whereas the 13C polarization decay constant T1 is 18.5 ± 0.7 s. An even higher 13C polarization value of 17.3% was achieved using natural-abundance α-ketoglutarate disodium salt, with overall similar relaxation dynamics at 0.4 μT field, indicating that substrate deuteration leads only to a slight increase (∼1.2-fold) in the relaxation rates for 13C nuclei separated by three chemical bonds. Instead, the gain in polarization (natural abundance versus [1-13C]-labeled) is rationalized through the smaller heat capacity of the "spin bath" comprising available 13C spins that must be hyperpolarized by the same number of parahydrogen present in each sample, in line with previous 15N SABRE-SHEATH studies. Remarkably, the C-2 carbon was not hyperpolarized in both α-ketoglutarate isotopologues studied; this observation is in sharp contrast with previously reported SABRE-SHEATH pyruvate studies, indicating that the catalyst-binding dynamics of C-2 in α-ketoglutarate differ from that in pyruvate. We also demonstrate that 13C spectroscopic characterization of α-ketoglutarate and pyruvate analytes can be performed at natural 13C abundance with an estimated detection limit of 80 micromolar concentration × *%P13C. All in all, the fundamental studies reported here enable a wide range of research communities with a new hyperpolarized contrast agent potentially useful for metabolic imaging of brain function, cancer, and other metabolically challenging diseases.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Stephen McBride
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Venkata R. Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Mushti Chandrasekhar
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Deepak Sail
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, United States
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, Bethesda, 31 Center Drive Maryland 20814, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| |
Collapse
|
109
|
Esfahani SA, Callahan C, Rotile NJ, Heidari P, Mahmood U, Caravan PD, Grant AK, Yen YF. Hyperpolarized [1- 13C]Pyruvate Magnetic Resonance Spectroscopic Imaging for Evaluation of Early Response to Tyrosine Kinase Inhibition Therapy in Gastric Cancer. Mol Imaging Biol 2022; 24:769-779. [PMID: 35467249 PMCID: PMC9588528 DOI: 10.1007/s11307-022-01727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate the use of hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (HP-13C MRSI) for quantitative measurement of early changes in glycolytic metabolism and its ability to predict response to pan-tyrosine kinase inhibitor (Pan-TKI) therapy in gastric cancer (GCa). PROCEDURES Pan-TKI afatinib-sensitive NCI-N87 and resistant SNU16 human GCa cells were assessed for GLUT1, hexokinase-II (HKII), lactate dehydrogenase (LDHA), phosphorylated AKT (pAKT), and phosphorylated MAPK (pMAPK) at 0-72 h of treatment with 0.1 μM afatinib. Subcutaneous NCI-N87 tumor-bearing nude mice underwent [18F]FDG PET/MRI and HP-13C MRSI at baseline and 4 days after treatment with afatinib 10 mg/kg/day or vehicle (n = 10/group). Changes in PET and HP-13C MRSI metabolic parameters were compared between the two groups. Imaging findings were correlated with tumor growth and histopathology over 3 weeks of treatment. RESULTS In vitro analysis showed a continuous decrease in LDHA, pAKT, and pMAPK in NCI-N87 compared to SNU16 cells within 72 h of treatment with afatinib, without a significant change in GLUT1 and HKII in either cell type. [18F]FDG PET of NCI-N87 tumors showed no significant change in PET measures at baseline and day 4 of treatment in either treatment group (SUVmean day 4/day 0: 2.7 ± 0.42/2.34 ± 0.38, p = 0.57 in the treated group vs. 1.73 ± 0.66/2.24 ± 0.43, p = 0.4 in the control group). HP-13C MRSI demonstrated significantly decreased lactate-to-pyruvate ratio (L/P) in treated tumors (L/P day 4/day 0: 0.83 ± 0.30/1.10 ± 0.20, p = 0.012 vs. 0.94 ± 0.20/0.98 ± 0.30, p = 0.75, in the treated vs. control group, respectively). Response to afatinib was confirmed with decreased tumor size over 3 weeks (11.10 ± 16.50 vs. 293.00 ± 79.30 mm3, p < 0.001, treated group vs. control group, respectively) and histopathologic evaluation. CONCLUSIONS HP-13C MRSI is a more representative biomarker of early metabolic changes in response to pan-TKI in GCa than [18F]FDG PET and could be used for early prediction of response to targeted therapies.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Divisionof Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cody Callahan
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pedram Heidari
- Divisionof Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Umar Mahmood
- Divisionof Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Peter D Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aaron K Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
110
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
111
|
Liu X, Tang S, Mu C, Qin H, Cu D, Lai YC, Riselli AM, Delos Santos R, Carvajal L, Gebrezgiabhier D, Bok RA, Chen HY, Flavell RR, Gordon JW, Vigneron DB, Kurhanewicz J, Larson PE. Development of specialized magnetic resonance acquisition techniques for human hyperpolarized [ 13 C, 15 N 2 ]urea + [1- 13 C]pyruvate simultaneous perfusion and metabolic imaging. Magn Reson Med 2022; 88:1039-1054. [PMID: 35526263 PMCID: PMC9810116 DOI: 10.1002/mrm.29266] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE This study aimed to develop and demonstrate the in vivo feasibility of a 3D stack-of-spiral balanced steady-state free precession(3D-bSSFP) urea sequence, interleaved with a metabolite-specific gradient echo (GRE) sequence for pyruvate and metabolic products, for improving the SNR and spatial resolution of the first hyperpolarized 13 C-MRI human study with injection of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea. METHODS A metabolite-specific bSSFP urea imaging sequence was designed using a urea-specific excitation pulse, optimized TR, and 3D stack-of-spiral readouts. Simulations and phantom studies were performed to validate the spectral response of the sequence. The image quality of urea data acquired by the 3D-bSSFP sequence and the 2D-GRE sequence was evaluated with 2 identical injections of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea formula in a rat. Subsequently, the feasibility of the acquisition strategy was validated in a prostate cancer patient. RESULTS Simulations and phantom studies demonstrated that 3D-bSSFP sequence achieved urea-only excitation, while minimally perturbing other metabolites (<1%). An animal study demonstrated that compared to GRE, bSSFP sequence provided an ∼2.5-fold improvement in SNR without perturbing urea or pyruvate kinetics, and bSSFP approach with a shorter spiral readout reduced blurring artifacts caused by J-coupling of [13 C,15 N2 ]urea. The human study demonstrated the in vivo feasibility and data quality of the acquisition strategy. CONCLUSION The 3D-bSSFP urea sequence with a stack-of-spiral acquisition demonstrated significantly increased SNR and image quality for [13 C,15 N2 ]urea in co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea imaging studies. This work lays the foundation for future human studies to achieve high-quality and high-SNR metabolism and perfusion images.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- HeartVista Inc., Los Altos, California, USA
| | - Changhua Mu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Di Cu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Ying-Chieh Lai
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Andrew M. Riselli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Daniel Gebrezgiabhier
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| |
Collapse
|
112
|
Batsios G, Taglang C, Tran M, Stevers N, Barger C, Gillespie AM, Ronen SM, Costello JF, Viswanath P. Deuterium Metabolic Imaging Reports on TERT Expression and Early Response to Therapy in Cancer. Clin Cancer Res 2022; 28:3526-3536. [PMID: 35679032 PMCID: PMC9378519 DOI: 10.1158/1078-0432.ccr-21-4418] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Telomere maintenance is a hallmark of cancer. Most tumors maintain telomere length via reactivation of telomerase reverse transcriptase (TERT) expression. Identifying clinically translatable imaging biomarkers of TERT can enable noninvasive assessment of tumor proliferation and response to therapy. EXPERIMENTAL DESIGN We used RNAi, doxycycline-inducible expression systems, and pharmacologic inhibitors to mechanistically delineate the association between TERT and metabolism in preclinical patient-derived tumor models. Deuterium magnetic resonance spectroscopy (2H-MRS), which is a novel, translational metabolic imaging modality, was used for imaging TERT in cells and tumor-bearing mice in vivo. RESULTS Our results indicate that TERT expression is associated with elevated NADH in multiple cancers, including glioblastoma, oligodendroglioma, melanoma, neuroblastoma, and hepatocellular carcinoma. Mechanistically, TERT acts via the metabolic regulator FOXO1 to upregulate nicotinamide phosphoribosyl transferase, which is the key enzyme for NAD+ biosynthesis, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, which converts NAD+ to NADH. Because NADH is essential for pyruvate flux to lactate, we show that 2H-MRS-based assessment of lactate production from [U-2H]-pyruvate reports on TERT expression in preclinical tumor models in vivo, including at clinical field strength (3T). Importantly, [U-2H]-pyruvate reports on early response to therapy in mice bearing orthotopic patient-derived gliomas at early timepoints before radiographic alterations can be visualized by MRI. CONCLUSIONS Elevated NADH is a metabolic consequence of TERT expression in cancer. Importantly, [U-2H]-pyruvate reports on early response to therapy, prior to anatomic alterations, thereby providing clinicians with a novel tool for assessment of tumor burden and treatment response in cancer.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Meryssa Tran
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Carter Barger
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
113
|
Dwivedi DK, Jagannathan NR. Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:587-608. [PMID: 35867236 DOI: 10.1007/s10334-022-01031-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Current challenges of using serum prostate-specific antigen (PSA) level-based screening, such as the increased false positive rate, inability to detect clinically significant prostate cancer (PCa) with random biopsy, multifocality in PCa, and the molecular heterogeneity of PCa, can be addressed by integrating advanced multiparametric MR imaging (mpMRI) approaches into the diagnostic workup of PCa. The standard method for diagnosing PCa is a transrectal ultrasonography (TRUS)-guided systematic prostate biopsy, but it suffers from sampling errors and frequently fails to detect clinically significant PCa. mpMRI not only increases the detection of clinically significant PCa, but it also helps to reduce unnecessary biopsies because of its high negative predictive value. Furthermore, non-Cartesian image acquisition and compressed sensing have resulted in faster MR acquisition with improved signal-to-noise ratio, which can be used in quantitative MRI methods such as dynamic contrast-enhanced (DCE)-MRI. With the growing emphasis on the role of pre-biopsy mpMRI in the evaluation of PCa, there is an increased demand for innovative MRI methods that can improve PCa grading, detect clinically significant PCa, and biopsy guidance. To meet these demands, in addition to routine T1-weighted, T2-weighted, DCE-MRI, diffusion MRI, and MR spectroscopy, several new MR methods such as restriction spectrum imaging, vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) method, hybrid multi-dimensional MRI, luminal water imaging, and MR fingerprinting have been developed for a better characterization of the disease. Further, with the increasing interest in combining MR data with clinical and genomic data, there is a growing interest in utilizing radiomics and radiogenomics approaches. These big data can also be utilized in the development of computer-aided diagnostic tools, including automatic segmentation and the detection of clinically significant PCa using machine learning methods.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Radiodiagnosis, King George Medical University, Lucknow, UP, 226 003, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, TN, 603 103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, TN, 600 116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, TN, 600 036, India.
| |
Collapse
|
114
|
Bondar O, Cavallari E, Carrera C, Aime S, Reineri F. Effect of the hydrogenation solvent in the PHIP-SAH hyperpolarization of [1-13C]pyruvate. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
115
|
DeBerardinis RJ, Keshari KR. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell 2022; 185:2678-2689. [PMID: 35839759 PMCID: PMC9469798 DOI: 10.1016/j.cell.2022.06.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
Metabolic anomalies contribute to tissue dysfunction. Current metabolism research spans from organelles to populations, and new technologies can accommodate investigation across these scales. Here, we review recent advancements in metabolic analysis, including small-scale metabolomics techniques amenable to organelles and rare cell types, functional screening to explore how cells respond to metabolic stress, and imaging approaches to non-invasively assess metabolic perturbations in diseases. We discuss how metabolomics provides an informative phenotypic dimension that complements genomic analysis in Mendelian and non-Mendelian disorders. We also outline pressing challenges and how addressing them may further clarify the biochemical basis of human disease.
Collapse
Affiliation(s)
- Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
116
|
Zaccagna F, McLean MA, Grist JT, Kaggie J, Mair R, Riemer F, Woitek R, Gill AB, Deen S, Daniels CJ, Ursprung S, Schulte RF, Allinson K, Chhabra A, Laurent MC, Locke M, Frary A, Hilborne S, Patterson I, Carmo BD, Slough R, Wilkinson I, Basu B, Wason J, Gillard JH, Matys T, Watts C, Price SJ, Santarius T, Graves MJ, Jefferies S, Brindle KM, Gallagher FA. Imaging Glioblastoma Metabolism by Using Hyperpolarized [1- 13C]Pyruvate Demonstrates Heterogeneity in Lactate Labeling: A Proof of Principle Study. Radiol Imaging Cancer 2022; 4:e210076. [PMID: 35838532 PMCID: PMC9360994 DOI: 10.1148/rycan.210076] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Mary A. McLean
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - James T. Grist
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Joshua Kaggie
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Richard Mair
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Frank Riemer
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ramona Woitek
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Andrew B. Gill
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Surrin Deen
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Charlie J. Daniels
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Stephan Ursprung
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Rolf F. Schulte
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Kieren Allinson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Anita Chhabra
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Marie-Christine Laurent
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Matthew Locke
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Amy Frary
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Sarah Hilborne
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ilse Patterson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Bruno D. Carmo
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Rhys Slough
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ian Wilkinson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Bristi Basu
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - James Wason
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Jonathan H. Gillard
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Tomasz Matys
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Colin Watts
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Stephen J. Price
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Thomas Santarius
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Martin J. Graves
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Sarah Jefferies
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Kevin M. Brindle
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ferdia A. Gallagher
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| |
Collapse
|
117
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
118
|
Park H, Wang Q. State-of-the-art accounts of hyperpolarized 15N-labeled molecular imaging probes for magnetic resonance spectroscopy and imaging. Chem Sci 2022; 13:7378-7391. [PMID: 35872812 PMCID: PMC9241963 DOI: 10.1039/d2sc01264b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarized isotope-labeled agents have significantly advanced nuclear magnetic resonance spectroscopy and imaging (MRS/MRI) of physicochemical activities at molecular levels. An emerging advance in this area is exciting developments of 15N-labeled hyperpolarized MR agents to enable acquisition of highly valuable information that was previously inaccessible and expand the applications of MRS/MRI beyond commonly studied 13C nuclei. This review will present recent developments of these hyperpolarized 15N-labeled molecular imaging probes, ranging from endogenous and drug molecules, and chemical sensors, to various 15N-tagged biomolecules. Through these examples, this review will provide insights into the target selection and probe design rationale and inherent challenges of HP imaging in hopes of facilitating future developments of 15N-based biomedical imaging agents and their applications.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University Durham NC 27708 USA
| | - Qiu Wang
- Department of Chemistry, Duke University Durham NC 27708 USA
| |
Collapse
|
119
|
Hyperpolarized [5- 13C,4,4- 2H 2,5- 15N]-L-glutamine provides a means of annotating in vivo metabolic utilization of glutamine. Proc Natl Acad Sci U S A 2022; 119:e2120595119. [PMID: 35512101 PMCID: PMC9172133 DOI: 10.1073/pnas.2120595119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glutamine is the most abundant amino acid in human plasma, although it is challenging to determine glutamine’s metabolic fate noninvasively. In this work, we utilize established chemical methods to develop a platform for imaging glutamine metabolism using hyperpolarized magnetic resonance imaging. Using this strategy, we are able to spatially measure glutaminolysis in vivo as well as develop a biomarker for the inhibition of glutaminase. Combining this biomarker with isotope tracing metabolomics connects this inhibition to reduced glutamine contribution to the tricarboxylic acid cycle. This provides an approach for future imaging of glutamine metabolism in humans. Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.
Collapse
|
120
|
Sharma T, Zhang X. Study of B1 and SAR Field Distribution for loop coil with different bending angles at 3T. PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE ... SCIENTIFIC MEETING AND EXHIBITION. INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE. SCIENTIFIC MEETING AND EXHIBITION 2022; 30:3578. [PMID: 36071704 PMCID: PMC9445055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Tripta Sharma
- Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
121
|
Reynolds S, Kazan SM, Anton A, Alizadeh T, Gunn RN, Paley MN, Tozer GM, Cunningham VJ. Kinetic modelling of dissolution dynamic nuclear polarisation 13 C magnetic resonance spectroscopy data for analysis of pyruvate delivery and fate in tumours. NMR IN BIOMEDICINE 2022; 35:e4650. [PMID: 34841602 DOI: 10.1002/nbm.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/19/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Dissolution dynamic nuclear polarisation (dDNP) of 13 C-labelled pyruvate in magnetic resonance spectroscopy/imaging (MRS/MRSI) has the potential for monitoring tumour progression and treatment response. Pyruvate delivery, its metabolism to lactate and efflux were investigated in rat P22 sarcomas following simultaneous intravenous administration of hyperpolarised 13 C-labelled pyruvate (13 C1 -pyruvate) and urea (13 C-urea), a nonmetabolised marker. A general mathematical model of pyruvate-lactate exchange, incorporating an arterial input function (AIF), enabled the losses of pyruvate and lactate from tumour to be estimated, in addition to the clearance rate of pyruvate signal from blood into tumour, Kip , and the forward and reverse fractional rate constants for pyruvate-lactate signal exchange, kpl and klp . An analogous model was developed for urea, enabling estimation of urea tumour losses and the blood clearance parameter, Kiu . A spectral fitting procedure to blood time-course data proved superior to assuming a gamma-variate form for the AIFs. Mean arterial blood pressure marginally correlated with clearance rates. Kiu equalled Kip , indicating equivalent permeability of the tumour vasculature to urea and pyruvate. Fractional loss rate constants due to effluxes of pyruvate, lactate and urea from tumour tissue into blood (kpo , klo and kuo , respectively) indicated that T1 s and the average flip angle, θ, obtained from arterial blood were poor surrogates for these parameters in tumour tissue. A precursor-product model, using the tumour pyruvate signal time-course as the input for the corresponding lactate signal time-course, was modified to account for the observed delay between them. The corresponding fractional rate constant, kavail , most likely reflected heterogeneous tumour microcirculation. Loss parameters, estimated from this model with different TRs, provided a lower limit on the estimates of tumour T1 for lactate and urea. The results do not support use of hyperpolarised urea for providing information on the tumour microcirculation over and above what can be obtained from pyruvate alone. The results also highlight the need for rigorous processes controlling signal quantitation, if absolute estimations of biological parameters are required.
Collapse
Affiliation(s)
- Steven Reynolds
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Samira M Kazan
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Adriana Anton
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Tooba Alizadeh
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, London, UK
| | - Martyn N Paley
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Gillian M Tozer
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
122
|
Ye Z, Song B, Lee PM, Ohliger MA, Laustsen C. Hyperpolarized carbon 13 MRI in liver diseases: Recent advances and future opportunities. Liver Int 2022; 42:973-983. [PMID: 35230742 PMCID: PMC9313895 DOI: 10.1111/liv.15222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging (HP 13 C MRI) is a recently translated metabolic imaging technique. With dissolution dynamic nuclear polarization (d-DNP), more than 10 000-fold signal enhancement can be readily reached, making it possible to visualize real-time metabolism and specific substrate-to-metabolite conversions in the liver after injecting carbon-13 labelled probes. Increasing evidence suggests that HP 13 C MRI is a potential tool in detecting liver abnormalities, predicting disease progression and monitoring response treatment. In this review, we will introduce the recent progresses of HP 13 C MRI in diffuse liver diseases and liver malignancies and discuss its future opportunities from a clinical perspective, hoping to provide a comprehensive overview of this novel technique in liver diseases and highlight its scientific and clinical potential in the field of hepatology.
Collapse
Affiliation(s)
- Zheng Ye
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Bin Song
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Philip M. Lee
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
123
|
Fok WYR, Grashei M, Skinner JG, Menze BH, Schilling F. Prediction of multiple pH compartments by deep learning in magnetic resonance spectroscopy with hyperpolarized 13C-labelled zymonic acid. EJNMMI Res 2022; 12:24. [PMID: 35460436 PMCID: PMC9035201 DOI: 10.1186/s13550-022-00894-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hyperpolarization enhances the sensitivity of nuclear magnetic resonance experiments by between four and five orders of magnitude. Several hyperpolarized sensor molecules have been introduced that enable high sensitivity detection of metabolism and physiological parameters. However, hyperpolarized magnetic resonance spectroscopy imaging (MRSI) often suffers from poor signal-to-noise ratio and spectral analysis is complicated by peak overlap. Here, we study measurements of extracellular pH (pHe) by hyperpolarized zymonic acid, where multiple pHe compartments, such as those observed in healthy kidney or other heterogeneous tissue, result in a cluster of spectrally overlapping peaks, which is hard to resolve with conventional spectroscopy analysis routines. METHODS We investigate whether deep learning methods can yield improved pHe prediction in hyperpolarized zymonic acid spectra of multiple pHe compartments compared to conventional line fitting. As hyperpolarized 13C-MRSI data sets are often small, a convolutional neural network (CNN) and a multilayer perceptron (MLP) were trained with either a synthetic or a mixed (synthetic and augmented) data set of acquisitions from the kidneys of healthy mice. RESULTS Comparing the networks' performances compartment-wise on a synthetic test data set and eight real kidney data shows superior performance of CNN compared to MLP and equal or superior performance compared to conventional line fitting. For correct prediction of real kidney pHe values, training with a mixed data set containing only 0.5% real data shows a large improvement compared to training with synthetic data only. Using a manual segmentation approach, pH maps of kidney compartments can be improved by neural network predictions for voxels including three pH compartments. CONCLUSION The results of this study indicate that CNNs offer a reliable, accurate, fast and non-interactive method for analysis of hyperpolarized 13C MRS and MRSI data, where low amounts of acquired data can be complemented to achieve suitable network training.
Collapse
Affiliation(s)
- Wai-Yan Ryana Fok
- Department of Informatics, Technical University of Munich, 85748, Garching, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Bjoern H Menze
- Department of Informatics, Technical University of Munich, 85748, Garching, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
124
|
Conversion of Hyperpolarized [1- 13C]Pyruvate in Breast Cancer Cells Depends on Their Malignancy, Metabolic Program and Nutrient Microenvironment. Cancers (Basel) 2022; 14:cancers14071845. [PMID: 35406616 PMCID: PMC8997828 DOI: 10.3390/cancers14071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperpolarized magnetic resonance spectroscopy (MRS) is a technology for characterizing tumors in vivo based on their metabolic activities. The conversion rates (kpl) of hyperpolarized [1-13C]pyruvate to [1-13C]lactate depend on monocarboxylate transporters (MCT) and lactate dehydrogenase (LDH); these are also indicators of tumor malignancy. An unresolved issue is how glucose and glutamine availability in the tumor microenvironment affects metabolic characteristics of the cancer and how this relates to kpl-values. Two breast cancer cells of different malignancy (MCF-7, MDA-MB-231) were cultured in media containing defined combinations of low glucose (1 mM; 2.5 mM) and glutamine (0.1 mM; 1 mM) and analyzed for pyruvate uptake, intracellular metabolite levels, LDH and pyruvate kinase activities, and 13C6-glucose-derived metabolomics. The results show variability of kpl with the different glucose/glutamine conditions, congruent with glycolytic activity, but not with LDH activity or the Warburg effect; this suggests metabolic compartmentation. Remarkably, kpl-values were almost two-fold higher in MCF-7 than in the more malignant MDA-MB-231 cells, the latter showing a higher flux of 13C-glucose-derived pyruvate to the TCA-cycle metabolites 13C2-citrate and 13C3-malate, i.e., pyruvate decarboxylation and carboxylation, respectively. Thus, MRS with hyperpolarized [1-13C-pyruvate] is sensitive to both the metabolic program and the nutritional state of cancer cells.
Collapse
|
125
|
Saito Y, Yatabe H, Tamura I, Kondo Y, Ishida R, Seki T, Hiraga K, Eguchi A, Takakusagi Y, Saito K, Oshima N, Ishikita H, Yamamoto K, Krishna MC, Sando S. Structure-guided design enables development of a hyperpolarized molecular probe for the detection of aminopeptidase N activity in vivo. SCIENCE ADVANCES 2022; 8:eabj2667. [PMID: 35353577 PMCID: PMC8967239 DOI: 10.1126/sciadv.abj2667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dynamic nuclear polarization (DNP) is a cutting-edge technique that markedly enhances the detection sensitivity of molecules using nuclear magnetic resonance (NMR)/magnetic resonance imaging (MRI). This methodology enables real-time imaging of dynamic metabolic status in vivo using MRI. To expand the targetable metabolic reactions, there is a demand for developing exogenous, i.e., artificially designed, DNP-NMR molecular probes; however, complying with the requirements of practical DNP-NMR molecular probes is challenging because of the lack of established design guidelines. Here, we report Ala-[1-13C]Gly-d2-NMe2 as a DNP-NMR molecular probe for in vivo detection of aminopeptidase N activity. We developed this probe rationally through precise structural investigation, calculation, biochemical assessment, and advanced molecular design to achieve rapid and detectable responses to enzyme activity in vivo. With the fabricated probe, we successfully detected enzymatic activity in vivo. This report presents a comprehensive approach for the development of artificially derived, practical DNP-NMR molecular probes through structure-guided molecular design.
Collapse
Affiliation(s)
- Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Yatabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Ishida
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomohiro Seki
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keita Hiraga
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Eguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science (iQMS), National Institutes for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Nobu Oshima
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Kazutoshi Yamamoto
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (M.C.K.); (S.S.)
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Corresponding author. (M.C.K.); (S.S.)
| |
Collapse
|
126
|
Combined HP 13C Pyruvate and 13C-Glucose Fluxomic as a Potential Marker of Response to Targeted Therapies in YUMM1.7 Melanoma Xenografts. Biomedicines 2022; 10:biomedicines10030717. [PMID: 35327519 PMCID: PMC8945537 DOI: 10.3390/biomedicines10030717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
A vast majority of BRAF V600E mutated melanoma patients will develop resistance to combined BRAF/MEK inhibition after initial clinical response. Resistance to targeted therapy is described to be accompanied by specific metabolic changes in melanoma. The aim of this work was to evaluate metabolic imaging using 13C-MRS (Magnetic Resonance Spectroscopy) as a marker of response to BRAF/MEK inhibition in a syngeneic melanoma model. Tumor growth was significantly delayed in mice bearing YUMM1.7 melanoma xenografts treated with the BRAF inhibitor vemurafenib, and/or with the MEK inhibitor trametinib, in comparison with the control group. 13C-MRS was performed in vivo after injection of hyperpolarized (HP) 13C-pyruvate, at baseline and 24 h after treatment, to evaluate dynamic changes in pyruvate-lactate exchange. Furthermore, ex vivo 13C-MRS steady state metabolic tracing experiments were performed after U-13C-glucose or 5-13C-glutamine injection, 24 h after treatment. The HP 13C-lactate-to-pyruvate ratio was not modified in response to BRAF/MEK inhibition, whereas the production of 13C-lactate from 13C-glucose was significantly reduced 24 h after treatment with vemurafenib, trametinib, or with the combined inhibitors. Conversely, 13C-glutamine metabolism was not modified in response to BRAF/MEK inhibition. In conclusion, we identified 13C-glucose fluxomic as a potential marker of response to BRAF/MEK inhibition in YUMM1.7 melanoma xenografts.
Collapse
|
127
|
Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, Rebbeck TR, Balasubramanian S. Early detection of cancer. Science 2022; 375:eaay9040. [PMID: 35298272 DOI: 10.1126/science.aay9040] [Citation(s) in RCA: 466] [Impact Index Per Article: 155.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced stage when diagnosed. Early detection of cancer or precancerous change allows early intervention to try to slow or prevent cancer development and lethality. To achieve early detection of all cancers, numerous challenges must be overcome. It is vital to better understand who is at greatest risk of developing cancer. We also need to elucidate the biology and trajectory of precancer and early cancer to identify consequential disease that requires intervention. Insights must be translated into sensitive and specific early detection technologies and be appropriately evaluated to support practical clinical implementation. Interdisciplinary collaboration is key; advances in technology and biological understanding highlight that it is time to accelerate early detection research and transform cancer survival.
Collapse
Affiliation(s)
| | - Sangeeta Bhatia
- Marble Center for Cancer Nanomedicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lisa M Coussens
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence at the University of Manchester and University College London, University of Manchester, Manchester, UK
- CRUK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Sadik Esener
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Peter Kuhn
- USC Michelson Center Convergent Science Institute in Cancer, University of Southern California, Los Angeles, CA, USA
| | - Timothy R Rebbeck
- Division of Population Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
128
|
Candiota AP, Arús C. Establishing Imaging Biomarkers of Host Immune System Efficacy during Glioblastoma Therapy Response: Challenges, Obstacles and Future Perspectives. Metabolites 2022; 12:metabo12030243. [PMID: 35323686 PMCID: PMC8950145 DOI: 10.3390/metabo12030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
This hypothesis proposal addresses three major questions: (1) Why do we need imaging biomarkers for assessing the efficacy of immune system participation in glioblastoma therapy response? (2) Why are they not available yet? and (3) How can we produce them? We summarize the literature data supporting the claim that the immune system is behind the efficacy of most successful glioblastoma therapies but, unfortunately, there are no current short-term imaging biomarkers of its activity. We also discuss how using an immunocompetent murine model of glioblastoma, allowing the cure of mice and the generation of immune memory, provides a suitable framework for glioblastoma therapy response biomarker studies. Both magnetic resonance imaging and magnetic resonance-based metabolomic data (i.e., magnetic resonance spectroscopic imaging) can provide non-invasive assessments of such a system. A predictor based in nosological images, generated from magnetic resonance spectroscopic imaging analyses and their oscillatory patterns, should be translational to clinics. We also review hurdles that may explain why such an oscillatory biomarker was not reported in previous imaging glioblastoma work. Single shot explorations that neglect short-term oscillatory behavior derived from immune system attack on tumors may mislead actual response extent detection. Finally, we consider improvements required to properly predict immune system-mediated early response (1–2 weeks) to therapy. The sensible use of improved biomarkers may enable translatable evidence-based therapeutic protocols, with the possibility of extending preclinical results to human patients.
Collapse
Affiliation(s)
- Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
129
|
Koptyug IV, Stern Q, Jannin S, Elliott SJ. Frozen water NMR lineshape analysis enables absolute polarization quantification. Phys Chem Chem Phys 2022; 24:5956-5964. [PMID: 35195621 DOI: 10.1039/d1cp05127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Typical magnetic resonance experiments are routinely limited by weak signal responses. In some cases, the low intrinsic sensitivity can be alleviated by the implementation of hyperpolarization technologies. Dissolution-dynamic nuclear polarization offers a means of hyperpolarizing small molecules. Hyperpolarized water is employed in several dynamic nuclear polarization studies, and hence accurate and rapid quantification of the 1H polarization level is of utmost importance. The solid-state nuclear magnetic resonance spectrum of water acquired under dissolution-dynamic nuclear polarization conditions has revealed lineshapes which become asymmetric at high levels of 1H polarization, which is an interesting fundamental problem in itself, but also complicates data interpretation and can prevent correct estimations of polarization levels achieved. In previous studies, attempts to simulate the 1H spectral lineshape of water as a function of the 1H polarization led to significant disagreement with the experimental results. Here we propose and demonstrate that such simulations, and therefore polarization quantification, can be implemented accurately, in particular by taking into account the detector dead time during 1H signal acquisition that can lead to severe spectral distortions. Based on these findings, we employed an echo-based radiofrequency pulse sequence to achieve distortion-free 1H spectra of hyperpolarized water, and adequate simulations of these echo-based spectra were implemented to extract the absolute 1H polarization level from the hyperpolarized water signal only, thus alleviating the need for lengthy and insensitive measurements of thermal equilibrium signals.
Collapse
Affiliation(s)
- Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Quentin Stern
- Univ. Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100 Villeurbanne, France.
| | - Sami Jannin
- Univ. Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100 Villeurbanne, France.
| | - Stuart J Elliott
- Univ. Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100 Villeurbanne, France.
| |
Collapse
|
130
|
Joalland B, Chekmenev EY. Scanning Nuclear Spin Level Anticrossings by Constant-Adiabaticity Magnetic Field Sweeping of Parahydrogen-Induced 13C Polarization. J Phys Chem Lett 2022; 13:1925-1930. [PMID: 35180341 DOI: 10.1021/acs.jpclett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The polarization transfer between 1H protons and 13C heteronuclei is of central importance in the development of parahydrogen-based hyperpolarization techniques dedicated to the production of 13C-hyperpolarized molecular probes. Here we unveil the spin conversion efficiency in the polarization transfer between parahydrogen-derived protons and 13C nuclei of an ethyl acetate biomolecule, formed by the homogeneous hydrogenation of vinyl acetate with parahydrogen, obtained by applying constant-adiabaticity sweep profiles at ultralow magnetic fields. The experiments employed natural C-13 abundance. Spin level anticrossings can be detected experimentally using a scanning approach and are selected to improve the polarization transfer efficiency. 13C polarization of up to 12% is readily achieved on the carbonyl center. The results demonstrate the simplicity, reproducibility, and high conversion efficiency of the technique, opening the door for a refined manipulation of hyperpolarized spins in both basic science experiments (e.g., state-selected spectroscopy in the strong-coupling regime) and biomedical nuclear magnetic resonance applications.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
131
|
Ehrhardt MJ, Gallagher FA, McLean MA, Schönlieb CB. Enhancing the spatial resolution of hyperpolarized carbon-13 MRI of human brain metabolism using structure guidance. Magn Reson Med 2022; 87:1301-1312. [PMID: 34687088 DOI: 10.1002/mrm.29045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Dynamic nuclear polarization is an emerging imaging method that allows noninvasive investigation of tissue metabolism. However, the relatively low metabolic spatial resolution that can be achieved limits some applications, and improving this resolution could have important implications for the technique. METHODS We propose to enhance the 3D resolution of carbon-13 magnetic resonance imaging (13 C-MRI) using the structural information provided by hydrogen-1 MRI (1 H-MRI). The proposed approach relies on variational regularization in 3D with a directional total variation regularizer, resulting in a convex optimization problem which is robust with respect to the parameters and can efficiently be solved by many standard optimization algorithms. Validation was carried out using an in silico phantom, an in vitro phantom and in vivo data from four human volunteers. RESULTS The clinical data used in this study were upsampled by a factor of 4 in-plane and by a factor of 15 out-of-plane, thereby revealing occult information. A key finding is that 3D super-resolution shows superior performance compared to several 2D super-resolution approaches: for example, for the in silico data, the mean-squared-error was reduced by around 40% and for all data produced increased anatomical definition of the metabolic imaging. CONCLUSION The proposed approach generates images with enhanced anatomical resolution while largely preserving the quantitative measurements of metabolism. Although the work requires clinical validation against tissue measures of metabolism, it offers great potential in the field of 13 C-MRI and could significantly improve image quality in the future.
Collapse
Affiliation(s)
- Matthias J Ehrhardt
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Institute for Mathematical Innovation, University of Bath, Bath, UK
| | | | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Carola-Bibiane Schönlieb
- Department for Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| |
Collapse
|
132
|
Bøgh N, Gordon JW, Hansen ESS, Bok RA, Blicher JU, Hu JY, Larson PEZ, Vigneron DB, Laustsen C. Initial Experience on Hyperpolarized [1- 13C]Pyruvate MRI Multicenter Reproducibility-Are Multicenter Trials Feasible? Tomography 2022; 8:585-595. [PMID: 35314625 PMCID: PMC8938827 DOI: 10.3390/tomography8020048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate allows real-time and pathway specific clinical detection of otherwise unimageable in vivo metabolism. However, the comparability between sites and protocols is unknown. Here, we provide initial experiences on the agreement of hyperpolarized MRI between sites and protocols by repeated imaging of same healthy volunteers in Europe and the US. METHODS Three healthy volunteers traveled for repeated multicenter brain MRI exams with hyperpolarized [1-13C]pyruvate within one year. First, multisite agreement was assessed with the same echo-planar imaging protocol at both sites. Then, this was compared to a variable resolution echo-planar imaging protocol. In total, 12 examinations were performed. Common metrics of 13C-pyruvate to 13C-lactate conversion were calculated, including the kPL, a model-based kinetic rate constant, and its model-free equivalents. Repeatability was evaluated with intraclass correlation coefficients (ICC) for absolute agreement computed using two-way random effects models. RESULTS The mean kPL across all examinations in the multisite comparison was 0.024 ± 0.0016 s-1. The ICC of the kPL was 0.83 (p = 0.14) between sites and 0.7 (p = 0.09) between examinations of the same volunteer at any of the two sites. For the model-free metrics, the lactate Z-score had similar site-to-site ICC, while it was considerably lower for the lactate-to-pyruvate ratio. CONCLUSIONS Estimation of metabolic conversion from hyperpolarized [1-13C]pyruvate to lactate using model-based metrics such as kPL suggests close agreement between sites and examinations in volunteers. Our initial results support harmonization of protocols, support multicenter studies, and inform their design.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (C.L.)
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.W.G.); (R.A.B.); (J.Y.H.); (P.E.Z.L.); (D.B.V.)
| | - Esben S. S. Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (C.L.)
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.W.G.); (R.A.B.); (J.Y.H.); (P.E.Z.L.); (D.B.V.)
| | - Jakob U. Blicher
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark;
| | - Jasmine Y. Hu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.W.G.); (R.A.B.); (J.Y.H.); (P.E.Z.L.); (D.B.V.)
- UC Berkeley—UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, CA 94720, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.W.G.); (R.A.B.); (J.Y.H.); (P.E.Z.L.); (D.B.V.)
- UC Berkeley—UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, CA 94720, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.W.G.); (R.A.B.); (J.Y.H.); (P.E.Z.L.); (D.B.V.)
- UC Berkeley—UCSF Graduate Program in Bioengineering, University of California San Francisco and University of California, Berkeley, CA 94720, USA
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (C.L.)
| |
Collapse
|
133
|
Perron S, Ouriadov A, Wawrzyn K, Hickling S, Fox MS, Serrai H, Santyr G. Application of a 2D frequency encoding sectoral approach to hyperpolarized 129Xe MRI at low field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107159. [PMID: 35183921 DOI: 10.1016/j.jmr.2022.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Inhaled hyperpolarized 129Xe MRI is a non-invasive and radiation risk free lung imaging method, which can directly measure the business unit of the lung where gas exchange occurs: the alveoli and acinar ducts (lung function). Currently, three imaging approaches have been demonstrated to be useful for hyperpolarized 129Xe MR in lungs: Fast Gradient Recalled Echo (FGRE), Radial Projection Reconstruction (PR), and spiral/cones. Typically, non-Cartesian acquisitions such as PR and spiral/cones require specific data post-processing, such as interpolating, regridding, and density-weighting procedures for image reconstruction, which often leads to smoothing effects and resolution degradation. On the other hand, Cartesian methods such as FGRE are not short-echo time (TE) methods; they suffer from imaging gradient-induced diffusion-weighting of the k-space center, and employ a significant number of radio-frequency (RF) pulses. Due to the non-renewable magnetization of the hyperpolarized media, the use of a large number of RF pulses (FGRE/PR) required for full k-space coverage is a significant limitation, especially for low field (<0.5 T) hyperpolarized gas MRI. We demonstrate an ultra-fast, purely frequency-encoded, Cartesian pulse sequence called Frequency-Encoding Sectoral (FES), which takes advantage of the long T2* of hyperpolarized 129Xe gas at low field strength (0.074 T). In contrast to PR/FGRE, it uses a much smaller number of RF pulses, and consequently maximizes image Signal-to-Noise Ratio (SNR) while shortening acquisition time. Additionally, FES does not suffer from non-uniform T2* decay leading to image blurring; a common issue with interleaved spirals/cones. The Cartesian k-space coverage of the proposed FES method does not require specific k-space data post-processing, unlike PR/FGRE and spiral/cones methods. Proton scans were used to compare the FES sequence to both FGRE and Phase Encoding Sectoral, in terms of their SNR values and imaging efficiency estimates. Using FES, proton and hyperpolarized 129Xe images were acquired from a custom hollow acrylic phantom (0.04L) and two normal rats (129Xe only), utilizing both single-breath and multiple-breath schemes. For the 129Xe phantom images, the apparent diffusion coefficient, T1, and T2* relaxation maps were acquired and generated. Blurring due to the T2* decay and B0 field variation were simulated to estimate dependence of the image resolution on the duration of the data acquisition windows (i.e. sector length), and temperature-induced resonance frequency shift from the low field magnet hardware.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada.
| | - Krzysztof Wawrzyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | | | - Matthew S Fox
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Hacene Serrai
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
134
|
Lar C, Radu S, Gál E, Fălămaş A, Szücs-Balázs JZ, Filip C, Petran A. Novel Synthetic Dopamine Analogues: Carbon-13/Nitrogen-15 Isotopic Labeling and Fluorescence Properties. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Claudia Lar
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Stelian Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Emese Gál
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Alexandra Fălămaş
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - József-Zsolt Szücs-Balázs
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Claudiu Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Anca Petran
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
135
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
136
|
Miyahira AK, Zarif JC, Coombs CC, Flavell RR, Russo JW, Zaidi S, Zhao D, Zhao SG, Pienta KJ, Soule HR. Prostate cancer research in the 21st century; report from the 2021 Coffey-Holden prostate cancer academy meeting. Prostate 2022; 82:169-181. [PMID: 34734426 PMCID: PMC8688282 DOI: 10.1002/pros.24262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The 2021 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research in the 21st Century," was held virtually, from June 24-25, 2021. METHODS The CHPCA Meeting is organized by the Prostate Cancer Foundation as a unique discussion-oriented meeting focusing on critical topics in prostate cancer research envisioned to bridge the next major advances in prostate cancer biology and treatment. The 2021 CHPCA Meeting was virtually attended by 89 investigators and included 31 talks over nine sessions. RESULTS Major topic areas discussed at the meeting included: cancer genomics and sequencing, functional genomic approaches to studying mediators of plasticity, emerging signaling pathways in metastatic castration resistant prostate cancer, Wnt signaling biology and the challenges of targeted therapy, clonal hematopoiesis, neuroendocrine cell plasticity and antitumor immunity, cancer immunotherapy and its synergizers, and imaging the tumor microenvironment and metabolism. DISCUSSION This meeting report summarizes the research presented at the 2021 CHPCA Meeting. We hope that publication of this knowledge will accelerate new understandings and the development of new biomarkers and treatments for prostate cancer.
Collapse
Affiliation(s)
| | - Jelani C. Zarif
- Department of Oncology, Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine C. Coombs
- Department of Medicine, Division of Hematology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Joshua W. Russo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Di Zhao
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Shuang G. Zhao
- Department of Human Oncology, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
137
|
Hyppönen V, Stenroos P, Nivajärvi R, Ardenkjaer-Larsen JH, Gröhn O, Paasonen J, Kettunen MI. Metabolism of hyperpolarised [1- 13 C]pyruvate in awake and anaesthetised rat brains. NMR IN BIOMEDICINE 2022; 35:e4635. [PMID: 34672399 DOI: 10.1002/nbm.4635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The use of hyperpolarised 13 C pyruvate for nononcological neurological applications has not been widespread so far, possibly due to delivery issues limiting the visibility of metabolites. First proof-of-concept results have indicated that metabolism can be detected in human brain, and this may supersede the results obtained in preclinical settings. One major difference between the experimental setups is that preclinical MRI/MRS routinely uses anaesthesia, which alters both haemodynamics and metabolism. Here, we used hyperpolarised [1-13 C]pyruvate to compare brain metabolism in awake rats and under isoflurane, urethane or medetomidine anaesthesia. Spectroscopic [1-13 C]pyruvate time courses measured sequentially showed that pyruvate-to-bicarbonate and pyruvate-to-lactate labelling rates were lower in isoflurane animals than awake animals. An increased bicarbonate-to-lactate ratio was observed in the medetomidine group compared with other groups. The study shows that hyperpolarised [1-13 C]pyruvate experiments can be performed in awake rats, thus avoiding anaesthesia-related issues. The results suggest that haemodynamics probably dominate the observed pyruvate-to-metabolite labelling rates and area-under-time course ratios of referenced to pyruvate. On the other hand, the results obtained with medetomidine suggest that the ratios are also modulated by the underlying cerebral metabolism. However, the ratios between intracellular metabolites were unchanged in awake compared with isoflurane-anaesthetised rats.
Collapse
Affiliation(s)
- Viivi Hyppönen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Stenroos
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Nivajärvi
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan Henrik Ardenkjaer-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Olli Gröhn
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Paasonen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
138
|
New aspects of parahydrogen-induced polarization for C2—C3 hydrocarbons using metal complexes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
139
|
Sushentsev N, McLean MA, Warren AY, Benjamin AJV, Brodie C, Frary A, Gill AB, Jones J, Kaggie JD, Lamb BW, Locke MJ, Miller JL, Mills IG, Priest AN, Robb FJL, Shah N, Schulte RF, Graves MJ, Gnanapragasam VJ, Brindle KM, Barrett T, Gallagher FA. Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer. Nat Commun 2022; 13:466. [PMID: 35075123 PMCID: PMC8786834 DOI: 10.1038/s41467-022-28069-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarised magnetic resonance imaging (HP 13C-MRI) is an emerging clinical technique to detect [1-13C]lactate production in prostate cancer (PCa) following intravenous injection of hyperpolarised [1-13C]pyruvate. Here we differentiate clinically significant PCa from indolent disease in a low/intermediate-risk population by correlating [1-13C]lactate labelling on MRI with the percentage of Gleason pattern 4 (%GP4) disease. Using immunohistochemistry and spatial transcriptomics, we show that HP 13C-MRI predominantly measures metabolism in the epithelial compartment of the tumour, rather than the stroma. MRI-derived tumour [1-13C]lactate labelling correlated with epithelial mRNA expression of the enzyme lactate dehydrogenase (LDHA and LDHB combined), and the ratio of lactate transporter expression between the epithelial and stromal compartments (epithelium-to-stroma MCT4). We observe similar changes in MCT4, LDHA, and LDHB between tumours with primary Gleason patterns 3 and 4 in an independent TCGA cohort. Therefore, HP 13C-MRI can metabolically phenotype clinically significant disease based on underlying metabolic differences in the epithelial and stromal tumour compartments.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arnold J V Benjamin
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Cara Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Amy Frary
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Andrew B Gill
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Julia Jones
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Benjamin W Lamb
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- School of Allied Health, Anglia Ruskin University, Cambridge, UK
| | - Matthew J Locke
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andrew N Priest
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | | | - Nimish Shah
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Martin J Graves
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
| | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
140
|
Tumor Metabolism Is Affected by Obesity in Preclinical Models of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030562. [PMID: 35158830 PMCID: PMC8833372 DOI: 10.3390/cancers14030562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Obesity promotes both development and progression of breast cancer. As a disease, obesity is followed by hyperglycemia, hyperinsulinemia, and hyperlipidemia. The impact of obesity, accumulation of fat depots, and related markers on the metabolism of tumors still remains poorly understood. The aim of this study is to characterize the putative differences in the metabolism of tumors from obese and lean mice. The findings reported here could help tailor personalized treatments targeting tumor metabolism in obese cancer patients by identifying the metabolic preferences of these tumors. Abstract Obesity is characterized by an excessive fat mass accumulation associated with multiple disorders, including impaired glucose homeostasis, altered adipokine levels, and hyperlipidemia. Despite clear associations between tumor progression and obesity, the effects of these disorders on tumor metabolism remain largely unknown. Thus, we studied the metabolic differences between tumors of obese and lean mice in murine models of triple-negative breast cancer (E0771 and PY8819). For this purpose, a real-time hyperpolarized 1-13C-pyruvate-to-lactate conversion was studied before and after glucose administration in fasting mice. This work was completed by U-13C glucose tracing experiments using nuclear magnetic resonance (NMR) spectroscopy, as well as mass spectrometry (MS). Ex vivo analyses included immunostainings of major lipid, glucose, and monocarboxylic acids transporters. On the one hand, we discovered that tumors of obese mice yield higher lactate/pyruvate ratios after glucose administration. On the other hand, we found that the same tumors produce higher levels of lactate and alanine from glucose than tumors from lean mice, while no differences on the expression of key transporters associated with glycolysis (i.e., GLUT1, MCT1, MCT4) have been observed. In conclusion, our data suggests that breast tumor metabolism is regulated by the host’s physiological status, such as obesity and diabetes.
Collapse
|
141
|
Adelabu I, TomHon P, Kabir MSH, Nantogma S, Abdulmojeed M, Mandzhieva I, Ettedgui J, Swenson RE, Krishna MC, Theis T, Goodson BM, Chekmenev EY. Order-Unity 13 C Nuclear Polarization of [1- 13 C]Pyruvate in Seconds and the Interplay of Water and SABRE Enhancement. Chemphyschem 2022; 23:e202100839. [PMID: 34813142 PMCID: PMC8770613 DOI: 10.1002/cphc.202100839] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/21/2023]
Abstract
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13 C1 spins of [1-13 C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2 O. Order-unity 13 C (>50 %) polarization of catalyst-bound [1-13 C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13 C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3 OD. Efficient 13 C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s-1 versus ∼0.1 s-1 , respectively, for a 6 mM catalyst-[1-13 C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13 C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13 C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Mohammad S H Kabir
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Shiraz Nantogma
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland, 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland, 20850, USA
| | - Murali C Krishna
- Center for Cancer Research, National Cancer Institute, Bethesda, 31 Center Drive, Maryland, 20814, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospect, 14, 119991, Moscow, Russia
| |
Collapse
|
142
|
Lemberg KM, Gori SS, Tsukamoto T, Rais R, Slusher BS. Clinical development of metabolic inhibitors for oncology. J Clin Invest 2022; 132:e148550. [PMID: 34981784 PMCID: PMC8718137 DOI: 10.1172/jci148550] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic inhibitors have been used in oncology for decades, dating back to antimetabolites developed in the 1940s. In the past 25 years, there has been increased recognition of metabolic derangements in tumor cells leading to a resurgence of interest in targeting metabolism. More recently there has been recognition that drugs targeting tumor metabolism also affect the often acidic, hypoxic, immunosuppressive tumor microenvironment (TME) and non-tumor cell populations within it, including immune cells. Here we review small-molecule metabolic inhibitors currently in clinical development for oncology applications. For each agent, we evaluate the preclinical studies demonstrating antitumor and TME effects and review ongoing clinical trials. The goal of this Review is to provide an overview of the landscape of metabolic inhibitors in clinical development for oncology.
Collapse
Affiliation(s)
- Kathryn M. Lemberg
- Johns Hopkins Drug Discovery
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center
| | | | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery
- Department of Neurology
- Department of Pharmacology and Molecular Sciences
| | - Rana Rais
- Johns Hopkins Drug Discovery
- Department of Neurology
- Department of Pharmacology and Molecular Sciences
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center
- Department of Neurology
- Department of Pharmacology and Molecular Sciences
- Department of Medicine, and
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
143
|
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022; 36:144-159. [PMID: 34428981 PMCID: PMC8856011 DOI: 10.1089/ars.2021.0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
144
|
Pudakalakatti S, Raj P, Salzillo TC, Enriquez JS, Bourgeois D, Dutta P, Titus M, Shams S, Bhosale P, Kim M, McAllister F, Bhattacharya PK. Metabolic Imaging Using Hyperpolarization for Assessment of Premalignancy. Methods Mol Biol 2022; 2435:169-180. [PMID: 34993946 PMCID: PMC9352438 DOI: 10.1007/978-1-0716-2014-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an unmet need for noninvasive surrogate markers that can help identify premalignant lesions across different tumor types. Here we describe the methodology and technical details of protocols employed for in vivo 13C pyruvate metabolic imaging experiments. The goal of the method described is to identify and understand metabolic changes, to enable detection of pancreatic premalignant lesions, as a proof of concept of the high sensitivity of this imaging modality.
Collapse
Affiliation(s)
- Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyank Raj
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - José S Enriquez
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dontrey Bourgeois
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Statistics, Rice University, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shayan Shams
- Department of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Priya Bhosale
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florencia McAllister
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
145
|
Joalland B, Theis T, Appelt S, Chekmenev EY. Background‐Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio) Wayne State University Karmanos Cancer Institute (KCI) 5101 Cass Ave Detroit MI 48202 USA
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University 52056 Aachen Germany
- Central Institute for Engineering Electronics and Analytics—Electronic Systems (ZEA 2) Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio) Wayne State University Karmanos Cancer Institute (KCI) 5101 Cass Ave Detroit MI 48202 USA
- Russian Academy of Sciences, Leninskiy Prospect 14, 119991 Moscow Russia
| |
Collapse
|
146
|
Joalland B, Theis T, Appelt S, Chekmenev EY. Background-Free Proton NMR Spectroscopy with Radiofrequency Amplification by Stimulated Emission Radiation. Angew Chem Int Ed Engl 2021; 60:26298-26302. [PMID: 34459080 PMCID: PMC8629966 DOI: 10.1002/anie.202108939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 01/13/2023]
Abstract
We report on the utility of Radiofrequency Amplification by Stimulated Emission Radiation (RASER) for background-free proton detection of hyperpolarized biomolecules. We performed hyperpolarization of ≈0.3 M ethyl acetate via pairwise parahydrogen addition to vinyl acetate. A proton NMR signal with signal-to-noise ratio exceeding 100 000 was detected without radio-frequency excitation at the clinically relevant magnetic field of 1.4 T using a standard (non-cryogenic) inductive detector with quality factor of Q=68. No proton background signal was observed from protonated solvent (methanol) or other added co-solvents such as ethanol, water or bovine serum. Moreover, we demonstrate RASER detection without radio-frequency excitation of a bolus of hyperpolarized contrast agent in biological fluid. Completely background-free proton detection of hyperpolarized contrast agents in biological media paves the way to new applications in the areas of high-resolution NMR spectroscopy and in vivo spectroscopy and imaging.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-Electronic Systems (ZEA 2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospect, 14, 119991, Moscow, Russia
| |
Collapse
|
147
|
Frahm AB, Hill D, Katsikis S, Andreassen T, Ardenkjær-Larsen JH, Bathen TF, Moestue SA, Jensen PR, Lerche MH. Classification and biomarker identification of prostate tissue from TRAMP mice with hyperpolarized 13C-SIRA. Talanta 2021; 235:122812. [PMID: 34517669 DOI: 10.1016/j.talanta.2021.122812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Hyperpolarized 13C isotope resolved spectroscopy boosts NMR signal intensity, which improves signal detection and allows metabolic fluxes to be analyzed. Such hyperpolarized flux data may offer new approaches to tissue classification and biomarker identification that could be translated in vivo. Here we used hyperpolarized stable isotope resolved analysis (SIRA) to measure metabolite specific 13C isotopic enrichments in the central carbon metabolism of mouse prostate. Prostate and tumor tissue samples were acquired from transgenic adenocarcinomas of the mouse prostate (TRAMP) mice. Before euthanasia, mice were injected with [U-13C]glucose intraperitoneally (i.p.). Polar metabolite extracts were prepared, and hyperpolarized 1D-13C NMR spectra were obtained from normal prostate (n = 19) and cancer tissue (n = 19) samples. Binary classification and feature analysis was performed to make a separation model and to investigate differences between samples originating from normal and cancerous prostate tissue, respectively. Hyperpolarized experiments were carried out according to a standardized protocol, which showed a high repeatability (CV = 15%) and an average linewidth in the 1D-13C NMR spectra of 2 ± 0.5 Hz. The resolution of the hyperpolarized 1D-13C spectra was high with little signal overlap in the carbonyl region and metabolite identification was easily accomplished. A discrimination with 95% success rate could be made between samples originating from TRAMP mice prostate and tumor tissue based on isotopomers from uniquely identified metabolites. Hyperpolarized 13C-SIRA allowed detailed metabolic information to be obtained from tissue specimens. The positional information of 13C isotopic enrichments lead to easily interpreted features responsible for high predictive classification of tissue types. This analytical approach has matured, and the robust experimental protocols currently available allow systematic tracking of metabolite flux ex vivo.
Collapse
Affiliation(s)
- Anne B Frahm
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Ørsteds plads 349, 2800, Kongens Lyngby, Denmark
| | - Deborah Hill
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sotirios Katsikis
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Ørsteds plads 349, 2800, Kongens Lyngby, Denmark
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Ørsteds plads 349, 2800, Kongens Lyngby, Denmark
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pharmacy, Nord University, Bodø, Norway
| | - Pernille Rose Jensen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Ørsteds plads 349, 2800, Kongens Lyngby, Denmark
| | - Mathilde Hauge Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Ørsteds plads 349, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
148
|
Joalland B, Nantogma S, Chowdhury MRH, Nikolaou P, Chekmenev EY. Magnetic shielding of parahydrogen hyperpolarization experiments for the masses. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1180-1186. [PMID: 33948988 PMCID: PMC8568740 DOI: 10.1002/mrc.5167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | | | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
- Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
149
|
Steiner JM, Hautle P, Wenckebach WT. Relaxation of nuclear dipolar energy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107099. [PMID: 34775282 DOI: 10.1016/j.jmr.2021.107099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Under typical conditions for dynamic nuclear polarization (DNP)-temperature about 1 K or below and magnetic field about 3 T or higher-the polarization agent causes nuclear dipolar order to relax up to four orders of magnitude faster than nuclear polarization. However, as far as we know, this ultra-fast dipolar relaxation has thus far not been explained in a satisfactory way. We report similar ultra-fast dipolar relaxation of proton spins in naphthalene due to the photo-excited triplet spin of pentacene and propose a three-step mechanism that explains such ultra-fast dipolar relaxation by ground state electron spins as well as by photo-excited triplet spins: nuclear spin diffusion transfers nuclear dipolar order-that is nuclear dipolar energy-spatially to near the electron spins. Flip-flop transitions between nuclear spins near the electron spins convert this dipolar energy into electron-nuclear interaction energy. Finally electron spin-lattice relaxation or decay of the triplet spin transfers the latter type of energy to the lattice. We will show that this mechanism quantitatively explains the observed dipolar relaxation rate. The proposed mechanism is expected to contribute to dipolar relaxation in any spin system containing more than one spin species. It tends to create a stationary state, in which all dipolar interactions are combined in a single energy reservoir described by a single spin temperature. As an example we suggest that the addition of a relaxation agent in samples used for DNP may significantly accelerate the relaxation of the dipolar energy of the polarization agent, and as a result could possibly reduce the contribution of thermal mixing (TM) to DNP.
Collapse
Affiliation(s)
| | | | - W Tom Wenckebach
- Paul Scherrer Institute, CH-5232 Villigen, Switzerland; National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
150
|
Li Y, Vigneron DB, Xu D. Current human brain applications and challenges of dynamic hyperpolarized carbon-13 labeled pyruvate MR metabolic imaging. Eur J Nucl Med Mol Imaging 2021; 48:4225-4235. [PMID: 34432118 PMCID: PMC8566394 DOI: 10.1007/s00259-021-05508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The ability of hyperpolarized carbon-13 MR metabolic imaging to acquire dynamic metabolic information in real time is crucial to gain mechanistic insights into metabolic pathways, which are complementary to anatomic and other functional imaging methods. This review presents the advantages of this emerging functional imaging technology, describes considerations in clinical translations, and summarizes current human brain applications. Despite rapid development in methodologies, significant technological and physiological related challenges continue to impede broader clinical translation.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| |
Collapse
|