101
|
Batzu L, Urso D, Grothe MJ, Veréb D, Chaudhuri KR, Pereira JB. Increased basal forebrain volumes could prevent cognitive decline in LRRK2 Parkinson's disease. Neurobiol Dis 2023:106182. [PMID: 37286171 DOI: 10.1016/j.nbd.2023.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVES It has been recently suggested that LRRK2 mutations are associated with a more benign clinical phenotype and a potentially more preserved cholinergic function in Parkinson's disease (PD). However, to our knowledge, no studies have tested whether the better clinical progression observed in LRRK2-PD patients is associated with more preserved volumes of a cholinergic brain area, the basal forebrain (BF). To address this hypothesis, here we compared BF volumes in LRRK2 carriers with and without PD with respect to idiopathic PD (iPD) patients and controls, and assessed whether they are associated with better clinical progression observed in LRRK2-PD compared to iPD. METHODS Thirty-one symptomatic LRRK2-PD patients and 13 asymptomatic LRRK2 individuals were included from the Parkinson's Progression Markers Initiative. In addition, 31 patients with iPD and 13 healthy controls matched to the previous groups were also included. BF volumes were automatically extracted from baseline T1-weighted MRI scans using a stereotactic atlas of cholinergic nuclei. These volumes were then compared between groups and their relationship with longitudinal cognitive changes was evaluated using linear mixed effects models. Mediation analyses assessed whether BF volumes mediated differences in cognitive trajectories between groups. RESULTS LRRK2-PD patients showed significantly higher BF volumes compared to iPD (P = 0.019) as did asymptomatic LRRK2 subjects compared to controls (P = 0.008). There were no other significant differences in cortical regions or subcortical volumes between these groups. BF volumes predicted longitudinal decline in several cognitive functions in iPD patients but not in LRRK2-PD, who did not show cognitive changes over a 4-year follow-up period. BF volumes were a significant mediator of the different cognitive trajectories between iPD and LRRK2-PD patients (95% CI 0.056-2.955). DISCUSSION Our findings suggest that mutations in LRRK2 are associated with increased BF volumes, potentially reflecting a compensatory hypercholinergic state that could prevent cognitive decline in LRRK2-PD patients.
Collapse
Affiliation(s)
- Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Daniele Urso
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom; Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Dániel Veréb
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden; Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
102
|
Zhao B, Li T, Fan Z, Yang Y, Shu J, Yang X, Wang X, Luo T, Tang J, Xiong D, Wu Z, Li B, Chen J, Shan Y, Tomlinson C, Zhu Z, Li Y, Stein JL, Zhu H. Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science 2023; 380:abn6598. [PMID: 37262162 DOI: 10.1126/science.abn6598] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Cardiovascular health interacts with cognitive and mental health in complex ways, yet little is known about the phenotypic and genetic links of heart-brain systems. We quantified heart-brain connections using multiorgan magnetic resonance imaging (MRI) data from more than 40,000 subjects. Heart MRI traits displayed numerous association patterns with brain gray matter morphometry, white matter microstructure, and functional networks. We identified 80 associated genomic loci (P < 6.09 × 10-10) for heart MRI traits, which shared genetic influences with cardiovascular and brain diseases. Genetic correlations were observed between heart MRI traits and brain-related traits and disorders. Mendelian randomization suggests that heart conditions may causally contribute to brain disorders. Our results advance a multiorgan perspective on human health by revealing heart-brain connections and shared genetic influences.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Shu
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaochen Yang
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiarui Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenyi Wu
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Bingxuan Li
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chalmer Tomlinson
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
103
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
104
|
Ma T, Feng L, Wei S, Wang Y, Li G, Lu Y, Zhang Y, Chu Y, Wang W, Zhang H. Antisense oligonucleotides targeting basal forebrain ATXN2 enhances spatial memory and ameliorates sleep deprivation-induced fear memory impairment in mice. Brain Behav 2023; 13:e3013. [PMID: 37072935 PMCID: PMC10275523 DOI: 10.1002/brb3.3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/04/2022] [Accepted: 12/24/2022] [Indexed: 04/20/2023] Open
Abstract
INTRODUCTION Regulation of brain-derived neurotrophic factor (BDNF) in the basal forebrain ameliorates sleep deprivation-induced fear memory impairments in rodents. Antisense oligonucleotides (ASOs) targeting ATXN2 was a potential therapy for spinocerebellar ataxia, whose pathogenic mechanism associates with reduced BDNF expression. We tested the hypothesis that ASO7 targeting ATXN2 could affect BDNF levels in mouse basal forebrain and ameliorate sleep deprivation-induced fear memory impairments. METHODS Adult male C57BL/6 mice were used to evaluate the effects of ASO7 targeting ATXN2 microinjected into the bilateral basal forebrain (1 μg, 0.5 μL, each side) on spatial memory, fear memory and sleep deprivation-induced fear memory impairments. Spatial memory and fear memory were detected by the Morris water maze and step-down inhibitory avoidance test, respectively. Immunohistochemistry, RT-PCR, and Western blot were used to evaluate the changes of levels of BDNF, ATXN2, and postsynaptic density 95 (PSD95) protein as well as ATXN2 mRNA. The morphological changes in neurons in the hippocampal CA1 region were detected by HE staining and Nissl staining. RESULTS ASO7 targeting ATXN2 microinjected into the basal forebrain could suppress ATXN2 mRNA and protein expression for more than 1 month and enhance spatial memory but not fear memory in mice. BDNF mRNA and protein expression in basal forebrain and hippocampus was increased by ASO7. Moreover, PSD95 expression and synapse formation were increased in the hippocampus. Furthermore, ASO7 microinjected into the basal forebrain increased BDNF and PSD95 protein expression in the basal forebrain of sleep-deprived mice and counteracted sleep deprivation-induced fear memory impairments. CONCLUSION ASOs targeting ATXN2 may provide effective interventions for sleep deprivation-induced cognitive impairments.
Collapse
Affiliation(s)
- Tao Ma
- Department of AnesthesiologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Long Feng
- Department of AnesthesiologyPLA General Hospital of Hainan HospitalHainanChina
| | - Shi‐Nan Wei
- PLA Rocket Force Characteristic Medical Center, Postgraduate Training Base of Jinzhou Medical UniversityBeijingChina
| | - Ying‐Ying Wang
- Department of AnesthesiologyBeijing Ditan Hospital, Capital Medical UniversityBeijingChina
| | - Guan‐Hua Li
- Department of AnesthesiologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Yan Lu
- Department of NeurologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Ying‐Xin Zhang
- Department of AnesthesiologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Yang Chu
- Department of AnesthesiologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Wei Wang
- Department of AnesthesiologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Hao Zhang
- Department of AnesthesiologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| |
Collapse
|
105
|
Nakayama M, Nishimura O, Nishimura Y, Kitaichi M, Kuraku S, Sone M, Hama C. Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig. J Neurosci 2023; 43:3989-4004. [PMID: 37117011 PMCID: PMC10255049 DOI: 10.1523/jneurosci.2243-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
The presentation of nicotinic acetylcholine receptors (nAChRs) on synaptic membranes is crucial for generating cholinergic circuits, some of which are associated with memory function and neurodegenerative disorders. Although the physiology and structure of nAChR, a cation channel comprising five subunits, have been extensively studied, little is known about how the receptor levels in interneuronal synapses are determined and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices and intracellular proteins. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts in the brain. Only the loss of function of Dα5 among the 10 nAChR subunits suppressed hig mutant phenotypes in both male and female flies. Dα5 behaved as a lethal factor when Hig was defective; loss of Dα5 in hig mutants rescued lethality, upregulating Dα6 synaptic levels. By contrast, levels of Dα5, Dα6, and Dα7 subunits were all reduced in hig mutants. These three subunits have distinct properties for interaction with Hig or trafficking, as confirmed by chimeric subunit experiments. Notably, the chimeric Dα5 protein, which has the extracellular sequences that display no positive interaction with Hig, exhibited abnormal distribution and lethality even in the presence of Hig. We propose that the sequestering subunit Dα5 functions by reducing synaptic levels of nAChR through internalization, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.SIGNIFICANCE STATEMENT Because the cholinergic synapse is one of the major synapses that generate various brain functions, numerous studies have sought to reveal the physiology and structure of the nicotinic acetylcholine receptor (nAChR). However, little is known about how synaptic levels of nAChR are controlled and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts. Our data indicate that Dα5 functions in reducing synaptic levels of nAChR, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.
Collapse
Affiliation(s)
- Minoru Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Yuhi Nishimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Miwa Kitaichi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Masaki Sone
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Chihiro Hama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
106
|
Chaves-Coira I, García-Magro N, Zegarra-Valdivia J, Torres-Alemán I, Núñez Á. Cognitive Deficits in Aging Related to Changes in Basal Forebrain Neuronal Activity. Cells 2023; 12:1477. [PMID: 37296598 PMCID: PMC10252596 DOI: 10.3390/cells12111477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Aging is a physiological process accompanied by a decline in cognitive performance. The cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this review is to provide an overview of recent advances grouped around the changes in basal forebrain activity during healthy aging. Elucidating the underlying mechanisms of brain function and their decline is especially relevant in today's society as an increasingly aged population faces higher risks of developing neurodegenerative diseases such as Alzheimer's disease. The profound age-related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction highlight the importance of investigating the aging of this brain region.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Facultad de Ciencias de la Salud, Universidad Señor de Sipán, Chiclayo 02001, Peru
| | - Ignacio Torres-Alemán
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Ikerbasque Science Foundation, 48009 Bilbao, Spain
| | - Ángel Núñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| |
Collapse
|
107
|
Bennett HC, Zhang Q, Wu YT, Chon U, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541998. [PMID: 37305850 PMCID: PMC10257218 DOI: 10.1101/2023.05.23.541998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Equal contribution
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Equal contribution
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Lead contact
| |
Collapse
|
108
|
Madokoro Y, Kato D, Tsuda Y, Arakawa I, Suzuki K, Sato T, Mizuno M, Uchida Y, Ojika K, Matsukawa N. Direct Enhancement Effect of Hippocampal Cholinergic Neurostimulating Peptide on Cholinergic Activity in the Hippocampus. Int J Mol Sci 2023; 24:ijms24108916. [PMID: 37240261 DOI: 10.3390/ijms24108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The cholinergic efferent network from the medial septal nucleus to the hippocampus is crucial for learning and memory. This study aimed to clarify whether hippocampal cholinergic neurostimulating peptide (HCNP) has a rescue function in the cholinergic dysfunction of HCNP precursor protein (HCNP-pp) conditional knockout (cKO). Chemically synthesized HCNP or a vehicle were continuously administered into the cerebral ventricle of HCNP-pp cKO mice and littermate floxed (control) mice for two weeks via osmotic pumps. We immunohistochemically measured the cholinergic axon volume in the stratum oriens and functionally evaluated the local field potential in the CA1. Furthermore, choline acetyltransferase (ChAT) and nerve growth factor (NGF) receptor (TrkA and p75NTR) abundances were quantified in wild-type (WT) mice administered HCNP or the vehicle. As a result, HCNP administration morphologically increased the cholinergic axonal volume and electrophysiological theta power in HCNP-pp cKO and control mice. Following the administration of HCNP to WT mice, TrkA and p75NTR levels also decreased significantly. These data suggest that extrinsic HCNP may compensate for the reduced cholinergic axonal volume and theta power in HCNP-pp cKO mice. HCNP may function complementarily to NGF in the cholinergic network in vivo. HCNP may represent a therapeutic candidate for neurological diseases with cholinergic dysfunction, e.g., Alzheimer's disease and Lewy body dementia.
Collapse
Affiliation(s)
- Yuta Madokoro
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Daisuke Kato
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yo Tsuda
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Itsumi Arakawa
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kengo Suzuki
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Toyohiro Sato
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Masayuki Mizuno
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kosei Ojika
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
109
|
Stratoulias V, Ruiz R, Kanatani S, Osman AM, Keane L, Armengol JA, Rodríguez-Moreno A, Murgoci AN, García-Domínguez I, Alonso-Bellido I, González Ibáñez F, Picard K, Vázquez-Cabrera G, Posada-Pérez M, Vernoux N, Tejera D, Grabert K, Cheray M, González-Rodríguez P, Pérez-Villegas EM, Martínez-Gallego I, Lastra-Romero A, Brodin D, Avila-Cariño J, Cao Y, Airavaara M, Uhlén P, Heneka MT, Tremblay MÈ, Blomgren K, Venero JL, Joseph B. ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain. Nat Neurosci 2023:10.1038/s41593-023-01326-3. [PMID: 37169859 DOI: 10.1038/s41593-023-01326-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.
Collapse
Affiliation(s)
- Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Adriana-Natalia Murgoci
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Isabel Alonso-Bellido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Fernando González Ibáñez
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Guillermo Vázquez-Cabrera
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Mercedes Posada-Pérez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Nathalie Vernoux
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
| | - Dario Tejera
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | | | - David Brodin
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Javier Avila-Cariño
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Ève Tremblay
- Department of Molecular Medicine, Université Laval, and Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Laval, Quebec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Jose L Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
110
|
Chen J, Lin KC, Prasad S, Schmidtke DW. Label free impedance based acetylcholinesterase enzymatic biosensors for the detection of acetylcholine. Biosens Bioelectron 2023; 235:115340. [PMID: 37216844 DOI: 10.1016/j.bios.2023.115340] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Realtime monitoring of neurotransmitters is of great interest for understanding their fundamental role in a wide range of biological processes in the central and peripheral nervous system, as well as their role, in several degenerative brain diseases. The measurement of acetylcholine in the brain is particularly challenging due to the complex environment of the brain and the low concentration and short lifetime of acetylcholine. In this paper, we demonstrated a novel, label-free biosensor for the detection of Ach using a single enzyme, acetylcholinesterase (ACHE), and electrochemical impedance spectroscopy (EIS). Acetylcholinesterase was covalently immobilized onto the surface of gold microelectrodes through an amine-reactive crosslinker dithiobis(succinimidyl propionate) (DSP). Passivation of the gold electrode with SuperBlock eliminated or reduced any non-specific response to other major interfering neurotransmitter molecules such as dopamine (DA), norepinephrine (NE) and epinephrine (EH). The sensors were able to detect acetylcholine over a wide concentration range (5.5-550 μM) in sample volumes as small as 300 μL by applying a 10 mV AC voltage at a frequency of 500 Hz. The sensors showed a linear relationship between Ach concentration and ΔZmod(R2 = 0.99) in PBS. The sensor responded to acetylcholine not only when evaluated in a simple buffer (PBS buffer) but in several more complex environments such as rat brain slurry and rat whole blood. The sensor remained responsive to acetylcholine after being implanted ex vivo in rat brain tissue. These results bode well for the future application of these novel sensors for real time in vivo monitoring of acetylcholine.
Collapse
Affiliation(s)
- Jie Chen
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA.
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA.
| |
Collapse
|
111
|
Crockett RA, Wilkins KB, Aditham S, Brontë-Stewart HM. No Laughing White Matter: Cortical Cholinergic Pathways and Cognitive Decline in Parkinson's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289348. [PMID: 37205443 PMCID: PMC10187344 DOI: 10.1101/2023.05.01.23289348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Approximately one third of recently diagnosed Parkinson's disease (PD) patients experience cognitive decline. The nucleus basalis of Meynert (NBM) degenerates early in PD and is crucial for cognitive function. The two main NBM white matter pathways include a lateral and medial trajectory. However, research is needed to determine which pathway, if any, are associated with PD-related cognitive decline. Methods Thirty-seven PD patients with no mild cognitive impairment (MCI) were included in this study. Participants either developed MCI at 1-year follow up (PD MCI-Converters; n=16) or did not (PD no-MCI; n=21). Mean diffusivity (MD) of the medial and lateral NBM tracts were extracted using probabilistic tractography. Between-group differences in MD for each tract was compared using ANCOVA, controlling for age, sex, and disease duration. Control comparisons of the internal capsule MD were also performed. Associations between baseline MD and cognitive outcomes (working memory, psychomotor speed, delayed recall, and visuospatial function) were assessed using linear mixed models. Results PD MCI-Converters had significantly greater MD of both NBM tracts compared to PD no-MCI (p<.001). No difference was found in the control region (p=.06). Trends were identified between: 1) lateral tract MD, poorer visuospatial performance (p=.05) and working memory decline (p=.04); and 2) medial tract MD and reduced psychomotor speed (p=.03). Conclusions Reduced integrity of the NBM tracts is evident in PD patients up to one year prior to the development of MCI. Thus, deterioration of the NBM tracts in PD may be an early marker of those at risk of cognitive decline.
Collapse
Affiliation(s)
- Rachel A. Crockett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Sudeep Aditham
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Helen M. Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
112
|
Zhu F, Elnozahy S, Lawlor J, Kuchibhotla KV. The cholinergic basal forebrain provides a parallel channel for state-dependent sensory signaling to auditory cortex. Nat Neurosci 2023; 26:810-819. [PMID: 36973512 PMCID: PMC10625791 DOI: 10.1038/s41593-023-01289-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Cholinergic basal forebrain (CBF) signaling exhibits multiple timescales of activity with classic slow signals related to brain and behavioral states and fast, phasic signals reflecting behavioral events, including movement, reinforcement and sensory-evoked responses. However, it remains unknown whether sensory cholinergic signals target the sensory cortex and how they relate to local functional topography. Here we used simultaneous two-channel, two-photon imaging of CBF axons and auditory cortical neurons to reveal that CBF axons send a robust, nonhabituating and stimulus-specific sensory signal to the auditory cortex. Individual axon segments exhibited heterogeneous but stable tuning to auditory stimuli allowing stimulus identity to be decoded from population activity. However, CBF axons displayed no tonotopy and their frequency tuning was uncoupled from that of nearby cortical neurons. Chemogenetic suppression revealed the auditory thalamus as a major source of auditory information to the CBF. Finally, slow fluctuations in cholinergic activity modulated the fast, sensory-evoked signals in the same axons, suggesting that a multiplexed combination of fast and slow signals is projected from the CBF to the auditory cortex. Taken together, our work demonstrates a noncanonical function of the CBF as a parallel channel for state-dependent sensory signaling to the sensory cortex that provides repeated representations of a broad range of sound stimuli at all points on the tonotopic map.
Collapse
Affiliation(s)
- Fangchen Zhu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
113
|
Whiteaker P, George AA. Discoveries and future significance of research into amyloid-beta/α7-containing nicotinic acetylcholine receptor (nAChR) interactions. Pharmacol Res 2023; 191:106743. [PMID: 37084859 PMCID: PMC10228377 DOI: 10.1016/j.phrs.2023.106743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Initiated by findings that Alzheimer's disease is associated with a profound loss of cholinergic markers in human brain, decades of studies have examined the interactions between specific subtypes of nicotinic acetylcholine receptors and amyloid-β [derived from the amyloid precursor protein (APP), which is cleaved to yield variable isoforms of amyloid-β]. We review the evolving understanding of amyloid-β's roles in Alzheimer's disease and pioneering studies that highlighted a role of nicotinic acetylcholine receptors in mediating important aspects of amyloid-β's effects. This review also surveys the current state of research into amyloid-β / nicotinic acetylcholine receptor interactions. The field has reached an exciting point in which common themes are emerging from the wide range of prior research and a range of accessible, relevant model systems are available to drive further progress. We highlight exciting new areas of inquiry and persistent challenges that need to be considered while conducting this research. Studies of amyloid-β and the nicotinic acetylcholine receptor populations that it interacts with provide opportunities for innovative basic and translational scientific breakthroughs related to nicotinic receptor biology, Alzheimer's disease, and cholinergic contributions to cognition more broadly.
Collapse
Affiliation(s)
- Paul Whiteaker
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA
| | - Andrew A George
- Virginia Commonwealth University School of Medicine, Department of Pharmacology and Toxicology, VCU Health Sciences Research Building, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
114
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
115
|
Wu D, Yu N, Gao Y, Xiong R, Liu L, Lei H, Jin S, Liu J, Liu Y, Xie J, Liu E, Zhou Q, Liu Y, Li S, Wei L, Lv J, Yu H, Zeng W, Zhou Q, Xu F, Luo MH, Zhang Y, Yang Y, Wang JZ. Targeting a vulnerable septum-hippocampus cholinergic circuit in a critical time window ameliorates tau-impaired memory consolidation. Mol Neurodegener 2023; 18:23. [PMID: 37060096 PMCID: PMC10103508 DOI: 10.1186/s13024-023-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/12/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Abnormal tau accumulation and cholinergic degeneration are hallmark pathologies in the brains of patients with Alzheimer's disease (AD). However, the sensitivity of cholinergic neurons to AD-like tau accumulation and strategies to ameliorate tau-disrupted spatial memory in terms of neural circuits still remain elusive. METHODS To investigate the effect and mechanism of the cholinergic circuit in Alzheimer's disease-related hippocampal memory, overexpression of human wild-type Tau (hTau) in medial septum (MS)-hippocampus (HP) cholinergic was achieved by specifically injecting pAAV-EF1α-DIO-hTau-eGFP virus into the MS of ChAT-Cre mice. Immunostaining, behavioral analysis and optogenetic activation experiments were used to detect the effect of hTau accumulation on cholinergic neurons and the MS-CA1 cholinergic circuit. Patch-clamp recordings and in vivo local field potential recordings were used to analyze the influence of hTau on the electrical signals of cholinergic neurons and the activity of cholinergic neural circuit networks. Optogenetic activation combined with cholinergic receptor blocker was used to detect the role of cholinergic receptors in spatial memory. RESULTS In the present study, we found that cholinergic neurons with an asymmetric discharge characteristic in the MS-hippocampal CA1 pathway are vulnerable to tau accumulation. In addition to an inhibitory effect on neuronal excitability, theta synchronization between the MS and CA1 subsets was significantly disrupted during memory consolidation after overexpressing hTau in the MS. Photoactivating MS-CA1 cholinergic inputs within a critical 3 h time window during memory consolidation efficiently improved tau-induced spatial memory deficits in a theta rhythm-dependent manner. CONCLUSIONS Our study not only reveals the vulnerability of a novel MS-CA1 cholinergic circuit to AD-like tau accumulation but also provides a rhythm- and time window-dependent strategy to target the MS-CA1 cholinergic circuit, thereby rescuing tau-induced spatial cognitive functions.
Collapse
Affiliation(s)
- Dongqin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nana Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luping Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, 999077, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sen Jin
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jiale Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingzhou Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhao Xie
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Enjie Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiuzhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanchao Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Linyu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huilin Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fuqiang Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yao Zhang
- Endocrine Department of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
116
|
Uliana DL, Diniz CRAF, da Silva LA, Borges-Assis AB, Lisboa SF, Resstel LBM. Contextual fear expression engages a complex set of interactions between ventromedial prefrontal cortex cholinergic, glutamatergic, nitrergic and cannabinergic signaling. Neuropharmacology 2023; 232:109538. [PMID: 37024011 DOI: 10.1016/j.neuropharm.2023.109538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Rats re-exposed to an environment previously associated with the onset of shocks evoke a set of conditioned defensive responses in preparation to an eventual flight or fight reaction. Ventromedial prefrontal cortex (vmPFC) is mutually important for controlling the behavioral/physiological consequences of stress exposure and the one's ability to satisfactorily undergo spatial navigation. While cholinergic, cannabinergic and glutamatergic/nitrergic neurotransmissions within the vmPFC are shown as important for modulating both behavioral and autonomic defensive responses, there is a gap on how these systems would interact to ultimately coordinate such conditioned reactions. Then, males Wistar rats had guide cannulas bilaterally implanted to allow drugs to be administered in vmPFC 10 min before their re-exposure to the conditioning chamber where three shocks were delivered at the intensity of 0.85 mA for 2 s two days ago. A femoral catheter was implanted for cardiovascular recordings the day before fear retrieval test. It was found that the increment of freezing behavior and autonomic responses induced by vmPFC infusion of neostigmine (acetylcholinesterase inhibitor) were prevented by prior infusion of a transient receptor potential vanilloid type 1 (TRPV1) antagonist, N-methyl-d-aspartate receptor antagonist, neuronal nitric oxide synthase inhibitor, nitric oxide scavenger and soluble guanylate cyclase inhibitor. A type 3 muscarinic receptor antagonist was unable to prevent the boosting in conditioned responses triggered by a TRPV1 agonist and a cannabinoid receptors type 1 antagonist. Altogether, our results suggest that expression of contextual conditioned responses involves a complex set of signaling steps comprising different but complementary neurotransmitter pathways.
Collapse
Affiliation(s)
- Daniela Lescano Uliana
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Leandro Antero da Silva
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Sabrina Francesca Lisboa
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil; Department of Biomolecular Sciences, School of Pharmaceutical Sciences, Campus USP, Ribeirão Preto, SP, 14040-9034, Brazil; National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil.
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP, 14049-900, Brazil; National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil.
| |
Collapse
|
117
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
118
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
119
|
Somera B, Frick M, Fadel JR. Age-related changes in basal forebrain afferent activation in response to food paired stimuli. Neurosci Lett 2023; 802:137155. [PMID: 36842481 PMCID: PMC10155118 DOI: 10.1016/j.neulet.2023.137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The basal forebrain contains a phenotypically-diverse assembly of neurons, including those using acetylcholine as their neurotransmitter. This basal forebrain cholinergic system projects to the entire neocortical mantle as well as subcortical limbic structures that include the hippocampus and amygdala. Basal forebrain pathology, including cholinergic dysfunction, is thought to underlie the cognitive impairments associated with several age-related neurodegenerative conditions, including Alzheimer's disease. Basal forebrain dysfunction may stem, in part, from a failure of normal afferent regulation of cholinergic and other neurons in this area. However, little is understood regarding how aging, alone, affects the functional regulation of basal forebrain afferents in the context of motivated behavior. Here, we used neuronal tract-tracing combined with motivationally salient stimuli in an aged rodent model to examine how aging alters activity in basal forebrain inputs arising from several cortical, limbic and brainstem structures. Young rats showed greater stimulus-associated activation of basal forebrain inputs arising from prelimbic cortex, nucleus accumbens and the ventral tegmental area compared with aged rats. Aged rats also showed increased latency to respond to palatable food presentation compared to young animals. Changes in activation of intrinsic basal forebrain cell populations or afferents were also observed as a function of age or experimental condition. These data further demonstrate that age-related changes in basal forebrain activation and related behavioral and cognitive functions reflect a failure of afferent regulation of this important brain region.
Collapse
Affiliation(s)
- Brandy Somera
- Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Marla Frick
- Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Jim R Fadel
- Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.
| |
Collapse
|
120
|
Gan C, Cao X, Wang L, Sun H, Ji M, Zhang H, Yuan Y, Zhang K. Cholinergic basal forebrain atrophy in Parkinson's disease with freezing of gait. Ann Clin Transl Neurol 2023; 10:814-824. [PMID: 37000969 DOI: 10.1002/acn3.51769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Mounting research support that cholinergic dysfunction plays a prominent role in freezing of gait (FOG), which commonly occurs in Parkinson's disease (PD). Basal forebrain (BF), especially the cholinergic nuclei 4 (Ch4), provides the primary source of the brain cholinergic input. However, whether the degeneration of BF and its innervated cortex contribute to the pathogenesis of FOG is unknown. OBJECTIVE To explore the role of structural alterations of BF and its innervated cortical brain regions in the pathogenesis of PD patients with freezing. METHODS Magnetic resonance imaging assessments and neurological assessments were performed on 20 PD patients with FOG (PD-FOG), 20 without FOG (PD-NFOG), and 21 healthy participants. Subregion volumes of the BF were compared among groups. Local gyrification index (LGI) was computed to reveal the cortical alternations. Relationships among subregional BF volumes, LGI, and the severity of FOG were evaluated by multiple linear regression. RESULTS Our study discovered that, compared to PD-NFOG, PD-FOG exhibited significant Ch4 atrophy (p = 4.6 × 10-5 ), accompanied by decreased LGI values in the left entorhinal cortex (p = 3.00 × 10-5 ) and parahippocampal gyrus (p = 2.90 × 10-5 ). Based on the regression analysis, Ch4 volume was negatively associated with FOG severity in PD-FOG group (β = -12.224, T = -2.556, p = 0.031). INTERPRETATION Our results imply that Ch4 degeneration and microstructural disorganization of its innervated cortical brain regions may play important roles in PD-FOG.
Collapse
|
121
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
122
|
Miyawaki EK, Bhattacharyya S, Torre M. Revisiting a Telencephalic Extent of the Ascending Reticular Activating System. Cell Mol Neurobiol 2023:10.1007/s10571-023-01339-3. [PMID: 36964874 DOI: 10.1007/s10571-023-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Is the cerebrum involved in its own activation to states of attention or arousal? "Telencephalon" is a term borrowed from embryology to identify not only the cerebral hemispheres of the forebrain, but also the basal forebrain. We review a generally undercited literature that describes nucleus basalis of Meynert, located within the substantia innominata of the ventrobasal forebrain, as a telencephalic extension of the ascending reticular activating formation. Although that formation's precise anatomical definition and localization have proven elusive over more than 70 years, a careful reading of sources reveals that there are histological features common to certain brainstem neurons and those of the nucleus basalis, and that a largely common dendritic architecture may be a morphological aspect that helps to define non-telencephalic structures of the ascending reticular activating formation (e.g., in brainstem) as well as those parts of the formation that are telencephalic and themselves responsible for cortical activation. We draw attention to a pattern of dendritic arborization described as "isodendritic," a uniform (isos-) branching in which distal dendrite branches are significantly longer than proximal ones. Isodendritic neurons also differ from other morphological types based on their heterogeneous, rather than specific afferentation. References reviewed here are consistent in their descriptions of histology, particularly in studies of locales rich in cholinergic neurons. We discuss the therapeutic implications of a basal forebrain site that may activate cortex. Interventions that specifically target nucleus basalis and, especially, the survival of its constituent neurons may benefit afflictions in which higher cortical function is compromised due to disturbed arousal or attentiveness, including not only coma and related syndromes, but also conditions colloquially described as states of cognitive "fog" or of "long-haul" mental compromise.
Collapse
Affiliation(s)
- Edison K Miyawaki
- Department of Neurology, Brigham and Women's Hospital, Mass General Brigham, 60 Fenwood Rd., Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Shamik Bhattacharyya
- Department of Neurology, Brigham and Women's Hospital, Mass General Brigham, 60 Fenwood Rd., Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew Torre
- Department of Pathology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
123
|
Petrican R, Fornito A. Adolescent neurodevelopment and psychopathology: The interplay between adversity exposure and genetic risk for accelerated brain ageing. Dev Cogn Neurosci 2023; 60:101229. [PMID: 36947895 PMCID: PMC10041470 DOI: 10.1016/j.dcn.2023.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In adulthood, stress exposure and genetic risk heighten psychological vulnerability by accelerating neurobiological senescence. To investigate whether molecular and brain network maturation processes play a similar role in adolescence, we analysed genetic, as well as longitudinal task neuroimaging (inhibitory control, incentive processing) and early life adversity (i.e., material deprivation, violence) data from the Adolescent Brain and Cognitive Development study (N = 980, age range: 9-13 years). Genetic risk was estimated separately for Major Depressive Disorder (MDD) and Alzheimer's Disease (AD), two pathologies linked to stress exposure and allegedly sharing a causal connection (MDD-to-AD). Adversity and genetic risk for MDD/AD jointly predicted functional network segregation patterns suggestive of accelerated (GABA-linked) visual/attentional, but delayed (dopamine [D2]/glutamate [GLU5R]-linked) somatomotor/association system development. A positive relationship between brain maturation and psychopathology emerged only among the less vulnerable adolescents, thereby implying that normatively maladaptive neurodevelopmental alterations could foster adjustment among the more exposed and genetically more stress susceptible youths. Transcriptomic analyses suggested that sensitivity to stress may underpin the joint neurodevelopmental effect of adversity and genetic risk for MDD/AD, in line with the proposed role of negative emotionality as a precursor to AD, likely to account for the alleged causal impact of MDD on dementia onset.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool L69 7ZA, United Kingdom.
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
124
|
Obenaus A, Rodriguez-Grande B, Lee JB, Dubois CJ, Fournier ML, Cador M, Caille S, Badaut J. A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol Commun 2023; 11:32. [PMID: 36859364 PMCID: PMC9976423 DOI: 10.1186/s40478-023-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Traumatic brain injury (TBI) has the highest incidence amongst the pediatric population and its mild severity represents the most frequent cases. Moderate and severe injuries as well as repetitive mild TBI result in lasting morbidity. However, whether a single mild TBI sustained during childhood can produce long-lasting modifications within the brain is still debated. We aimed to assess the consequences of a single juvenile mild TBI (jmTBI) at 12 months post-injury in a mouse model. Non-invasive diffusion tensor imaging (DTI) revealed significant microstructural alterations in the hippocampus and the in the substantia innominata/nucleus basalis (SI/NB), structures known to be involved in spatial learning and memory. DTI changes paralled neuronal loss, increased astrocytic AQP4 and microglial activation in the hippocampus. In contrast, decreased astrocytic AQP4 expression and microglia activation were observed in SI/NB. Spatial learning and memory were impaired and correlated with alterations in DTI-derived derived fractional ansiotropy (FA) and axial diffusivity (AD). This study found that a single juvenile mild TBI leads to significant region-specific DTI microstructural alterations, distant from the site of impact, that correlated with cognitive discriminative novel object testing and spatial memory impairments at 12 months after a single concussive injury. Our findings suggest that exposure to jmTBI leads to a chronic abnormality, which confirms the need for continued monitoring of symptoms and the development of long-term treatment strategies to intervene in children with concussions.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christophe J Dubois
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | | | - Martine Cador
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Stéphanie Caille
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Jerome Badaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France.
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
125
|
Zhou H, Li M, Zhao R, Sun L, Yang G. A sleep-active basalocortical pathway crucial for generation and maintenance of chronic pain. Nat Neurosci 2023; 26:458-469. [PMID: 36690899 PMCID: PMC10010379 DOI: 10.1038/s41593-022-01250-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Poor sleep is associated with the risk of developing chronic pain, but how sleep contributes to pain chronicity remains unclear. Here we show that following peripheral nerve injury, cholinergic neurons in the anterior nucleus basalis (aNB) of the basal forebrain are increasingly active during nonrapid eye movement (NREM) sleep in a mouse model of neuropathic pain. These neurons directly activate vasoactive intestinal polypeptide-expressing interneurons in the primary somatosensory cortex (S1), causing disinhibition of pyramidal neurons and allodynia. The hyperactivity of aNB neurons is caused by the increased inputs from the parabrachial nucleus (PB) driven by the injured peripheral afferents. Inhibition of this pathway during NREM sleep, but not wakefulness, corrects neuronal hyperactivation and alleviates pain. Our results reveal that the PB-aNB-S1 pathway during sleep is critical for the generation and maintenance of chronic pain. Inhibiting this pathway during the sleep phase could be important for treating neuropathic pain.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Miao Li
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Ruohe Zhao
- Department of Neuroscience and Physiology, Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
126
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
127
|
Tian Q, An Y, Kitner-Triolo MH, Davatzikos C, Studenski SA, Ferrucci L, Resnick SM. Associations of Olfaction With Longitudinal Trajectories of Brain Volumes and Neuropsychological Function in Older Adults. Neurology 2023; 100:e964-e974. [PMID: 36460474 PMCID: PMC9990434 DOI: 10.1212/wnl.0000000000201646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Olfactory function declines with aging, and olfactory deficits are one of the earliest features of neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. Previous studies have shown that olfaction is associated with brain volumes and cognitive function, but data are exclusively cross-sectional. We aimed to examine longitudinal associations of olfaction with changes in brain volumes and neuropsychological function. METHODS In the Baltimore Longitudinal Study of Aging, we chose the first assessment of olfaction to examine the associations with retrospective and prospective changes in neuropsychological performance and brain volumes in participants aged 50 years or older using linear mixed-effects models, adjusted for demographic variables and cardiovascular disease. Olfaction was measured as odor identification scores through the 16-item Sniffin' Sticks. RESULTS We analyzed data from 567 (58% women, 42% men, 27% Black, 66% White, and 7% others) participants who had data on odor identification scores and brain volumetric MRI (n = 420 with retrospective repeats over a mean of 3.7 years, n = 280 with prospective repeats over a mean of 1.2 years). We also analyzed data from 754 participants (56% women, 44% men, 29% Black, 65% White, and 6% others) with neuropsychological assessments (n = 630 with retrospective repeats over a mean of 6.6 years, n = 280 with prospective repeats over a mean of 1.5 years). After adjustment, higher odor identification scores were associated with prior and subsequent slower brain atrophy in the entorhinal cortex (β ± SE = 0.0093 ± 0.0031, p = 0.0028 and β ± SE = 0.0176 ± 0.0073, p = 0.0169, respectively), hippocampus (β ± SE = 0.0070 ± 0.0030, p = 0.0192 and β ± SE = 0.0173 ± 0.0066, p = 0.0089, respectively), and additional frontal and temporal areas (all p < 0.05). Higher odor identification scores were also associated with prior slower decline in memory, attention, processing speed, and manual dexterity and subsequent slower decline in attention (all p < 0.05). Some associations were attenuated after exclusion of data points at and after symptom onset of cognitive impairment or dementia. DISCUSSION In older adults, olfaction is related to brain atrophy of specific brain regions and neuropsychological changes in specific domains over time. The observed associations are driven, in part, by those who developed cognitive impairment or dementia. Future longitudinal studies with longer follow-ups are needed to understand whether olfactory decline precedes cognitive decline and whether it is mediated through regionally specific brain atrophy.
Collapse
Affiliation(s)
- Qu Tian
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia.
| | - Yang An
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia.
| | - Melissa H Kitner-Triolo
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Christos Davatzikos
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Stephanie A Studenski
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Luigi Ferrucci
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| | - Susan M Resnick
- From the Translational Gerontology Branch (Q.T., S.A.S., L.F.), National Institute on Aging, Baltimore, MD; Laboratory of Behavioral Neuroscience (Y.A., M.H.K.T., S.M.R.), National Institute on Aging, Baltimore, MD; and Department of Radiology (C.D.), University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
128
|
Lin L, Li C, Li T, Zheng J, Shu Y, Zhang J, Shen Y, Ren D. Plant‐derived peptides for the improvement of Alzheimer's disease: Production, functions, and mechanisms. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Yu Shu
- College of Food Science and Technology Northwest University Xi'an Shaanxi China
| | - Jingjing Zhang
- College of Chemical Engineering Northwest University Xi'an Shaanxi China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Difeng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry Department of Food Science and Engineering, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
129
|
Zhou Q, Zheng Z, Wang X, Li W, Wang L, Yin C, Zhang Q, Wang Q. taVNS Alleviates Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Via Activating Basal Forebrain Cholinergic Neurons. Neurochem Res 2023; 48:1848-1863. [PMID: 36729311 DOI: 10.1007/s11064-023-03871-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of central nervous system after anesthesia or surgery. Sevoflurane, an inhalation anesthetic, may inhibit cholinergic pathway that induce neuronal death and neuroinflammation, ultimately leading to POCD. Transauricular vagus nerve stimulation (taVNS) has neuroprotective effects in POCD rats, but the mechanisms related to cholinergic system have not been revealed. Sprague-Dawley rats were anesthetized with sevoflurane to construct the POCD model. The immunotoxin 192-IgG-saporin (192-sap) selectively lesioned cholinergic neurons in the basal forebrain, which is the major source of cholinergic projections to hippocampus. After lesion, rats received 5 days of taVNS treatment (30 min per day) starting 24 h before anesthesia. Open field test and Morris water maze were used to test the cognitive function. In this study, rats exposed to sevoflurane exhibited cognitive impairment that was attenuated by taVNS. In addition, taVNS treatment activated cholinergic system in the basal forebrain and hippocampus, and downregulated the expression of apoptosis- and necroptosis-related proteins, such as cleaved Caspase-3 and p-MLKL, in the hippocampus. Meanwhile, the activation of Iba1+ microglial by sevoflurane was reduced by taVNS. 192-sap blocked the cholinergic system activation in the basal forebrain and hippocampus and inhibited taVNS-mediated neuroprotection and anti-inflammation effects in the hippocampus. Generally, our study indicated that taVNS might alleviate sevoflurane-induced hippocampal neuronal apoptosis, necroptosis and microglial activation though activating cholinergic system in the basal forebrain.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zilei Zheng
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Anesthesiology, Zhangjiakou Second Hospital, Zhangjiakou, Hebei, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Luqi Wang
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
130
|
de Almeida C, Chabbah N, Eyraud C, Fasano C, Bernard V, Pietrancosta N, Fabre V, El Mestikawy S, Daumas S. Absence of VGLUT3 Expression Leads to Impaired Fear Memory in Mice. eNeuro 2023; 10:ENEURO.0304-22.2023. [PMID: 36720646 PMCID: PMC9953049 DOI: 10.1523/eneuro.0304-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Fear is an emotional mechanism that helps to cope with potential hazards. However, when fear is generalized, it becomes maladaptive and represents a core symptom of posttraumatic stress disorder (PTSD). Converging lines of research show that dysfunction of glutamatergic neurotransmission is a cardinal feature of trauma and stress related disorders such as PTSD. However, the involvement of glutamatergic co-transmission in fear is less well understood. Glutamate is accumulated into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The atypical subtype, VGLUT3, is responsible for the co-transmission of glutamate with acetylcholine, serotonin, or GABA. To understand the involvement of VGLUT3-dependent co-transmission in aversive memories, we used a Pavlovian fear conditioning paradigm in VGLUT3-/- mice. Our results revealed a higher contextual fear memory in these mice, despite a facilitation of extinction. In addition, the absence of VGLUT3 leads to fear generalization, probably because of a pattern separation deficit. Our study suggests that the VGLUT3 network plays a crucial role in regulating emotional memories. Hence, VGLUT3 is a key player in the processing of aversive memories and therefore a potential therapeutic target in stress-related disorders.
Collapse
Affiliation(s)
- Camille de Almeida
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nida Chabbah
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Camille Eyraud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Caroline Fasano
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Véronique Bernard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Nicolas Pietrancosta
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Véronique Fabre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| | - Salah El Mestikawy
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal QC H4H 1R3, Quebec, Canada
| | - Stephanie Daumas
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris 75005, France
| |
Collapse
|
131
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
132
|
Dranovsky A, Kirshenbaum G, Chang CY, Bompolaki M, Bradford V, Bell J, Kosmidis S, Shansky R, Orlandi J, Savage L, Leonardo E, Harris A. Adult-born neurons maintain hippocampal cholinergic inputs and support working memory during aging. RESEARCH SQUARE 2023:rs.3.rs-1851645. [PMID: 36778445 PMCID: PMC9915786 DOI: 10.21203/rs.3.rs-1851645/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult neurogenesis is reduced during aging and impaired in disorders of stress, memory, and cognition though its normal function remains unclear. Moreover, a systems level understanding of how a small number of young hippocampal neurons could dramatically influence brain function is lacking. We examined whether adult neurogenesis sustains hippocampal connections cumulatively across the life span. Long-term suppression of neurogenesis as occurs during stress and aging resulted in an accelerated decline in hippocampal acetylcholine signaling and a slow and progressing emergence of profound working memory deficits. These deficits were accompanied by compensatory reorganization of cholinergic dentate gyrus inputs with increased cholinergic innervation to the ventral hippocampus and recruitment of ventrally projecting neurons by the dorsal projection. While increased cholinergic innervation was dysfunctional and corresponded to overall decreases in cholinergic levels and signaling, it could be recruited to correct the resulting memory dysfunction even in old animals. Our study demonstrates that hippocampal neurogenesis supports memory by maintaining the septohippocampal cholinergic circuit across the lifespan. It also provides a systems level explanation for the progressive nature of memory deterioration during normal and pathological aging and indicates that the brain connectome is malleable by experience.
Collapse
Affiliation(s)
- Alex Dranovsky
- Columbia University, New York State Psychiatric Institute
| | | | | | | | | | - Joseph Bell
- Columbia University, New York State Psychiatric Institute
| | | | | | - Javier Orlandi
- Columbia University, New York State Psychiatric Institute
| | | | | | | |
Collapse
|
133
|
Rapanelli M, Wang W, Hurley E, Feltri ML, Pittenger C, Frick LR, Yan Z. Cholinergic neurons in the basal forebrain are involved in behavioral abnormalities associated with Cul3 deficiency: Role of prefrontal cortex projections in cognitive deficits. Transl Psychiatry 2023; 13:22. [PMID: 36693858 PMCID: PMC9873627 DOI: 10.1038/s41398-023-02306-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Loss-of-function mutations of the gene Cul3 have been identified as a risk factor for autism-spectrum disorder (ASD), but the pathogenic mechanisms are not well understood. Conditional Cul3 ablation in cholinergic neurons of mice (ChatCRECul3F/+) recapitulated ASD-like social and sensory gating phenotypes and caused significant cognitive impairments, with diminished activity of cholinergic neurons in the basal forebrain (BF). Chemogenetic inhibition of BF cholinergic neurons in healthy mice induced similar social and cognitive deficits. Conversely, chemogenetic stimulation of BF cholinergic neurons in ChatCRECul3F/+ mice reversed abnormalities in sensory gating and cognition. Cortical hypofunction was also found after ChAT-specific Cul3 ablation and stimulation of cholinergic projections from the BF to the prefrontal cortex (PFC) mitigated cognitive deficits. Overall, we demonstrate that cholinergic dysfunction due to Cul3 deficiency is involved in ASD-like behavioral abnormalities, and that BF cholinergic neurons are particularly critical for cognitive component through their projections to the PFC.
Collapse
Affiliation(s)
- Maximiliano Rapanelli
- Department of Physiology and Biophysics, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
| | - Edward Hurley
- Department of Neurology, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
- Institute for Myelin and Glia Exploration, University at Buffalo, The State University of New York, Buffalo, USA
| | - Maria Laura Feltri
- Department of Neurology, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
- Institute for Myelin and Glia Exploration, University at Buffalo, The State University of New York, Buffalo, USA
- Department of Biochemistry, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
- Neuroscience Graduate Program. Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
| | - Christopher Pittenger
- Departments of Psychiatry and Psychology, Yale Child Study Center, and Interdepartmental Neuroscience Program, Yale University School of Medicine, Buffalo, USA
| | - Luciana Romina Frick
- Department of Neurology, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Neuroscience Graduate Program. Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Department of Medicine, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Clinical and Translational Research Center, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Neuroscience Graduate Program. Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
| |
Collapse
|
134
|
Wu Y, Hu S, Wang Y, Dong T, Wu H, Wang A, Li C, Kan H. Altered microstructural pattern of the cortex and basal forebrain cholinergic system in wilson's disease: an automated fiber quantification tractography study. Brain Imaging Behav 2023; 17:200-212. [PMID: 36690883 DOI: 10.1007/s11682-022-00753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Basal forebrain (BF) cholinergic projection neurons form a highly extensive input to the cortex. Failure of BF cholinergic circuits is responsible for the cognitive impairment associated with Wilson's disease (WD), but whether and how the microstructural changes in fiber projections between the BF and cerebral cortex influence prospective memory (PM) remain poorly understood. We collected diffusion tensor imaging (DTI) data from 21 neurological WD individuals and 26 healthy controls (HCs). The experiment reconstructed the probabilistic streamlined tractography of 18 white matter tracts using an automated fiber quantification (AFQ) toolkit. Tract properties (FA, MD, RD, and AD) were computed for 100 points along each tract for each participant, and the differences between the groups were examined. Subsequently, correlation analysis was performed to evaluate whether abnormal microstructural white matter integrity measures correlate with PM performance. Additional investigations used a tract-based spatial statistics (TBSS) approach to identify regions with altered white matter structure between groups and verify the reliability of the AFQ results. The highest nonoverlapping DTI-related differences were detected in the anterior thalamic radiation (ATR), corticospinal tract (CST), corpus callosum, association fibers, and limbic system fibers. Additionally, PM parameters of the patient group were highly correlated with white matter microstructure changes in the inferior longitudinal fasciculus. Our study highlights that the performance of projections between cholinergic input and output areas-the cerebral cortex and BF-may serve as neural biomarkers of PM and disease prognosis.
Collapse
Affiliation(s)
- Yutong Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Sheng Hu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China. .,Centers for Biomedical Engineering, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Yi Wang
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Ting Dong
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Hongli Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Anqin Wang
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Chuanfu Li
- Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China
| | - Hongxing Kan
- School of Medical Information Engineering, Anhui University of Chinese Medicine, 230012, Hefei, Anhui, China.
| |
Collapse
|
135
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
136
|
Granger AJ, Mao K, Saulnier JL, Hines ME, Sabatini BL. Developmental regulation of GABAergic gene expression in forebrain cholinergic neurons. Front Neural Circuits 2023; 17:1125071. [PMID: 37035505 PMCID: PMC10080005 DOI: 10.3389/fncir.2023.1125071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Acetylcholine and GABA are often co-released, including from VIP-expressing neurons of the cortex, cortically-projecting neurons of the globus pallidus externus and basal forebrain, and hippocampal-projecting neurons of the medial septum. The co-release of the functionally antagonistic neurotransmitters GABA and acetylcholine (ACh) greatly expands the possible functional effects of cholinergic neurons and provides an additional exogenous source of inhibition to the cortex. Transgene expression suggests that nearly all forebrain cholinergic neurons in mice at some point in development express Slc32a1, which encodes the vesicular GABA transporter (VGAT). To determine the degree of co-expression of GABA and Ach handling proteins, we measured expression in adult mice of Slc32a1, Gad1 and Gad2 (which encode GAD67 and GAD65, respectively, the GABA synthetic enzymes) in cholinergic neurons using fluorescent in situ hybridization. We found that only a subset of cholinergic neurons express the necessary machinery for GABA release at a single time in adult mice. This suggests that GABA co-release from cholinergic neurons is dynamic and potentially developmentally regulated. By measuring expression of Slc32a1, Gad1, Gad2, and Chat in the basal forebrain and medial septum in mice from post-natal day 0 to 28, we noted abundant yet variable expressions of GABAergic markers across early development, which are subsequently downregulated in adulthood. This is in contrast with the forebrain-projecting pedunculopontine nucleus, which showed no evidence of co-expression of GABAergic genes. These results suggest that expression of GABA signaling machinery in the cortically-projecting cholinergic system peaks during early development before settling at a non-zero level that is maintained through adulthood.
Collapse
|
137
|
Chavushyan VA, Simonyan KV, Danielyan MH, Avetisyan LG, Darbinyan LV, Isoyan AS, Lorikyan AG, Hovhannisyan LE, Babakhanyan MA, Sukiasyan LM. Pathology and prevention of brain microvascular and neuronal dysfunction induced by a high-fructose diet in rats. Metab Brain Dis 2023; 38:269-286. [PMID: 36271967 DOI: 10.1007/s11011-022-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/08/2022] [Indexed: 02/03/2023]
Abstract
A high-fructose diet causes metabolic abnormalities in rats, and the cluster of complications points to microvascular and neuronal disorders of the brain. The aim of this study was to evaluate i) the involvement of microvascular disorders and neuronal plasticity in the deleterious effects of a high-fructose diet on the rat brain and ii) a comparative assessment of the effectiveness of Phytocollection therapy (with antidiabetic, antioxidant, and acetylcholinesterase inhibitory activities) compared to Galantamine as first-line therapy for dementia and Diabeton as first-line therapy for hyperglycemia. The calcium adenosine triphosphate non-injection histoangiological method was used to assess capillary network diameter and density. A high-fructose diet resulted in a significant decrease in the diameter and density of the capillary bed, and pharmacological manipulations had a modulatory effect on microcirculatory adaptive mechanisms. In vivo single-unit extracellular recording was used to investigate short-term plasticity in the medial prefrontal cortex. Differences in the parameters of spike background activity and expression of excitatory and inhibitory responses of cortical neurons have been discovered, allowing for flexibility and neuronal function stabilization in pathology and pharmacological prevention. Integration of the coupling mechanism between microvascular function and neuronal spike activity could delay the progressive decline in cognitive function in rats fed a high fructose diet.
Collapse
Affiliation(s)
- V A Chavushyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - K V Simonyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia.
| | - M H Danielyan
- Histochemistry and Electron Microscopy Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L G Avetisyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L V Darbinyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A S Isoyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A G Lorikyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L E Hovhannisyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - M A Babakhanyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - L M Sukiasyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
- Yerevan State Medical University After M. Heratsi, 0025, Yerevan, Armenia
| |
Collapse
|
138
|
Tran NT, Muccini AM, Hale N, Tolcos M, Snow RJ, Walker DW, Ellery SJ. Creatine in the fetal brain: A regional investigation of acute global hypoxia and creatine supplementation in a translational fetal sheep model. Front Cell Neurosci 2023; 17:1154772. [PMID: 37066075 PMCID: PMC10097948 DOI: 10.3389/fncel.2023.1154772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Background Creatine supplementation during pregnancy is a promising prophylactic treatment for perinatal hypoxic brain injury. Previously, in near-term sheep we have shown that fetal creatine supplementation reduces cerebral metabolic and oxidative stress induced by acute global hypoxia. This study investigated the effects of acute hypoxia with or without fetal creatine supplementation on neuropathology in multiple brain regions. Methods Near-term fetal sheep were administered continuous intravenous infusion of either creatine (6 mg kg-1 h-1) or isovolumetric saline from 122 to 134 days gestational age (dGA; term is approx. 145 dGA). At 131 dGA, global hypoxia was induced by a 10 min umbilical cord occlusion (UCO). Fetuses were then recovered for 72 h at which time (134 dGA) cerebral tissue was collected for either RT-qPCR or immunohistochemistry analyses. Results UCO resulted in mild injury to the cortical gray matter, thalamus and hippocampus, with increased cell death and astrogliosis and downregulation of genes involved in regulating injury responses, vasculature development and mitochondrial integrity. Creatine supplementation reduced astrogliosis within the corpus callosum but did not ameliorate any other gene expression or histopathological changes induced by hypoxia. Of importance, effects of creatine supplementation on gene expression irrespective of hypoxia, including increased expression of anti-apoptotic (BCL-2) and pro-inflammatory (e.g., MPO, TNFa, IL-6, IL-1β) genes, particularly in the gray matter, hippocampus, and striatum were identified. Creatine treatment also effected oligodendrocyte maturation and myelination in white matter regions. Conclusion While supplementation did not rescue mild neuropathology caused by UCO, creatine did result in gene expression changes that may influence in utero cerebral development.
Collapse
Affiliation(s)
- Nhi T. Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Nhi T. Tran,
| | - Anna M. Muccini
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Rod J. Snow
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - David W. Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
139
|
Luo W, Yan Y, Cao Y, Zhang Y, Zhang Z. The effects of GPER on age-associated memory impairment induced by decreased estrogen levels. Front Mol Biosci 2023; 10:1097018. [PMID: 37021109 PMCID: PMC10069632 DOI: 10.3389/fmolb.2023.1097018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Estrogen, as a pleiotropic endocrine hormone, not only regulates the physiological functions of peripheral tissues but also exerts vital neuroregulatory effects in the central nervous system (CNS), such as the development of neurons and the formation of neural network connections, wherein rapid estrogen-mediated reactions positively stimulate spinogenesis and regulate synaptic plasticity and synaptic transmission to facilitate cognitive and memory performance. These fast non-genomic effects can be initiated by membrane-bound estrogen receptors (ERs), three best known of which are ERα, ERβ, and G protein-coupled estrogen receptor (GPER). To date, the effects of ERα and ERβ have been well studied in age-associated memory impairment, whereas there is still a lack of attention to the role of GPER in age-associated memory impairment, and there are still disputes about whether GPER indeed functions as an ER to enhance learning and memory. In this review, we provide a systematic overview of the role of GPER in age-associated memory impairment based on its expression, distribution, and signaling pathways, which might bring some inspiration for translational drugs targeting GPER for age-related diseases and update knowledge on the role of estrogen and its receptor system in the brain.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yudie Yan
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunpeng Cao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Zhen Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| |
Collapse
|
140
|
Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Int J Mol Sci 2022; 24:ijms24010507. [PMID: 36613951 PMCID: PMC9820491 DOI: 10.3390/ijms24010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors expressed in the central nervous system mediate various functions, including cognition, memory, or reward. Therefore, muscarinic receptors represent potential pharmacological targets for various diseases and conditions, such as Alzheimer's disease, schizophrenia, addiction, epilepsy, or depression. Muscarinic receptors are allosterically modulated by neurosteroids and steroid hormones at physiologically relevant concentrations. In this review, we focus on the modulation of muscarinic receptors by neurosteroids and steroid hormones in the context of diseases and disorders of the central nervous system. Further, we propose the potential use of neuroactive steroids in the development of pharmacotherapeutics for these diseases and conditions.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Nikolai Chetverikov
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| |
Collapse
|
141
|
Trofimova I. Analytic Background in the Neuroscience of the Potential Project "Hippocrates". Brain Sci 2022; 13:brainsci13010039. [PMID: 36672021 PMCID: PMC9856329 DOI: 10.3390/brainsci13010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This paper reviews the principles identified in analytic neuroscience that could be used in the setup of an international project, "Hippocrates" (H-project), named after the author of the endocrine theory of temperaments. The H-project can aim to summarize the findings in functional neurochemistry of consistent behavioural patterns (CBPs) in health (such as temperament traits) and psychopathology (symptoms of psychiatric disorders); to have systematically structured neurochemical investigations; to have an analysis of CBPs that include all ranges of behavioural histories and to have these modules complemented by regional contrasts related to climate, diets and other bio-environmental factors. The review highlights the benefits of constructivism and illustrates the contrast between constructivism and current approaches in terms of analytic and methodological aspects. (1) "Where" the neurochemical biomarkers should be measured: the review expands the range of needed measurements to out-of-brain systems, including environmental factors, and explores the concept of Specialized Extended Phenotype. (2) "What" should be measured but is missing: the review points to the need for measurement of the "Throw & Catch" neurochemical relays; behavioural and neuronal events contributing to the consistency of the CBPs but not documented in measurements. (3) Structuring the H-project's setup: the paper briefly describes a proposed earlier neurochemical framework, Functional Ensemble of Temperament that that accommodates the neurochemical continuum between temperament and symptoms of psychiatric disorders. This framework is in line with documented "Throw & Catch" neurochemical relays and can also be used to organize data about the personal and professional history of an individual.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 92 Bowman St, Hamilton, ON L8S 2T6, Canada
| |
Collapse
|
142
|
Basal Forebrain Chemogenetic Inhibition Converts the Attentional Control Mode of Goal-Trackers to That of Sign-Trackers. eNeuro 2022; 9:ENEURO.0418-22.2022. [PMID: 36635246 PMCID: PMC9794377 DOI: 10.1523/eneuro.0418-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Sign tracking versus goal tracking in rats indicate vulnerability and resistance, respectively, to Pavlovian cue-evoked addictive drug taking and relapse. Here, we tested hypotheses predicting that the opponent cognitive-behavioral styles indexed by sign tracking versus goal tracking include variations in attentional performance which differentially depend on basal forebrain projection systems. Pavlovian Conditioned Approach (PCA) testing was used to identify male and female sign-trackers (STs) and goal-trackers (GTs), as well as rats with an intermediate phenotype (INTs). Upon reaching asymptotic performance in an operant task requiring the detection of visual signals (hits) as well as the reporting of signal absence for 40 min per session, GTs scored more hits than STs, and hit rates across all phenotypes correlated with PCA scores. STs missed relatively more signals than GTs specifically during the last 15 min of a session. Chemogenetic inhibition of the basal forebrain decreased hit rates in GTs but was without effect in STs. Moreover, the decrease in hits in GTs manifested solely during the last 15 min of a session. Transfection efficacy in the horizontal limb of the diagonal band (HDB), but not substantia innominate (SI) or nucleus basalis of Meynert (nbM), predicted the behavioral efficacy of chemogenetic inhibition in GTs. Furthermore, the total subregional transfection space, not transfection of just cholinergic neurons, correlated with performance effects. These results indicate that the cognitive-behavioral phenotype indexed by goal tracking, but not sign tracking, depends on activation of the basal forebrain-frontal cortical projection system and associated biases toward top-down or model-based performance.
Collapse
|
143
|
Selective Menin Deletion in the Hippocampal CA1 Region Leads to Disruption of Contextual Memory in the MEN1 Conditional Knockout Mouse: Behavioral Restoration and Gain of Function following the Reintroduction of MEN1 Gene. Cells 2022; 11:cells11244019. [PMID: 36552783 PMCID: PMC9776806 DOI: 10.3390/cells11244019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cholinergic neuronal networks in the hippocampus play a key role in the regulation of learning and memory in mammals. Perturbations of these networks, in turn, underlie neurodegenerative diseases. However, the mechanisms remain largely undefined. We have recently demonstrated that an in vitro MEN1 gene deletion perturbs nicotinic cholinergic plasticity at the hippocampal glutamatergic synapses. Furthermore, MEN1 neuronal conditional knockout in freely behaving animals has also been shown to result in learning and memory deficits, though the evidence remains equivocal. In this study, using an AVV viral vector transcription approach, we provide direct evidence that MEN1 gene deletion in the CA1 region of the hippocampus indeed leads to contextual fear conditioning deficits in conditional knockout animals. This loss of function was, however, recovered when the same animals were re-injected to overexpress MEN1. This study provides the first direct evidence for the sufficiency and necessity of MEN1 in fear conditioning, and further endorses the role of menin in the regulation of cholinergic synaptic machinery in the hippocampus. These data underscore the importance of further exploring and revisiting the cholinergic hypothesis that underlies neurodegenerative diseases that affect learning and memory.
Collapse
|
144
|
Association between cholinesterase activity and critical illness brain dysfunction. Crit Care 2022; 26:377. [PMID: 36474266 PMCID: PMC9724294 DOI: 10.1186/s13054-022-04260-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Delirium is a frequent manifestation of acute brain dysfunction and is associated with cognitive impairment. The hypothesized mechanism of brain dysfunction during critical illness is centered on neuroinflammation, regulated in part by the cholinergic system. Point-of-care serum cholinesterase enzyme activity measurements serve as a real-time index of cholinergic activity. We hypothesized that cholinesterase activity during critical illness would be associated with delirium in the intensive care unit (ICU) and cognitive impairment after discharge. METHODS We enrolled adults with respiratory failure and/or shock and measured plasma acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity on days 1, 3, 5, and 7 after enrollment. AChE values were also normalized per gram of hemoglobin (AChE/Hgb). We assessed for coma and delirium twice daily using the Richmond Agitation Sedation Scale and the Confusion Assessment Method for the ICU to evaluate daily mental status (delirium, coma, normal) and days alive without delirium or coma. Cognitive impairment, disability, and health-related quality of life were assessed at up to 6 months post-discharge. We used multivariable regression to determine whether AChE, AChE/Hgb, and BChE activity were associated with outcomes after adjusting for relevant covariates. RESULTS We included 272 critically ill patients who were a median (IQR) age 56 (39-67) years and had a median Sequential Organ Failure Assessment score at enrollment of 8 (5-11). Higher daily AChE levels were associated with increased odds of being delirious versus normal mental status on the same day (Odds Ratio [95% Confidence Interval] 1.64 [1.11, 2.43]; P = 0.045). AChE/Hgb and BChE activity levels were not associated with delirious mental status. Lower enrollment BChE was associated with fewer days alive without delirium or coma (P = 0.048). AChE, AChE/Hgb, and BChE levels were not significantly associated with cognitive impairment, disability, or quality of life after discharge. CONCLUSION Cholinesterase activity during critical illness is associated with delirium but not with outcomes after discharge, findings that may reflect mechanisms of acute brain organ dysfunction. TRIAL REGISTRATION NCT03098472. Registered 31 March 2017.
Collapse
|
145
|
Sabandal PR, Saldes EB, Han KA. Acetylcholine deficit causes dysfunctional inhibitory control in an aging-dependent manner. Sci Rep 2022; 12:20903. [PMID: 36463374 PMCID: PMC9719532 DOI: 10.1038/s41598-022-25402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Inhibitory control is a key executive function that limits unnecessary thoughts and actions, enabling an organism to appropriately execute goal-driven behaviors. The efficiency of this inhibitory capacity declines with normal aging or in neurodegenerative dementias similar to memory or other cognitive functions. Acetylcholine signaling is crucial for executive function and also diminishes with aging. Acetylcholine's contribution to the aging- or dementia-related decline in inhibitory control, however, remains elusive. We addressed this in Drosophila using a Go/No-Go task that measures inhibition capacity. Here, we report that inhibition capacity declines with aging in wild-type flies, which is mitigated by lessening acetylcholine breakdown and augmented by reducing acetylcholine biosynthesis. We identified the mushroom body (MB) γ neurons as a chief neural site for acetylcholine's contribution to the aging-associated inhibitory control deficit. In addition, we found that the MB output neurons MBON-γ2α'1 having dendrites at the MB γ2 and α'1 lobes and axons projecting to the superior medial protocerebrum and the crepine is critical for sustained movement suppression per se. This study reveals, for the first time, the central role of acetylcholine in the aging-associated loss of inhibitory control and provides a framework for further mechanistic studies.
Collapse
Affiliation(s)
- Paul Rafael Sabandal
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| | - Erick Benjamin Saldes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kyung-An Han
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
146
|
Bohnen NI, Roytman S, Kanel P, Müller MLTM, Scott PJH, Frey KA, Albin RL, Koeppe RA. Progression of regional cortical cholinergic denervation in Parkinson's disease. Brain Commun 2022; 4:fcac320. [PMID: 36569603 PMCID: PMC9772878 DOI: 10.1093/braincomms/fcac320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/13/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Cortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits. The 16 Parkinson's disease subjects (4 females/12 males; mean age: 64.4 ± 6.7 years; disease duration: 5.5 ± 4.2 years; Hoehn & Yahr stage: 2.3 ± 0.6 at entry) completed serial 11C-methyl-4-piperidinyl propionate acetylcholinesterase PET scans over a 4-8 year period (median 5 years). Three-dimensional stereotactic cortical surface projections and volume-of-interest analyses were performed. Cholinergic synapse integrity was assessed by the magnitude, k 3, of acetylcholinesterase hydrolysis of 11C-methyl-4-piperidinyl propionate. Based on normative data, we generated Z-score maps for both the k 3 and the k 1 parameters, the latter as a proxy for regional cerebral blood flow. Compared with control subjects, baseline scans showed predominantly posterior cortical k 3 deficits in Parkinson's disease subjects. Interval change analyses showed evidence of posterior-to-anterior progression of cholinergic cortical deficits in the posterior cortices. In frontal cortices, an opposite gradient of anterior-to-posterior progression of cholinergic deficits was found. The topography of k 3 changes exhibited regionally specific disconnection from k 1 changes. Interval-change analysis based on k 3/k 1 ratio images (k 3 adjustment for regional cerebral blood flow changes) showed interval reductions (up to 20%) in ventral frontal, anterior cingulate and Brodmann area 6 cortices. In contrast, interval k 3 reductions in the posterior cortices, especially Brodmann areas 17-19, were largely proportional to k 1 changes. Our results partially support the hypothesis of progressive posterior-to-cortical cholinergic denervation in Parkinson's disease. This pattern appears characteristic of posterior cortices. In frontal cortices, an opposite pattern of anterior-to-posterior progression of cholinergic deficits was found. The progressive decline of posterior cortical acetylcholinesterase activity was largely proportional to declining regional cerebral blood flow, suggesting that posterior cortical cholinergic synapse deficits are part of a generalized loss of synapses. The disproportionate decline in regional frontal cortical acetylcholinesterase activity relative to regional cerebral blood flow suggests preferential loss or dysregulation of cholinergic synapses in these regions. Our observations suggest that cortical cholinergic synapse vulnerability in Parkinson's disease is mediated by both diffuse processes affecting cortical synapses and processes specific to subpopulations of cortical cholinergic afferents.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson Consortium, Critical Path Institute, Tucson, AZ 85718, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
147
|
Li L, Zhang B, Tang X, Yu Q, He A, Lu Y, Li X. A selective degeneration of cholinergic neurons mediated by NRADD in an Alzheimer's disease mouse model. CELL INSIGHT 2022; 1:100060. [PMID: 37193353 PMCID: PMC10120297 DOI: 10.1016/j.cellin.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/18/2023]
Abstract
Cholinergic neurons in the basal forebrain constitute a major source of cholinergic inputs to the forebrain, modulate diverse functions including sensory processing, memory and attention, and are vulnerable to Alzheimer's disease (AD). Recently, we classified cholinergic neurons into two distinct subpopulations; calbindin D28K-expressing (D28K+) versus D28K-lacking (D28K-) neurons. Yet, which of these two cholinergic subpopulations are selectively degenerated in AD and the molecular mechanisms underlying this selective degeneration remain unknown. Here, we reported a discovery that D28K+ neurons are selectively degenerated and this degeneration induces anxiety-like behaviors in the early stage of AD. Neuronal type specific deletion of NRADD effectively rescues D28K+ neuronal degeneration, whereas genetic introduction of exogenous NRADD causes D28K- neuronal loss. This gain- and loss-of-function study reveals a subtype specific degeneration of cholinergic neurons in the disease progression of AD and hence warrants a novel molecular target for AD therapy.
Collapse
Affiliation(s)
- Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomei Tang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aodi He
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
148
|
Ghahremani P, Boorboor S, Mirhosseini P, Gudisagar C, Ananth M, Talmage D, Role LW, Kaufman AE. NeuroConstruct: 3D Reconstruction and Visualization of Neurites in Optical Microscopy Brain Images. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4951-4965. [PMID: 34478372 PMCID: PMC11423259 DOI: 10.1109/tvcg.2021.3109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce NeuroConstruct, a novel end-to-end application for the segmentation, registration, and visualization of brain volumes imaged using wide-field microscopy. NeuroConstruct offers a Segmentation Toolbox with various annotation helper functions that aid experts to effectively and precisely annotate micrometer resolution neurites. It also offers an automatic neurites segmentation using convolutional neuronal networks (CNN) trained by the Toolbox annotations and somas segmentation using thresholding. To visualize neurites in a given volume, NeuroConstruct offers a hybrid rendering by combining iso-surface rendering of high-confidence classified neurites, along with real-time rendering of raw volume using a 2D transfer function for voxel classification score versus voxel intensity value. For a complete reconstruction of the 3D neurites, we introduce a Registration Toolbox that provides automatic coarse-to-fine alignment of serially sectioned samples. The quantitative and qualitative analysis show that NeuroConstruct outperforms the state-of-the-art in all design aspects. NeuroConstruct was developed as a collaboration between computer scientists and neuroscientists, with an application to the study of cholinergic neurons, which are severely affected in Alzheimer's disease.
Collapse
|
149
|
Goral RO, Harper KM, Bernstein BJ, Fry SA, Lamb PW, Moy SS, Cushman JD, Yakel JL. Loss of GABA co-transmission from cholinergic neurons impairs behaviors related to hippocampal, striatal, and medial prefrontal cortex functions. Front Behav Neurosci 2022; 16:1067409. [PMID: 36505727 PMCID: PMC9730538 DOI: 10.3389/fnbeh.2022.1067409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Altered signaling or function of acetylcholine (ACh) has been reported in various neurological diseases, including Alzheimer's disease, Tourette syndrome, epilepsy among others. Many neurons that release ACh also co-transmit the neurotransmitter gamma-aminobutyrate (GABA) at synapses in the hippocampus, striatum, substantia nigra, and medial prefrontal cortex (mPFC). Although ACh transmission is crucial for higher brain functions such as learning and memory, the role of co-transmitted GABA from ACh neurons in brain function remains unknown. Thus, the overarching goal of this study was to investigate how a systemic loss of GABA co-transmission from ACh neurons affected the behavioral performance of mice. Methods: To do this, we used a conditional knock-out mouse of the vesicular GABA transporter (vGAT) crossed with the ChAT-Cre driver line to selectively ablate GABA co-transmission at ACh synapses. In a comprehensive series of standardized behavioral assays, we compared Cre-negative control mice with Cre-positive vGAT knock-out mice of both sexes. Results: Loss of GABA co-transmission from ACh neurons did not disrupt the animal's sociability, motor skills or sensation. However, in the absence of GABA co-transmission, we found significant alterations in social, spatial and fear memory as well as a reduced reliance on striatum-dependent response strategies in a T-maze. In addition, male conditional knockout (CKO) mice showed increased locomotion. Discussion: Taken together, the loss of GABA co-transmission leads to deficits in higher brain functions and behaviors. Therefore, we propose that ACh/GABA co-transmission modulates neural circuitry involved in the affected behaviors.
Collapse
Affiliation(s)
- R. Oliver Goral
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn M. Harper
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Briana J. Bernstein
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sydney A. Fry
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Patricia W. Lamb
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sheryl S. Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, United States
| | - Jesse D. Cushman
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,Department of Health and Human Services, Neurobehavioral Core, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Jerrel L. Yakel
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States,*Correspondence: Jerrel L. Yakel
| |
Collapse
|
150
|
Li X, Yu H, Zhang B, Li L, Chen W, Yu Q, Huang X, Ke X, Wang Y, Jing W, Du H, Li H, Zhang T, Liu L, Zhu LQ, Lu Y. Molecularly defined and functionally distinct cholinergic subnetworks. Neuron 2022; 110:3774-3788.e7. [PMID: 36130594 DOI: 10.1016/j.neuron.2022.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Cholinergic neurons in the medial septum (MS) constitute a major source of cholinergic input to the forebrain and modulate diverse functions, including sensory processing, memory, and attention. Most studies to date have treated cholinergic neurons as a single population; as such, the organizational principles underling their functional diversity remain unknown. Here, we identified two subsets (D28K+ versus D28K-) of cholinergic neurons that are topographically segregated in mice, Macaca fascicularis, and humans. These cholinergic subpopulations possess unique electrophysiological signatures, express mutually exclusive marker genes (kcnh1 and aifm3 versus cacna1h and gga3), and make differential connections with physiologically distinct neuronal classes in the hippocampus to form two structurally defined and functionally distinct circuits. Gain- and loss-of-function studies on these circuits revealed their differential roles in modulation of anxiety-like behavior and spatial memory. These results provide a molecular and circuitry-based theory for how cholinergic neurons contribute to their diverse behavioral functions.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenting Chen
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Huang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Ke
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongmei Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|