101
|
Abstract
Enormous strides in understanding aging have come from the discovery that mutations in single genes can extend healthy life-span in laboratory model organisms such as the yeast Saccharomyces, the fruit fly Drosophila melanogaster, the nematode worm Caenorhabditis elegans and the mouse. IIS [insulin/IGF (insulin-like growth factor)-like signalling] stands out as an important, evolutionarily conserved pathway involved in the determination of lifespan. The pathway has diverse functions in multicellular organisms, and mutations in IIS can affect growth, development, metabolic homoeostasis, fecundity and stress resistance, as well as lifespan. The pleiotropic nature of the pathway and the often negative effects of its disruption mean that the extent, tissue and timing of IIS manipulations are determinants of a positive effect on lifespan. One tissue of particular importance for lifespan extension in diverse organisms is the CNS (central nervous system). Although lowered IIS in the CNS can extend lifespan, IIS is also widely recognized as being neuroprotective and important for growth and survival of neurons. In the present review, we discuss our current understanding of the role of the nervous system in extension of lifespan by altered IIS, and the role of IIS in determination of neuronal function during aging. The nervous system can play both endocrine and cell-autonomous roles in extension of lifespan by IIS, and the effects of IIS on lifespan and neuronal function can be uncoupled to some extent. Tissue-specific manipulation of IIS and the cellular defence mechanisms that it regulates will better define the ways in which IIS affects neuronal and whole-organism function during aging.
Collapse
|
102
|
Ransome MI, Turnley AM. Growth hormone signaling and hippocampal neurogenesis: insights from genetic models. Hippocampus 2008; 18:1034-50. [PMID: 18566962 DOI: 10.1002/hipo.20463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adult hippocampal neurogenesis (AHN) is modulated by a variety of factors through effects on the proliferation-differentiation-survival regulatory axis. We have employed growth hormone receptor knockout (GH-R-/-) and suppressor of cytokine signaling-2 transgenic (SOCS-2 Tg) mice as models of altered GH-signaling to assess their affects on basal and exercised-induced hippocampal neurogenesis. Assessment of proliferation 24-h after 7-days of bromodeoxyuridine (BrdU) labeling with or without voluntary running showed that the density of BrdU(+) cells in the subgranular zone remained unchanged between genotypes in control housing, while running induced significant increases in BrdU-labeled cells in WT, GH-R-/-, and SOCS-2 Tg mice. The proportion of BrdU/doublecortin and BrdU/S100beta cells did not vary between genotype or running conditions at this time-point. Assessment of cell survival 28-days after BrdU labeling showed that SOCS-2 Tg animals had significantly higher BrdU(+) cell densities in the granule cell layer compared to WT and GH-R-/- animals in control housing and after voluntary running. There were no differences in cell survival between WT and GH-R-/- mice with or without running. Mature phenotype analysis showed similar proportions of BrdU/NeuN and BrdU/S100beta in all groups. While SOCS-2 Tg mice had similar social interaction behaviors and sensorimotor gating, they appeared to be less anxious with heightened basal locomotor activity and showed enhanced performance in the Morris watermaze test. Overall, our data indicated that mice over-expressing SOCS-2 showed increased survival of neurons generated during AHN, which correlated with improved performance in a hippocampal-dependent cognitive task. Furthermore, voluntary running increased AHN in WT, SOCS-2 Tg, and serum-IGF-1-deficient GH-R-/- mice.
Collapse
Affiliation(s)
- Mark I Ransome
- Neural Regeneration Laboratory, Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
103
|
Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 2008; 18:455-71. [PMID: 18710818 PMCID: PMC2631405 DOI: 10.1016/j.ghir.2008.05.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 12/18/2022]
Abstract
Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the manipulation of the GH/IGF axis influences lifespan, highlight the invertebrate and vertebrate animal models with altered lifespan due to modifications to the GH/IGF-1 signaling cascade or homologous pathways, and discuss the basic phenotypic characteristics and healthspan of these models.
Collapse
Affiliation(s)
- Darlene E. Berryman
- School of Human and Consumer Sciences, College of Health and Human Services, Ohio University, Athens, OH 45701
| | - Jens Sandahl Christiansen
- Jens Sandahl Christiansen, Department of Endocrinology, Aarhus University Hospital, Kommunehospitalet, DK 8000 Aarhus, Denmark
| | - Gudmundur Johannsson
- Gudmundur Johannsson, MD, Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden
| | - Michael O. Thorner
- Michael O. Thorner, University of Virginia Health System, Endocrinology and Metabolism, Charlottesville, VA 22908
| | - John J. Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; Phone: (740)593-4534; Fax: (740)593-4795
| |
Collapse
|
104
|
Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, Losonczy G, Pacher P, Austad SN, Bartke A, Ungvari Z. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 2008; 295:H1882-94. [PMID: 18757483 PMCID: PMC2614588 DOI: 10.1152/ajpheart.412.2008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/14/2008] [Indexed: 11/22/2022]
Abstract
Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. J Neurosci 2008; 28:8502-9. [PMID: 18716208 DOI: 10.1523/jneurosci.1756-08.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytoplasmic polyadenylation element binding protein 1 (CPEB-1) resides at postsynaptic sites in hippocampal neurons in which it controls polyadenylation-induced translation. CPEB-1 knock-out (KO) mice display defects in some forms of synaptic plasticity and hippocampal-dependent memories. To identify CPEB-1-regulated mRNAs, we used proteomics to compare polypeptides in wild-type (WT) and CPEB-1 KO hippocampus. Growth hormone (GH) was reduced in the KO hippocampus, as were the GH signaling molecules phospho-JAK2 and phospho-STAT3. GH mRNA and pre-mRNA were reduced in the KO hippocampus, suggesting that CPEB-1 controls GH transcription. The transcription factor c-Jun, which binds the GH promoter, was also reduced in the KO hippocampus, as was its ability to coimmunoprecipitate chromatin containing the GH promoter. CPEB-1 binds c-Jun 3' untranslated region CPEs in vitro and coimmunoprecipitates c-Jun RNA in vivo. GH induces long-term potentiation (LTP) when applied to hippocampal slices from WT and CPEB-1 KO mice, but the magnitude of LTP induced by GH in KO mice is reduced. Pretreatment with GH did not reverse the LTP deficit observed in KO mice after theta-burst stimulation (TBS). Cordycepin, an inhibitor of polyadenylation, disrupted LTP induced by either GH application or TBS. Finally, GH application to hippocampal slices induced JAK2 phosphorylation in WT but not KO animals. These results indicate that CPEB-1 control of c-Jun mRNA translation regulates GH gene expression and resulting downstream signaling events (e.g., synaptic plasticity) in the mouse hippocampus.
Collapse
|
106
|
Sanders EJ, Harvey S. Peptide hormones as developmental growth and differentiation factors. Dev Dyn 2008; 237:1537-52. [PMID: 18498096 DOI: 10.1002/dvdy.21573] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones, usually considered to be endocrine factors responsible for communication between tissues remotely located from each other, are increasingly being found to be synthesized in developing tissues, where they act locally. Several hormones are now known to be produced in developing tissues that are unrelated to the endocrine gland of origin in the adult. These hormones are synthesized locally, and are active as differentiation and survival factors, before the developing adult endocrine tissue becomes functional. There is increasing evidence for paracrine and/or autocrine actions for these factors during development, thus, placing them among the conventional growth and differentiation factors. We review the evidence for the view that thyroid hormones, growth hormone, prolactin, insulin, and parathyroid hormone-related protein are developmental growth and differentiation factors.
Collapse
Affiliation(s)
- Esmond J Sanders
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
107
|
Shukitt-Hale B, Lau FC, Carey AN, Galli RL, Spangler EL, Ingram DK, Joseph JA. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutr Neurosci 2008; 11:172-82. [PMID: 18681986 PMCID: PMC5015125 DOI: 10.1179/147683008x301487] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cognitive impairment in age-related neurodegenerative diseases such as Alzheimer's disease may be partly due to long-term exposure and increased susceptibility to inflammatory insults. In the current study, we investigated whether polyphenols in blueberries can reduce the deleterious effects of inflammation induced by central administration of kainic acid by altering the expression of genes associated with inflammation. To this end, 4-month-old male Fischer-344 (F344) rats were fed a control, 0.015% piroxicam (an NSAID) or 2% blueberry diet for 8 weeks before either Ringer's buffer or kainic acid was bilaterally micro-infused into the hippocampus. Two weeks later, following behavioral evaluation, the rats were killed and total RNA from the hippocampus was extracted and used in real-time quantitative RT-PCR (qRT-PCR) to analyze the expression of inflammation-related genes. Kainic acid had deleterious effects on cognitive behavior as kainic acid-injected rats on the control diet exhibited increased latencies to find a hidden platform in the Morris water maze compared to Ringer's buffer-injected rats and utilized non-spatial strategies during probe trials. The blueberry diet, and to a lesser degree the piroxicam diet, was able to improve cognitive performance. Immunohistochemical analyses of OX-6 expression revealed that kainic acid produced an inflammatory response by increasing the OX-6 positive areas in the hippocampus of kainic acid-injected rats. Kainic acid up-regulated the expression of the inflammatory cytokines IL-1beta and TNF-alpha, the neurotrophic factor IGF-1, and the transcription factor NF-kappaB. Blueberry and piroxicam supplementations were found to attenuate the kainic acid-induced increase in the expression of IL-1beta, TNF-alpha, and NF-kappaB, while only blueberry was able to augment the increased IGF-1 expression. These results indicate that blueberry polyphenols attenuate learning impairments following neurotoxic insult and exert anti-inflammatory actions, perhaps via alteration of gene expression.
Collapse
Affiliation(s)
- Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
Puglielli L. Aging of the brain, neurotrophin signaling, and Alzheimer's disease: is IGF1-R the common culprit? Neurobiol Aging 2008; 29:795-811. [PMID: 17313996 PMCID: PMC2387053 DOI: 10.1016/j.neurobiolaging.2007.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/21/2006] [Accepted: 01/13/2007] [Indexed: 12/26/2022]
Abstract
The last decade has revealed that the lifespan of an organism can be modulated by the signaling pathway that acts downstream of the insulin/insulin-like growth factor 1 receptors (IR/IGF1-R), indicating that there is a "program" that drives the process of aging. New results have now linked the same pathway to the neurogenic capacities of the aging brain, to neurotrophin signaling, and to the molecular pathogenesis of Alzheimer's disease. Therefore, a common signaling cascade now seems to link aging to age-associated pathologies of the brain, suggesting that pharmacologic approaches aimed at the modulation of this pathway can serve to delay the onset of age-associated disorders and improve the quality of life. Work from a wide range of fields performed with different approaches has already identified some of the signaling molecules that act downstream of IGF1-R, and has revealed that a delicate checkpoint exists to balance excessive growth/"immortality" and reduced growth/"senescence" of a cell. Future research will determine how far the connection goes and how much of it we can influence.
Collapse
Affiliation(s)
- Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, and Geriatric Research Education Clinical Center, VA Medical Center, VAH-GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
109
|
Reversal of opiate-induced apoptosis by human recombinant growth hormone in murine foetus primary hippocampal neuronal cell cultures. Proc Natl Acad Sci U S A 2008; 105:7304-8. [PMID: 18474854 DOI: 10.1073/pnas.0802531105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that chronic opiates may inhibit cell growth and trigger apoptosis leading to impaired cognitive capabilities in both humans and other mammals. In contrast, growth hormone (GH) has been demonstrated to stimulate cell growth and counteract apoptosis. GH has also been shown to improve learning and memory in both human and rodents. In this work, we demonstrate that GH may reverse opiate-induced apoptosis in cells derived from prenatal mouse hippocampus. Primary hippocampal cell cultures derived from 16-day-old fetal mouse neurons were treated with morphine for 7 days during growth in the absence or presence of recombinant human GH (rhGH). The release of lactate dehydrogenase (LDH) into the culture media and the level of cleaved caspase-3 were measured. Results indicate that morphine (15 microM) decreased the cell content in a concentration-dependent manner and increased LDH release and caspase-3 activity. Thus, fetal mouse neurons treated with morphine showed less viability compared with controls. Interestingly, the addition of rhGH (1 microM) counteracted the morphine-induced effect on the cell density. Furthermore, the hormone attenuated the effects on LHD release and caspase-3 activity elicited by morphine. These results suggest that the hormone is capable of preventing or even repairing morphine-induced damage to hippocampal cells.
Collapse
|
110
|
García-Fernández M, Delgado G, Puche JE, González-Barón S, Castilla Cortázar I. Low doses of insulin-like growth factor I improve insulin resistance, lipid metabolism, and oxidative damage in aging rats. Endocrinology 2008; 149:2433-42. [PMID: 18187555 DOI: 10.1210/en.2007-1190] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GH and IGF-I concentrations decline with age. Age-related changes appear to be linked to decreases in the anabolic hormones, GH and IGF-I. The aim of this study was to investigate the antioxidant, anabolic, and metabolic effects of the IGF-I replacement therapy, at low doses, in aging rats. Three experimental groups were included in this protocol: young healthy controls (17 wk old); untreated old (O) rats (103 wk old); and aging rats (103 wk old) treated with IGF-I during 1 month (2.25 microg IGF-I/100 g body weight(-1).d(-1)). Compared with young controls, untreated aging rats showed a reduction of IGF-I and testosterone levels, and a decrease of serum total antioxidant status, which were corrected by IGF-I therapy. In addition, untreated O presented increased levels of serum glucose with hyperinsulinemia, cholesterol, and triglycerides, and a reduction of free fatty acid concentrations. IGF-I therapy was able to revert insulin resistance, and to reduce cholesterol and triglycerides levels increasing significantly free fatty acid concentrations. The O group showed higher oxidative damage in brain and liver tissues associated with alterations in antioxidant enzyme activities. IGF-I therapy reduced oxidative damage in brain and liver, normalizing antioxidant enzyme activities and mitochondrial dysfunction. In conclusion, low doses of IGF-I restore circulating IGF-I, improve glucose and lipid metabolism, increase testosterone levels and serum total antioxidant capability, and reduce oxidative damage in brain and liver associated with a normalization of antioxidant enzyme activities and mitochondrial function.
Collapse
|
111
|
Rogers SW, Weis JJ, Ma Y, Teuscher C, Gahring LC. Mouse chromosome 11 harbors genetic determinants of hippocampal strain-specific nicotinic receptor expression. Hippocampus 2008; 18:750-7. [PMID: 18528848 PMCID: PMC2775497 DOI: 10.1002/hipo.20454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Differences between isogenic mouse strains in cellular expression of the neuronal nicotinic acetylcholine (ACh) receptor subunit alpha 4 (nAChR alpha 4) by the dorsal hippocampus are well known. To investigate further the genetic basis of these variations, expression of the nAChR alpha 4 subunit was measured in congenic mouse lines derived from two strains exhibiting notable divergence in the expression of this subunit: C3H and C57BL/6. Congenic lines carrying reciprocally introgressed regions (quantitative trait loci; QTL) from chromosomes 4, 5, and 12 each retained the phenotype most closely associated with the parental strain. However, in congenic lines harboring the reciprocal transfer of a chromosome 11 QTL, a characteristic difference in the ratio of interneurons versus astrocytes expressing nAChR alpha 4 in the CA1 region is reversed relative to the parental strain. These finding suggest that this chromosomal segment harbors genes that regulate strain distinct hippocampal morphology that is revealed by nAChR alpha 4 expression.
Collapse
Affiliation(s)
- Scott W Rogers
- SLC-VA GRECC and University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | | | | | |
Collapse
|
112
|
Abstract
Studies over the last several years have revealed important roles of the body fat content, caloric intake and nutrition, insulin/IGF-1 signaling systems, and pathways involved in oxidative stress and control of protein acetylation on life span. Although the discovery of longevity genes supports the concept that life span is genetically determined, adipose tissue seems to be a pivotal organ in the aging process and in the determination of life span. Leanness and caloric restriction have been shown to increase longevity in organisms ranging from yeast to mammals. Increased longevity in mice with a fat-specific disruption of the insulin receptor gene (FIRKO) suggests that reduced adiposity, even in the presence of normal or increased food intake, leads to an extended life span. Reduced fat mass has an impact on longevity in a number of other model organisms. In Drosophila, a specific reduction in the fat body through overexpression of forkhead type transcription factor (dFOXO) extends life span. Sirtuin 1 (SIRT1), the mammalian ortholog of the life-extending yeast gene silent information regulator 2 (SIR2), was proposed to be involved in the molecular mechanisms linking life span to adipose tissue. Moreover, in the control of human aging and longevity, one of the striking physiological characteristics identified in centenarians is their greatly increased insulin sensitivity even compared with younger individuals. On the other hand, overweight and obesity seem to be associated with decreased life span in humans. In addition, it was recently shown that modifiable risk factors during the later years of life, including smoking, obesity, and hypertension, are associated not only with lower life expectancy, but also with poor health and function during older age. There is growing evidence that the effect of reduced adipose tissue mass on life span could be due to the prevention of obesity-related metabolic disorders including type 2 diabetes and atherosclerosis.
Collapse
|
113
|
Schrag M, Sharma S, Brown-Borg H, Ghribi O. Hippocampus of Ames dwarf mice is resistant to beta-amyloid-induced tau hyperphosphorylation and changes in apoptosis-regulatory protein levels. Hippocampus 2008; 18:239-44. [PMID: 18000817 DOI: 10.1002/hipo.20387] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ames dwarf mouse has a long lifespan and is characterized by a marked resistance to cellular stress, an event that is implicated in the pathogenesis of many neurodegenerative disorders that are associated with aging, including Alzheimer's disease. However, very little is known on the extent to which the Ames dwarf mouse is protected against Alzheimer's disease. We have developed an organotypic slice system cultured from hippocampi of adult dwarf mice and examined deleterious effects of beta-amyloid (Abeta) peptide, a key pathogenic event in the course of Alzheimer's disease. We present the first evidence that long living Ames mice resist beta-amyloid toxicity. We demonstrate that organotypic slices from adult dwarf mice, but not their normal phenotype counterparts (wild type), are resistant to Abeta25-35-induced hyperphosphorylation of tau protein, reduction in levels of the antiapoptotic protein Bcl-2, increase in levels of the pro-apoptotic protein Bax, and activation of caspase 3. Moreover, incubation of organotypic sections with the GSK-3beta inhibitor SB216763 prevented tau phosphorylation but not alterations in levels of Bcl-2, Bax, and caspase-3. Because the hippocampus is a brain area that is severely affected in Alzheimer's disease, our study proposes that organotypic slices from hippocampi of adult Ames dwarf mice may constitute a model system for understanding endogenous factors that may confer protection against Abeta.
Collapse
Affiliation(s)
- Matthew Schrag
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | | | | | | |
Collapse
|
114
|
Aberg ND, Johansson UE, Aberg MAI, Hellström NAK, Lind J, Bull C, Isgaard J, Anderson MF, Oscarsson J, Eriksson PS. Peripheral infusion of insulin-like growth factor-I increases the number of newborn oligodendrocytes in the cerebral cortex of adult hypophysectomized rats. Endocrinology 2007; 148:3765-72. [PMID: 17510237 DOI: 10.1210/en.2006-1556] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that recombinant human (rh) IGF-I induces cell proliferation and neurogenesis in the hippocampus of hypophysectomized rats. In the current investigation, we determined the effects of rhIGF-I on proliferation and differentiation in the cerebral cortex. Adult hypophysectomized rats were injected with bromodeoxyuridine (BrdU) to label newborn cells (once a day for the first 5 d), and rhIGF-I was administered peripherally for 6 or 20 d. In the cerebral cortex, the number of BrdU-labeled cells increased after 20 d but not after 6 d of rhIGF-I infusion. This suggests that rhIGF-I enhances the survival of newborn cells in the cerebral cortex. Using BrdU labeling combined with the oligodendrocyte-specific markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase, we demonstrated an increase in oligodendrogenesis in the cerebral cortex. The total amount of myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase was also increased on Western blots of homogenates of the cerebral cortex, confirming the immunohistochemical findings. Also, we observed an increase in the number of capillary-associated BrdU-positive cells, although total capillary area was not increased. rhIGF-I treatment did not affect cortical astrogliogenesis and neurogenesis was not observed. The ability of rhIGF-I to induce cortical oligodendrogenesis may have implications for the regenerative potential of the cortex.
Collapse
Affiliation(s)
- N David Aberg
- Department of Internal Medicine, Research Center of Endocrinology and Metabolism, Sahlgrenska University Hospital, Göteborg University, Gröna Stråket 8, SE-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Möderscheim TAE, Christophidis LJ, Williams CE, Scheepens A. Distinct neuronal growth hormone receptor ligand specificity in the rat brain. Brain Res 2007; 1137:29-34. [PMID: 17258692 DOI: 10.1016/j.brainres.2006.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/15/2006] [Accepted: 12/14/2006] [Indexed: 11/20/2022]
Abstract
A cerebral growth hormone axis is activated during recovery from brain injury and centrally administered growth hormone can rescue injured neurons. It remains unclear, however, whether this treatment effect occurs directly via neuronal growth hormone receptors. Immunohistochemistry confirmed growth hormone receptor protein on neuronal cell bodies in the rat cortex. Surprisingly, we found that central treatment with bovine growth hormone, which is equipotent to rat growth hormone in the rat periphery, failed to rescue cortical neurons following hypoxic ischemic injury. We further investigated the actions of rat and bovine growth hormone on primary neuron-enriched cultures of fetal rat cortex. In agreement with the in vivo treatment studies, rat but not bovine growth hormone rescued neurons from nutrient deprivation-induced cell death (p<0.05). This neuroprotective effect was inhibited by the selective growth hormone receptor antagonist G120D (p<0.001). Furthermore, rat but not bovine growth hormone had trophic effects on uninjured cultures (p<0.001). Immunocytochemistry showed growth hormone receptor on neurons within the neuron-enriched cultures. We show for the first time that the protective and trophic effects of rat growth hormone are mediated via growth hormone receptors on neurons and that the rodent neuronal growth hormone receptor exhibits unique ligand specificity.
Collapse
|
116
|
Sun LY, Bartke A. Adult Neurogenesis in the Hippocampus of Long-Lived Mice During Aging. J Gerontol A Biol Sci Med Sci 2007; 62:117-25. [PMID: 17339637 DOI: 10.1093/gerona/62.2.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ames dwarf mice live considerably longer than normal animals, exhibit apparently normal cognitive functions, and maintain them into advanced age. Neurogenesis occurs throughout adult life span in the dentate gyrus of mammalian hippocampus and has been suggested to play an important role in cognitive function. We now report that the total number of bromodeoxyuridine (BrdU)-labeled cells in this brain region in aged Ames dwarf mice was not different from that in aged normal mice, whereas the fraction of newly generated neurons was significantly increased by monitoring BrdU labeling and cell marker expression. Evidence of activation of anti-apoptosis signal transduction cascade was also found in the hippocampus of aged dwarf mice. Together with previous findings, the results may suggest that an increase in hippocampal insulin-like growth factor-I protein expression and subsequent activation of antiapoptotic signaling might contribute to survival of newly born neurons and subsequently to the delay of cognitive loss during aging in these long-lived dwarf mice.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
117
|
Sun LY, D'Ercole AJ. Insulin-like growth factor-I stimulates histone H3 and H4 acetylation in the brain in vivo. Endocrinology 2006; 147:5480-90. [PMID: 16935839 PMCID: PMC1847619 DOI: 10.1210/en.2006-0586] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is essential to normal brain growth and exerts actions on neural stem cells and each major neural cell lineage. Whereas many studies show that IGF-I regulates gene expression, mechanisms by which it modulates transcription have not been explored. Chromatin modifications, such as histone phosphorylation, acetylation, and methylation, are known to be important initial steps in gene regulation, and acetylation of histone H3 and H4 is associated with gene activation. In this study, we show that IGF-I modulates the acetylation of H3 and H4 histones in the brain of two transgenic mouse lines and that these effects are associated with activation of the phosphoinositide 3-kinase/Akt signaling pathway. This provides evidence that the chromatin architecture modification contributes to the action of IGF-I on gene expression in the mammalian central nerve system.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pediatrics, Division of Endocrinology, Campus Box 7039, 3341 MBRB, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7039, USA
| | | |
Collapse
|
118
|
Forshee BA. The aging brain: is function dependent on growth hormone/insulin-like growth factor-1 signaling? AGE (DORDRECHT, NETHERLANDS) 2006; 28:173-180. [PMID: 19943138 PMCID: PMC2464729 DOI: 10.1007/s11357-006-9005-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 02/01/2006] [Indexed: 05/28/2023]
Abstract
The role of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in normal brain function is not well understood. Studies looking at cognition in humans with GH deficiency have produced controversial results. Experiments in which GH is administered to rodents have shown an apparent improvement in learning and memory. However, studies in which GH deficient or resistant mice were tested in learning and memory tasks reveal that these animals have normal cognitive performance and that their neural function does not deteriorate with age at the same rate as their normal siblings. Further research into this phenomenon revealed that these animals have elevated GH and IGF-1 expression in the hippocampus compared to normal animals. Additional studies with GH deficient and resistant mice suggested that these mutants experience a delay in age-related decline in locomotor activity and exploratory behavior. Data indicate that GH/IGF-1 deficiency and resistance do not impair neural function and instead may offer some degree of protection that results in delayed cognitive and motor aging.
Collapse
Affiliation(s)
- B A Forshee
- Lake Erie College of Osteopathic Medicine, 1858 W. Grandview Blvd., Erie, PA 16509, USA.
| |
Collapse
|
119
|
Sun LY. Hippocampal IGF-1 expression, neurogenesis and slowed aging: clues to longevity from mutant mice. AGE (DORDRECHT, NETHERLANDS) 2006; 28:181-189. [PMID: 19943139 PMCID: PMC2464726 DOI: 10.1007/s11357-006-9009-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/01/2005] [Indexed: 05/28/2023]
Abstract
Recent studies point out the important role of IGF and insulin-related signaling pathways in the control of longevity of laboratory animals. The Ames dwarf mouse is a murine model of circulating GH and IGF-1 deficiency that exhibits dwarf phenotype characteristics and significantly extends lifespan. It is interesting to know that Ames dwarf mice do not experience an age-related decline in cognitive function when compared to their young counterparts. In this study, the most recent works on local GH and IGF-1 expression in the hippocampus of Ames mice are briefly reviewed.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pediatrics, Division of Endocrinology, University of North Carolina at Chapel Hill, Campus Box #7039 , 3341 MBRB, Chapel Hill, North Carolina 27599-7039, USA.
| |
Collapse
|
120
|
Costantini C, Scrable H, Puglielli L. An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. EMBO J 2006; 25:1997-2006. [PMID: 16619032 PMCID: PMC1456930 DOI: 10.1038/sj.emboj.7601062] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 03/03/2006] [Indexed: 12/25/2022] Open
Abstract
Aging of the brain is characterized by marked changes in the expression levels of the neurotrophin receptors, TrkA and p75(NTR). An expression pattern in which TrkA predominates in younger animals switches to one in which p75(NTR) predominates in older animals. This TrkA-to-p75(NTR) switch is accompanied by activation of the second messenger ceramide, stabilization of beta-site amyloid precursor protein-cleaving enzyme-1 (BACE1), and increased production of amyloid beta-peptide (Abeta). Here, we show that the insulin-like growth factor-1 receptor (IGF1-R), the common regulator of lifespan and age-related events in many different organisms, is responsible for the TrkA-to-p75(NTR) switch in both human neuroblastoma cell lines and primary neurons from mouse brain. The signaling pathway that controls the level of TrkA and p75(NTR) downstream of the IGF1-R requires IRS2, PIP3/Akt, and is under the control of PTEN and p44, the short isoform of p53. We also show that hyperactivation of IGF1-R signaling in p44 transgenic animals, which show an accelerated form of aging, is characterized by early TrkA-to-p75(NTR) switch and increased production of Abeta in the brain.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Medicine, University of Wisconsin-Madison, Veterans Administration Hospital (GRECC 11G), Madison, WI, USA
| | - Heidi Scrable
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Veterans Administration Hospital (GRECC 11G), Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, VAH-GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA. Tel.: +1 608 2561901 ext. 11569; Fax: +1 608 2807291; E-mail:
| |
Collapse
|
121
|
Donahue CP, Kosik KS, Shors TJ. Growth hormone is produced within the hippocampus where it responds to age, sex, and stress. Proc Natl Acad Sci U S A 2006; 103:6031-6. [PMID: 16574776 PMCID: PMC1420633 DOI: 10.1073/pnas.0507776103] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Indexed: 12/27/2022] Open
Abstract
Recent studies by our group and others have demonstrated that growth hormone (GH) is produced endogenously within the hippocampal formation, a brain structure associated with learning and aspects of emotional experience. Here, we demonstrate that this endogenously produced GH is modulated by age and sex differences and the presence of estrogen. GH mRNA levels were higher in females than males, especially during proestrus, a stage of estrus when estrogen levels are elevated. Moreover, GH expression was increased in ovariectomized females that were treated with estradiol. This increase in GH mRNA in response to estrogen was followed by the appearance of GH protein and was negatively correlated with the expression levels of insulin-like growth factor-I mRNA, suggesting a feedback relationship between insulin-like growth factor-I and GH in the brain. GH mRNA levels were also elevated in primary neuronal cultures exposed to 17-beta-estradiol in vitro, further confirming the direct influence of estrogen on GH expression. Finally, exposure to an acute stressful event increased the expression and production of GH in both males and females. However, the stress-induced increase of GH in females depended on the stage of the estrous cycle in which they were exposed to the stressful event. Together, these data further demonstrate that GH is endogenously produced in the adult hippocampal formation, where it is regulated by age, estrogen, and exposure to environmental stimuli. These results suggest that GH may be involved in functions ascribed to the hippocampus, such as learning and the response to stressful experience.
Collapse
Affiliation(s)
- Christine P. Donahue
- *Department of Neurology and Center for Neurologic Disease, Harvard Medical School, Boston, MA 02115
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106; and
| | - Tracey J. Shors
- Department of Psychology and Center for Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
122
|
Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Jimenez-Ortega V, Panici JA, Bonkowski MS, Kopchick JJ, Wang Z, Bartke A. Caloric restriction and growth hormone receptor knockout: effects on expression of genes involved in insulin action in the heart. Exp Gerontol 2006; 41:417-29. [PMID: 16524678 PMCID: PMC3082456 DOI: 10.1016/j.exger.2006.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/20/2006] [Accepted: 01/24/2006] [Indexed: 01/16/2023]
Abstract
Blockade of growth hormone (GH), decreased insulin-like growth factor-1 (IGF1) action and increased insulin sensitivity are associated with life extension and an apparent slowing of the aging process. We examined expression of genes involved in insulin action, IR, IRS1, IRS2, IGF1, IGF1R, GLUT4, PPARs and RXRs in the hearts of normal and GHR-/- (KO) mice fed ad libitum or subjected to 30% caloric restriction (CR). CR increased the cardiac expression of IR, IRS1, IGF1, IGF1R and GLUT4 in normal mice and IRS1, GLUT4, PPARalpha and PPARbeta/delta in GHR-KO animals. Expression of IR, IRS1, IRS2, IGF1, GLUT4, PPARgamma and PPARalpha did not differ between GHR-KO and normal mice. These unexpected results suggest that CR may lead to major modifications of insulin action in the heart, but high insulin sensitivity of GHR-KO mice is not associated with alterations in the levels of most of the examined molecules related to intracellular insulin signaling.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Blotting, Western
- Caloric Restriction
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Gene Expression
- Glucose Transporter Type 4/genetics
- Glucose Transporter Type 4/metabolism
- Growth Hormone/genetics
- Growth Hormone/metabolism
- Insulin/metabolism
- Insulin Resistance
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Myocardium/metabolism
- PPAR alpha/genetics
- PPAR alpha/metabolism
- PPAR delta/genetics
- PPAR delta/metabolism
- PPAR gamma/genetics
- PPAR gamma/metabolism
- PPAR-beta/genetics
- PPAR-beta/metabolism
- RNA, Messenger/analysis
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Michal M Masternak
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Lichtenwalner RJ, Forbes ME, Sonntag WE, Riddle DR. Adult-onset deficiency in growth hormone and insulin-like growth factor-I decreases survival of dentate granule neurons: Insights into the regulation of adult hippocampal neurogenesis. J Neurosci Res 2006; 83:199-210. [PMID: 16385581 DOI: 10.1002/jnr.20719] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insulin-like growth factor-I (IGF-I), long thought to provide critical trophic support during development, also has emerged as a candidate for regulating ongoing neuronal production in adulthood. Whether and how IGF-I influences each phase of neurogenesis, however, remains unclear. In the current study, we used a selective model of growth hormone (GH) and plasma IGF-I deficiency to evaluate the role of GH and IGF-I in regulating cell proliferation, survival, and neuronal differentiation in the adult dentate gyrus. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete throughout development via twice daily injections of GH, and then GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Bromodeoxyuridine (BrdU) labeling revealed no effect of GH/IGF-I deficiency on cell proliferation, but adult-onset depletion of GH and plasma IGF-I significantly reduced the survival of newly generated cells in the dentate gyrus. Colabeling for BrdU and markers of immature and mature neurons revealed a selective effect of GH/IGF-I deficiency on the survival of more mature new neurons. The number of BrdU-labeled cells expressing the immature neuronal marker TUC-4 did not differ between GH/IGF-I-deficient and -replete animals, but the number expressing only the marker of maturity NeuN was lower in depleted animals. Taken together, results from the present study suggest that, under conditions of short-term GH/IGF-I deficiency during adulthood, dentate granule cells continue to be produced, to commit to a neuronal fate, and to begin the process of neuronal maturation, whereas survival of the new neurons is impaired.
Collapse
Affiliation(s)
- Robin J Lichtenwalner
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | |
Collapse
|
124
|
Scheepens A, Möderscheim TAE, Gluckman PD. The Role of Growth Hormone in Neural Development. Horm Res Paediatr 2006; 64 Suppl 3:66-72. [PMID: 16439847 DOI: 10.1159/000089320] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Growth hormone (GH) is integrally involved in the development of the central nervous system (CNS), as well as during its recovery from injury, two processes that share many similarities and may influence CNS functionality. This review discusses some of the most recent findings in the field and, in particular, the ontogeny, distribution, regulation and putative functions of GH and its receptor within the CNS, particularly during development. The relative roles of peripheral GH, acting in part through insulin-like growth factor-I, and of the autocrine/paracrine GH system within the brain are considered. The potential role of GH as a therapeutic agent to influence brain development and function is discussed.
Collapse
Affiliation(s)
- Arjan Scheepens
- Liggins Institute, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
125
|
Grill JD, Sonntag WE, Riddle DR. Dendritic stability in a model of adult-onset IGF-I deficiency. Growth Horm IGF Res 2005; 15:337-348. [PMID: 16143551 DOI: 10.1016/j.ghir.2005.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/01/2005] [Accepted: 07/09/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE A significant decrease in plasma levels of insulin-like growth factor-I (IGF-I) is one of the most robust hallmarks of aging and may contribute to functional changes associated with senescence. This study examined the role of IGF-I in the maintenance of adult dendritic morphology. DESIGN We utilized a model of the aging-related decrease in plasma IGF-I to examine whether such a decrease, in itself, leads to dendritic changes in the cerebral cortex. The dw/dw rat, originally of the Lewis strain, suffers from a spontaneous mutation in which growth hormone (GH) production is severely decreased. Since GH is responsible for the production of circulating IGF-I by the liver, these animals are deficient in plasma IGF-I. Homozygous dw/dw rats were administered porcine GH to sustain IGF-I levels during development and then GH injections were stopped as adults in order to examine the effects of adult-onset GH and IGF-I deficiency. Animals sacrificed after two or eight weeks of GH and IGF-I deficiency were compared to age-matched dw/dw animals that received GH both developmentally and throughout adulthood (GH/IGF-I replete). The dendritic arbors of pyramidal neurons in cingulate cortex were labeled by intracellular injection and reconstructed in three dimensions. RESULTS Comparing GH/IGF-I replete and deficient dw/dw rats, we found no differences in the apical or basal arbors of either layer two or layer five pyramidal neurons. CONCLUSIONS These findings indicate that a decrease in plasma levels of IGF-I is not sufficient in itself to produce dendritic changes like those seen in aging animals.
Collapse
Affiliation(s)
- Joshua D Grill
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
126
|
Abstract
The important role of IGF and insulin-related signaling pathways in the control of longevity of worms and insects is very well documented. In the mouse, several spontaneous or experimentally induced mutations that interfere with GH biosynthesis, GH actions, or sensitivity to IGF-I lead to extended longevity. Increases in the average life span in these mutants range from approximately 20-70% depending on the nature of the endocrine defect, gender, diet, and/or genetic background. Extended longevity of hypopituitary and GH-resistant mice appears to be due to multiple mechanisms including reduced insulin levels, enhanced insulin sensitivity, alterations in carbohydrate and lipid metabolism, reduced generation of reactive oxygen species, enhanced resistance to stress, reduced oxidative damage, and delayed onset of age-related disease. There is considerable evidence to suggest that the genetic and endocrine mechanisms that influence aging and longevity in mice may play a similar role in other mammalian species, including the human.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Physiology and Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, 801 North Rutledge, Room 4389, Springfield, Illinois 62794-9628, USA.
| |
Collapse
|
127
|
Sonntag WE, Carter CS, Ikeno Y, Ekenstedt K, Carlson CS, Loeser RF, Chakrabarty S, Lee S, Bennett C, Ingram R, Moore T, Ramsey M. Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 2005; 146:2920-32. [PMID: 15790724 DOI: 10.1210/en.2005-0058] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disruption of the insulin/IGF-I pathway increases life span in invertebrates. However, effects of decreased IGF-I signaling in mammalian models remain controversial. Using a rodent model with a specific and limited deficiency of GH and IGF-I, we report that GH and IGF-I deficiency throughout life [GH deficiency (GHD)] has no effect on life span compared with normal, heterozygous animals. However, treatment of GHD animals with GH from 4-14 wk of age [adult-onset (AO) GHD] increased median and maximal life span by 14% and 12%, respectively. Analysis of end-of-life pathology indicated that deficiency of these hormones decreased tumor incidence in GHD and AO-GHD animals (18 and 30%, respectively) compared with heterozygous animals and decreased the severity of, and eliminated deaths from, chronic nephropathy. Total disease burden was reduced by 24% in GHD and 16% in AO-GHD animals. Interestingly, the incidence of intracranial hemorrhage increased by 154 and 198% in GHD and AO-GHD animals, respectively, compared with heterozygous animals. Deaths from intracranial hemorrhage in AO-GHD animals were delayed by 14 wk accounting for the increased life span compared with GHD animals. The presence of GH and IGF-I was necessary to maximize reproductive fitness and growth of offspring early in life and to maintain cognitive function and prevent cartilage degeneration later in life. The diverse effects of GH and IGF-I are consistent with a model of antagonistic pleiotropy and suggest that, in response to a deficiency of these hormones, increased life span is derived at the risk of functional impairments and tissue degeneration.
Collapse
Affiliation(s)
- William E Sonntag
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157-1083, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Ames dwarf mice and Snell dwarf mice lack growth hormone (GH), prolactin (PRL), and thyroid-stimulating hormone (TSH), live much longer than their normal siblings, and exhibit many symptoms of delayed aging. "Laron dwarf mice," produced by targeted disruption of the GH receptor/GH-binding protein gene (GHR-KO mice), are GH resistant and also live much longer than normal animals from the same line. Isolated GH deficiency in "little" mice is similarly associated with increased life span, provided that obesity is prevented by reducing fat content in the diet. Long-lived dwarf mice share many phenotypic characteristics with genetically normal (wild-type) animals subjected to prolonged caloric restriction (CR) but are not CR mimetics. We propose that mechanisms linking GH deficiency and GH resistance with delayed aging include reduced hepatic synthesis of insulin-like growth factor 1 (IGF-1), reduced secretion of insulin, increased hepatic sensitivity to insulin actions, reduced plasma glucose, reduced generation of reactive oxygen species, improved antioxidant defenses, increased resistance to oxidative stress, and reduced oxidative damage. The possible role of hypothyroidism, reduced body temperature, reduced adult body size, delayed puberty, and reduced fecundity in producing the long-lived phenotype of dwarf mice remains to be evaluated. An important role of IGF-1 and insulin in the control of mammalian longevity is consistent with the well-documented actions of homologous signaling pathways in invertebrates.
Collapse
Affiliation(s)
- Andrzej Bartke
- Geriatrics Research, Department of Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62794, USA
| | | |
Collapse
|