101
|
Philippe JM, Jenkins PM. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Mol Membr Biol 2020; 35:60-75. [PMID: 31969037 DOI: 10.1080/09687688.2019.1710274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein palmitoylation is a critical posttranslational modification that regulates protein trafficking, localization, stability, sorting and function. In mammals, addition of this lipid modification onto proteins is mediated by a family of 23 palmitoyl acyl transferases (PATs). PATs often palmitoylate substrates in a promiscuous manner, precluding our understanding of how these enzymes achieve specificity for their substrates. Despite generous efforts to identify consensus motifs defining PAT-substrate specificity, it remains to be determined whether additional factors beyond interaction motifs, such as local palmitoylation, participate in PAT-substrate selection. In this review, we emphasize the role of local palmitoylation, in which substrates are palmitoylated and trapped in the same subcellular compartments as their PATs, as a mechanism of enzyme-substrate specificity. We focus here on non-Golgi-localized PATs, as physical proximity to their substrates enables them to engage in local palmitoylation, compared to Golgi PATs, which often direct trafficking of their substrates elsewhere. PAT subcellular localization may be an under-recognized, yet important determinant of PAT-substrate specificity that may work in conjunction or completely independently of interaction motifs. We also discuss some current hypotheses about protein motifs that contribute to localization of non-Golgi-localized PATs, important for the downstream targeting of their substrates.
Collapse
Affiliation(s)
- Julie M Philippe
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
102
|
Salaun C, Greaves J, Tomkinson NCO, Chamberlain LH. The linker domain of the SNARE protein SNAP25 acts as a flexible molecular spacer that ensures efficient S-acylation. J Biol Chem 2020; 295:7501-7515. [PMID: 32317281 PMCID: PMC7247313 DOI: 10.1074/jbc.ra120.012726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
S-Acylation of the SNARE protein SNAP25 (synaptosome-associated protein of 25 kDa) is mediated by a subset of Golgi zinc finger DHHC-type palmitoyltransferase (zDHHC) enzymes, particularly zDHHC17. The ankyrin repeat domain of zDHHC17 interacts with a short linear motif known as the zDHHC ankyrin repeat-binding motif (zDABM) in SNAP25 (112VVASQP117), which is downstream of its S-acylated, cysteine-rich domain (85CGLCVCPC92). Here, we investigated the importance of a flexible linker region (amino acids 93-111, referred to hereafter as the "mini-linker" region) that separates the zDABM and S-acylated cysteines in SNAP25. Shortening the mini-linker did not affect the SNAP25-zDHHC17 interaction but blocked S-acylation. Insertion of additional flexible glycine-serine repeats had no effect on S-acylation, but extended and rigid alanine-proline repeats perturbed it. A SNAP25 mutant in which the mini-linker region was substituted with a flexible glycine-serine linker of the same length underwent efficient S-acylation. Furthermore, this mutant displayed the same intracellular localization as WT SNAP25, indicating that the amino acid composition of the mini-linker is not important for SNAP25 localization. Using the results of previous peptide array experiments, we generated a SNAP25 mutant predicted to have a higher-affinity zDABM. This mutant interacted with zDHHC17 more strongly but was S-acylated with reduced efficiency in HEK293T cells, implying that a lower-affinity interaction of the SNAP25 zDABM with zDHHC17 is optimal for S-acylation efficiency. These results show that amino acids 93-111 in SNAP25 act as a flexible molecular spacer that ensures efficient coupling of the SNAP25-zDHHC17 interaction and S-acylation of SNAP25.
Collapse
Affiliation(s)
- Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom.
| | - Jennifer Greaves
- Faculty of Health and Life Sciences, Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, United Kingdom
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
103
|
Zimmer SE, Kowalczyk AP. The desmosome as a model for lipid raft driven membrane domain organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183329. [PMID: 32376221 DOI: 10.1016/j.bbamem.2020.183329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol. These domains participate in membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current state of the desmosome field and put forward new hypotheses for the role of lipid rafts in desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that differential lipid raft affinity of intercellular junction proteins is a central driving force in the organization of the epithelial apical junctional complex.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Dermatology, Emory University, Atlanta, GA 30322, United States of America.
| |
Collapse
|
104
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
105
|
Neviani V, van Deventer S, Wörner TP, Xenaki KT, van de Waterbeemd M, Rodenburg RNP, Wortel IMN, Kuiper JK, Huisman S, Granneman J, van Bergen En Henegouwen PMP, Heck AJR, van Spriel AB, Gros P. Site-specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9. FEBS J 2020; 287:5323-5344. [PMID: 32181977 PMCID: PMC7818406 DOI: 10.1111/febs.15295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/19/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell–cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrometry we determined that wild‐type human tetraspanins CD9 and CD81 exhibit nonstochastic distributions of bound acyl chains. We revealed CD9 lipidation at its three most frequent lipidated sites suffices for EWI‐F binding, while cysteine‐to‐alanine CD9 mutations markedly reduced binding of EWI‐F. EWI‐F binding by CD9 was rescued by mutating all or, albeit to a lesser extent, only the three most frequently lipidated sites into tryptophans. These mutations did not affect the nanoscale distribution of CD9 in cell membranes, as shown by super‐resolution microscopy using a CD9‐specific nanobody. Thus, these data demonstrate site‐specific, possibly conformation‐dependent, functionality of lipidation in tetraspanin CD9 and identify tryptophan mimicry as a possible biochemical approach to study site‐specific transmembrane‐protein lipidation.
Collapse
Affiliation(s)
- Viviana Neviani
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Sjoerd van Deventer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Katerina T Xenaki
- Cell Biology, Department of Biology, Utrecht University, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Remco N P Rodenburg
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Inge M N Wortel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Jeroen K Kuiper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Sofie Huisman
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Joke Granneman
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| |
Collapse
|
106
|
Oda Y, Sugawara T, Fukata Y, Izumi Y, Otani T, Higashi T, Fukata M, Furuse M. The extracellular domain of angulin-1 and palmitoylation of its cytoplasmic region are required for angulin-1 assembly at tricellular contacts. J Biol Chem 2020; 295:4289-4302. [PMID: 32079676 PMCID: PMC7105312 DOI: 10.1074/jbc.ra119.010491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Tricellular tight junctions (tTJs) create paracellular barriers at tricellular contacts (TCs), where the vertices of three polygonal epithelial cells meet. tTJs are marked by the enrichment of two types of membrane proteins, tricellulin and angulin family proteins. However, how TC geometry is recognized for tTJ formation remains unknown. In the present study, we examined the molecular mechanism for the assembly of angulin-1 at the TCs. We found that clusters of cysteine residues in the juxtamembrane region within the cytoplasmic domain of angulin-1 are highly palmitoylated. Mutagenesis analyses of the cysteine residues in this region revealed that palmitoylation is essential for localization of angulin-1 at TCs. Consistently, suppression of Asp-His-His-Cys motif-containing palmitoyltransferases expressed in EpH4 cells significantly impaired the TC localization of angulin-1. Cholesterol depletion from the plasma membrane of cultured epithelial cells hampered the localization of angulin-1 at TCs, suggesting the existence of a lipid membrane microdomain at TCs that attracts highly palmitoylated angulin-1. Furthermore, the extracellular domain of angulin-1 was also required for its TC localization, irrespective of the intracellular palmitoylation. Taken together, our findings suggest that both angulin-1's extracellular domain and palmitoylation of its cytoplasmic region are required for its assembly at TCs.
Collapse
Affiliation(s)
- Yukako Oda
- Division of Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Taichi Sugawara
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yuko Fukata
- Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Membrane Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tomohito Higashi
- Division of Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masaki Fukata
- Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Membrane Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Mikio Furuse
- Division of Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
107
|
Gorinski N, Wojciechowski D, Guseva D, Abdel Galil D, Mueller FE, Wirth A, Thiemann S, Zeug A, Schmidt S, Zareba-Kozioł M, Wlodarczyk J, Skryabin BV, Glage S, Fischer M, Al-Samir S, Kerkenberg N, Hohoff C, Zhang W, Endeward V, Ponimaskin E. DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels. J Biol Chem 2020; 295:5970-5983. [PMID: 32184353 DOI: 10.1074/jbc.ra119.011049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7 -/- mice. Although palmitoylation of barttin in kidneys of Zdhhc7 -/- animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7 -/- mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.
Collapse
Affiliation(s)
- Nataliya Gorinski
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Dalia Abdel Galil
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Franziska E Mueller
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Wirth
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Thiemann
- Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Schmidt
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Zareba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Boris V Skryabin
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149 Münster, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Samer Al-Samir
- Institute of Vegetative Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Kerkenberg
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany
| | - Weiqi Zhang
- Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, University of Münster, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Volker Endeward
- Institute of Vegetative Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
108
|
Delgado JY, Nall D, Selvin PR. Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses. Front Mol Neurosci 2020; 13:10. [PMID: 32231520 PMCID: PMC7082786 DOI: 10.3389/fnmol.2020.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to altered synaptic stability is lacking. Here, we show that phosphorylation of T19/S25 recruits the phosphorylation-dependent peptidyl-prolyl cis-trans isomerase (Pin1) and reduces the palmitoylation of Cysteine 3 and Cysteine 5 in PSD-95. This reduction in PSD-95 palmitoylation accounts for the observed loss in the number of dendritic PSD-95 clusters, the increased AMPAR mobility, and the decreased number of functional excitatory synapses. We find the effects of Pin1 overexpression were all rescued by manipulations aimed at increasing the levels of PSD-95 palmitoylation. Therefore, Pin1 is a key signaling molecule that regulates the stability of excitatory synapses and may participate in the destabilization of PSD-95 following the induction of synaptic plasticity.
Collapse
Affiliation(s)
- Jary Y. Delgado
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Duncan Nall
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Paul R. Selvin
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
109
|
Pan Y, Xiao Y, Pei Z, Cummins TR. S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability. J Biol Chem 2020; 295:6151-6164. [PMID: 32161114 DOI: 10.1074/jbc.ra119.012423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978 S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.
Collapse
Affiliation(s)
- Yanling Pan
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Zifan Pei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theodore R Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
110
|
Essandoh K, Philippe JM, Jenkins PM, Brody MJ. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol 2020; 11:108. [PMID: 32140110 PMCID: PMC7042378 DOI: 10.3389/fphys.2020.00108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of cardiac physiology is well known to occur through the action of kinases that reversibly phosphorylate ion channels, calcium handling machinery, and signaling effectors. However, it is becoming increasingly apparent that palmitoylation or S-acylation, the post-translational modification of cysteines with saturated fatty acids, plays instrumental roles in regulating the localization, activity, stability, sorting, and function of numerous proteins, including proteins known to have essential functions in cardiomyocytes. However, the impact of this modification on cardiac physiology requires further investigation. S-acylation is catalyzed by the zDHHC family of S-acyl transferases that localize to intracellular organelle membranes or the sarcolemma. Recent work has begun to uncover functions of S-acylation in the heart, particularly in the regulation of cardiac electrophysiology, including modification of the sodium-calcium exchanger, phospholemman and the cardiac sodium pump, as well as the voltage-gated sodium channel. Elucidating the regulatory functions of zDHHC enzymes in cardiomyocytes and determination of how S-acylation is altered in the diseased heart will shed light on how these modifications participate in cardiac pathogenesis and potentially identify novel targets for the treatment of cardiovascular disease. Indeed, proteins with critical signaling roles in the heart are also S-acylated, including receptors and G-proteins, yet the dynamics and functions of these modifications in myocardial physiology have not been interrogated. Here, we will review what is known about zDHHC enzymes and substrate S-acylation in myocardial physiology and highlight future areas of investigation that will uncover novel functions of S-acylation in cardiac homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
111
|
Gadalla MR, Abrami L, van der Goot FG, Veit M. Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20. Biochem J 2020; 477:285-303. [PMID: 31872235 DOI: 10.1042/bcj20190752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023]
Abstract
Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one cysteine located at the cytoplasmic border of the transmembrane region (TMR). M2 is palmitoylated at a cysteine positioned in an amphiphilic helix near the TMR. The enzymes catalyzing acylation of HA and M2 have not been identified, but zinc finger DHHC domain-containing (ZDHHC) palmitoyltransferases are candidates. We used a siRNA library to knockdown expression of each of the 23 human ZDHHCs in HA-expressing HeLa cells. siRNAs against ZDHHC2 and 8 had the strongest effect on acylation of HA as demonstrated by Acyl-RAC and confirmed by 3H-palmitate labeling. CRISPR/Cas9 knockout of ZDHHC2 and 8 in HAP1 cells, but also of the phylogenetically related ZDHHCs 15 and 20 strongly reduced acylation of group 1 and group 2 HAs and of M2, but individual ZDHHCs exhibit slightly different substrate preferences. These ZDHHCs co-localize with HA at membranes of the exocytic pathway in a human lung cell line. ZDHHC2, 8, 15 and 20 are not required for acylation of the HA-esterase-fusion protein of Influenza C virus that contains only stearate at one transmembrane cysteine. Knockout of these ZDHHCs also did not compromise acylation of HA of Influenza B virus that contains two palmitoylated cysteines in its cytoplasmic tail. Results are discussed with respect to the acyl preferences and possible substrate recognition features of the identified ZDHHCs.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Laurence Abrami
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Veit
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
112
|
Gök C, Fuller W. Regulation of NCX1 by palmitoylation. Cell Calcium 2020; 86:102158. [PMID: 31935590 DOI: 10.1016/j.ceca.2019.102158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022]
Abstract
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. https://twitter.com@FullerLabGlas
| |
Collapse
|
113
|
Hong C, Choi SH, Kwak M, Jeong B, Ko J, Park HJ, Choi S, Jun JY, So I. TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118620. [PMID: 31812495 DOI: 10.1016/j.bbamcr.2019.118620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16‑carbon fatty acid palmitate, is the most common acylation, and it enhances the membrane stability of ion channels. This post-translational modification (PTM) determines a functional mechanism of ion channel life cycle from maturation and membrane trafficking to localization. Especially, neurodevelopment is regulated by balancing the level of synaptic protein palmitoylation/depalmitoylation. Recently, we revealed the pathological role of the transient receptor potential canonical type 5 (TRPC5) channel in striatal neuronal loss during Huntington's disease (HD), which is abnormally activated by oxidative stress. Here, we report a mechanism of TRPC5 palmitoylation at a conserved cysteine residue, that is critical for intrinsic channel activity. Furthermore, we identified the therapeutic effect of TRPC5 depalmitoylation by enhancing the TRPC5 membrane instability on HD striatal cells in order to lower TRPC5 toxicity. Collectively, these findings suggest that controlling S-palmitoylation of the TRPC5 channel as a potential risk factor can modulate TRPC5 channel expression and activity, providing new insights into a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea.
| | - Seo Hwa Choi
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Misun Kwak
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Byeongseok Jeong
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Juyeon Ko
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Hyung Joon Park
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Seok Choi
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Jae Yeoul Jun
- Department of Physiology, Chosun University School of Medicine, Kwangju 61452, South Korea
| | - Insuk So
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
114
|
Gadalla MR, Veit M. Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin Drug Discov 2019; 15:159-177. [PMID: 31809605 DOI: 10.1080/17460441.2020.1696306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: S-acylation is the attachment of fatty acids not only to cysteines of cellular, but also of viral proteins. The modification is often crucial for the protein´s function and hence for virus replication. Transfer of fatty acids is mediated by one or several of the 23 members of the ZDHHC family of proteins. Since their genes are linked to various human diseases, they represent drug targets.Areas covered: The authors explore whether targeting acylation of viral proteins might be a strategy to combat viral diseases. Many human pathogens contain S-acylated proteins; the ZDHHCs involved in their acylation are currently identified. Based on the 3D structure of two ZDHHCs, the regulation and the biochemistry of the palmitolyation reaction and the lipid and protein substrate specificities are discussed. The authors then speculate how ZDHHCs might recognize S-acylated membrane proteins of Influenza virus.Expert opinion: Although many viral diseases can now be treated, the available drugs bind to viral proteins that rapidly mutate and become resistant. To develop inhibitors for the genetically more stable cellular ZDHHCs, their binding sites for viral substrates need to be identified. If only a few cellular proteins are recognized by the same binding site, development of specific inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
115
|
Sada R, Kimura H, Fukata Y, Fukata M, Yamamoto H, Kikuchi A. Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6. Sci Signal 2019; 12:12/608/eaat9519. [PMID: 31744930 DOI: 10.1126/scisignal.aat9519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dickkopf1 (DKK1) was originally identified as an antagonist of Wnt signaling that binds to and induces the clathrin-mediated endocytosis of the Wnt coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). DKK1 also binds to cytoskeleton-associated protein 4 (CKAP4), which was originally identified as an endoplasmic reticulum (ER) protein but also functions at the plasma membrane as a receptor for various ligands. The DKK1-CKAP4 pathway is activated in several human cancers and promotes cell proliferation by activating signaling through the kinases PI3K and AKT. We found that both CKAP4 and LRP6 primarily localized to detergent-resistant membrane (DRM) fractions of the plasma membrane in a palmitoylation-dependent manner and that palmitoylation of CKAP4 was required for it to promote cell proliferation. DKK1 induced the depalmitoylation of both CKAP4 and LRP6 by acylprotein thioesterases (APTs), resulting in their translocation to the non-DRM fractions. Moreover, DKK1-dependent depalmitoylation of both receptors required activation of the PI3K-AKT pathway. DKK1 simultaneously bound CKAP4 and LRP6, resulting in the formation of a ternary complex. LRP5/6 knockdown decreased DKK1-dependent AKT activation and cancer cell proliferation through CKAP4, whereas CKAP4 knockdown did not affect DKK1-dependent inhibition of Wnt signaling through LRP5/6. These results indicate that the palmitoylation states of CKAP4 and LRP6 play important roles in their signaling and that LRP5/6 enhance DKK1-CKAP4 signaling.
Collapse
Affiliation(s)
- Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hirokazu Kimura
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki 444-8787, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
116
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
117
|
Li Y, Xu J, Li G, Wan S, Batistič O, Sun M, Zhang Y, Scott R, Qi B. Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5205-5216. [PMID: 31199467 DOI: 10.1093/jxb/erz282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Seeds of Arabidopsis contain ~40% oil, which is primarily in the form of triacylglycerol and it is converted to sugar to support post-germination growth. We identified an Arabidopsis T-DNA knockout mutant that is sugar-dependent during early seedling establishment and determined that the β-oxidation process involved in catabolising the free fatty acids released from the seed triacylglycerol is impaired. The mutant was confirmed to be transcriptional null for Protein Acyl Transferase 15, AtPAT15 (At5g04270), one of the 24 protein acyl transferases in Arabidopsis. Although it is the shortest, AtPAT15 contains the signature 'Asp-His-His-Cys cysteine-rich domain' that is essential for the enzyme activity of this family of proteins. The function of AtPAT15 was validated by the fact that it rescued the growth defect of the yeast protein acyl transferase mutant akr1 and it was also auto-acylated in vitro. Transient expression in Arabidopsis and tobacco localised AtPAT15 in the Golgi apparatus. Taken together, our data demonstrate that AtPAT15 is involved in β-oxidation of triacylglycerol, revealing the importance of protein S-acylation in the breakdown of seed-storage lipids during early seedling growth of Arabidopsis.
Collapse
Affiliation(s)
- Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Xu
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Gang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Si Wan
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Muenster, Germany
| | - Meihong Sun
- College of Horticulture, Shandong Agricultural University, Tai'an, China
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Rod Scott
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Baoxiu Qi
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Pharmacy and Biomolecular Sciences, James Parsons Building, Byrom Street, Liverpool, UK
| |
Collapse
|
118
|
Boncompain G, Herit F, Tessier S, Lescure A, Del Nery E, Gestraud P, Staropoli I, Fukata Y, Fukata M, Brelot A, Niedergang F, Perez F. Targeting CCR5 trafficking to inhibit HIV-1 infection. SCIENCE ADVANCES 2019; 5:eaax0821. [PMID: 31663020 PMCID: PMC6795511 DOI: 10.1126/sciadv.aax0821] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/26/2019] [Indexed: 05/22/2023]
Abstract
Using a cell-based assay monitoring differential protein transport in the secretory pathway coupled to high-content screening, we have identified three molecules that specifically reduce the delivery of the major co-receptor for HIV-1, CCR5, to the plasma membrane. They have no effect on the closely related receptors CCR1 and CXCR4. These molecules are also potent in primary macrophages as they markedly decrease HIV entry. At the molecular level, two of these molecules inhibit the critical palmitoylation of CCR5 and thereby block CCR5 in the early secretory pathway. Our results open a clear therapeutics avenue based on trafficking control and demonstrate that preventing HIV infection can be performed at the level of its receptor delivery.
Collapse
Affiliation(s)
- Gaelle Boncompain
- Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Dynamics of Intracellular Organization Laboratory, F-75005 Paris, France
- Corresponding author. (G.B.); (F.P.)
| | - Floriane Herit
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Sarah Tessier
- Institut Curie, PSL Research University, Translational Department, Biophenics High-Content Screening Laboratory, F-75005 Paris, France
| | - Aurianne Lescure
- Institut Curie, PSL Research University, Translational Department, Biophenics High-Content Screening Laboratory, F-75005 Paris, France
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Translational Department, Biophenics High-Content Screening Laboratory, F-75005 Paris, France
| | - Pierre Gestraud
- Institut Curie, PSL Research University, Bioinformatics Facility, INSERM U900, F-75005 Paris, France
| | - Isabelle Staropoli
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, F-75015 Paris, France
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Anne Brelot
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, F-75015 Paris, France
| | | | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Dynamics of Intracellular Organization Laboratory, F-75005 Paris, France
- Corresponding author. (G.B.); (F.P.)
| |
Collapse
|
119
|
Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat Commun 2019; 10:3924. [PMID: 31477731 PMCID: PMC6718429 DOI: 10.1038/s41467-019-11876-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD. Palmitoylation is a post translational modification that regulates GPCR activity. Here the authors show that palmitoylation of 5-HT1AR by the palmitoyltransferase enzyme ZDHHC21 contributes to depression-like behaviour in rodents and might be implicated in major depressive disorder.
Collapse
|
120
|
Koster KP, Yoshii A. Depalmitoylation by Palmitoyl-Protein Thioesterase 1 in Neuronal Health and Degeneration. Front Synaptic Neurosci 2019; 11:25. [PMID: 31555119 PMCID: PMC6727029 DOI: 10.3389/fnsyn.2019.00025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Protein palmitoylation is the post-translational, reversible addition of a 16-carbon fatty acid, palmitate, to proteins. Protein palmitoylation has recently garnered much attention, as it robustly modifies the localization and function of canonical signaling molecules and receptors. Protein depalmitoylation, on the other hand, is the process by which palmitic acid is removed from modified proteins and contributes, therefore, comparably to palmitoylated-protein dynamics. Palmitoylated proteins also require depalmitoylation prior to lysosomal degradation, demonstrating the significance of this process in protein sorting and turnover. Palmitoylation and depalmitoylation serve as particularly crucial regulators of protein function in neurons, where a specialized molecular architecture and cholesterol-rich membrane microdomains contribute to synaptic transmission. Three classes of depalmitoylating enzymes are currently recognized, the acyl protein thioesterases, α/β hydrolase domain-containing 17 proteins (ABHD17s), and the palmitoyl-protein thioesterases (PPTs). However, a clear picture of depalmitoylation has not yet emerged, in part because the enzyme-substrate relationships and specific functions of depalmitoylation are only beginning to be uncovered. Further, despite the finding that loss-of-function mutations affecting palmitoyl-protein thioesterase 1 (PPT1) function cause a severe pediatric neurodegenerative disease, the role of PPT1 as a depalmitoylase has attracted relatively little attention. Understanding the role of depalmitoylation by PPT1 in neuronal function is a fertile area for ongoing basic science and translational research that may have broader therapeutic implications for neurodegeneration. Here, we will briefly introduce the rapidly growing field surrounding protein palmitoylation and depalmitoylation, then will focus on the role of PPT1 in development, health, and neurological disease.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States.,Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
121
|
Chen JJ, Marsden AN, Scott CA, Akimzhanov AM, Boehning D. DHHC5 Mediates β-Adrenergic Signaling in Cardiomyocytes by Targeting Gα Proteins. Biophys J 2019; 118:826-835. [PMID: 31547976 PMCID: PMC7036738 DOI: 10.1016/j.bpj.2019.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
S-palmitoylation is a reversible posttranslational modification that plays an important role in regulating protein localization, trafficking, and stability. Recent studies have shown that some proteins undergo extremely rapid palmitoylation/depalmitoylation cycles after cellular stimulation supporting a direct signaling role for this posttranslational modification. Here, we investigated whether β-adrenergic stimulation of cardiomyocytes led to stimulus-dependent palmitoylation of downstream signaling proteins. We found that β-adrenergic stimulation led to rapidly increased Gαs and Gαi palmitoylation. The kinetics of palmitoylation was temporally consistent with the downstream production of cAMP and contractile responses. We identified the plasma membrane-localized palmitoyl acyltransferase DHHC5 as an important mediator of the stimulus-dependent palmitoylation in cardiomyocytes. Knockdown of DHHC5 showed that this enzyme is necessary for palmitoylation of Gαs, Gαi, and functional responses downstream of β-adrenergic stimulation. A palmitoylation assay with purified components revealed that Gαs and Gαi are direct substrates of DHHC5. Finally, we provided evidence that the C-terminal tail of DHHC5 can be palmitoylated in response to stimulation and such modification is important for its dynamic localization and function in the plasma membrane. Our results reveal that DHHC5 is a central regulator of signaling downstream of β-adrenergic receptors in cardiomyocytes.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas
| | - Autumn N Marsden
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas
| | - C Anthony Scott
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey.
| |
Collapse
|
122
|
Shah BS, Shimell JJ, Bamji SX. Regulation of dendrite morphology and excitatory synapse formation by zDHHC15. J Cell Sci 2019; 132:jcs.230052. [PMID: 31189538 PMCID: PMC6633394 DOI: 10.1242/jcs.230052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Protein palmitoylation is the most common post-translational lipid modification in the brain and is mediated by a family of 24 zDHHC enzymes. There has been growing interest in zDHHCs due to mounting evidence that these enzymes play key roles in the development and function of neuronal connections, and the fact that a number of zDHHCs have been associated with neurodevelopmental and neurodegenerative diseases. Loss-of-function variants in several zDHHCs, including zDHHC15, have been identified in patients with intellectual disabilities; however, the function of zDHHC15 in the brain has not been well studied. Here, we demonstrate that knocking down zDHHC15 in primary rat hippocampal cultures reduces dendritic outgrowth and arborization, as well as spine maturation. Moreover, knockdown of zDHHC15 reduces palmitoylation of PSD-95 and its trafficking into dendrites, resulting in an overall decrease in the density of excitatory synapses being formed onto mutant cells. Summary: Disruption of zDHHC15 function in primary hippocampal cultures reduces dendritic outgrowth, spine maturation, excitatory synapse density and trafficking of PSD-95 into dendrites.
Collapse
Affiliation(s)
- Bhavin S Shah
- Department of Cellular & Physiological Sciences & the Brain Research Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C., V6T-1Z3, Canada
| | - Jordan J Shimell
- Department of Cellular & Physiological Sciences & the Brain Research Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C., V6T-1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular & Physiological Sciences & the Brain Research Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C., V6T-1Z3, Canada
| |
Collapse
|
123
|
AMPAR Palmitoylation Tunes Synaptic Strength: Implications for Synaptic Plasticity and Disease. J Neurosci 2019; 39:5040-5043. [PMID: 31243093 DOI: 10.1523/jneurosci.0055-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/21/2022] Open
|
124
|
Bolland DE, Moritz AE, Stanislowski DJ, Vaughan RA, Foster JD. Palmitoylation by Multiple DHHC Enzymes Enhances Dopamine Transporter Function and Stability. ACS Chem Neurosci 2019; 10:2707-2717. [PMID: 30965003 PMCID: PMC6746250 DOI: 10.1021/acschemneuro.8b00558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein that mediates the reuptake of extracellular dopamine (DA) and controls the spatiotemporal dynamics of dopaminergic neurotransmission. The transporter is subject to fine control that tailors clearance of transmitter to physiological demands, and dysregulation of reuptake induced by psychostimulant drugs, transporter polymorphisms, and signaling defects may impact transmitter tone in disease states. We previously demonstrated that DAT undergoes complex regulation by palmitoylation, with acute inhibition of the modification leading to rapid reduction of transport activity and sustained inhibition of the modification leading to transporter degradation and reduced expression. Here, to examine mechanisms and outcomes related to increased modification, we coexpressed DAT with palmitoyl acyltransferases (PATs), also known as DHHC enzymes, which catalyze palmitate addition to proteins. Of 12 PATs tested, DAT palmitoylation was stimulated by DHHC2, DHHC3, DHHC8, DHHC15, and DHHC17, with others having no effect. Increased modification was localized to previously identified palmitoylation site Cys580 and resulted in upregulation of transport kinetics and elevated transporter expression mediated by reduced degradation. These findings confirm palmitoylation as a regulator of multiple DAT properties crucial for appropriate DA homeostasis and identify several potential PAT pathways linked to these effects. Defects in palmitoylation processes thus represent possible mechanisms of transport imbalances in DA disorders.
Collapse
Affiliation(s)
| | | | - Daniel J. Stanislowski
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| |
Collapse
|
125
|
Duncan PJ, Bi D, McClafferty H, Chen L, Tian L, Shipston MJ. S-Acylation controls functional coupling of BK channel pore-forming α-subunits and β1-subunits. J Biol Chem 2019; 294:12066-12076. [PMID: 31213527 PMCID: PMC6690687 DOI: 10.1074/jbc.ra119.009065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
The properties and physiological function of pore-forming α-subunits of large conductance calcium- and voltage-activated potassium (BK) channels are potently modified by their functional coupling with regulatory subunits in many tissues. However, mechanisms that might control functional coupling are very poorly understood. Here we show that S-acylation, a dynamic post-translational lipid modification of proteins, of the intracellular S0–S1 loop of the BK channel pore-forming α-subunit controls functional coupling to regulatory β1-subunits. In HEK293 cells, α-subunits that cannot be S-acylated show attenuated cell surface expression, but expression was restored by co-expression with the β1-subunit. However, we also found that nonacylation of the S0–S1 loop reduces functional coupling between α- and β1-subunits by attenuating the β1-subunit-induced left shift in the voltage for half-maximal activation. In mouse vascular smooth muscle cells expressing both α- and β1-subunits, BK channel α-subunits were endogenously S-acylated. We further noted that S-acylation is significantly reduced in mice with a genetic deletion of the palmitoyl acyltransferase (Zdhhc23) that controls S-acylation of the S0–S1 loop. Genetic deletion of Zdhhc23 or broad-spectrum pharmacological inhibition of S-acylation attenuated endogenous BK channel currents independently of changes in cell surface expression of the α-subunit. We conclude that functional effects of S-acylation on BK channels depend on the presence of β1-subunits. In the absence of β1-subunits, S-acylation promotes cell surface expression, whereas in its presence, S-acylation controls functional coupling. S-Acylation thus provides a mechanism that dynamically regulates the functional coupling with β1-subunits, enabling an additional level of conditional, cell-specific control of ion-channel physiology.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Danlei Bi
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Heather McClafferty
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lie Chen
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lijun Tian
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Michael J Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
126
|
Lee KY, Lee BD, Park JM, Lee YM, Moon E, Jeong HJ, Kim SY, Suh H, Chung YI, Kim SC. Investigation of Maternal Effects, Maternal-Fetal Interactions, and Parent-of-Origin Effects (Imprinting) for Candidate Genes Positioned on Chromosome 18q21, in Probands with Schizophrenia and their First-Degree Relatives. Psychiatry Investig 2019; 16:450-458. [PMID: 31247704 PMCID: PMC6603700 DOI: 10.30773/pi.2019.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/12/2019] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE A popular design for the investigation of such effects, including effects of parent-of-origin (imprinting), maternal genotype, and maternal-fetal genotype interactions, is to collect deoxyribonucleic acid (DNA) from affected offspring and their mothers and to compare with an appropriate control sample. We investigate the effects of estimation of maternal, imprinting and interaction effects using multimodal modeling using parents and their offspring with schizophrenia in Korean population. METHODS We have recruited 27 probands (with schizophrenia) with their parents and siblings whenever possible. We analyzed 20 SNPs of 7 neuronal genes in chromosome 18. We used EMIM analysis program for the estimation of maternal, imprinting and interaction effects using multimodal modeling. RESULTS Of analyzed 20 single nucleotide polymorphisms (SNPs), significant SNP (rs 2276186) was suggested in EMIM analysis for child genetics effects (p=0.0225438044) and child genetic effects allowing for maternal genetic effects (p=0.0209453210) with very stringent multiple comparison Bonferroni correction. CONCLUSION Our results are the pilot study for epigenetic study in mental disorder and help to understanding and use of EMIM statistical genetics analysis program with many limitations including small pedigree numbers.
Collapse
Affiliation(s)
- Kang Yoon Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Byung Dae Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University College of Medicine, Busan, Republic of Korea
| | - Je Min Park
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University College of Medicine, Busan, Republic of Korea
| | - Young Min Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University College of Medicine, Busan, Republic of Korea
| | - Eunsoo Moon
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University College of Medicine, Busan, Republic of Korea
| | - Hee Jeong Jeong
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Soo Yeon Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hwagyu Suh
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Young In Chung
- Department of Psychiatry, Pusan National University College of Medicine, Busan, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
127
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
128
|
Palmitoylation in apicomplexan parasites: from established regulatory roles to putative new functions. Mol Biochem Parasitol 2019; 230:16-23. [PMID: 30978365 DOI: 10.1016/j.molbiopara.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
This minireview aims to provide a comprehensive synthesis on protein palmitoylation in apicomplexan parasites and higher eukaryotes where most of the data is available. Apicomplexan parasites encompass numerous obligate intracellular parasites with significant health risk to animals and humans. Protein palmitoylation is a widespread post-translational modification that plays important regulatory roles in several physiological and pathological states. Functional studies demonstrate that many processes important for parasites are regulated by protein palmitoylation. Structural analyses suggest that enzymes responsible for the palmitoylation process have a conserved architecture in eukaryotes although there are particular differences which could be related to their substrate specificities. Interestingly, with the publication of T. gondii and P. falciparum palmitoylomes new possible regulatory functions are unveiled. Here we focus our discussion on data from both palmitoylomes that suggest that palmitoylation of nuclear proteins regulate different chromatin-related processes such as nucleosome assembly and stability, transcription, translation and DNA repair.
Collapse
|
129
|
Identification of Novel Inhibitors of DLK Palmitoylation and Signaling by High Content Screening. Sci Rep 2019; 9:3632. [PMID: 30842471 PMCID: PMC6403299 DOI: 10.1038/s41598-019-39968-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 12/05/2022] Open
Abstract
After axonal insult and injury, Dual leucine-zipper kinase (DLK) conveys retrograde pro-degenerative signals to neuronal cell bodies via its downstream target c-Jun N-terminal kinase (JNK). We recently reported that such signals critically require modification of DLK by the fatty acid palmitate, via a process called palmitoylation. Compounds that inhibit DLK palmitoylation could thus reduce neurodegeneration, but identifying such inhibitors requires a suitable assay. Here we report that DLK subcellular localization in non-neuronal cells is highly palmitoylation-dependent and can thus serve as a proxy readout to identify inhibitors of DLK palmitoylation by High Content Screening (HCS). We optimized an HCS assay based on this readout, which showed highly robust performance in a 96-well format. Using this assay we screened a library of 1200 FDA-approved compounds and found that ketoconazole, the compound that most dramatically affected DLK localization in our primary screen, dose-dependently inhibited DLK palmitoylation in follow-up biochemical assays. Moreover, ketoconazole significantly blunted phosphorylation of c-Jun in primary sensory neurons subjected to trophic deprivation, a well known model of DLK-dependent pro-degenerative signaling. Our HCS platform is thus capable of identifying novel inhibitors of DLK palmitoylation and signalling that may have considerable therapeutic potential.
Collapse
|
130
|
Sohn H, Park M. Palmitoylation-mediated synaptic regulation of AMPA receptor trafficking and function. Arch Pharm Res 2019; 42:426-435. [PMID: 30838509 PMCID: PMC6505502 DOI: 10.1007/s12272-019-01134-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a major glutamate-gated ion channel in the brain and is important for synaptic transmission, synaptic plasticity, and learning. Palmitoylation, a post-translational modification, is a critical process regulating AMPAR trafficking, synaptic function and plasticity, and learning and memory in health and diseases. In this review, we discuss current knowledge on the palmitoylation-dependent regulation of AMPAR trafficking and functions. We focus on the palmitoylation of AMPARs and other synaptic proteins that directly or indirectly interact with AMPARs, including postsynaptic density 95, glutamate receptor-interacting protein/AMPAR-binding protein, A-kinase anchoring protein 79/150, and protein interacting with C kinase 1. Finally, we discuss what future studies should address in the field of palmitoylation-dependent AMPAR trafficking and function with regard to physiology and neurodegenerative diseases.
Collapse
Affiliation(s)
- Heesung Sohn
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Department of Life Sciences, School of Natural Science, Hanyang University, Seoul, 04763, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea. .,Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
131
|
Kang R, Wang L, Sanders SS, Zuo K, Hayden MR, Raymond LA. Altered Regulation of Striatal Neuronal N-Methyl-D-Aspartate Receptor Trafficking by Palmitoylation in Huntington Disease Mouse Model. Front Synaptic Neurosci 2019; 11:3. [PMID: 30846936 PMCID: PMC6393405 DOI: 10.3389/fnsyn.2019.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic signaling, and alterations in the synaptic/extrasynaptic NMDAR balance affect neuronal survival. Studies have shown enhanced extrasynaptic GluN2B-type NMDAR (2B-NMDAR) activity in striatal neurons in the YAC128 mouse model of Huntington disease (HD), resulting in increased cell death pathway activation contributing to striatal vulnerability to degeneration. However, the mechanism(s) of altered GluN2B trafficking remains unclear. Previous work shows that GluN2B palmitoylation on two C-terminal cysteine clusters regulates 2B-NMDAR trafficking to the surface membrane and synapses in cortical neurons. Notably, two palmitoyl acyltransferases (PATs), zDHHC17 and zDHHC13, also called huntingtin-interacting protein 14 (HIP14) and HIP14-like (HIP14L), directly interact with the huntingtin protein (Htt), and mutant Htt disrupts this interaction. Here, we investigated whether GluN2B palmitoylation is involved in enhanced extrasynaptic surface expression of 2B-NMDARs in YAC128 striatal neurons and whether this process is regulated by HIP14 or HIP14L. We found reduced GluN2B palmitoylation in YAC128 striatum, specifically on cysteine cluster II. Consistent with that finding, the palmitoylation-deficient GluN2B Cysteine cluster II mutant exhibited enhanced, extrasynaptic surface expression in striatal neurons from wild-type mice, mimicking increased extrasynaptic 2B-NMDAR observed in YAC128 cultures. We also found that HIP14L palmitoylated GluN2B cysteine cluster II. Moreover, GluN2B palmitoylation levels were reduced in striatal tissue from HIP14L-deficient mice, and siRNA-mediated HIP14L knockdown in cultured neurons enhanced striatal neuronal GluN2B surface expression and susceptibility to NMDA toxicity. Thus, altered regulation of GluN2B palmitoylation levels by the huntingtin-associated PAT HIP14L may contribute to the cell death-signaling pathways underlying HD.
Collapse
Affiliation(s)
- Rujun Kang
- Department of Psychiatry, Brain Research Centre and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Liang Wang
- Department of Psychiatry, Brain Research Centre and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun S Sanders
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kurt Zuo
- Department of Psychiatry, Brain Research Centre and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Brain Research Centre and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
132
|
Meitzen J, Britson KA, Tuomela K, Mermelstein PG. The expression of select genes necessary for membrane-associated estrogen receptor signaling differ by sex in adult rat hippocampus. Steroids 2019; 142:21-27. [PMID: 28962849 PMCID: PMC5874170 DOI: 10.1016/j.steroids.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
Abstract
17β-estradiol can rapidly modulate neuron function via membrane estrogen receptors (ERs) in a sex-specific manner. For example, female rat hippocampal neurons express palmitoylated versions of ERα and ERβ that associate with the plasma membrane. These membrane-associated ERs are organized by caveolin proteins into functional signaling microdomains with metabotropic glutamate receptors (mGluRs). ER/mGluR signaling mediates several sex-specific estradiol actions on hippocampal neuron function. An important unanswered question regards the mechanism by which sex-specific membrane-associated ER signaling is generated, especially since it has been previously demonstrated that mGluR action is not sex-specific. One possibility is that the genes necessary for the ER membrane complex are differentially expressed between males and females, including genes that encode ERα and β, caveolin 1 and 3, and/or the palmitoylacyltransferases DHHC-7 and -21. Thus we used qPCR to test the hypothesis that these genes show sex differences in expression in neonatal and adult rat hippocampus. As an additional control we tested the expression of the 20 other DHHC palmitoylacyltransferases with no known connections to ER. In neonatal hippocampus, no sex differences were detected in gene expression. In adult hippocampus, the genes that encode caveolin 1 and DHHC-7 showed decreased expression in females compared to males. Thus, select genes differ by sex at specific developmental stages, arguing for a more nuanced model than simple widespread perinatal emergence of sex differences in all genes enabling sex-specific estradiol action. These findings enable the generation of new hypotheses regarding the mechanisms by which sex differences in membrane-associated ER signaling are programmed.
Collapse
Affiliation(s)
- John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.
| | - Kyla A Britson
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Krista Tuomela
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul G Mermelstein
- Dept. of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
133
|
Ernst AM, Syed SA, Zaki O, Bottanelli F, Zheng H, Hacke M, Xi Z, Rivera-Molina F, Graham M, Rebane AA, Björkholm P, Baddeley D, Toomre D, Pincet F, Rothman JE. S-Palmitoylation Sorts Membrane Cargo for Anterograde Transport in the Golgi. Dev Cell 2019; 47:479-493.e7. [PMID: 30458139 DOI: 10.1016/j.devcel.2018.10.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/07/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
While retrograde cargo selection in the Golgi is known to depend on specific signals, it is unknown whether anterograde cargo is sorted, and anterograde signals have not been identified. We suggest here that S-palmitoylation of anterograde cargo at the Golgi membrane interface is an anterograde signal and that it results in concentration in curved regions at the Golgi rims by simple physical chemistry. The rate of transport across the Golgi of two S-palmitoylated membrane proteins is controlled by S-palmitoylation. The bulk of S-palmitoylated proteins in the Golgi behave analogously, as revealed by click chemistry-based fluorescence and electron microscopy. These palmitoylated cargos concentrate in the most highly curved regions of the Golgi membranes, including the fenestrated perimeters of cisternae and associated vesicles. A palmitoylated transmembrane domain behaves similarly in model systems.
Collapse
Affiliation(s)
- Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Saad A Syed
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Omar Zaki
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Zheng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Moritz Hacke
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Patrik Björkholm
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David Baddeley
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA; Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ, CNRS, Paris, France
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
134
|
Matt L, Kim K, Chowdhury D, Hell JW. Role of Palmitoylation of Postsynaptic Proteins in Promoting Synaptic Plasticity. Front Mol Neurosci 2019; 12:8. [PMID: 30766476 PMCID: PMC6365469 DOI: 10.3389/fnmol.2019.00008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Many postsynaptic proteins undergo palmitoylation, the reversible attachment of the fatty acid palmitate to cysteine residues, which influences trafficking, localization, and protein interaction dynamics. Both palmitoylation by palmitoyl acyl transferases (PAT) and depalmitoylation by palmitoyl-protein thioesterases (PPT) is regulated in an activity-dependent, localized fashion. Recently, palmitoylation has received attention for its pivotal contribution to various forms of synaptic plasticity, the dynamic modulation of synaptic strength in response to neuronal activity. For instance, palmitoylation and depalmitoylation of the central postsynaptic scaffold protein postsynaptic density-95 (PSD-95) is important for synaptic plasticity. Here, we provide a comprehensive review of studies linking palmitoylation of postsynaptic proteins to synaptic plasticity.
Collapse
Affiliation(s)
- Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Karam Kim
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Dhrubajyoti Chowdhury
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
135
|
Systematic Screening of Depalmitoylating Enzymes and Evaluation of Their Activities by the Acyl-PEGyl Exchange Gel-Shift (APEGS) Assay. Methods Mol Biol 2019; 2009:83-98. [PMID: 31152397 DOI: 10.1007/978-1-4939-9532-5_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Palmitoylation is a reversible posttranslational lipid modification of proteins involved in a wide range of cellular functions. More than a thousand proteins are estimated to be palmitoylated. In neurons, PSD-95, a major postsynaptic scaffold protein, requires palmitoylation for its specific accumulation at the synapse and dynamically cycles between palmitoylated and depalmitoylated states. Although palmitoylating enzymes of PSD-95 have been well characterized, little is known about the depalmitoylating enzymes (e.g., thioesterases for palmitoylated PSD-95). An elegant pharmacological analysis has suggested that subsets of α/β hydrolase domain (ABHD)-containing proteins of the metabolic serine hydrolase superfamily involve thioesterases for palmitoylated proteins. Here, we describe a systematic method to screen the ABHD serine hydrolase genes, which unveiled ABHD17 as the depalmitoylating enzyme for PSD-95. Furthermore, we introduce the acyl-PEGyl exchange gel-shift (APEGS) method that enables quantification of palmitoylation levels/stoichiometries on proteins in various biological samples and can be used to monitor the dynamic depalmitoylation process of proteins.
Collapse
|
136
|
The molecular mechanism of DHHC protein acyltransferases. Biochem Soc Trans 2018; 47:157-167. [PMID: 30559274 DOI: 10.1042/bst20180429] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Protein S-acylation is a reversible lipidic posttranslational modification where a fatty acid chain is covalently linked to cysteine residues by a thioester linkage. A family of integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs) catalyze this reaction. With the rapid development of the techniques used for identifying lipidated proteins, the repertoire of S-acylated proteins continues to increase. This, in turn, highlights the important roles that S-acylation plays in human physiology and disease. Recently, the first molecular structures of DHHC-PATs were determined using X-ray crystallography. This review will comment on the insights gained on the molecular mechanism of S-acylation from these structures in combination with a wealth of biochemical data generated by researchers in the field.
Collapse
|
137
|
Spinelli M, Fusco S, Grassi C. Nutrient-Dependent Changes of Protein Palmitoylation: Impact on Nuclear Enzymes and Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19123820. [PMID: 30513609 PMCID: PMC6320809 DOI: 10.3390/ijms19123820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Diet is the main environmental stimulus chronically impinging on the organism throughout the entire life. Nutrients impact cells via a plethora of mechanisms including the regulation of both protein post-translational modifications and gene expression. Palmitoylation is the most-studied protein lipidation, which consists of the attachment of a molecule of palmitic acid to residues of proteins. S-palmitoylation is a reversible cysteine modification finely regulated by palmitoyl-transferases and acyl-thioesterases that is involved in the regulation of protein trafficking and activity. Recently, several studies have demonstrated that diet-dependent molecules such as insulin and fatty acids may affect protein palmitoylation. Here, we examine the role of protein palmitoylation on the regulation of gene expression focusing on the impact of this modification on the activity of chromatin remodeler enzymes, transcription factors, and nuclear proteins. We also discuss how this physiological phenomenon may represent a pivotal mechanism underlying the impact of diet and nutrient-dependent signals on human diseases.
Collapse
Affiliation(s)
- Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy.
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy.
| |
Collapse
|
138
|
Ampah KK, Greaves J, Shun-Shion AS, Asnawi AW, Lidster JA, Chamberlain LH, Collins MO, Peden AA. S-acylation regulates the trafficking and stability of the unconventional Q-SNARE STX19. J Cell Sci 2018; 131:jcs.212498. [PMID: 30254024 DOI: 10.1242/jcs.212498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/17/2018] [Indexed: 12/19/2022] Open
Abstract
STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Khamal K Ampah
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Jennifer Greaves
- Faculty of Health and Life Sciences, Coventry University, Science and Health Building, 20 Whitefriars Street, Coventry CV1 2DS, UK
| | - Amber S Shun-Shion
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Asral W Asnawi
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK.,Faculty of Medicine and Health Sciences, University Sains Islam Malaysia, 55700 Kuala Lumpur, Malaysia
| | - Jessica A Lidster
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Mark O Collins
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK.,Faculty of Science, Mass Spectrometry Centre, University of Sheffield, Brook Hill Road, Sheffield S3 7HF, UK
| | - Andrew A Peden
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| |
Collapse
|
139
|
Kim S, Zhang Y, Jin C, Lee Y, Kim Y, Han K. Emerging roles of Lys63-linked polyubiquitination in neuronal excitatory postsynapses. Arch Pharm Res 2018; 42:285-292. [DOI: 10.1007/s12272-018-1081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
|
140
|
Dumoulin A, Dagane A, Dittmar G, Rathjen FG. S-palmitoylation Is Required for the Control of Growth Cone Morphology of DRG Neurons by CNP-Induced cGMP Signaling. Front Mol Neurosci 2018; 11:345. [PMID: 30319353 PMCID: PMC6166100 DOI: 10.3389/fnmol.2018.00345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
Genetic investigations have demonstrated that a specific form of axonal branching - the bifurcation of afferents from dorsal root ganglia (DRG), cranial sensory ganglia (CSG) and mesencephalic trigeminal neurons (MTN) – is regulated by a cGMP-dependent signaling pathway. This cascade is composed of the ligand C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and the cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, axons no longer bifurcate, instead they turn in either an ascending or a descending direction. To gain further mechanistic insights into the process of axon bifurcation we applied different cell culture approaches to decipher downstream activities of cGKI in somatosensory growth cones. We demonstrate that CNP induces an enlargement of DRG growth cones via cGKI which is considered as the priming step of axon bifurcation in the spinal cord. This growth cone remodeling was both blocked by pharmacological inhibitors of S-palmitoylation and potentiated by blocking de-palmitoylation. cGKI colocalizes with the palmitoylome and vesicular structures including the endoplasmic reticulum, early endosomes, lysosomes primarily in the central domain of the growth cone as well as with the Golgi apparatus at the level of the soma. Interestingly, an acyl-biotin-exchange chemistry-based screen indicated that 8pCPT-cGMP-induced signaling induces S-palmitoylation of a restricted pool of proteins in the DRG-derived cell line F11. Overall, our data indicate that CNP-induced cGMP signaling via cGKI affects growth cone morphology of somatosensory afferents. Moreover, it also suggests that S-palmitoylation might play a role in this process.
Collapse
Affiliation(s)
| | - Alina Dagane
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
141
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
142
|
Chen B, Sun Y, Niu J, Jarugumilli GK, Wu X. Protein Lipidation in Cell Signaling and Diseases: Function, Regulation, and Therapeutic Opportunities. Cell Chem Biol 2018; 25:817-831. [PMID: 29861273 PMCID: PMC6054547 DOI: 10.1016/j.chembiol.2018.05.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Protein lipidation is an important co- or posttranslational modification in which lipid moieties are covalently attached to proteins. Lipidation markedly increases the hydrophobicity of proteins, resulting in changes to their conformation, stability, membrane association, localization, trafficking, and binding affinity to their co-factors. Various lipids and lipid metabolites serve as protein lipidation moieties. The intracellular concentrations of these lipids and their derivatives are tightly regulated by cellular metabolism. Therefore, protein lipidation links the output of cellular metabolism to the regulation of protein function. Importantly, deregulation of protein lipidation has been linked to various diseases, including neurological disorders, metabolic diseases, and cancers. In this review, we highlight recent progress in our understanding of protein lipidation, in particular, S-palmitoylation and lysine fatty acylation, and we describe the importance of these modifications for protein regulation, cell signaling, and diseases. We further highlight opportunities and new strategies for targeting protein lipidation for therapeutic applications.
Collapse
Affiliation(s)
- Baoen Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Jixiao Niu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA.
| |
Collapse
|
143
|
Xia ZX, Shen ZC, Zhang SQ, Wang J, Nie TL, Deng Q, Chen JG, Wang F, Wu PF. De-palmitoylation by N-(tert-Butyl) hydroxylamine inhibits AMPAR-mediated synaptic transmission via affecting receptor distribution in postsynaptic densities. CNS Neurosci Ther 2018; 25:187-199. [PMID: 29911316 DOI: 10.1111/cns.12996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Palmitoylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) subunits or their "scaffold" proteins produce opposite effects on AMPAR surface delivery. Considering AMPARs have long been identified as suitable drug targets for central nervous system (CNS) disorders, targeting palmitoylation signaling to regulate AMPAR function emerges as a novel therapeutic strategy. However, until now, much less is known about the effect of palmitoylation-deficient state on AMPAR function. Herein, we set out to determine the effect of global de-palmitoylation on AMPAR surface expression and its function, using a special chemical tool, N-(tert-Butyl) hydroxylamine (NtBuHA). METHODS BS3 protein cross-linking, Western blot, immunoprecipitation, patch clamp, and biotin switch assay. RESULTS Bath application of NtBuHA (1.0 mM) reduced global palmitoylated proteins in the hippocampus of mice. Although NtBuHA (1.0 mM) did not affect the expression of ionotropic glutamate receptor subunits, it preferentially decreased the surface expression of AMPARs, not N-methyl-d-aspartate receptors (NMDARs). Notably, NtBuHA (1.0 mM) reduces AMPAR-mediated excitatory postsynaptic currents (mEPSCs) in the hippocampus. This effect may be largely due to the de-palmitoylation of postsynaptic density protein 95 (PSD95) and protein kinase A-anchoring proteins, both of which stabilized AMPAR synaptic delivery. Furthermore, we found that changing PSD95 palmitoylation by NtBuHA altered the association of PSD95 with stargazin, which interacted directly with AMPARs, but not NMDARs. CONCLUSION Our data suggest that the palmitoylation-deficient state initiated by NtBuHA preferentially reduces AMPAR function, which may potentially be used for the treatment of CNS disorders, especially infantile neuronal ceroid lipofuscinosis (Batten disease).
Collapse
Affiliation(s)
- Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Lei Nie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| |
Collapse
|
144
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
145
|
Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, Muto J, Noguchi H, Yamauchi S, Tozawa Y, Ueda M, Hashimoto K, Köster P, Dong Q, Held K, Kudla J, Utsumi T, Uozumi N. N-myristoylation and S-acylation are common modifications of Ca 2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. THE NEW PHYTOLOGIST 2018; 218:1504-1521. [PMID: 29498046 DOI: 10.1111/nph.15053] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Koko Moriya
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Aiko Matsuura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoko Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Jun Muto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Hiroto Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Seiji Yamauchi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Aramaki-Aza Aoba 6-3, Aoba-ku, Sendai, 980-8579, Japan
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Katrin Held
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| |
Collapse
|
146
|
Moutin E, Nikonenko I, Stefanelli T, Wirth A, Ponimaskin E, De Roo M, Muller D. Palmitoylation of cdc42 Promotes Spine Stabilization and Rescues Spine Density Deficit in a Mouse Model of 22q11.2 Deletion Syndrome. Cereb Cortex 2018; 27:3618-3629. [PMID: 27365300 DOI: 10.1093/cercor/bhw183] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
22q11.2 deletion syndrome (22q11DS) is associated with learning and cognitive dysfunctions and a high risk of developing schizophrenia. It has become increasingly clear that dendritic spine plasticity is tightly linked to cognition. Thus, understanding how genes involved in cognitive disorders affect synaptic networks is a major challenge of modern biology. Several studies have pointed to a spine density deficit in 22q11DS transgenic mice models. Using the LgDel mouse model, we first quantified spine deficit at different stages using electron microscopy. Next we performed repetitive confocal imaging over several days on hippocampal organotypic cultures of LgDel mice. We show no imbalanced ratio between daily spine formation and spine elimination, but a decreased spine life expectancy. We corrected this impaired spine stabilization process by overexpressing ZDHHC8 palmitoyltransferase, whose gene belongs to the LgDel microdeletion. Overexpression of one of its substrates, the cdc42 brain-specific variant, under a constitutively active form (cdc42-palm-CA) led to the same result. Finally, we could rescue spine density in vivo, in adult LgDel mice, by injecting pups with a vector expressing cdc42-palm-CA. This study reveals a new role of ZDHHC8-cdc42-palm molecular pathway in postsynaptic structural plasticity and provides new evidence in favor of the dysconnectivity hypothesis for schizophrenia.
Collapse
Affiliation(s)
- E Moutin
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - I Nikonenko
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - T Stefanelli
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - A Wirth
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - E Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M De Roo
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - D Muller
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
147
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
148
|
Zhang XL, Ding HH, Xu T, Liu M, Ma C, Wu SL, Wei JY, Liu CC, Zhang SB, Xin WJ. Palmitoylation of δ-catenin promotes kinesin-mediated membrane trafficking of Nav1.6 in sensory neurons to promote neuropathic pain. Sci Signal 2018; 11:11/523/eaar4394. [PMID: 29588412 DOI: 10.1126/scisignal.aar4394] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao-Long Zhang
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan-Huan Ding
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Liu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shao-Ling Wu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cui-Cui Liu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Su-Bo Zhang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Jun Xin
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
149
|
Zhang J, Huang Y, Chen J, Zhu H, Whiteheart SW. Dynamic cycling of t-SNARE acylation regulates platelet exocytosis. J Biol Chem 2018; 293:3593-3606. [PMID: 29352103 PMCID: PMC5846156 DOI: 10.1074/jbc.ra117.000140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Interestingly, metabolic labeling studies showed incorporation of [3H]palmitate into the t-SNAREs increased although the protein levels were unchanged, suggesting that acylation turns over on the two t-SNAREs in resting platelets. Exogenously added fatty acids did compete with [3H]palmitate for t-SNARE labeling. To determine the effects of acylation, we measured aggregation, ADP/ATP release, as well as P-selectin exposure in platelets treated with the acyltransferase inhibitor cerulenin or the thioesterase inhibitor palmostatin B. We found that cerulenin pretreatment inhibited t-SNARE acylation and platelet function in a dose- and time-dependent manner whereas palmostatin B had no detectable effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin, suggesting that maintaining the acylation state is important for platelet function. Thus, our work shows that t-SNARE acylation is actively cycling in platelets and suggests that the enzymes regulating protein acylation could be potential targets to control platelet exocytosis in vivo.
Collapse
Affiliation(s)
- Jinchao Zhang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Yunjie Huang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Sidney W Whiteheart
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
150
|
Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases. Crit Rev Biochem Mol Biol 2018; 53:83-98. [PMID: 29239216 PMCID: PMC6009847 DOI: 10.1080/10409238.2017.1409191] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Protein depalmitoylation describes the removal of thioester-linked long chain fatty acids from cysteine residues in proteins. For many S-palmitoylated proteins, this process is promoted by acyl protein thioesterase enzymes, which catalyze thioester hydrolysis to solubilize and displace substrate proteins from membranes. The closely related enzymes acyl protein thioesterase 1 (APT1; LYPLA1) and acyl protein thioesterase 2 (APT2; LYPLA2) were initially identified from biochemical assays as G protein depalmitoylases, yet later were shown to accept a number of S-palmitoylated protein and phospholipid substrates. Leveraging the development of isoform-selective APT inhibitors, several studies report distinct roles for APT enzymes in growth factor and hormonal signaling. Recent crystal structures of APT1 and APT2 reveal convergent acyl binding channels, suggesting additional factors beyond acyl chain recognition mediate substrate selection. In addition to APT enzymes, the ABHD17 family of hydrolases contributes to the depalmitoylation of Ras-family GTPases and synaptic proteins. Overall, enzymatic depalmitoylation ensures efficient membrane targeting by balancing the palmitoylation cycle, and may play additional roles in signaling, growth, and cell organization. In this review, we provide a perspective on the biochemical, structural, and cellular analysis of protein depalmitoylases, and outline opportunities for future studies of systems-wide analysis of protein depalmitoylation.
Collapse
Affiliation(s)
- Sang Joon Won
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
| | | | - Brent R Martin
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
- b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|