101
|
Tupone D, Madden CJ, Cano G, Morrison SF. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J Neurosci 2011; 31:15944-55. [PMID: 22049437 PMCID: PMC3224674 DOI: 10.1523/jneurosci.3909-11.2011] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/07/2011] [Accepted: 09/20/2011] [Indexed: 01/12/2023] Open
Abstract
Orexin (hypocretin) neurons, located exclusively in the PeF-LH, which includes the perifornical area (PeF), the lateral hypothalamus (LH), and lateral portions of the medial hypothalamus, have widespread projections and influence many physiological functions, including the autonomic regulation of body temperature and energy metabolism. Narcolepsy is characterized by the loss of orexin neurons and by disrupted sleep, but also by dysregulation of body temperature and by a strong tendency for obesity. Heat production (thermogenesis) in brown adipose tissue (BAT) contributes to the maintenance of body temperature and, through energy consumption, to body weight regulation. We identified a neural substrate for the influence of orexin neurons on BAT thermogenesis in rat. Nanoinjection of orexin-A (12 pmol) into the rostral raphe pallidus (rRPa), the site of BAT sympathetic premotor neurons, produced large, sustained increases in BAT sympathetic outflow and in BAT thermogenesis. Activation of neurons in the PeF-LH also enhanced BAT thermogenesis over a long time course. Combining viral retrograde tracing from BAT, or cholera toxin subunit b tracing from rRPa, with orexin immunohistochemistry revealed synaptic connections to BAT from orexin neurons in PeF-LH and from rRPa neurons with closely apposed, varicose orexin fibers, as well as a direct, orexinergic projection from PeF-LH to rRPa. These results indicate a potent modulation of BAT thermogenesis by orexin released from the terminals of orexin neurons in PeF-LH directly into the rRPa and provide a potential mechanism contributing to the disrupted regulation of body temperature and energy metabolism in the absence of orexin.
Collapse
Affiliation(s)
- Domenico Tupone
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| | | | | | | |
Collapse
|
102
|
Lkhagvasuren B, Nakamura Y, Oka T, Sudo N, Nakamura K. Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region. Eur J Neurosci 2011; 34:1442-52. [DOI: 10.1111/j.1460-9568.2011.07863.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
103
|
Horiuchi J, Atik A, Iigaya K, McDowall LM, Killinger S, Dampney RAL. Activation of 5-hydroxytryptamine-1A receptors suppresses cardiovascular responses evoked from the paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1088-97. [DOI: 10.1152/ajpregu.00144.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of central 5-hydroxytryptamine-1A (5-HT1A) receptors powerfully inhibits stress-evoked cardiovascular responses mediated by the dorsomedial hypothalamus (DMH), as well as responses evoked by direct activation of neurons within the DMH. The hypothalamic paraventricular nucleus (PVN) also has a crucial role in cardiovascular regulation and is believed to regulate heart rate and renal sympathetic activity via pathways that are independent of the DMH. In this study, we determined whether cardiovascular responses evoked from the PVN are also modulated by activation of central 5-HT1A receptors. In anesthetized rats, the increases in heart rate and renal sympathetic nerve activity evoked by bicuculline injection into the PVN were greatly reduced (by 54% and 61%, respectively) by intravenous administration of (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), an agonist of 5-HT1A receptors, but were then completely restored by subsequent administration of WAY-100635, a selective antagonist of 5-HT1A receptors. Microinjection of 8-OH-DPAT directly into the PVN did not significantly affect the responses to bicuculline injection into the PVN, nor did systemic administration of WAY-100635 alone. In control experiments, a large renal sympathoexcitatory response was evoked from both the PVN and DMH but not from the intermediate region in between; thus the evoked responses from the PVN were not due to activation of neurons in the DMH. The results indicate that activation of central 5-HT1A receptors located outside the PVN powerfully inhibits the tachycardia and renal sympathoexcitation evoked by stimulation of neurons in the PVN.
Collapse
Affiliation(s)
- Jouji Horiuchi
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Alp Atik
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Kamon Iigaya
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Lachlan M. McDowall
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Suzanne Killinger
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Roger A. L. Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
104
|
Kelly KJ, Donner NC, Hale MW, Lowry CA. Swim stress activates serotonergic and nonserotonergic neurons in specific subdivisions of the rat dorsal raphe nucleus in a temperature-dependent manner. Neuroscience 2011; 197:251-68. [PMID: 21945646 DOI: 10.1016/j.neuroscience.2011.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022]
Abstract
Physical (exteroceptive) stimuli and emotional (interoceptive) stimuli are thought to influence stress-related physiologic and behavioral responses through different neural mechanisms. Previous studies have demonstrated that stress-induced activation of brainstem serotonergic systems is influenced by environmental factors such as temperature. In order to further investigate the effects of environmental influences on stress-induced activation of serotonergic systems, we exposed adult male Wistar rats to either home cage control conditions or a 15-min swim in water maintained at 19 °C, 25 °C, or 35 °C and conducted dual immunohistochemical staining for c-Fos, a marker of immediate-early nuclear activation, and tryptophan hydroxylase (TPH), a marker of serotonergic neurons. Changes in core body temperature were documented using biotelemetry. As expected, exposure to cold (19 °C) swim, relative to warm (35 °C) swim, increased c-Fos expression in the external lateral part of the parabrachial nucleus (LPBel), an important part of the spinoparabrachial pathway involved in sensation of cold, cutaneous stimuli, and in serotonergic neurons in the raphe pallidus nucleus (RPa), an important part of the efferent mechanisms controlling thermoregulatory warming responses. In addition, exposure to cold (19 °C) swim, relative to 35 °C swim, increased c-Fos expression in the dorsal raphe nucleus, ventrolateral part/periaqueductal gray (DRVL/VLPAG) and dorsal raphe nucleus, interfascicular part (DRI). Both of these subregions of the dorsal raphe nucleus (DR) have previously been implicated in thermoregulatory responses. Altogether, the data are consistent with the hypothesis that midbrain serotonergic neurons, possibly via activation of afferents to the DR by thermosensitive spinoparabrachial pathways, play a role in integration of physiologic and behavioral responses to interoceptive stress-related cues involved in forced swimming and exteroceptive cues related to cold ambient temperature.
Collapse
Affiliation(s)
- K J Kelly
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
105
|
Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1207-28. [PMID: 21900642 DOI: 10.1152/ajpregu.00109.2011] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Career-Path Promotion Unit for Young Life Scientists, Kyoto Univ., School of Medicine Bldg. E, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
106
|
Cheng Y, Zhang Q, Meng Q, Xia T, Huang Z, Wang C, Liu B, Chen S, Xiao F, Du Y, Guo F. Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system. Mol Endocrinol 2011; 25:1624-35. [PMID: 21719534 DOI: 10.1210/me.2011-0028] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Ying Cheng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Kenney MJ, Meyer CN, Hosking KG, Fels RJ. Is visceral sympathoexcitation to heat stress dependent on activation of ionotropic excitatory amino acid receptors in the rostral ventrolateral medulla? Am J Physiol Regul Integr Comp Physiol 2011; 301:R548-57. [PMID: 21632850 DOI: 10.1152/ajpregu.00113.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute heat stress activates visceral sympathetic nerve discharge (SND) in young rats, and the functional integrity of the rostral ventrolateral medulla (RVLM) is required for sustaining visceral sympathoexcitation during peak increases in internal body temperature (T(c)). However, RVLM mechanisms mediating SND activation to hyperthermia remain unknown. In the present study, we investigated the role of RVLM ionotropic excitatory amino acid receptors in mediating visceral SND activation to heat stress in anesthetized, young rats. The effects of bilateral RVLM kynurenic acid (Kyn; 2.7 and 5.4 nmol), saline, or muscimol (400-800 pmol) microinjections on renal SND and splenic SND responses to heat stress were determined at peak hyperthermia (T(c) 41.5°C), during progressive hyperthermia (T(c) 40°C), and at the initiation of heating (T(c) increased from 38 to 38.5°C). RVLM Kyn microinjections did not reduce renal and splenic SND recorded during progressive or peak hyperthermia and did not attenuate SND activation at the initiation of heating. In fact, renal and splenic SND tended to be or were significantly increased following RVLM Kyn microinjections at the initiation of heating and during hyperthermia (40 and 41.5°C). RVLM muscimol microinjections at 39, 40, and 41.5°C resulted in immediate reductions in SND. These data indicate that RVLM ionotropic glutamate receptors are required for mediating visceral sympathoexcitation to acute heating and suggest that acute heating activates an RVLM ionotropic excitatory amino acid receptor dependent inhibitory input, which reduces the level of visceral SND to heating.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | |
Collapse
|
108
|
Fontes MAP, Xavier CH, de Menezes RCA, Dimicco JA. The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience 2011; 184:64-74. [PMID: 21435377 DOI: 10.1016/j.neuroscience.2011.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 11/15/2022]
Abstract
Psychological stress elicits increases in sympathetic activity accompanied by a marked cardiovascular response. Revealing the relevant central mechanisms involved in this phenomenon could contribute significantly to our understanding of the pathogenesis of stress-related cardiovascular diseases, and the key to this understanding is the identification of the nuclei, pathways and neurotransmitters involved in the organization of the cardiovascular response to stress. The present review will focus specifically on the dorsomedial hypothalamus, a brain region now known to play a primary role in the synaptic integration underlying the cardiovascular response to emotional stress.
Collapse
Affiliation(s)
- M A P Fontes
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
109
|
Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2011; 34 Suppl 1:S36-42. [PMID: 20935665 DOI: 10.1038/ijo.2010.182] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors that turns on a cascade of intracellular events ending in activation of uncoupling protein-1 (UCP-1). BAT also has sensory innervation that may function to monitor BAT lipolysis, a response necessary for activation of UCP-1 by fatty acids, or perhaps responding in a feedback manner to BAT temperature changes. The central sympathetic outflow circuits ultimately terminating in BAT have been revealed by injecting the retrograde viral transneuronal tract tracer, pseudorabies virus, into the tissue; moreover, there is a high degree of colocalization of melanocortin 4-receptor mRNA on these neurons across the neural axis. The necessary and sufficient central BAT SNS outflow sites that are activated by various thermogenic stimuli are not precisely known. In a chronic decerebration procedure, IBAT UCP-1 gene expression can be triggered by fourth ventricular injections of melanotan II, the melanocortin 3/4 receptor agonist, suggesting that there is sufficient hindbrain neural circuitry to generate thermogenic responses with this stimulation. The recent recognition of BAT in normal adult humans suggests a potential target for stimulation of energy expenditure by BAT to help mitigate increased body fat storage.
Collapse
Affiliation(s)
- T J Bartness
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
| | | | | |
Collapse
|
110
|
Evidence for in vivo thermosensitivity of serotonergic neurons in the rat dorsal raphe nucleus and raphe pallidus nucleus implicated in thermoregulatory cooling. Exp Neurol 2011; 227:264-78. [DOI: 10.1016/j.expneurol.2010.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/27/2010] [Accepted: 11/15/2010] [Indexed: 11/17/2022]
|
111
|
Morrison SF. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense. J Appl Physiol (1985) 2011; 110:1137-49. [PMID: 21270352 DOI: 10.1152/japplphysiol.01227.2010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the research leading to a model representing our current understanding of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for control of heat loss, and brown adipose tissue, skeletal muscle, and the heart for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific core efferent pathways within the central nervous system (CNS) that share a common peripheral thermal sensory input. The thermal afferent circuit from cutaneous thermal receptors includes neurons in the spinal dorsal horn projecting to lateral parabrachial nucleus neurons that project to the medial aspect of the preoptic area. Within the preoptic area, warm-sensitive, inhibitory output neurons control heat production by reducing the discharge of thermogenesis-promoting neurons in the dorsomedial hypothalamus. The rostral ventromedial medulla, including the raphe pallidus, receives projections form the dorsomedial hypothalamus and contains spinally projecting premotor neurons that provide the excitatory drive to spinal circuits controlling the activity of thermogenic effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a platform for further understanding of the functional organization of central thermoregulation.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
112
|
Abstract
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Shaun F Morrison
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
113
|
Lemaire JJ, Frew AJ, McArthur D, Gorgulho AA, Alger JR, Salomon N, Chen C, Behnke EJ, De Salles AAF. White matter connectivity of human hypothalamus. Brain Res 2011; 1371:43-64. [PMID: 21122799 DOI: 10.1016/j.brainres.2010.11.072] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 11/02/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Jacques Lemaire
- Univ Clermont 1, UFR Médecine, EA3295, Equipe de Recherche en signal et Imagerie Médicale, Clermont-Ferrand, F-63001, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Queiroz EA, Okada MN, Fumega U, Fontes MAP, Moraes MFD, Haibara AS. Excitatory amino acid receptors in the dorsomedial hypothalamus are involved in the cardiovascular and behavioural chemoreflex responses. Exp Physiol 2010; 96:73-84. [DOI: 10.1113/expphysiol.2010.054080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
115
|
Draper S, Kirigiti M, Glavas M, Grayson B, Chong CA, Jiang B, Smith MS, Zeltser LM, Grove KL. Differential gene expression between neuropeptide Y expressing neurons of the dorsomedial nucleus of the hypothalamus and the arcuate nucleus: microarray analysis study. Brain Res 2010; 1350:139-50. [PMID: 20380814 PMCID: PMC2917610 DOI: 10.1016/j.brainres.2010.03.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/21/2010] [Accepted: 03/24/2010] [Indexed: 12/29/2022]
Abstract
The Dorsomedial Nucleus of the Hypothalamus (DMH) is known to play important roles in ingestive behavior and body weight homeostasis. The DMH contains neurons expressing Neuropeptide Y (NPY) during specific physiological conditions of hyperphagia and obesity, however, the role of DMH-NPY neurons has yet to be characterized. In contrast to the DMH-NPY neurons, NPY expressing neurons have been best characterized in the Arcuate Nucleus of the Hypothalamus (ARH). The purpose of this study is to characterize the chemical phenotype of DMH-NPY neurons by comparing the gene expression profiles of NPY neurons in the DMH and ARH isolated from postnatal NPY-hrGFP mice by microarray analysis. Twenty genes were differentially expressed in the DMH-NPY neurons compared to the ARH. Among them, there were several transcriptional factors that play important roles in the regulation of energy balance. DMH-NPY neurons expressed Glutamic Acid Decarboxylase (GAD) 65 and 67, suggesting that they may be GABAergic, similar to ARH-NPY neurons. While ARH-NPY neurons expressed leptin receptor (ObRb) and displayed the activation of STAT3 in response to leptin administration, DMH-NPY neurons showed neither. These findings strongly suggest that DMH-NPY neurons could play a distinct role in the control of energy homeostasis and are differentially regulated from ARH-NPY neurons through afferent inputs and transcriptional regulators.
Collapse
Affiliation(s)
- Shin Draper
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Melissa Kirigiti
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Maria Glavas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Bernadette Grayson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - C.N. Angie Chong
- Division of Molecular Genetics, Columbia College of Physicians and Surgeons 1150 St Nicholas Ave, New York, NY 10032, USA
| | - Betty Jiang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - M Susan Smith
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| | - Lori M. Zeltser
- Division of Molecular Genetics, Columbia College of Physicians and Surgeons 1150 St Nicholas Ave, New York, NY 10032, USA
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185 Avenue, Beaverton, OR 97006-3499, USA
| |
Collapse
|
116
|
Differential responses of sympathetic premotor neurons in the rostral ventrolateral medulla to stimulation of the dorsomedial hypothalamus in rabbits. Brain Res 2010; 1356:44-53. [PMID: 20713029 DOI: 10.1016/j.brainres.2010.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 02/07/2023]
Abstract
Electrical stimulation of the posterior dorsomedial hypothalamus (DMH) elicits a defense response, including vasodilation in the skeletal muscles and vasoconstriction in the viscera. To examine whether sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM) participate in these differential vascular responses, RVLM neuron activity, renal sympathetic nerve activity (RSNA), renal vessel conductance (RVC), skeletal muscular vessel conductance (MVC), arterial pressure (AP), and heart rate (HR) were simultaneously measured in urethane-anesthetized, vagotomized, and immobilized rabbits. Electrical stimulation of the DMH increased RSNA, MVC, AP, and HR but decreased RVC. The RVLM neurons were classified into three groups according to their responses to tetanic (10s) stimulation of the DMH. Twenty neurons (Type I) were excited, 17 (Type II) were inhibited, and 2 (Type III) did not respond. To the short-train (100 ms) stimulation, all of the Type I neurons showed excitation; in contrast, 12 Type II neurons showed biphasic response that was early excitation followed by inhibition. The remainder showed only inhibition. Type III neurons also did not respond to the short-train stimulation. These results indicated that regional differences in responses of sympathetic nerves in the defense response are supported by functional differentiation of sympathetic premotor neurons in the RVLM.
Collapse
|
117
|
Abstract
Studies completed in human subjects have made seminal contributions to understanding the effects of age on sympathetic nervous system (SNS) regulation. Numerous experimental constraints limit the design of studies involving human subjects; therefore, completion of studies in animal models of aging would be expected to provide additional insight regarding mechanisms mediating age-related changes in sympathetic nerve discharge (SND) regulation. The present review assesses the current state of the literature regarding contributions from animal studies on the effects of advancing age on SND regulation, focusing primarily on studies that have used direct recordings of sympathetic nerve outflow. Few studies using direct SND recordings have been completed in animal models of aging, regardless of the fundamental component of SND regulation reviewed (basal levels, acute responsiveness, relationships between the discharges in sympathetic nerves, central neural regulation). SNS responsiveness to various acute stressors is altered in aged compared with young animals; however, mechanisms remain virtually unexplored. There is a marked dearth of studies that have used central neural microinjection techniques in conjunction with SND recordings in aged animals, making it difficult to develop an evidence-based framework regarding potential age-associated effects on central regulation of SND. Determination of age-related changes in mechanisms regulating SND is important for understanding relationships between chronic disease development and changes in SNS function; however, this can only be achieved by substantially extending the current knowledge base regarding the effects of age on SND regulation in animal studies.
Collapse
Affiliation(s)
- Michael J Kenney
- Dept. of Anatomy and Physiology, Kansas State Univ., Coles Hall 228, Manhattan, KS 66506, USA.
| |
Collapse
|
118
|
Cao WH, Madden CJ, Morrison SF. Inhibition of brown adipose tissue thermogenesis by neurons in the ventrolateral medulla and in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2010; 299:R277-90. [PMID: 20410479 DOI: 10.1152/ajpregu.00039.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurons in the ventrolateral medulla (VLM) and in the nucleus tractus solitarius (NTS) play important roles in the regulation of cardiovascular and other autonomic functions. In the present study, we demonstrate an inhibition of brown adipose tissue (BAT) thermogenesis evoked by activation of neurons in the VLM, as well as by neurons in the intermediate NTS, of chloralose/urethane-anesthetized, artificially ventilated rats. Activation of neurons in either rostral VLM or caudal VLM with N-methyl-d-aspartate (12 nmol) reversed the cold-evoked increase in BAT sympathetic nerve activity (SNA), BAT temperature, and end-expired CO(2). Disinhibition of neurons in either VLM or NTS with the GABA(A) receptor antagonist, bicuculline (30 pmol), reversed the increases in BAT SNA, BAT temperature, and end-expired CO(2) that were elicited 1) by cold defense; 2) during the febrile model of nanoinjection of prostaglandin E(2) into the medial preoptic area; 3) by activation of neurons in the dorsomedial hypothalamus or in the rostral raphe pallidus (rRPa); or 4) by the micro-opioid receptor agonist fentanyl. Combined, but not separate, inhibitions of neurons in the VLM and in the NTS, with the GABA(A) receptor agonist, muscimol (120 pmol/site), produced increases in BAT SNA, BAT temperature, and expired CO(2), which were reversed by nanoinjection of glycine (30 nmol) into the rRPa. These findings suggest that VLM and NTS contain neurons whose activation inhibits BAT thermogenesis, that these neurons receive GABAergic inputs that are active under these experimental conditions, and that neurons in both sites contribute to the tonic inhibition of sympathetic premotor neuronal activity in the rRPa that maintains a low level of BAT thermogenesis in normothermic conditions.
Collapse
Affiliation(s)
- Wei-Hua Cao
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
119
|
Renner E, Szabó-Meltzer KI, Puskás N, Tóth ZE, Dobolyi A, Palkovits M. Activation of neurons in the hypothalamic dorsomedial nucleus via hypothalamic projections of the nucleus of the solitary tract following refeeding of fasted rats. Eur J Neurosci 2010; 31:302-14. [PMID: 20074225 DOI: 10.1111/j.1460-9568.2009.07053.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report that satiation evokes neuronal activity in the ventral subdivision of the hypothalamic dorsomedial nucleus (DMH) as indicated by increased c-fos expression in response to refeeding in fasted rats. The absence of significant Fos activation following food presentation without consumption suggests that satiation but not craving for food elicits the activation of ventral DMH neurons. The distribution pattern of the prolactin-releasing peptide (PrRP)-immunoreactive (ir) network showed remarkable correlations with the distribution of activated neurons within the DMH. The PrRP-ir fibers and terminals were immunolabeled with tyrosine hydroxylase, suggesting their origin in lower brainstem instead of local, hypothalamic PrRP cells. PrRP-ir fibers arising from neurons of the nucleus of the solitary tract could be followed to the hypothalamus. Unilateral transections of these fibers at pontine and caudal hypothalamic levels resulted in a disappearance of the dense PrRP-ir network in the ventral DMH while PrRP immunoreactivity was increased in transected fibers caudal to the knife cuts as well as in perikarya of the nucleus of the solitary tract ipsilateral to the transections. In accord with these changes, the number of Fos-expressing neurons following refeeding declined in the ipsilateral but remained high in the contralateral DMH. However, the Fos response in the ventral DMH was not attenuated following chemical lesion (neonatal monosodium glutamate treatment) of the hypothalamic arcuate nucleus, another possible source of DMH inputs. These findings suggest that PrRP projections from the nucleus of the solitary tract contribute to the activation of ventral DMH neurons during refeeding, possibly by transferring information on cholecystokinin-mediated satiation.
Collapse
Affiliation(s)
- Eva Renner
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
120
|
Functional asymmetry in the descending cardiovascular pathways from dorsomedial hypothalamic nucleus. Neuroscience 2009; 164:1360-8. [DOI: 10.1016/j.neuroscience.2009.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 12/20/2022]
|
121
|
Rogers RC, Barnes MJ, Hermann GE. Leptin "gates" thermogenic action of thyrotropin-releasing hormone in the hindbrain. Brain Res 2009; 1295:135-41. [PMID: 19643094 PMCID: PMC2786267 DOI: 10.1016/j.brainres.2009.07.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/16/2009] [Accepted: 07/18/2009] [Indexed: 12/19/2022]
Abstract
Leptin, acting as a measure of metabolic fuel availability, exerts a powerful permissive influence on neurogenic thermogenesis. During starvation and an absence of leptin, animals cannot produce thermogenic reactions to cold stress. However, thermogenesis is rescued by restoring leptin. We have previously observed (Hermann, G.E., Barnes, M.J., Rogers, R.C., 2006. Leptin and thyrotropin-releasing hormone: cooperative action in the hindbrain to activate brown adipose thermogenesis. Brain Res. 1117, 118-124.) a highly cooperative interaction between leptin and thyrotropin-releasing hormone [TRH] to activate hindbrain generated thermogenic responses. Specifically, exposure to both leptin and TRH elicited a 3.5 degrees C increase in brown adipose tissue [BAT] thermogenesis, while leptin alone did not evoke any change, and TRH alone caused only approximately 1 degrees C increase. The present study shows that the leptin-TRH synergy in controlling brown adipose [BAT] thermogenesis is order-specific and dependent on the feeding status of the animal. That is, fourth ventricular [4V] application of leptin to the food-deprived animal, before TRH injection, yields a substantial increase in BAT; while the reverse order yields a significantly smaller effect. If the animal were fed within minutes of anesthesia, then exogenous leptin was not necessary for TRH to yield a large increase in BAT temperature. The leptin-TRH synergy was uncoupled by pretreatment with the phosphoinositol-tris phosphate kinase [PI3K] inhibitor, wortmannin and the Src-SH2 antagonist, PP2. The TRH transduction mechanism utilizes phospholipase C [PLC] potently regulated by the SH2 site. Previous work in culture systems suggests that the product of PI3K activity [PIP3] potently upregulates PLC by activating the SH2 domain of the PLC complex. Perhaps leptin "gates" the thermogenic action of TRH in the hindbrain by invoking this same mechanism.
Collapse
Affiliation(s)
- Richard C Rogers
- Laboratory of Autonomic Neurosciences, Pennington Biomedical Research Center, LSU Systems, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
122
|
Vlasenko OV, Dovgan’ AV, Pilyavskii AI, Maisky VA, Maznichenko AV. Changes in the Expression of с-fos and NADPH-Diaphorase Activity in Rat Hippocampal Structures Related to Food Deprivation and Realization of Operant Food-Procuring Movements. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
123
|
Hosking KG, Fels RJ, Kenney MJ. Inhibition of RVLM synaptic activation at peak hyperthermia reduces visceral sympathetic nerve discharge. Auton Neurosci 2009; 150:104-10. [PMID: 19589733 PMCID: PMC2739272 DOI: 10.1016/j.autneu.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 02/07/2023]
Abstract
Hyperthermia is an environmental stressor that produces marked increases in visceral sympathetic nerve discharge (SND) in young rats. The brainstem in rats contains the essential neural circuitry for mediating visceral sympathetic activation; however, specific brainstem sites involved remain virtually unknown. The rostral ventral lateral medulla (RVLM) is a key central nervous system region involved in the maintenance of basal SND and in mediating sympathetic nerve responses evoked from supraspinal sites. In the present study we tested the hypothesis that inhibition of RVLM synaptic activation at peak hyperthermia (internal body temperature, Tc, increased to 41.5 degrees C) would affect heating-induced visceral sympathetic activation. Experiments were completed in chloralose-urethane anesthetized, baroreceptor-intact and sinoaortic-denervated, 3-6 month-old Sprague-Dawley rats. Bilateral inhibition of RVLM synaptic activation produced by muscimol microinjections (400 and 800 pmol) at 41.5 degrees C resulted in immediate and significant reductions in peak heating-induced renal and splenic sympathoexcitation. Interruption of RVLM synaptic activation and axonal transmission by lidocaine microinjections (40 nmol) at 41.5 degrees C produced significant reductions in hyperthermia-induced sympathetic activation to similar levels produced by RVLM muscimol microinjections. The total amount of SND inhibited by RVLM muscimol and lidocaine microinjections was significantly more during hyperthermia (41.5 degrees C) than normothermia (38 degrees C). These findings demonstrate that maintenance of sympathetic activation at peak hyperthermia is dependent on the integrity of RVLM neural circuits.
Collapse
Affiliation(s)
- Kimberley G Hosking
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
124
|
Yoshida C, Ishikawa T, Michiue T, Quan L, Maeda H. Postmortem biochemistry and immunohistochemistry of chromogranin A as a stress marker with special regard to fatal hypothermia and hyperthermia. Int J Legal Med 2009; 125:11-20. [DOI: 10.1007/s00414-009-0374-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
|
125
|
Horiuchi J, McDowall LM, Dampney RAL. Vasomotor and respiratory responses evoked from the dorsolateral periaqueductal grey are mediated by the dorsomedial hypothalamus. J Physiol 2009; 587:5149-62. [PMID: 19752114 DOI: 10.1113/jphysiol.2009.179739] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of neurons in the dorsomedial hypothalamus (DMH) evokes increases in mean arterial pressure (MAP), sympathetic activity, heart rate (HR) and respiratory activity. Results of previous studies suggest that the DMH-evoked increases in MAP and HR are mediated by neurons within the periaqueductal grey (PAG), but a recent study has proposed that the converse is also true, i.e. that increases in MAP and HR evoked from the PAG depend upon neuronal activity in the DMH. In this study in anaesthetized rats, we examined the functional relationship between the DMH and PAG in regulating renal sympathetic nerve activity (RSNA) and respiratory activity (determined by measuring phrenic nerve activity (PNA)). Bilateral microinjections of the neuronal inhibitor muscimol into the DMH virtually abolished the increases in MAP, RSNA and PNA burst rate and amplitude evoked from the dorsolateral (dl) PAG. In contrast, multiple bilateral injections of much larger (10 times) doses of muscimol or of the local anaesthetic lignocaine into sites in the dlPAG at three different rostrocaudal levels did not reduce the magnitude or duration of the sympathetic vasomotor and respiratory responses evoked by disinhibition of neurons in the DMH. Thus, sympathetic vasomotor and respiratory responses generated from the dlPAG are dependent upon neuronal activity in the DMH, but not the converse. The results of this study together with those of previous studies indicate that the PAG regulates cardiovascular and respiratory function via both ascending projections to the DMH and descending projections to the ventral medulla, that originate from different PAG subregions.
Collapse
Affiliation(s)
- Jouji Horiuchi
- School of Medical Sciences (Physiology and Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
126
|
Tsuchimochi H, Nakamoto T, Matsukawa K. Centrally evoked increase in adrenal sympathetic outflow elicits immediate secretion of adrenaline in anaesthetized rats. Exp Physiol 2009; 95:93-106. [PMID: 19700518 DOI: 10.1113/expphysiol.2009.048553] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine whether feedforward control by central command activates preganglionic adrenal sympathetic nerve activity (AdSNA) and releases catecholamines from the adrenal medulla, we investigated the effects of electrical stimulation of the hypothalamic locomotor region on preganglionic AdSNA and secretion rate of adrenal catecholamines in anaesthetized rats. Pre- or postganglionic AdSNA was verified by temporary sympathetic ganglionic blockade with trimethaphan. Adrenal venous blood was collected every 30 s to determine adrenal catecholamine output and blood flow. Hypothalamic stimulation for 30 s (50 Hz, 100-200 microA) induced rapid activation of preganglionic AdSNA by 83-181% depending on current intensity, which was followed by an immediate increase of 123-233% in adrenal adrenaline output. Hypothalamic stimulation also increased postganglionic AdSNA by 42-113% and renal sympathetic nerve activity by 94-171%. Hypothalamic stimulation induced preferential secretion of adrenal adrenaline compared with noradrenaline, because the ratio of adrenaline to noradrenaline increased greatly during hypothalamic stimulation. As soon as the hypothalamic stimulation was terminated, preganglionic AdSNA returned to the prestimulation level in a few seconds, and the elevated catecholamine output decayed within 30-60 s. Adrenal blood flow and vascular resistance were not affected or slightly decreased by hypothalamic stimulation. Thus, it is likely that feedforward control of catecholamine secretion from the adrenal medulla plays a role in conducting rapid hormonal control of the cardiovascular system at the beginning of exercise.
Collapse
Affiliation(s)
- Hirotsugu Tsuchimochi
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
127
|
Nakamura Y, Nakamura K, Morrison SF. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions. Neuroscience 2009; 161:614-20. [PMID: 19327390 PMCID: PMC2857774 DOI: 10.1016/j.neuroscience.2009.03.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/01/2009] [Accepted: 03/13/2009] [Indexed: 11/15/2022]
Abstract
The central mechanism of fever induction is triggered by an action of prostaglandin E(2) (PGE(2)) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE(2) pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT thermogenesis and for cutaneous vasoconstriction by distinct sets of POA neurons.
Collapse
Affiliation(s)
- Y. Nakamura
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| | - K. Nakamura
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| | - S. F. Morrison
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
128
|
Villela DC, da Silva Junior LG, Fontes MAP. Activation of 5-HT receptors in the periaqueductal gray attenuates the tachycardia evoked from dorsomedial hypothalamus. Auton Neurosci 2009; 148:36-43. [DOI: 10.1016/j.autneu.2009.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 11/24/2022]
|
129
|
Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus 2009; 25:E13. [PMID: 18980473 DOI: 10.3171/foc.2008.25.11.e13] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cardiovascular complications in the acute stage following traumatic spinal cord injury (SCI) require prompt medical attention to avoid neurological compromise, morbidity, and death. In this review, the authors summarize the neural regulation of the cardiovascular system as well as the pathophysiology, diagnosis, and management of major cardiovascular complications that can occur following acute (up to 30 days) traumatic SCI. Hypotension (both supine and orthostatic), autonomic dysreflexia, and cardiac arrhythmias (including persistent bradycardia) are attributed to the loss of supraspinal control of the sympathetic nervous system that commonly occurs in patients with severe spinal cord lesions at T-6 or higher. Current evidence-based guidelines recommend: 1) monitoring of cardiac and hemodynamic parameters in the acute phase of SCI; 2) maintenance of a minimum mean arterial blood pressure of 85 mm Hg during the hyperacute phase (1 week after SCI); 3) timely detection and appropriate treatment of neurogenic shock and cardiac arrhythmias; and 4) immediate and adequate treatment of episodes of acute autonomic dysreflexia. In addition to these forms of cardiovascular dysfunction, individuals with acute SCIs are at high risk for deep venous thrombosis (DVT) and pulmonary embolism due to loss of mobility and, potentially, altered fibrinolytic activity, abnormal platelet function, and impaired circadian variations of hemostatic and fibrinolytic parameters. Current evidence supports a recommendation for thromboprophylaxis using mechanical methods and anticoagulants during the acute stage up to 3 months following SCI, depending on the severity and level of injury. Low-molecular-weight heparin is the first choice for anticoagulant prophylaxis in patients with acute SCI. Although there is insufficient evidence to recommend (or refute) the use of screening tests for DVT in asymptomatic adults with acute SCI, this strategy may detect asymptomatic DVT in at least 9.4% of individuals who undergo thromboprophylaxis using lowmolecular- weight heparin. Indications and treatment of DVT and acute pulmonary embolism are well established and are summarized in this review. Recognition of cardiovascular complications after acute SCI is essential to minimize adverse outcomes and to optimize recovery.
Collapse
Affiliation(s)
- Julio C Furlan
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Ontario, Canada
| | | |
Collapse
|
130
|
Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stress-induced hyperalgesia. Pain 2009; 142:236-244. [PMID: 19232470 PMCID: PMC2676435 DOI: 10.1016/j.pain.2009.01.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/30/2008] [Accepted: 01/09/2009] [Indexed: 12/26/2022]
Abstract
Intense stress and fear have long been known to give rise to a suppression of pain termed "stress-induced analgesia", mediated by brainstem pain-modulating circuitry, including pain-inhibiting neurons of the rostral ventromedial medulla. However, stress does not invariably suppress pain, and indeed, may exacerbate it. Although there is a growing support for the idea of "stress-induced hyperalgesia", the neurobiological basis for this effect remains almost entirely unknown. Using simultaneous single-cell recording and functional analysis, we show here that stimulation of the dorsomedial nucleus of the hypothalamus, known to be a critical component of central mechanisms mediating neuroendocrine, cardiovascular and thermogenic responses to mild or "emotional" stressors such as air puff, also triggers thermal hyperalgesia by recruiting pain-facilitating neurons, "ON-cells", in the rostral ventromedial medulla. Activity of identified RVM ON-cells, OFF-cells and NEUTRAL cells, nociceptive withdrawal thresholds, rectal temperature, and heart rate were recorded in lightly anesthetized rats. In addition to the expected increases in body temperature and heart rate, disinhibition of the DMH induced a robust activation of ON-cells, suppression of OFF-cell firing and behavioral hyperalgesia. Blocking ON-cell activation prevented hyperalgesia, but did not interfere with DMH-induced thermogenesis or tachycardia, pointing to differentiation of neural substrates for autonomic and nociceptive modulation within the RVM. These data demonstrate a top-down activation of brainstem pain-facilitating neurons, and suggest a possible neural circuit for stress-induced hyperalgesia.
Collapse
Affiliation(s)
- Melissa E. Martenson
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justin S. Cetas
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary M. Heinricher
- Dept. Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Dept. Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
131
|
de Menezes RCA, Zaretsky DV, Fontes MAP, DiMicco JA. Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. J Physiol 2009; 587:1201-15. [PMID: 19171660 DOI: 10.1113/jphysiol.2008.161463] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stimulation of neurons in the lateral/dorsolateral periaqueductal grey (l/dlPAG) produces increases in heart rate (HR) and mean arterial pressure (MAP) that are, according to traditional views, mediated through projections to medullary autonomic centres and independent of forebrain mechanisms. Recent studies in rats suggest that neurons in the l/dlPAG are downstream effectors responsible for responses evoked from the dorsomedial hypothalamus (DMH) from which similar cardiovascular changes and increase in core body temperature (T(co)) can be elicited. We hypothesized that, instead, autonomic effects evoked from the l/dlPAG depend on neuronal activity in the DMH. Thus, we examined the effect of microinjection of the neuronal inhibitor muscimol into the DMH on increases in HR, MAP and T(co) produced by microinjection of N-methyl-D-aspartate (NMDA) into the l/dlPAG in conscious rats. Microinjection of muscimol alone modestly decreased baseline HR and MAP but failed to alter T(co). Microinjection of NMDA into the l/dlPAG caused marked increases in all three variables, and these were virtually abolished by prior injection of muscimol into the DMH. Similar microinjection of glutamate receptor antagonists into the DMH also suppressed increases in HR and abolished increases in T(co) evoked from the PAG. In contrast, microinjection of muscimol into the hypothalamic paraventricular nucleus failed to reduce changes evoked from the PAG and actually enhanced the increase in T(co). Thus, our data suggest that increases in HR, MAP and T(co) evoked from the l/dlPAG require neuronal activity in the DMH, challenging traditional views of the place of the PAG in central autonomic neural circuitry.
Collapse
Affiliation(s)
- Rodrigo C A de Menezes
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
132
|
Madden CJ, Morrison SF. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2009; 296:R831-43. [PMID: 19129373 DOI: 10.1152/ajpregu.91007.2008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVH) plays an important role in energy homeostasis, regulating neuroendocrine, behavioral, and autonomic functions. However, the role of the PVH in regulating thermogenesis and energy expenditure in brown adipose tissue (BAT) is unclear. The present study investigated the effect of activating neurons within the PVH on BAT thermogenesis. In urethane- and chloralose-anesthetized, artificially ventilated rats maintained at a core body temperature of 37.0-38.0 degrees C, microinjection of N-methyl-d-aspartate (NMDA, 12 pmol in 60 nl) in the PVH did not increase BAT sympathetic nerve activity (SNA) or BAT thermogenesis. In contrast, the increase in BAT SNA evoked by body cooling was completely reversed by microinjection of NMDA in the PVH. Additionally, the increases in BAT SNA evoked by body cooling, by microinjection of prostaglandin E(2) (170 pmol in 60 nl) in the medial preoptic area or by microinjection of bicuculline (30 pmol in 60 nl) in the dorsomedial hypothalamus were completely reversed by microinjection of bicuculline (30 pmol in 60 nl) in the PVH. Although the increases in BAT SNA and thermogenesis evoked by microinjection of NMDA (12 pmol in 60 nl) in the raphe pallidus (RPa) was markedly attenuated following microinjection of bicuculline (30 pmol) in the PVH, the increases in BAT SNA and thermogenesis evoked by microinjection of bicuculline (30 pmol in 60 nl) in the RPa were unaffected by microinjection of bicuculline in the PVH. These results demonstrate that disinhibition of neurons in the PVH inhibits BAT SNA likely via activation of a GABAergic input to BAT sympathetic premotor neurons in the RPa.
Collapse
Affiliation(s)
- C J Madden
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | |
Collapse
|
133
|
Salo LM, Nalivaiko E, Anderson CR, McAllen RM. Control of cardiac rate, contractility, and atrioventricular conduction by medullary raphe neurons in anesthetized rats. Am J Physiol Heart Circ Physiol 2008; 296:H318-24. [PMID: 19074673 DOI: 10.1152/ajpheart.00951.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic actions of medullary raphé neurons on heart rate (HR), atrioventricular conduction, ventricular contractility, and rate of relaxation were examined in nine urethane-anesthetized (1-1.5 g/kg iv), artificially ventilated rats that had been adrenalectomized and given atropine methylnitrate (1 mg/kg iv). Mean arterial pressure (MAP), ECG, and left ventricular pressure were recorded. The peak rates of rise and fall in the first derivative of left ventricular (LV) pressure (dP/dtmax and dP/dtmin, respectively) and the stimulus-R ($-R) interval were measured during brief periods of atrial pacing at 8.5 Hz before and after ventral medullary raphé neurons were activated by dl-homocysteic acid (DLH, 0.1 M) or inhibited by GABA (0.3 M) in local microinjections (90 nl). LV dP/dtmax values were corrected for the confounding effect of MAP, determined at the end of the experiments after giving propranolol (1 mg/kg iv) to block sympathetic actions on the heart. DLH microinjections into the ventral medullary raphé region increased HR by 44 +/- 2 beats/min, LV dP/dtmax by 1,055 +/- 156 mmHg/s, and the negative value of LV dP/dtmin by 729 +/- 204 mmHg/s (all, P < 0.001) while shortening the $-R interval by 2.8 +/- 0.8 ms (P < 0.01). GABA microinjections caused no significant change in HR, LV dP/dtmax, or $-R interval but reduced LV dP/dtmin from -5,974 +/- 93 to -5,548 +/- 171 mmHg/s and MAP from 115 +/- 4 to 105 +/- 5 mmHg (both, P < 0.01). Rises in tail skin temperature confirmed that GABA injections effectively inhibited raphé neurons. When activated, the neurons in the ventral medullary raphé region thus enhance atrioventricular conduction, ventricular contractility, and relaxation in parallel with HR, but they provide little or no tonic sympathetic drive to the heart.
Collapse
Affiliation(s)
- Lauren M Salo
- Howard Florey Institute, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
134
|
Role of 5-HT1A receptors in the lower brainstem on the cardiovascular response to dorsomedial hypothalamus activation. Auton Neurosci 2008; 142:71-6. [DOI: 10.1016/j.autneu.2008.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/19/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
|
135
|
Rusyniak DE, Zaretskaia MV, Zaretsky DV, DiMicco JA. Microinjection of muscimol into the dorsomedial hypothalamus suppresses MDMA-evoked sympathetic and behavioral responses. Brain Res 2008; 1226:116-23. [PMID: 18586013 PMCID: PMC2600867 DOI: 10.1016/j.brainres.2008.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
When given systemically to rats and humans, the drug of abuse 3,4 methylenedioxymethamphetamine (ecstasy, MDMA) elicits hyperthermia, hyperactivity, tachycardia, and hypertension. Chemically stimulating the dorsomedial hypothalamus (DMH), a brain region known to be involved in thermoregulation and in stress responses, causes similar effects. We therefore tested the hypothesis that neuronal activity in the DMH plays a role in MDMA-evoked sympathetic and behavioral responses by microinjecting artificial CSF or muscimol, a neuronal inhibitor, into the DMH prior to intravenous infusion of saline or MDMA in conscious rats. Core temperature, heart rate, mean arterial pressure and locomotor activity were recorded by telemetry every minute for 120 min. In rats previously microinjected with CSF, MDMA elicited significant increases from baseline in core temperature (+1.3+/-0.3 degrees C), locomotion (+50+/-6 counts/min), heart rate (+142+/-16 beats/min), and mean arterial pressure (+26+/-3 mmHg). Microinjecting muscimol into the DMH prior to MDMA prevented increases in core temperature and locomotion and attenuated increases in heart rate and mean arterial pressure. These results indicate that neuronal activity in the DMH is necessary for the sympathetic and behavioral responses evoked by MDMA.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-2859, USA.
| | | | | | | |
Collapse
|
136
|
|
137
|
Sugimura M, Hirose Y, Hanamoto H, Okada K, Boku A, Morimoto Y, Taki K, Niwa H. Influence of acute progressive hypoxia on cardiovascular variability in conscious spontaneously hypertensive rats. Auton Neurosci 2008; 141:94-103. [PMID: 18599365 PMCID: PMC2941824 DOI: 10.1016/j.autneu.2008.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to examine the influence of acute progressive hypoxia on cardiovascular variability and striatal dopamine (DA) levels in conscious, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). After preparation for measurement, the inspired oxygen concentration of rats was decreased to 10% within 5 min (descent stage), maintained at 10% for 10 min (fixed stage), and then elevated back to 20% over 5 min (recovery stage). The systolic blood pressure (SBP) and heart rate (HR) variability at each stage was calculated to evaluate the autonomic nervous system response using the wavelet method. Striatal DA during each stage was measured using in vivo microdialysis. We found that SHR showed a more profound hemodynamic response to progressive hypoxia as compared to WKY. Cardiac parasympathetic activity in SHR was significantly inhibited by acute progressive hypoxia during all stages, as shown by the decrease in the high frequency band of HR variability (HR-HF), along with transient increase in sympathetic activity during the early hypoxic phase. This decrease in the HR-HF continued even when SBP was elevated. Striatal DA levels showed the transient similar elevation in both groups. These findings suggest that acute progressive hypoxic stress in SHR inhibits cardiac parasympathetic activity through reduction of baroreceptor reflex sensitivity, with potentially severe deleterious effects on circulation, in particular on HR and circulatory control. Furthermore, it is thought that the influence of acute progressive hypoxia on striatal DA levels is similar in SHR and WKY.
Collapse
Affiliation(s)
- Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E(2), to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
139
|
Vianna D, Allen C, Carrive P. Cardiovascular and behavioral responses to conditioned fear after medullary raphe neuronal blockade. Neuroscience 2008; 153:1344-53. [DOI: 10.1016/j.neuroscience.2008.03.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 02/22/2008] [Accepted: 03/12/2008] [Indexed: 11/25/2022]
|
140
|
Zaretskaia MV, Zaretsky DV, Sarkar S, Shekhar A, DiMicco JA. Induction of Fos-immunoreactivity in the rat brain following disinhibition of the dorsomedial hypothalamus. Brain Res 2008; 1200:39-50. [PMID: 18282559 PMCID: PMC2323830 DOI: 10.1016/j.brainres.2008.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 12/18/2022]
Abstract
Activation of neurons in the dorsomedial hypothalamus (DMH) appears to play an important role in signaling the excitation of brain regions responsible for experimental fever and for many of the physiological and behavioral changes seen in experimental stress or anxiety in rats. Here, we examined the effect of disinhibition of the DMH by unilateral microinjection of bicuculline methiodide (BMI) on Fos expression in selected regions of the brain that have been implicated in anxiety and responses to stress and fever in rats. Disinhibition of the DMH resulted in dramatic increases in local Fos expression and also increased the numbers of Fos-positive neurons in the lateral septal nucleus and in both the parvocellular and magnocellular subdivisions of the paraventricular nucleus, with greater increases ipsilateral to the injection site in the DMH. However, microinjection of BMI had no significant effect on Fos expression in the bed nucleus of the stria terminalis, another forebrain area implicated in stress and anxiety. In the brainstem, disinhibition of the DMH increased Fos expression in the nucleus tractus solitarius and the ventrolateral medulla bilaterally with greater increases again ipsilateral to the site of the microinjection, and also in the midline rostral raphe pallidus. Thus, disinhibition of neurons in the DMH in conscious rats results in increases in Fos expression in selected forebrain and brainstem regions that have been implicated in stress-induced physiological changes, anxiety, and experimental fever.
Collapse
Affiliation(s)
- Maria V. Zaretskaia
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, Indiana 46202
| | - Dmitry V. Zaretsky
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, Indiana 46202
| | - Sumit Sarkar
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, Indiana 46202
| | - Anantha Shekhar
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, Indiana 46202
- Department of Psychiatry, Indiana, University School of Medicine, Indianapolis, Indiana 46202
| | - Joseph A. DiMicco
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
141
|
Tanaka M, McAllen RM. Functional topography of the dorsomedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2008; 294:R477-86. [DOI: 10.1152/ajpregu.00633.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dorsomedial hypothalamus (DMH) has been proposed to play key roles in both the defense reaction to acute stress and in the thermoregulatory response to cold. We reasoned that the autonomic/respiratory motor patterns of these responses would be mediated by at least partly distinct DMH neuron populations. To test this, we made simultaneous recordings of phrenic nerve and plantar cutaneous vasoconstrictor (CVC) activity in 14 vagotomized, ventilated, urethane-anesthetized rats. Microinjections of d,l-homocysteic acid (DLH; 15 nl, 50 mM) were used to cause localized, short-lasting (<1 min) activation of DMH neuron clusters. Cooling the rat's trunk skin by perfusing cold water through a water jacket-activated plantar CVC activity but depressed phrenic burst rate (cold-response pattern). The expected “stress/defense response” pattern would be phrenic activation, with increased blood pressure, heart rate, and possibly CVC activity. DLH microinjections into 76 sites within the DMH region never reduced phrenic activity. They frequently increased phrenic rate and/or plantar CVC activity, but the magnitudes of those two responses were not significantly correlated. Plantar CVC responses were evoked most strongly from the dorsal hypothalamic area and most dorsal part of the dorsomedial nucleus, whereas peak phrenic rate responses were evoked from more caudal sites; their relative magnitudes varied systematically with rostrocaudal position. Tachycardia correlated with plantar CVC responses but not phrenic rate. These findings indicate that localized activation of DMH neurons does not evoke full “cold-response” or stress/defense response patterns, but they demonstrate the existence of significant functional topography within the DMH region.
Collapse
|
142
|
Herwig A, Ivanova EA, Lydon H, Barrett P, Steinlechner S, Loudon AS. Histamine H3 receptor and orexin A expression during daily torpor in the Djungarian hamster (Phodopus sungorus). J Neuroendocrinol 2007; 19:1001-7. [PMID: 18001330 DOI: 10.1111/j.1365-2826.2007.01620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Seasonal animals use different strategies to reduce energy expenditure in the face of reduced seasonal food availability. For example, the ground squirrel enters a hibernation state with reduced metabolism, hypothermia and suppressed central nervous system activity, whereas the Djungarian hamster (Phodopus sungorus) employs daily bouts of torpor associated with reduced body temperature and energy expenditure. Studies in the hibernating ground squirrel implicate an increase in histamine synthesis and histamine H(3) receptor expression in the brain as a central mechanism governing hibernation. In the present study, we demonstrate an up-regulation of H(3) receptors in several brain nuclei in the Djungarian hamster during bouts of daily torpor, a shallow form of hypothermia, suggesting that histaminergic pathways may play a general role in maintaining low body temperature and torpor state in mammals. These regions include the arcuate nucleus, dorsomedial hypothalamus, suprachiasmatic nucleus, dorsal lateral geniculate nucleus and tuberomammillary nucleus. Interestingly, expression of the mRNA for orexins, a group of neuropeptides that increase wakefulness, remains unchanged during the arousal from daily torpor, suggesting that this classic 'arousal' pathway is not involved in the transition from a hypothermic to the euthermic state.
Collapse
Affiliation(s)
- A Herwig
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
143
|
Fan W, Morrison SF, Cao WH, Yu P. Thermogenesis activated by central melanocortin signaling is dependent on neurons in the rostral raphe pallidus (rRPa) area. Brain Res 2007; 1179:61-9. [DOI: 10.1016/j.brainres.2007.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/23/2007] [Accepted: 04/04/2007] [Indexed: 11/16/2022]
|
144
|
Sarkar S, Zaretskaia MV, Zaretsky DV, Moreno M, DiMicco JA. Stress- and lipopolysaccharide-induced c-fos expression and nNOS in hypothalamic neurons projecting to medullary raphe in rats: a triple immunofluorescent labeling study. Eur J Neurosci 2007; 26:2228-38. [PMID: 17927775 DOI: 10.1111/j.1460-9568.2007.05843.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurons in the rostral raphe pallidus (rRP) have been proposed to mediate experimental stress-induced tachycardia and fever in rats, and projections from the dorsomedial hypothalamus (DMH) may signal their activation in these settings. Thus, we examined c-fos expression evoked by air jet/restraint stress and restraint stress or by systemic administration of lipopolysaccharide (10 microg/kg and 100 microg/kg) as well as the distribution of the neuronal nitric oxide synthase (nNOS) in neurons retrogradely labeled from the raphe with cholera toxin B in key hypothalamic regions. Many neurons in the medial preoptic area and the dorsal area of the DMH were retrogradely labeled, and approximately half of those in the medial preoptic area and moderate numbers in the dorsal DMH were also positive for nNOS. Either stress paradigm or dose of lipopolysaccharide increased the number of c-fos-positive neurons and nNOS/c-fos double-labeled neurons in all regions examined. However, retrogradely labeled neurons positive for c-fos were increased only in the dorsal DMH and adjoining region in both stressed and lipopolysaccharide-treated groups, and triple-labeled neurons were found only in this area in rats subjected to either stress paradigm. Thus, hypothalamic neurons that project to the rRP and express c-fos in response to either experimental stress or systemic inflammation are found only in the dorsal DMH, and many of those activated by stress contain nNOS, suggesting that nitric oxide may play a role in signaling in this pathway.
Collapse
Affiliation(s)
- Sumit Sarkar
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
145
|
Abstract
Peripheral infusions of physiological doses of leptin decrease body fat mass, but it is not known whether this results from direct effects on peripheral tissue or activation of central leptin receptors. In this study, we infused chronically decerebrate (CD) rats, in which the forebrain was surgically isolated from the caudal brainstem, with 60 microg leptin/d or PBS for 14 d from ip mini-osmotic pumps. The CD rats were tube fed an amount of food equivalent to the intake of ad libitum-fed intact controls or 75% of this amount to account for their reduced energy expenditure. Control rats fed ad libitum or tube fed 75, 100, or 125% of their ad libitum intake also were peripherally infused with leptin or PBS. CD rats had a lower serum testosterone, energy expenditure, and lean body mass compared with controls but had increased levels of adiponectin and leptin and were obese. Leptin increased body fat and decreased energy expenditure during the light period in 100%-fed CD rats, but not 75%-fed CD rats. Leptin decreased body fat of ad libitum- and 100%-fed but not 75%-fed or 125%-fed intact controls. Energy expenditure did not change in any control group. These results show that leptin can change body fat independent of a change in food intake or energy expenditure, that the forebrain normally prevents leptin from inhibiting energy expenditure through mechanisms initiated in the caudal brainstem or peripheral tissues, and that the leptin response in both intact and CD rats is determined by the energy status of the animal.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
146
|
Mravec B, Lukackova R, Bodnar I, Kiss A, Pacak K, Palkovits M, Kvetnansky R. Stress-induced alterations in catecholamine enzymes gene expression in the hypothalamic dorsomedial nucleus are modulated by caudal brain and not hypothalamic paraventricular nucleus neurons. Brain Res Bull 2007; 74:147-54. [PMID: 17683801 DOI: 10.1016/j.brainresbull.2007.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamic dorsomedial nucleus (DMN) represents an important coordinate center for regulation of autonomic and neuroendocrine systems, especially during stress response. The present study was focused on the gene expression of catecholamine-synthesizing enzymes and the protein levels of tyrosine hydroxylase in DMN, both in control and stressed rats. Moreover, pathways modulating the gene expression of tyrosine hydroxylase in DMN during immobilization (IMO) stress were also investigated. Gene expressions of all catecholamine-synthesizing enzymes were detected in DMN samples. While the levels of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA were increased in IMO rats, aromatic L-amino acid decarboxylase and dopamine-beta-hydroxylase mRNA remained unchanged. Tyrosine hydroxylase protein levels were significantly elevated in the DMN only after repeated IMO stress. Postero-lateral deafferentations of the DMN, or transections of the ascending catecholaminergic pathways originating in the lower brainstem abolished the IMO-induced increase of tyrosine hydroxylase gene expression in the DMN. Nevertheless, postero-lateral deafferentations of the hypothalamic paraventricular nucleus (PVN), which separate the DMN from the PVN, had no effect on IMO-induced elevation of tyrosine hydroxylase mRNA in the DMN. The present data indicate that certain DMN neurons synthesize mRNA of catecholamine enzymes. The stress-induced increase of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA in DMN neurons indicates the involvement of these catecholaminergic neurons in stress response. The gene expression of tyrosine hydroxylase in DMN is modulated by lower brainstem and/or spinal cord, but not by PVN afferents.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
147
|
McDowall LM, Horiuchi J, Dampney RAL. Effects of disinhibition of neurons in the dorsomedial hypothalamus on central respiratory drive. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1728-35. [PMID: 17715179 DOI: 10.1152/ajpregu.00503.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons within the dorsomedial hypothalamus (DMH) play a critical role in subserving the cardiovascular and neuroendocrine response to psychological stress. An increase in respiratory activity is also a characteristic feature of the physiological response to psychological stress, but there have been few studies of the role of DMH neurons in regulating respiratory activity. In this study we determined the effects of activation of DMH neurons on respiratory activity (assessed by measuring phrenic nerve activity, PNA) and the relationship between evoked changes in respiratory activity and changes in sympathetic vasomotor activity in spontaneously breathing urethane-anesthetized rats. Microinjections of bicuculline (4-40 pmol in 20 nl) into the DMH evoked dose-dependent increases in PNA burst frequency and amplitude. These were accompanied by dose-dependent decreases in mean tracheal CO(2) levels, indicative of hyperventilation. In control experiments, microinjections of bicuculline into sites adjacent to the DMH evoked much smaller or no changes in PNA. In experiments where renal sympathetic nerve activity (RSNA) was also measured, cycle-triggered averaging revealed that RSNA under resting conditions was partly correlated with the PNA, but in response to DMH disinhibition there was no consistent change in the amplitude of the respiratory-related variations in RSNA. The results indicate that DMH neurons can exert a powerful stimulatory effect on respiratory activity, causing hyperventilation. This is not associated with an increase in the degree of coupling between PNA and RSNA, indicating that the DMH-evoked increase in RSNA is not a consequence of increased central respiratory drive.
Collapse
Affiliation(s)
- Lachlan M McDowall
- Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
148
|
Stocker SD, Meador R, Adams JM. Neurons of the Rostral Ventrolateral Medulla Contribute to Obesity-Induced Hypertension in Rats. Hypertension 2007; 49:640-6. [PMID: 17190873 DOI: 10.1161/01.hyp.0000254828.71253.dc] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the sympathetic nervous system contributes to the pathogenesis of obesity-induced hypertension. The present study sought to determine whether sympathetic regulatory neurons of the rostral ventrolateral medulla contribute to the elevated blood pressure in obese rats. Male Sprague-Dawley rats (350 to 425 g) were placed on a moderately high-fat diet (32% kcal as fat) or a low-fat (LF) diet (10.6% kcal as fat). After 13 weeks, rats fed the moderately high-fat diet segregated into obesity-prone (OP) and obesity-resistant (OR) groups based on their body weight (OP: 839+/-22 g; OR: 668+/-15 g; LF: 680+/-18 g; n=15 for all groups; P<0.01). Under isoflurane anesthesia, baseline mean arterial blood pressure was significantly elevated in the OP rats versus the OR and LF rats (OP: 108+/-2 mm Hg; OR: 100+/-2 mm Hg; LF: 97+/-3 mm Hg; n=7; P<0.05). Inhibition of the rostral ventrolateral medulla with bilateral microinjection of the GABA(A) receptor agonist muscimol (200 pmol/100 nL) decreased mean arterial blood pressure to similar levels across the groups (OP: 49+/-1 mm Hg; OR: 50+/-2 mm Hg; LF: 49+/-1 mm Hg), but the magnitude of this decrease was significantly greater in the OP versus the OR and LF rats (OP: -58+/-2 mm Hg; OR: -49+/-1 mm Hg; LF: -48+/-3 mm Hg; P<0.01). These differences in mean arterial blood pressure cannot be explained by changes in vascular reactivity as the ED(50) in response to phenylephrine and norepinephrine was similar across the groups. The present findings suggest that the elevated sympathetic nerve activity and arterial blood pressure in obese rats depends on the tonic activity of rostral ventrolateral medulla sympathetic neurons.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
149
|
Horiuchi J, McDowall LM, Dampney RAL. Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus. Clin Exp Pharmacol Physiol 2007; 33:1265-8. [PMID: 17184513 DOI: 10.1111/j.1440-1681.2006.04522.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The dorsomedial hypothalamus (DMH) plays a crucial role in mediating the cardiovascular responses to different stressors, including acute psychological stress and cold stress. Activation of neurons in the DMH evokes increases in arterial pressure and in the activity of sympathetic nerves innervating the heart, blood vessels and brown adipose tissue. The descending pathways from the DMH to the spinal sympathetic outflow include synapses with neurons in medullary nuclei and possibly other brain stem regions. 2. Recent studies from our and other laboratories have indicated that neurons in the rostral ventrolateral medulla (RVLM) and in the region of the raphe pallidus (RP) in the medulla are important components of the descending pathways that mediate the cardiovascular response to activation of the DMH. Neurons in the RP primarily mediate the sympathetic cardiac components of the DMH-evoked response, whereas the RVLM neurons primarily mediate the sympathetic vasomotor component. 3. Activation of DMH neurons not only increases heart rate and sympathetic vasomotor activity, but also resets the baroreceptor reflex such that it remains effective, without any decrease in sensitivity, over a higher operating range of arterial pressure. 4. Activation of 5-hydroxytryptamine 5-HT(1A) receptors in the medulla oblongata leads to a selective suppression of cardiac and sympathetic vasomotor components of the DMH-evoked response, but does not affect sympathetic reflex responses evoked from baroreceptors or chemoreceptors. Thus, central 5-HT(1A) receptors modulate cardiovascular responses evoked from the DMH in a highly potent but selective fashion.
Collapse
Affiliation(s)
- J Horiuchi
- Discipline of Physiology and Institute for Biomedical Research, The University of Sydney, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
150
|
Nakamura K, Morrison SF. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2007; 292:R127-36. [PMID: 16931649 PMCID: PMC2441894 DOI: 10.1152/ajpregu.00427.2006] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense responses, which are triggered by thermal information from the skin. However, the central autonomic mechanism driving thermoregulatory effector responses to skin thermal signals remains to be determined. Here, we examined the involvement of several autonomic brain regions in sympathetic thermogenic responses in brown adipose tissue (BAT) to skin cooling in urethane-chloralose-anesthetized rats by monitoring thermogenic [BAT sympathetic nerve activity (SNA) and BAT temperature], metabolic (expired CO(2)), and cardiovascular (arterial pressure and heart rate) parameters. Acute skin cooling, which did not reduce either rectal (core) or brain temperature, evoked increases in BAT SNA, BAT temperature, expired CO(2), and heart rate. Skin cooling-evoked thermogenic, metabolic, and heart rate responses were inhibited by bilateral microinjections of bicuculline (GABA(A) receptor antagonist) into the preoptic area (POA), by bilateral microinjections of muscimol (GABA(A) receptor agonist) into the dorsomedial hypothalamic nucleus (DMH), or by microinjection of muscimol, glycine, 8-OH-DPAT (5-HT(1A) receptor agonist), or kynurenate (nonselective antagonist for ionotropic excitatory amino acid receptors) into the rostral raphe pallidus nucleus (rRPa) but not by bilateral muscimol injections into the lateral/dorsolateral part or ventrolateral part of the caudal periaqueductal gray. These results implicate the POA, DMH, and rRPa in the central efferent pathways for thermogenic, metabolic, and cardiac responses to skin cooling, and suggest that these pathways can be modulated by serotonergic inputs to the medullary raphe.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA.
| | | |
Collapse
|