101
|
Chen J, Amdanee N, Zuo X, Wang Y, Gong M, Yang Y, Li H, Zhang X, Zhang C. Biomarkers of bipolar disorder based on metabolomics: A systematic review. J Affect Disord 2024; 350:492-503. [PMID: 38218254 DOI: 10.1016/j.jad.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Bipolar disorder (BD) is a severe affective disorder characterized by recurrent episodes of depression or mania/hypomania, which significantly impair cognitive function, life skills, and social abilities of patients. There is little understanding of the neurobiological mechanisms of BD. The diagnosis of BD is primarily based on clinical assessment and psychiatric examination, highlighting the urgent need for objective markers to facilitate the diagnosis of BD. Metabolomics can be used as a diagnostic tool for disease identification and evaluation. This study summarized the altered metabolites in BD and analyzed aberrant metabolic pathways, which might contribute to the diagnosis of BD. Search of PubMed and Web of science for human BD studies related to metabolism to identify articles published up to November 19, 2022 yielded 987 articles. After screening and applying the inclusion and exclusion criteria, 16 untargeted and 11 targeted metabolomics studies were included. Pathway analysis of the potential differential biometabolic markers was performed using the Kyoto encyclopedia of genes and genomes (KEGG). There were 72 upregulated and 134 downregulated biomarkers in the untargeted metabolomics studies using blood samples. Untargeted metabolomics studies utilizing urine specimens revealed the presence of 78 upregulated and 54 downregulated metabolites. The targeted metabolomics studies revealed abnormalities in the metabolism of glutamate and tryptophan. Enrichment analysis revealed that the differential metabolic pathways were mainly involved in the metabolism of glucose, amino acid and fatty acid. These findings suggested that certain metabolic biomarkers or metabolic biomarker panels might serve as a reference for the diagnosis of BD.
Collapse
Affiliation(s)
- Jin Chen
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China; Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China
| | - Nousayhah Amdanee
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China
| | - Xiaowei Zuo
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China
| | - Muxin Gong
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Yujing Yang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Hao Li
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China
| | - Xiangrong Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China; Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu,210000, China.
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu,221004, China.
| |
Collapse
|
102
|
Pan S, Yang L, Zhong W, Wang H, Lan Y, Chen Q, Yu S, Yang F, Yan P, Peng H, Liu X, Gao X, Song J. Integrated analyses revealed the potential role and immune link of mitochondrial dysfunction between periodontitis and type 2 diabetes mellitus. Int Immunopharmacol 2024; 130:111796. [PMID: 38452412 DOI: 10.1016/j.intimp.2024.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
There is a reciprocal comorbid relationship between periodontitis and type 2 diabetes mellitus (T2DM). Recent studies have suggested that mitochondrial dysfunction (MD) could be the key driver underlying this comorbidity. The aim of this study is to provide novel understandings into the potential molecular mechanisms between MD and the comorbidity, and identify potential therapeutic targets for personalized clinical management. MD-related differentially expressed genes (MDDEGs) were identified. Enrichment analyses and PPI network analysis were then conducted. Six algorithms were used to explore the hub MDDEGs, and these were validated by ROC analysis and qRT-PCR. Co-expression and potential drug targeting analyses were then performed. Potential biomarkers were identified using LASSO regression. The immunocyte infiltration levels in periodontitis and T2DM were evaluated via CIBERSORTx and validated in mouse models. Subsequently, MD-related immune-related genes (MDIRGs) were screened by WGCNA. The in vitro experiment verified that MD was closely associated with this comorbidity. GO and KEGG analyses demonstrated that the connection between periodontitis and T2DM was mainly enriched in immuno-inflammatory pathways. In total, 116 MDDEGs, eight hub MDDEGs, and two biomarkers were identified. qRT-PCR revealed a distinct hub MDDEG expression pattern in the comorbidity group. Altered immunocytes in disease samples were identified, and their correlations were explored. The in vivo examination revealed higher infiltration levels of inflammatory immunocytes. The findings of this study provide insight into the mechanism underlying the gene-mitochondria-immunocyte network and provide a novel reference for future research into the function of mitochondria in periodontitis and T2DM.
Collapse
Affiliation(s)
- Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - LanXin Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuyan Lan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Qiyue Chen
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Simin Yu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Pingping Yan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Houli Peng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Liu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
103
|
Mateen MA, Alaagib N, Haider KH. High glucose microenvironment and human mesenchymal stem cell behavior. World J Stem Cells 2024; 16:237-244. [PMID: 38577235 PMCID: PMC10989287 DOI: 10.4252/wjsc.v16.i3.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024] Open
Abstract
High glucose (HG) culture conditions in vitro and persistent exposure to hyperglycemia in diabetes patients are detrimental to stem cells, analogous to any other cell type in our body. It interferes with diverse signaling pathways, i.e. mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-Akt signaling, to impact physiological cellular functions, leading to low cell survival and higher cell apoptosis rates. While elucidating the underlying mechanism responsible for the apoptosis of adipose tissue-derived mesenchymal stem cells (MSCs), a recent study has shown that HG culture conditions dysregulate mTOR-PI3K-Akt signaling in addition to mitochondrial malfunctioning due to defective mitochondrial membrane potential (MtMP) that lowers ATP production. This organelle-level dysfunction energy-starves the cells and increases oxidative stress and ultrastructural abnormalities. Disruption of the mitochondrial electron transport chain produces an altered mitochondrial NAD+/NADH redox state as evidenced by a low NAD+/NADH ratio that primarily contributes to the reduced cell survival in HG. Some previous studies have also reported altered mitochondrial membrane polarity (causing hyperpolarization) and reduced mitochondrial cell mass, leading to perturbed mitochondrial homeostasis. The hostile microenvironment created by HG exposure creates structural and functional changes in the mitochondria, altering their bioenergetics and reducing their capacity to produce ATP. These are significant data, as MSCs are extensively studied for tissue regeneration and restoring their normal functioning in cell-based therapy. Therefore, MSCs from hyperglycemic donors should be cautiously used in clinical settings for cell-based therapy due to concerns of their poor survival rates and increased rates of post engraftment proliferation. As hyperglycemia alters the bioenergetics of donor MSCs, rectifying the loss of MtMP may be an excellent target for future research to restore the normal functioning of MSCs in hyperglycemic patients.
Collapse
Affiliation(s)
| | | | - Khawaja Husnain Haider
- Cellular and Molecular Pharmacology, Sulaiman AlRajhi Medical School, Al Bukairiyah 51941, Saudi Arabia.
| |
Collapse
|
104
|
Silva SCDA, de Lemos MDT, Dos Santos Junior OH, Rodrigues TO, Silva TL, da Silva AI, Fiamoncini J, Lagranha CJ. Overweight during development dysregulates cellular metabolism and critical genes that control food intake in the prefrontal cortex. Physiol Behav 2024; 276:114453. [PMID: 38159589 DOI: 10.1016/j.physbeh.2023.114453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUNDS AND AIMS Childhood obesity is increasing substantially across the world. The World Obesity Federation (WOF) and World Health Organization (WHO) predicted that in 2030 > 1 billion people will be obese, and by 2035 over 4 billion will reach obesity worldwide. According to WHO, the world soon cannot afford the economic cost of obesity, and we need to act to stop obesity acceleration now. Data in the literature supports that the first 1000 days of life are essential in preventing obesity and related adversities. Therefore, using basic research, the present a study that focuses on the immediate effect of overnutrition and serotonin modulation during the lactation period. METHODS Using a neonatal overfeeding model, male Wistar rats were divided into four groups based on nutrition or serotonin modulation by pharmacological treatment up to 22 days of life. Cellular and mitochondrial function markers, oxidative stress biomarkers and mRNA levels of hedonic and homeostatic genes were evaluated. RESULTS Our data showed that overfeeding during lactation decrease NAD/NADH ratio, citrate synthase activity, and increase ROS production. Lipid and protein oxidation were increased in overfed animals, with a decrease in antioxidant defenses, we also observe a differential expression of mRNA levels of homeostatic and hedonic genes. On the contrary, serotonin modulation with selective serotonin reuptake inhibitors treatment reduces harmful effects caused by overnutrition. CONCLUSION Early effects of overnutrition significantly affect the prefrontal cortex at molecular and cellular level, which could mediate obesity-related neurodegenerative dysfunction.
Collapse
Affiliation(s)
| | | | | | - Thyago Oliveira Rodrigues
- Gradute Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil
| | - Tercya Lucidi Silva
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil
| | | | - Jarlei Fiamoncini
- Food Research Center, Department of Food Science and Experimental Nutrition, University of São Paulo, São Paulo, SP, Brazil
| | - Claudia J Lagranha
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil; Biochemistry and Physiology Graduate Program, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil; Gradute Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco - CAV, Vitória de Santo Antão, Brazil.
| |
Collapse
|
105
|
Nikolic A, Fahlbusch P, Riffelmann NK, Wahlers N, Jacob S, Hartwig S, Kettel U, Schiller M, Dille M, Al-Hasani H, Kotzka J, Knebel B. Chronic stress alters hepatic metabolism and thermodynamic respiratory efficiency affecting epigenetics in C57BL/6 mice. iScience 2024; 27:109276. [PMID: 38450153 PMCID: PMC10915629 DOI: 10.1016/j.isci.2024.109276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Chronic stress episodes increase metabolic disease risk even after recovery. We propose that persistent stress detrimentally impacts hepatic metabolic reprogramming, particularly mitochondrial function. In male C57BL/6 mice chronic variable stress (Cvs) reduced energy expenditure (EE) and body mass despite increased energy intake versus controls. This coincided with decreased glucose metabolism and increased lipid β-oxidation, correlating with EE. After Cvs, mitochondrial function revealed increased thermodynamic efficiency (ƞ-opt) of complex CI, positively correlating with blood glucose and NEFA and inversely with EE. After Cvs recovery, the metabolic flexibility of hepatocytes was lost. Reduced CI-driving NAD+/NADH ratio, and diminished methylation-related one-carbon cycle components hinted at epigenetic regulation. Although initial DNA methylation differences were minimal after Cvs, they diverged during the recovery phase. Here, the altered enrichment of mitochondrial DNA methylation and linked transcriptional networks were observed. In conclusion, Cvs rapidly initiates the reprogramming of hepatic energy metabolism, supported by lasting epigenetic modifications.
Collapse
Affiliation(s)
- Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Nele-Kathrien Riffelmann
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Natalie Wahlers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Martina Schiller
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Matthias Dille
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
106
|
Moorthy R, Bhattamisra SK, Pandey M, Mayuren J, Kow CS, Candasamy M. Mitochondria and diabetes: insights and potential therapies. Expert Rev Endocrinol Metab 2024; 19:141-154. [PMID: 38347803 DOI: 10.1080/17446651.2024.2307526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Type 2 diabetes (T2D) presents significant global health and economic challenges, contributing to complications such as stroke, cardiovascular disease, kidney dysfunction, and cancer. The current review explores the crucial role of mitochondria, essential for fuel metabolism, in diabetes-related processes. AREAS COVERED Mitochondrial deficits impact insulin-resistant skeletal muscles, adipose tissue, liver, and pancreatic β-cells, affecting glucose and lipid balance. Exercise emerges as a key factor in enhancing mitochondrial function, thereby reducing insulin resistance. Additionally, the therapeutic potential of mitochondrial uncoupling, which generates heat instead of ATP, is discussed. We explore the intricate link between mitochondrial function and diabetes, investigating genetic interventions to mitigate diabetes-related complications. We also cover the impact of insulin deficiency on mitochondrial function, the role of exercise in addressing mitochondrial defects in insulin resistance, and the potential of mitochondrial uncoupling. Furthermore, a comprehensive analysis of Mitochondrial Replacement Therapies (MRT) techniques is presented. EXPERT OPINION MRTs hold promise in preventing the transmission of mitochondrial disease. However, addressing ethical, regulatory, and technical considerations is crucial. Integrating mitochondrial-based treatments requires a careful balance between innovation and safety. Ethical dimensions and regulatory aspects of MRT are examined, emphasizing collaborative efforts for the responsible advancement of human health.
Collapse
Affiliation(s)
- Renupiriya Moorthy
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmacology, GITAM School of Pharmacy, Gandhi Institute of Technology and Management (GITAM Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Manish Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chia Siang Kow
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
107
|
Zhang Y, Jiao X, Liu J, Feng G, Luo X, Zhang M, Zhang B, Huang L, Long Q. A new direction in Chinese herbal medicine ameliorates for type 2 diabetes mellitus: Focus on the potential of mitochondrial respiratory chain complexes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117484. [PMID: 38012971 DOI: 10.1016/j.jep.2023.117484] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.
Collapse
Affiliation(s)
- Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinyue Jiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
108
|
Xie SY, Liu SQ, Zhang T, Shi WK, Xing Y, Fang WX, Zhang M, Chen MY, Xu SC, Fan MQ, Li LL, Zhang H, Zhao N, Zeng ZX, Chen S, Zeng XF, Deng W, Tang QZ. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Circulation 2024; 149:684-706. [PMID: 37994595 DOI: 10.1161/circulationaha.123.065603] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Shi-Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Ke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Xi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Meng-Ya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Si-Chi Xu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China (S.-c.X.)
| | - Meng-Qi Fan
- College of Life Sciences, Wuhan University, P.R. China (M.-q.F.)
| | - Lan-Lan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiaotong University, P.R. China (Z.-x.Z)
- Department of Cardiac Surgery, Changhai Hospital, Navy Medical University, Shanghai, P.R. China (Z.-x.Z)
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Xiao-Feng Zeng
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| |
Collapse
|
109
|
García-Peña LM, Abel ED, Pereira RO. Mitochondrial Dynamics, Diabetes, and Cardiovascular Disease. Diabetes 2024; 73:151-161. [PMID: 38241507 PMCID: PMC10796300 DOI: 10.2337/dbi23-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 01/21/2024]
Abstract
Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Renata O. Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
110
|
Morfin C, Sebastian A, Wilson SP, Amiri B, Murugesh DK, Hum NR, Christiansen BA, Loots GG. Mef2c regulates bone mass through Sost-dependent and -independent mechanisms. Bone 2024; 179:116976. [PMID: 38042445 DOI: 10.1016/j.bone.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.
Collapse
Affiliation(s)
- Cesar Morfin
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Stephen P Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G Loots
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
111
|
Yao D, Chen E, Li Y, Wang K, Liao Z, Li M, Huang L. The role of endoplasmic reticulum stress, mitochondrial dysfunction and their crosstalk in intervertebral disc degeneration. Cell Signal 2024; 114:110986. [PMID: 38007189 DOI: 10.1016/j.cellsig.2023.110986] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China..
| |
Collapse
|
112
|
Sun Y, Chen Y, Liu Z, Wang J, Bai J, Du R, Long M, Shang Z. Mitophagy-Mediated Tumor Dormancy Protects Cancer Cells from Chemotherapy. Biomedicines 2024; 12:305. [PMID: 38397907 PMCID: PMC10886527 DOI: 10.3390/biomedicines12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Despite obvious tumor shrinkage, relapse after chemotherapy remains a main cause of cancer-related mortality, indicating that a subpopulation of cancer cells acquires chemoresistance and lingers after treatment. However, the mechanism involved in the emergence of chemoresistant cells remains largely unknown. Here, we demonstrate that the degradation of mitochondria via autophagy leads to a dormant state in a subpopulation of cancer cells and confers on them resistance to lethal cisplatin (DDP) exposure. The surviving DDP-resistant cells (hereafter, DRCs) have a lower metabolic rate but a stronger potential malignant potential. In the absence of DDP, these DRCs exhibit an ever-increasing self-renewal ability and heightened tumorigenicity. The combination of chloroquine and DDP exerts potent tumor-suppressive effects. In summary, our findings illuminate the mechanism between mitophagy and tumor dormancy and prove that targeting mitophagy might be a promising approach for overcoming chemoresistance in head and neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhenan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Jingjing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Ruixue Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Mingshu Long
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.S.); (Y.C.); (Z.L.); (J.W.); (J.B.); (R.D.); (M.L.)
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
113
|
Duan X, Chen Z, Xia C, Zhong R, Liu L, Long L. Increased Levels of Urine Volatile Organic Compounds Are Associated With Diabetes Risk and Impaired Glucose Homeostasis. J Clin Endocrinol Metab 2024; 109:e531-e542. [PMID: 37793167 DOI: 10.1210/clinem/dgad584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
CONTEXT Volatile organic compounds (VOCs) are pervasive environmental pollutants that have been linked to various adverse health effects. However, the effect of ambient VOCs, whether individually or in mixtures, on diabetes remains uncertain and requires further investigation. OBJECTIVE This study investigates the effects of ambient VOCs exposure, whether single or mixed, on diabetes mellitus and glucose homeostasis in the general population. METHODS Urinary concentrations of VOC metabolites were obtained from the National Health and Nutrition Examination Survey. Survey-weighted logistic regression and generalized linear regression were used to explore the associations between individual VOC exposure and diabetes risk and glucose homeostasis indicators, respectively. Weighted quantile sum (WQS) regression models were applied to assess the combined effects of VOC mixtures. RESULTS Out of 8468 participants, 1504 had diabetes mellitus. Eight VOC metabolites showed positive associations with diabetes mellitus (OR, 1.15-1.43; all P < .05), insulin resistance (IR) (OR, 1.02-1.06; P < .05), and other glucose homeostasis indicators (β, 0.04-2.32; all P < .05). Mixed VOC models revealed positive correlations between the WQS indices and diabetes risk (OR = 1.52; 95% CI, 1.29-1.81), IR (OR = 1.36; 95% CI, 1.14-1.62), and other glucose homeostasis indicators (β, 0.17-2.22; all P < .05). CONCLUSION Urinary metabolites of ambient VOCs are significantly associated with an increased diabetes risk and impaired glucose homeostasis. Thus, primary prevention policies aimed at reducing ambient VOCs could attenuate diabetes burden.
Collapse
Affiliation(s)
- Xiaoxia Duan
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenhua Chen
- Department of Microbiology Laboratory, Chengdu Municipal Center for Disease Control and Prevention, Chengdu 610031, China
| | - Congying Xia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Lu Long
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
114
|
Ma L, Wang H, Huang X, Huang H, Peng Y, Liu H, Wang X, Cao Z. CXXC5 mitigates P. gingivalis-inhibited cementogenesis by influencing mitochondrial biogenesis. Cell Commun Signal 2024; 22:4. [PMID: 38167023 PMCID: PMC10763120 DOI: 10.1186/s12964-023-01283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cementoblasts on the tooth-root surface are responsible for cementum formation (cementogenesis) and sensitive to Porphyromonas gingivalis stimulation. We have previously proved transcription factor CXXC-type zinc finger protein 5 (CXXC5) participates in cementogenesis. Here, we aimed to elucidate the mechanism in which CXXC5 regulates P. gingivalis-inhibited cementogenesis from the perspective of mitochondrial biogenesis. METHODS In vivo, periapical lesions were induced in mouse mandibular first molars by pulp exposure, and P. gingivalis was applied into the root canals. In vitro, a cementoblast cell line (OCCM-30) was induced cementogenesis and submitted for RNA sequencing. These cells were co-cultured with P. gingivalis and examined for osteogenic ability and mitochondrial biogenesis. Cells with stable CXXC5 overexpression were constructed by lentivirus transduction, and PGC-1α (central inducer of mitochondrial biogenesis) was down-regulated by siRNA transfection. RESULTS Periapical lesions were enlarged, and PGC-1α expression was reduced by P. gingivalis treatment. Upon apical inflammation, Cxxc5 expression decreased with Il-6 upregulation. RNA sequencing showed enhanced expression of osteogenic markers, Cxxc5, and mitochondrial biogenesis markers during cementogenesis. P. gingivalis suppressed osteogenic capacities, mitochondrial biogenesis markers, mitochondrial (mt)DNA copy number, and cellular ATP content of cementoblasts, whereas CXXC5 overexpression rescued these effects. PGC-1α knockdown dramatically impaired cementoblast differentiation, confirming the role of mitochondrial biogenesis on cementogenesis. CONCLUSIONS CXXC5 is a P. gingivalis-sensitive transcription factor that positively regulates cementogenesis by influencing PGC-1α-dependent mitochondrial biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
115
|
Li Y, Li X, Yang Y, Li F, Chen Q, Zhao Z, Zhang N, Li H. Hepatocyte growth factor attenuates high glucose-disturbed mitochondrial dynamics in podocytes by decreasing ARF6-dependent DRP1 translocation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119623. [PMID: 37913847 DOI: 10.1016/j.bbamcr.2023.119623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Diabetic nephropathy (DN), one of the most common complications of Diabetes Mellitus, is the leading cause of end-stage renal diseases worldwide. Our previous study proved that hepatocyte growth factor (HGF) alleviated renal damages in mice with type 1 Diabetes Mellitus by suppressing overproduction of reactive oxygen species (ROS) in podocytes, while the further mechanism of how HGF lessens ROS production had not been clarified yet. ADP-ribosylation factor 6 (ARF6), the member of the small GTPases superfamilies, is widely spread among epithelial cells and can be activated by the HGF/c-Met signaling. Thus, this study was aimed to explore whether HGF could function on mitochondrial homeostasis, the main resource of ROS, in podocytes exposed to diabetic conditions via ARF6 activation. Our in vivo data showed that HGF markedly ameliorated the pathological damages in kidneys of db/db mice, especially the sharp decline of podocyte number, which was mostly blocked by the ARF6 inhibitor SecinH3. Correspondingly, our in vitro data revealed that HGF protected against high glucose-induced podocyte injuries by increasing ARF6 activity. Besides, this ARF6-dependent beneficial effect of HGF on podocytes was accompanied by improved mitochondrial dynamics and declined DRP1 translocation from cytosol to mitochondria. Collectively, our findings confirm the ability of HGF maintaining mitochondrial homeostasis in diabetic podocytes via decreasing ARF6-dependent DRP1 translocation and shed light on the novel mechanism of HGF treatment for DN.
Collapse
Affiliation(s)
- Yankun Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuling Yang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fengxia Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
116
|
Nandan PK, Job AT, Ramasamy T. DRP1 Association in Inflammation and Metastasis: A Review. Curr Drug Targets 2024; 25:909-918. [PMID: 39248071 DOI: 10.2174/0113894501304751240819111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
In recent years, mitochondria have gained significant interest in the field of biomedical research due to their impact on aging, human health, and other advanced findings in metabolic functions. The latest finding shows that metabolic interventions are a leading cause of several diseases, which has sparked interest in finding new therapeutic treatments. Apart from this, the unique inheritance of genetic material from mother to offspring can help scientists find ways to prevent mitochondrial inherited diseases. Additionally, the anti-aging benefits of controlling mitochondrial functions are also being researched. The present study aims to provide a cohesive overview of the latest findings in mitochondrial research, focusing on the role of DRP1 (Dynamin- related protein 1), a member of the GTPase family, in mediating mitochondrial fission. The first section of this paper provides a concise explanation of how DRP1 controls processes such as mitophagy and mitochondrial fission. Subsequently, the paper delves into the topic of inflammation, discussing the current findings regarding the inflammatory response mediated by DRP1. Finally, the role of mitochondrial fission mediated by DRP1 in cancer is examined, reviewing ongoing research on various types of cancer and their recurrence. Moreover, this review also covers the epigenetic regulation of mitochondrial fission. The studies were selected, and evaluated, and the information was collected to present an overview of the key findings. By exploring various aspects of research and potential links, we hope to contribute to a deeper understanding of the intricate relationship between the fields of cancer research and inflammation studies with respect to mitochondrial- based research.
Collapse
Affiliation(s)
- Parmar Keshri Nandan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anica Tholath Job
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Tamizhselvi Ramasamy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
117
|
Hou Y, Hu J, Li J, Li H, Lu Y, Liu X. MFN2 regulates progesterone biosynthesis and proliferation of granulosa cells during follicle selection in hens. J Cell Physiol 2024; 239:51-66. [PMID: 37921053 DOI: 10.1002/jcp.31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Follicle selection in hens refers to a biological process that only one small yellow follicle (SYF) is selected daily or near-daily for following hierarchical development (from F5/F6 to F1) until ovulation. MFN2 is a kind of GTPases located on the mitochondrial outer membrane, which plays a crucial role in mitochondrial fusion. This study aimed to elucidate the role of MFN2 in proliferation and progesterone biosynthesis of granulosa cells (GCs) during follicle selection in hens. The results showed that GCs began to produce progesterone (P4) after follicle selection, accompanied with changes from multi-layer with flat cells to single layer with cubic cells. MFN2 was detected in GCs of follicles from SYF to F1. After follicle selection, the expression level of MFN2 in GCs upregulated significantly, accompanied with increases in P4 biosynthesis, ATP production, mitochondrial DNA (mtDNA) copy numbers of granulosa cells. FSH (80 ng/mL) facilitated the effects of P4 biosynthesis and secretion, ATP production, mtDNA copy numbers, cell proliferation and the MFN2 transcription of granulosa cells from F5 (F5G) in vitro. However, FSH treatment did not promote P4 secretion in granulosa cells from SYF (SYFG) in vitro. Meanwhile, we observed that change fold of MFN2 transcription, ATP production, mtDNA copy numbers and cell proliferation rate in F5G after treatment with FSH were greater than those in SYFG. Furthermore, expression levels of MFN2 protein and messenger RNA in F5G were significantly higher than those in SYFG after treatment with FSH. P4 biosynthesis, ATP production, mtDNA copy numbers as well as cell proliferation reduced significantly in F5G with MFN2 knockdown. Oppositely, P4 biosynthesis, ATP production, mtDNA copy numbers and cell proliferation increased significantly in SYFG after the overexpression of MFN2. Our results suggest that the upregulation of MFN2 may be involved in the initiation of P4 biosynthesis, and promotion of GCs proliferation during follicle selection.
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
118
|
Namwanje M, Mazumdar S, Stayton A, Patel PS, Watkins C, White C, Brown C, Eason JD, Mozhui K, Kuscu C, Pabla N, Stephenson EJ, Bajwa A. Exogenous mitochondrial transfer increases energy expenditure and attenuates adiposity gains in mice with diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573206. [PMID: 38187751 PMCID: PMC10769436 DOI: 10.1101/2023.12.23.573206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Obesity is associated with chronic multi-system bioenergetic stress that may be improved by increasing the number of healthy mitochondria available across organ systems. However, treatments capable of increasing mitochondrial content are generally limited to endurance exercise training paradigms, which are not always sustainable long-term, let alone feasible for many patients with obesity. Recent studies have shown that local transfer of exogenous mitochondria from healthy donor tissues can improve bioenergetic outcomes and alleviate the effects of tissue injury in recipients with organ specific disease. Thus, the aim of this project was to determine the feasibility of systemic mitochondrial transfer for improving energy balance regulation in the setting of diet-induced obesity. We found that transplantation of mitochondria from lean mice into mice with diet-induced obesity attenuated adiposity gains by increasing energy expenditure and promoting the mobilization and oxidation of lipids. Additionally, mice that received exogenous mitochondria demonstrated improved glucose uptake, greater insulin responsiveness, and complete reversal of hepatic steatosis. These changes were, in part, driven by adaptations occurring in white adipose tissue. Together, these findings are proof-of-principle that mitochondrial transplantation is an effective therapeutic strategy for limiting the deleterious metabolic effects of diet-induced obesity in mice.
Collapse
Affiliation(s)
- Maria Namwanje
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Soumi Mazumdar
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Amanda Stayton
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Prisha S. Patel
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Christine Watkins
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Catrina White
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Chester Brown
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - James D. Eason
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Cem Kuscu
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| | - Erin J. Stephenson
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, U.S.A
- Physical Therapy Program, College of Health Sciences, Midwestern University, Downers Grove, IL, U.S.A
- Physician Assistant Program, College of Health Sciences, Midwestern University, Downers Grove, IL, U.S.A
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, U.S.A
- College of Dental Medicine Illinois, Midwestern University, Downers Grove, IL, U.S.A
| | - Amandeep Bajwa
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| |
Collapse
|
119
|
Tang W, Yan C, He S, Du M, Cheng B, Deng B, Zhu S, Li Y, Wang Q. Neuron-targeted overexpression of caveolin-1 alleviates diabetes-associated cognitive dysfunction via regulating mitochondrial fission-mitophagy axis. Cell Commun Signal 2023; 21:357. [PMID: 38102662 PMCID: PMC10722701 DOI: 10.1186/s12964-023-01328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) induced diabetes-associated cognitive dysfunction (DACD) that seriously affects the self-management of T2DM patients, is currently one of the most severe T2DM-associated complications, but the mechanistic basis remains unclear. Mitochondria are highly dynamic organelles, whose function refers to a broad spectrum of features such as mitochondrial dynamics, mitophagy and so on. Mitochondrial abnormalities have emerged as key determinants for cognitive function, the relationship between DACD and mitochondria is not well understood. METHODS Here, we explored the underlying mechanism of mitochondrial dysfunction of T2DM mice and HT22 cells treated with high glucose/palmitic acid (HG/Pal) focusing on the mitochondrial fission-mitophagy axis with drug injection, western blotting, Immunofluorescence, and electron microscopy. We further explored the potential role of caveolin-1 (cav-1) in T2DM induced mitochondrial dysfunction and synaptic alteration through viral transduction. RESULTS As previously reported, T2DM condition significantly prompted hippocampal mitochondrial fission, whereas mitophagy was blocked rather than increasing, which was accompanied by dysfunctional mitochondria and impaired neuronal function. By contrast, Mdivi-1 (mitochondrial division inhibitor) and urolithin A (mitophagy activator) ameliorated mitochondrial and neuronal function and thereafter lead to cognitive improvement by inhibiting excessive mitochondrial fission and giving rise to mitophagy, respectively. We have previously shown that cav-1 can significantly improve DACD by inhibiting ferroptosis. Here, we further demonstrated that cav-1 could not only inhibit mitochondrial fission via the interaction with GSK3β to modulate Drp1 pathway, but also rescue mitophagy through interacting with AMPK to activate PINK1/Parkin and ULK1-dependent signlings. CONCLUSIONS Overall, our data for the first time point to a mitochondrial fission-mitophagy axis as a driver of neuronal dysfunction in a phenotype that was exaggerated by T2DM, and the protective role of cav-1 in DACD. Graphic Summary Illustration. In T2DM, excessive mitochondrial fission and impaired mitophagy conspire to an altered mitochondrial morphology and mitochondrial dysfunction, with a consequent neuronal damage, overall suggesting an unbalanced mitochondrial fission-mitophagy axis. Upon cav-1 overexpression, GSK3β and AMPK are phosphorylated respectively to activate Drp1 and mitophagy-related pathways (PINK1 and ULKI), ultimately inhibits mitochondrial fission and enhances mitophagy. In the meantime, the mitochondrial morphology and neuronal function are rescued, indicating the protective role of cav-1 on mitochondrial fission-mitophagy axis. Video Abstract.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Shan Zhu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
120
|
Rönn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, Volkov P, Schulze MB, Mulder H, Eliasson L, Ruhrmann S, Bacos K, Ling C. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun 2023; 14:8040. [PMID: 38086799 PMCID: PMC10716521 DOI: 10.1038/s41467-023-43719-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by β-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in β-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient β-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Hamilton
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Biology, University of Copenhagen, København, Denmark
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- HCEMM-Su, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sonia Garcia-Calzon
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Alexandros Karagiannopoulos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Hans Stenlund
- Swedish Metabolomics Centre, Umeå University, Umeå, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hindrik Mulder
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
121
|
Wang C, Dai X, Xing C, Zhang C, Cao H, Guo X, Liu P, Yang F, Zhuang Y, Hu G. Hexavalent-Chromium-Induced Disruption of Mitochondrial Dynamics and Apoptosis in the Liver via the AMPK-PGC-1α Pathway in Ducks. Int J Mol Sci 2023; 24:17241. [PMID: 38139070 PMCID: PMC10743743 DOI: 10.3390/ijms242417241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| |
Collapse
|
122
|
Li L, Jia Q, Wang X, Wang Y, Wu C, Cong J, Ling J. Chaihu Shugan San promotes gastric motility in rats with functional dyspepsia by regulating Drp-1-mediated ICC mitophagy. PHARMACEUTICAL BIOLOGY 2023; 61:249-258. [PMID: 36655341 PMCID: PMC9858526 DOI: 10.1080/13880209.2023.2166966] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Chaihu Shugan San (CHSGS) was effective in the treatment of functional dyspepsia (FD). OBJECTIVE To investigate the mechanism of CHSGS in FD through dynamin-related protein 1 (Drp-1)-mediated interstitial cells of cajal (ICC) mitophagy. MATERIALS AND METHODS Forty Sprague-Dawley (SD) rats were randomly divided into control, model, mdivi-1, mdivi-1 + CHSGS and CHSGS groups. Tail-clamping stimulation was used to establish the FD model. Mdivi-1 + CHSGS and CHSGS groups were given CHSGS aqueous solution (4.8 g/kg) by gavage twice a day. Mdivi-1 (25 mg/kg) was injected intraperitoneally once every other week for 4 w. Mitochondrial damage was observed by corresponding kits and related protein expressions were assessed by Immunofluorescence and (or) Western Blot. RESULTS Compared with the mean value of the control group, superoxide dismutase (SOD) and citrate synthase (CS) in the model group were decreased by 11% and 35%; malondialdehyde (MDA) and reactive oxygen species (ROS) were increased by 1.2- and 2.8-times; ckit fluorescence and protein expressions were decreased by 85% and 51%, co-localization expression of LC3 and voltage dependent anion channel 1 (VDAC1), Drp-1 and translocase of the outer mitochondrial membrane 20 (Tom20) were increased by 10.1- and 5.4-times; protein expressions of Drp-1, Beclin-1, and LC3 were increased by 0.5-, 1.4-, and 2.5-times whereas p62 was decreased by 43%. After mdivi-1 and (or) CHSGS intervention, the above situation has been improved. DISCUSSION AND CONCLUSION CHSGS could improve mitochondrial damage and promote gastric motility in FD rats by regulating Drp-1-mediated ICC mitophagy.
Collapse
Affiliation(s)
- Li Li
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qingling Jia
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangxiang Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yujiao Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chenheng Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun Cong
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianghong Ling
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- CONTACT Jianghong Ling Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai200021, People’s Republic of China
| |
Collapse
|
123
|
Tian J, Fan J, Zhang T. Mitochondria as a target for exercise-mitigated type 2 diabetes. J Mol Histol 2023; 54:543-557. [PMID: 37874501 DOI: 10.1007/s10735-023-10158-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Jingjing Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China.
| |
Collapse
|
124
|
Girigoswami K, Pallavi P, Girigoswami A. Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum. Drug Deliv 2023; 30:2284684. [PMID: 37990530 PMCID: PMC10987057 DOI: 10.1080/10717544.2023.2284684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023] Open
Abstract
It is evident that site-specific systemic drug delivery can reduce side effects, systemic toxicity, and minimal dosage requirements predominantly by delivering drugs to particular pathological sites, cells, and even subcellular structures. The endoplasmic reticulum (ER) and associated cell organelles play a vital role in several essential cellular functions and activities, such as the synthesis of lipids, steroids, membrane-associated proteins along with intracellular transport, signaling of Ca2+, and specific response to stress. Therefore, the dysfunction of ER is correlated with numerous diseases where cancer, neurodegenerative disorders, diabetes mellitus, hepatic disorder, etc., are very common. To achieve satisfactory therapeutic results in certain diseases, it is essential to engineer delivery systems that can effectively enter the cells and target ER. Nanoparticles are highly biocompatible, contain a variety of cargos or payloads, and can be modified in a pliable manner to achieve therapeutic effectiveness at the subcellular level when delivered to specific organelles. Passive targeting drug delivery vehicles, or active targeting drug delivery systems, reduce the nonselective accumulation of drugs while reducing side effects by modifying them with small molecular compounds, antibodies, polypeptides, or isolated bio-membranes. The targeting of ER and closely associated organelles in cells using nanoparticles, however, is still unsymmetrically understood. Therefore, here we summarized the pathophysiological prospect of ER stress, involvement of ER and mitochondrial response, disease related to ER dysfunctions, essential therapeutics, and nanoenabled modulation of their delivery to optimize therapy.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN, India
| |
Collapse
|
125
|
Qin T, Hu S, de Vos P. A composite capsule strategy to support longevity of microencapsulated pancreatic β cells. BIOMATERIALS ADVANCES 2023; 155:213678. [PMID: 37944447 DOI: 10.1016/j.bioadv.2023.213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic islet microencapsulation allows transplantation of insulin producing cells in absence of systemic immunosuppression, but graft survival is still limited. In vivo studies have demonstrated that many islet-cells die in the immediate period after transplantation. Here we test whether intracapsular inclusion of ECM components (collagen IV and RGD) with necrostatin-1 (Nec-1), as well as amino acids (AA) have protective effects on islet survival. Also, the inclusion of pectin was tested as it enhances the mitochondrial health of β-cells. To enhance the longevity of encapsulated islets, we studied the impact of the incorporation of the mentioned components into the alginate-based microcapsules in vitro. The efficacy of the different composite microcapsules on MIN6 β-cell or human islet-cell survival and function, as well as suppression of DAMP-induced immune activation, were determined. Finally, we examined the mitochondrial dynamic genes. This was done in the absence and presence of a cytokine cocktail. Here, we found that composite microcapsules of APENAA improved insulin secretion and enhanced the mitochondrial activity of β-cells. Under cytokine exposure, they prevented the cytokine-induced decrease of mitochondrial activity as well as viability till day 5. The rescuing effects of the composite capsules were accompanied by alleviated mitochondrial dynamic gene expression. The composite capsule strategy of APENAA might support the longevity of microencapsulated β-cells by lowering susceptibility to inflammatory stress. Our data demonstrate that combining strategies to support β-cells by changing the intracapsular microenvironment might be an effective way to preserve islet graft longevity in the immediate period after transplantation.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands.
| | - Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands; Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
126
|
Wang P, Wei R, Cui X, Jiang Z, Yang J, Zu L, Hong T. Fatty acid β-oxidation and mitochondrial fusion are involved in cardiac microvascular endothelial cell protection induced by glucagon receptor antagonism in diabetic mice. J Diabetes 2023; 15:1081-1094. [PMID: 37596940 PMCID: PMC10755618 DOI: 10.1111/1753-0407.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β-oxidation and mitochondrial fusion in CMECs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Rui Wei
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Zongzhe Jiang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jin Yang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
127
|
Hu M, Jiang W, Ye C, Hu T, Yu Q, Meng M, Sun L, Liang J, Chen Y. Honokiol attenuates high glucose-induced peripheral neuropathy via inhibiting ferroptosis and activating AMPK/SIRT1/PGC-1α pathway in Schwann cells. Phytother Res 2023; 37:5787-5802. [PMID: 37580045 DOI: 10.1002/ptr.7984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Schwann cells injury induced by high glucose (HG) contributes to the development of diabetic peripheral neuropathy (DPN). Honokiol has been reported to regulate glucose metabolism, however, its effect on DPN and the precise molecular mechanisms remain unclear. This study aimed to investigate the role of AMPK/SIRT1/PGC-1α axis in the protective effects of honokiol on DPN. The biochemical assay and JC-1 staining results demonstrated that honokiol reduced HG-induced oxidative stress and ferroptosis as well as mitochondrial dysfunction in Schwann cells. RT-qPCR and western blotting were utilized to investigate the mechanism of action of honokiol, and the results showed that HG-induced inhibition of AMPK/SIRT1/PGC-1α axis and changes of downstream gene expression profile were restored by honokiol. Moreover, silencing of Sirt1 by siRNA delivery markedly diminished the changes of gene expression profile induced by honokiol in HG-induced Schwann cells. More importantly, we found that administration of honokiol remarkably attenuated DPN via improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity in streptozotocin-induced diabetic rats. Collectively, these results demonstrate that honokiol can attenuate HG-induced Schwann cells injury and peripheral nerve dysfunction, suggesting a novel potential strategy for treatment of DPN.
Collapse
Affiliation(s)
- Man Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wen Jiang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chen Ye
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ting Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qingqing Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Moran Meng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lijuan Sun
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jichao Liang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
128
|
Wang Y, Dai X, Li H, Jiang H, Zhou J, Zhang S, Guo J, Shen L, Yang H, Lin J, Yan H. The role of mitochondrial dynamics in disease. MedComm (Beijing) 2023; 4:e462. [PMID: 38156294 PMCID: PMC10753647 DOI: 10.1002/mco2.462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Xinyan Dai
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Hui Li
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huiling Jiang
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Junfu Zhou
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Shiying Zhang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jiacheng Guo
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Lidu Shen
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huantao Yang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jie Lin
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Hengxiu Yan
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
129
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
130
|
Chang W, Li W, Li P. The anti-diabetic effects of metformin are mediated by regulating long non-coding RNA. Front Pharmacol 2023; 14:1256705. [PMID: 38053839 PMCID: PMC10694297 DOI: 10.3389/fphar.2023.1256705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with complex etiology and mechanisms. Long non-coding ribonucleic acid (LncRNA) is a novel class of functional long RNA molecules that regulate multiple biological functions through various mechanisms. Studies in the past decade have shown that lncRNAs may play an important role in regulating insulin resistance and the progression of T2D. As a widely used biguanide drug, metformin has been used for glucose lowering effects in clinical practice for more than 60 years. For diabetic therapy, metformin reduces glucose absorption from the intestines, lowers hepatic gluconeogenesis, reduces inflammation, and improves insulin sensitivity. However, despite being widely used as the first-line oral antidiabetic drug, its mechanism of action remains largely elusive. Currently, an increasing number of studies have demonstrated that the anti-diabetic effects of metformin were mediated by the regulation of lncRNAs. Metformin-regulated lncRNAs have been shown to participate in the inhibition of gluconeogenesis, regulation of lipid metabolism, and be anti-inflammatory. Thus, this review focuses on the mechanisms of action of metformin in regulating lncRNAs in diabetes, including pathways altered by metformin via targeting lncRNAs, and the potential targets of metformin through modulation of lncRNAs. Knowledge of the mechanisms of lncRNA modulation by metformin in diabetes will aid the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
131
|
Spezani R, Marcondes-de-Castro IA, Marinho TS, Reis-Barbosa PH, Cardoso LEM, Aguila MB, Mandarim-de-Lacerda CA. Cotadutide improves brown adipose tissue thermogenesis in obese mice. Biochem Pharmacol 2023; 217:115852. [PMID: 37832793 DOI: 10.1016/j.bcp.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
We studied the effect of cotadutide, a dual agonist glucagon-like peptide 1 (GLP1)/Glucagon, on interscapular brown adipose tissue (iBAT) remodeling and thermogenesis of obese mice. Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Then, animals were redivided, adding cotadutide treatment: C, CC, HF, and HFC for four additional weeks. The multilocular brown adipocyte structure showed fat conversion (whitening), hypertrophy, and structural disarray in the HF group, which was reverted in cotadutide-treated animals. Cotadutide enhances the body temperature, thermogenesis, and sympathetic innervation (peroxisome proliferator-activated receptor-α, β3 adrenergic receptor, interleukin 6, and uncoupled protein 1), reduces pro-inflammatory markers (disintegrin and metallopeptidase domain, morphogenetic protein 8a, and neuregulin 4), and improves angiogenesis (vascular endothelial growth factor A, and perlecan). In addition, cotadutide enhances lipolysis (perilipin and cell death-inducing DNA fragmentation factor α), mitochondrial biogenesis (nuclear respiratory factor 1, transcription factor A mitochondrial, mitochondrial dynamin-like GTPase, and peroxisome proliferator-activated receptor gamma coactivator 1α), and mitochondrial fusion/fission (dynamin-related protein 1, mitochondrial fission protein 1, and parkin RBR E3 ubiquitin protein ligase). Cotadutide reduces endoplasmic reticulum stress (activating transcription factor 4, C/EBP homologous protein, and growth arrest and DNA-damage inducible), and extracellular matrix markers (lysyl oxidase, collagen type I α1, collagen type VI α3, matrix metallopeptidases 2 and 9, and hyaluronan synthases 1 and 2). In conclusion, the experimental evidence is compelling in demonstrating cotadutide's thermogenic effect on obese mice's iBAT, contributing to unraveling its action mechanisms and the possible translational benefits.
Collapse
Affiliation(s)
- Renata Spezani
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ilitch A Marcondes-de-Castro
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany S Marinho
- Metabolism Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H Reis-Barbosa
- Metabolism Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E M Cardoso
- Extracellular Matrix Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Nutrition Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-de-Lacerda
- Pharmacology Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Nutrition Section, Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
132
|
Khan H, Verma Y, Rana SVS. Combined Effects of Fluoride and Arsenic on Mitochondrial Function in the Liver of Rat. Appl Biochem Biotechnol 2023; 195:6856-6866. [PMID: 36947368 DOI: 10.1007/s12010-023-04401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Biochemical and/or molecular mechanisms of arsenic or fluoride toxicity in experimental animals have been widely investigated in the recent past. However, their combined effects on target cells/organelle are poorly understood. The present study was executed to delineate their combined effects on mitochondrial function in the liver of rat. Female Wistar rats (140 ± 20 g) were force fed individually or in combination with sodium arsenate (4 mg/kg body weight) and sodium fluoride (4 mg/kg body weight) for 90 days. Thereafter, established markers of mitochondrial function viz. mitochondrial lipid peroxidation, oxidative phosphorylation, ATPase, succinic dehydrogenase, and caspase-3 activity were determined. Cytochrome C release and oxidative DNA damage were also estimated in the liver of respective groups of rats. The study showed significant differences in these results amongst the three groups. Observations on parameters viz. LPO, cytochrome-C, caspase-3, and 8-OHdG suggested an antagonistic relationship between these two elements. Results on ATPase, SDH, and ADP:O ratio indicated synergism. It is concluded that AsIII + F in combination may express differential effects on signalling pathways and proapoptotic/antiapoptotic proteins/genes that contribute to liver cell death. Interaction of As and F with mitochondria.
Collapse
Affiliation(s)
- Huma Khan
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - S V S Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India.
| |
Collapse
|
133
|
Deng X, Xu H, Pan C, Hao X, Liu J, Shang X, Chi R, Hou W, Xu T. Moderate mechanical strain and exercise reduce inflammation and excessive autophagy in osteoarthritis by downregulating mitofusin 2. Life Sci 2023; 332:122020. [PMID: 37579836 DOI: 10.1016/j.lfs.2023.122020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
AIMS The major pathological mechanisms of osteoarthritis (OA) progression include inflammation, autophagy, and apoptosis, etc. Moderate mechanical strain and exercise effectively improve chondrocyte degeneration by reducing these adverse factors. Mitofusin 2 (MFN2) is a crucial regulatory factor associated with inflammation, autophagy and apoptosis, and its expression is regulated by exercise. This study aims to elucidate the effects of moderate mechanical strain and exercise on MFN2 expression and its influence on OA progression. MAIN METHODS Destabilization of the medial meniscus (DMM) surgery was performed on rats to induce an OA rat model. Subsequently, adeno-associated virus (overexpression/knockdown) intra-articular injection or moderate treadmill exercise was administered to evaluate the effects of these treatments on MFN2 expression and OA progression. Overexpressed plasmids and siRNA vectors were used to regulate MFN2 expression in chondrocytes. An inflammatory degeneration cell model was generated by IL-1β stimulation. Moderate mechanical strain was applied to MFN2-overexpressing cells to explore their interactions. KEY FINDINGS MFN2 overexpression aggravated inflammation by activating the NF-κB and P38 pathways and induced excessive autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby causing chondrocyte apoptosis and metabolic disorder. Moderate mechanical strain partially reversed these adverse effects. In the DMM rat model, MFN2 overexpression in articular cartilage exacerbated OA progression, whereas MFN2 knockdown and treadmill exercise alleviated cartilage degeneration, inflammation, and mechanical pain. SIGNIFICANCE MFN2 is a critical factor mediating the association between inflammation and excessive autophagy in OA progression. Moderate mechanical strain and treadmill exercise may improve OA through downregulating MFN2 expression. This study may provide a theoretical basis for exercise therapy in OA treatment.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
134
|
Liu M, Lu J, Chen Y, Zhang S, Guo J, Guan S. Sodium Sulfite-Triggered Hepatocyte Ferroptosis via mtROS/Lysosomal Membrane Permeabilization-Mediated Lysosome Iron Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16310-16322. [PMID: 37871339 DOI: 10.1021/acs.jafc.3c06085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sodium sulfite is a widely used preservative in the food industry. Ferroptosis has been a newly discovered form of iron-dependent oxidative cell death in recent years. However, the potential connection between sodium sulfite and ferroptosis has not been explored. In our study, we observed the abnormal expression of ferroptosis marker protein in vivo, suggesting that sodium sulfite caused ferroptosis in vivo. Next, our study revealed that sodium sulfite caused the overproduction of mitochondrial reactive oxygen species (mtROS) in the AML-12 cells. It is well established that reactive oxygen species (ROS) can induce lysosomal membrane permeabilization. After lysosomal membrane permeabilization occurs, the outflow of Fe2+ in lysosomes triggers the Fenton reaction and subsequently results in the increase of intracellular ROS level, which is closely related to ferroptosis. As speculated, acridine orange (AO) staining and LysoTracker red staining showed that sodium sulfite-induced lysosomal membrane permeabilization could be alleviated by mtROS scavenger TEMPO. In addition, TEMPO, lysosomal stabilizer mannose, and lysosomal iron chelator deferoxamine (DFO) inhibited sodium sulfite-induced ferroptosis. Overall, the results showed that sodium sulfite induced lysosomal iron efflux through the mtROS-lysosomal membrane permeabilization pathway and eventually led to ferroptosis. Our study might provide a new mechanism for the hepatotoxicity of sodium sulfite and a theoretical basis for the risk assessment of sodium sulfite as a food additive.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shengzhuo Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jiakang Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
135
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
136
|
Shah W, Zhao Q, Wang S, Zhang M, Ma H, Guan Y, Zhang Y, Liu Y, Zhu C, Wang S, Zhang X, Dong J, Ma H. Polydatin improves vascular endothelial function by maintaining mitochondrial homeostasis under high glucose conditions. Sci Rep 2023; 13:16550. [PMID: 37783713 PMCID: PMC10545827 DOI: 10.1038/s41598-023-43786-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Previous studies have shown that polydatin (Poly) confer cardioprotective effects. However, its underlying mechanisms remain elusive. This study showed that Poly (10 µM) treatment reversed the high glucose (HG)-induced decrease in acetylcholine-elicited vasodilation in aortas. Poly also improved the acetylcholine-induced vasodilation of aortic vessels isolated from diabetic rats. Meanwhile, Poly ameliorated the morphological damage of the thoracic aorta and improved the viability of HUVECs under HG conditions. Furthermore, analysis of the vasoprotective effect of Poly under HG conditions by transmission electron microscopy, Western blotting, and qPCR revealed that Poly improved endothelial pyroptosis through the NLRP3/Caspase/1-IL-1β pathway, enhanced dynamin-related protein 1-mediated mitochondrial fission, and increased the mitochondrial membrane potential under HG conditions. In conclusion, Poly restored acetylcholine-induced vasodilation impaired by HG incubation, which was associated with reduced oxidation, inflammation, and pyroptosis, the recovery of the mitochondrial membrane potential and maintenance of mitochondrial dynamic homeostasis of endothelial cells in the aortas.
Collapse
Affiliation(s)
- Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Miaomiao Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, Hebei, China
| | - Chunhua Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China.
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
137
|
Guo Y, Jiang H, Wang M, Ma Y, Zhang J, Jing L. Metformin alleviates cerebral ischemia/reperfusion injury aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin pathway-mediated mitophagy and apoptosis. Chem Biol Interact 2023; 384:110723. [PMID: 37741536 DOI: 10.1016/j.cbi.2023.110723] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Stroke remains the main leading cause of death and disabilities worldwide, with diabetes mellitus being a significant independent risk factor for it. Metformin, as an efficient hypoglycemic drug in treating type 2 diabetes, has been reported to alleviate the risk of diabetes-related stroke. However, its underlying mechanisms remain unclear. This study aimed to investigate the role of mitophagy and its regulatory pathway in the neuroprotective mechanism of metformin against cerebral ischemia/reperfusion (I/R) injury aggravated by hyperglycemia. A hyperglycemic cerebral I/R animal model and a high glucose cultured oxygen-glucose deprivation/reperfusion (OGD/R) cell model were used in the experiment. The indexes of brain injury, cell activity, mitochondrial morphology and function, mitophagy, mitochondrial pathway apoptosis and the AMPK pathway were observed. In diabetic rats, metformin treatment decreased cerebral infarction volume and neuronal apoptosis, and improved neurological symptoms following I/R injury. Additionally, metformin induced activation of the AMPK/ULK1/PINK1/Parkin mitophagy pathway to have neuroprotective effects. In vitro, high glucose culture and OGD/R treatment impaired mitochondrial morphology and function, mitochondrial membrane potential, and induced apoptosis. However, metformin activated AMPK/ULK1/PINK1/Parkin mitophagy pathway, normalized mitochondrial injury. This protection was reversed by autophagy inhibitor 3-methyladenine (3MA) and AMPK inhibitor compound C. In conclusion, our present study validates the potential mechanism of metformin in alleviating hyperglycemia aggravated cerebral I/R injury by the activation of AMPK/ULK1/PINK1/Parkin mitophagy pathway.
Collapse
Affiliation(s)
- Yaqi Guo
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Meng Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanmei Ma
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianzhong Zhang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Li Jing
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
138
|
Zhang RH, Cao SS, Shi Y, Wang X, Shi LL, Zhang YH, Han CJ, Wang B, Feng L, Liu JP. Astragaloside IV-mediated inhibition of oxidative stress by upregulation of ghrelin in type 2 diabetes-induced cognitive impairment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2637-2650. [PMID: 37097336 DOI: 10.1007/s00210-023-02486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
This study is to observe the upregulation effect of astragaloside IV on ghrelin in diabetic cognitive impairment (DCI) rats and to investigate the pathway in prevention and treatment by reducing oxidative stress. The DCI model was induced with streptozotocin (STZ) in conjunction with a high-fat and high-sugar diet and divided into three groups: model, low-dose (40 mg/kg), and high-dose (80 mg/kg) astragaloside IV. After 30 days of gavage, the learning and memory abilities of rats, as well as their body weight and blood glucose levels, were tested using the Morris water maze and then detection of insulin resistance, SOD activity, and serum MDA levels. The whole brain of rats was sampled for hematoxylin-eosin and Nissl staining to observe pathological changes in the hippocampal CA1 region. Immunohistochemistry was used to detect ghrelin expression in the hippocampal CA1 region. A Western blot was used to determine changes in GHS-R1α/AMPK/PGC-1α/UCP2. RT-qPCR was used to determine the levels of ghrelin mRNA. Astragaloside IV reduced nerve damage, increased superoxide dismutase (SOD) activity, decreased MDA levels, and improved insulin resistance. Ghrelin levels and expression increased in serum and hippocampal tissues, and ghrelin mRNA levels increased in rat stomach tissues. According to Western blot, it increased the expression of the ghrelin receptor GHS-R1α and upregulated the mitochondrial function associated-protein AMPK-PGC-1α-UCP2. Astragaloside IV increases ghrelin expression in the brain to reduce oxidative stress and delay diabetes-induced cognitive impairment. It may be related to the promotion of ghrelin mRNA levels.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Shan-Shan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yong Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Lei-Lei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yu-Han Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Chao-Jun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Liang Feng
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, China Pharmaceutical University, 639# Longmian Road, Jiangsu, Nanjing, 210009, People's Republic of China.
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China.
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China.
| |
Collapse
|
139
|
Hallan SI, Øvrehus MA, Darshi M, Montemayor D, Langlo KA, Bruheim P, Sharma K. Metabolic Differences in Diabetic Kidney Disease Patients with Normoalbuminuria versus Moderately Increased Albuminuria. KIDNEY360 2023; 4:1407-1418. [PMID: 37612821 PMCID: PMC10615383 DOI: 10.34067/kid.0000000000000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Key Points The pathophysiological mechanisms of diabetic kidney disease (DKD) with normal (nonalbuminuric DKD) versus moderately increased albuminuria (A-DKD) are not well-understood. Fatty acid biosynthesis and oxydation, gluconeogenesis, TCA cycle, and glucose-alanine cycle were more disturbed in patients with A-DKD compared with those with nonalbuminuric DKD with identical eGFR. DKD patients with and without microalbuminuria could represent different clinical phenotypes. Background The pathophysiological mechanisms of diabetic kidney disease (DKD) with normal versus moderately increased albuminuria (nonalbuminuric DKD [NA-DKD] and A-DKD) are currently not well-understood and could have implications for diagnosis and treatment. Methods Fourteen patients with NA-DKD with urine albumin–creatinine ratio <3 mg/mmol, 26 patients with A-DKD with albumin–creatinine ratio 3–29 mg/mmol, and 60 age- and sex-matched healthy controls were randomly chosen from a population-based cohort study (Nord-Trøndelag Health Study-3, Norway). Seventy-four organic acids, 21 amino acids, 21 biogenic acids, 40 acylcarnitines, 14 sphingomyelins, and 88 phosphatidylcholines were quantified in urine. One hundred forty-six patients with diabetes from the US-based Chronic Renal Insufficiency Cohort study were used to verify main findings. Results Patients with NA-DKD and A-DKD had similar age, kidney function, diabetes treatment, and other traditional risk factors. Still, partial least-squares discriminant analysis showed strong metabolite-based separation (R2, 0.82; Q2, 0.52), with patients with NA-DKD having a metabolic profile positioned between the profiles of healthy controls and patients with A-DKD. Seventy-five metabolites contributed significantly to separation between NA-DKD and A-DKD (variable importance in projection scores ≥1.0) with propionylcarnitine (C3), phosphatidylcholine C38:4, medium-chained (C8) fatty acid octenedioic acid, and lactic acid as the top metabolites (variable importance in projection scores, 2.7–2.2). Compared with patients with NA-DKD, those with A-DKD had higher levels of short-chained acylcarnitines, higher long-chained fatty acid levels with more double bounds, higher branched-chain amino acid levels, and lower TCA cycle intermediates. The main findings were similar by random forest analysis and in the Chronic Renal Insufficiency Cohort study. Formal enrichment analysis indicated that fatty acid biosynthesis and oxydation, gluconeogenesis, TCA cycle, and glucose-alanine cycle were more disturbed in patients with A-DKD compared with those with NA-DKD with identical eGFR. We also found indications of a Warburg-like effect in patients with A-DKD (i.e. , metabolism of glucose to lactate despite adequate oxygen). Conclusion DKD patients with normoalbuminuria differ substantially in their metabolic disturbances compared with patients with moderately increase albuminuria and could represent different clinical phenotypes.
Collapse
Affiliation(s)
- Stein I Hallan
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav Hospital, Trondheim, Norway
| | | | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Daniel Montemayor
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Knut A Langlo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav Hospital, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Nephrology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
140
|
Kabra UD, Jastroch M. Mitochondrial Dynamics and Insulin Secretion. Int J Mol Sci 2023; 24:13782. [PMID: 37762083 PMCID: PMC10530730 DOI: 10.3390/ijms241813782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are involved in the regulation of cellular energy metabolism, calcium homeostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial dynamics lead to dysfunctional mitochondria, which contribute to the development and progression of numerous diseases, including Type 2 Diabetes (T2D). Compelling evidence has been put forward that mitochondrial dynamics play a significant role in the metabolism-secretion coupling of pancreatic β cells. The disruption of mitochondrial dynamics is linked to defects in energy production and increased apoptosis, ultimately impairing insulin secretion and β cell death. This review provides an overview of molecular mechanisms controlling mitochondrial dynamics, their dysfunction in pancreatic β cells, and pharmaceutical agents targeting mitochondrial dynamic proteins, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110, and 15-oxospiramilactone (S3).
Collapse
Affiliation(s)
- Uma D. Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara 391760, India;
| | - Martin Jastroch
- The Arrhenius Laboratories F3, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
141
|
Guzmán-Flores JM, Pérez-Vázquez V, Martínez-Esquivias F, Isiordia-Espinoza MA, Viveros-Paredes JM. Molecular Docking Integrated with Network Pharmacology Explores the Therapeutic Mechanism of Cannabis sativa against Type 2 Diabetes. Curr Issues Mol Biol 2023; 45:7228-7241. [PMID: 37754241 PMCID: PMC10529732 DOI: 10.3390/cimb45090457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The incidence of type 2 diabetes (T2D) is rising, and finding new treatments is important. C. sativa is a plant suggested as a potential treatment for T2D, but how it works needs to be clarified. This study explored the pharmacological mechanism of C. sativa in treating T2D. We identified the active compounds in C. sativa and their targets. From there, we examined the genes associated with T2D and found overlapping genes. We conducted an enrichment analysis and created a protein-protein and target-compound interactions network. We confirmed the binding activities of the hub proteins and compounds with molecular docking. We identified thirteen active compounds from C. sativa, which have 150 therapeutic targets in T2D. The enrichment analysis showed that these proteins are involved in the hormone, lipid, and stress responses. They bind transcription factors and metals and participate in the insulin, PI3K/Akt, HIF-1, and FoxO signaling pathways. We found four hub proteins (EGFR, ESR1, HSP90AA1, and SRC) that bind to the thirteen bioactive compounds. This was verified using molecular docking. Our findings suggest that C. sativa's antidiabetic action is carried out through the insulin signaling pathway, with the participation of HIF-1 and FoxO.
Collapse
Affiliation(s)
- Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos C.P. 47620, Jalisco, Mexico;
| | - Victoriano Pérez-Vázquez
- Department of Medical Sciences, University of Guanajuato, Campus León, León C.P. 37220, Guanajuato, Mexico;
| | - Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos C.P. 47620, Jalisco, Mexico;
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlan de Morelos C.P. 47620, Jalisco, Mexico;
| | - Juan Manuel Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara C.P. 44430, Jalisco, Mexico;
| |
Collapse
|
142
|
Turkyilmaz A, Lee Y, Lee M. Fermented extract of mealworm (Tenebrio molitor larvae) as a dietary protein source modulates hepatic proteomic profiles in C57BLKS/J-db/db mice. JOURNAL OF INSECTS AS FOOD AND FEED 2023; 9:1199-1210. [DOI: 10.3920/jiff2022.0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
This study hypothesised that fermented mealworm extract (TMP) with higher amino acid contents than nonfermented extract can be used as a dietary protein source for type 2 diabetes mellitus, and compared its effects with casein (CA) using C57BLKS/J-db/db mice. TMP marginally lowered serum insulin and leptin levels and hepatic triglyceride, and lipid droplets compared with CA group. Proteomic analysis showed that 14 proteins (H4C1, CYB5A, ANXA5, RGN, 40S ribosomal protein, Atp2, PDI, GRP78, RDX, GCH1, LDHA, GNMT, ACAA2, and UROC1) were up-regulated and 8 proteins (UQCRC1, Txndc5, SBP2, HSPA8, PHB, TF, PC, and PK) were down-regulated in the CA group compared to the normal mice. However, TMP significantly down-regulated ANXA5, RGN, Atp2, PDI, RDX, LDHA, ACAA2, and UROC1, and up-regulated UQCRC1, PHB, TF, and PK. These proteins are related to glycolysis, lactate production, fatty acid β-oxidation, oxidative stress, and endoplasmic reticulum stress. These results suggest that TMP is a potential protein source that can replace CA in type 2 diabetes.
Collapse
Affiliation(s)
- A. Turkyilmaz
- .Department of Food and Nutrition, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Y. Lee
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - M.K. Lee
- .Department of Food and Nutrition, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| |
Collapse
|
143
|
Lao A, Wu J, Li D, Shen A, Li Y, Zhuang Y, Lin K, Wu J, Liu J. Functionalized Metal-Organic Framework-Modified Hydrogel That Breaks the Vicious Cycle of Inflammation and ROS for Repairing of Diabetic Bone Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206919. [PMID: 37183293 DOI: 10.1002/smll.202206919] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/24/2023] [Indexed: 05/16/2023]
Abstract
The regeneration of diabetic bone defects remains challenging. Hyperglycemia causes inflammation state and excessive reactive oxygen species (ROS) during bone regeneration period. These two effects reinforce one another and create an endless loop that is also accompanied by mitochondrial dysfunction. However, there is still no effective and inclusive method targeting at the two aspects and breaking the vicious cycle. Herein, nanoparticles-Met@ZIF-8(metformin loaded zeolitic imidazolate frameworks) modified hydrogel that is capable of releasing metformin and Zn elements are constructed. This hydrogel treats hyperglycemia while also controlling mitochondrial function, reducing inflammation, and restoring homeostasis. In addition, the synergetic effect from metformin and Zn ions inhibits ROS-inflammation cascade generation and destroys the continuous progress by taking effects in both ROS and inflammation and further keeping organelles' homeostasis. Furthermore, with the recovery of mitochondria and breakdown of the ROS-inflammation cascade cycle, osteogenesis under a diabetic microenvironment is enhanced in vivo and in vitro. In conclusion, the study provides critical insight into the biological mechanism and potential therapy for diabetic bone regeneration.
Collapse
Affiliation(s)
- An Lao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
- Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Dejian Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China
| | - Aili Shen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Yaxin Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| | - Jianyong Wu
- Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiaqiang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200120, China
| |
Collapse
|
144
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
145
|
Wang S, Zhao H, Lin S, Lv Y, Lin Y, Liu Y, Peng R, Jin H. New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Front Endocrinol (Lausanne) 2023; 14:1230168. [PMID: 37670891 PMCID: PMC10475949 DOI: 10.3389/fendo.2023.1230168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
As important organelles of energetic and metabolism, changes in the dynamic state of mitochondria affect the homeostasis of cellular metabolism. Mitochondrial dynamics include mitochondrial fusion and mitochondrial fission. The former is coordinated by mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1), and the latter is mediated by dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1) and mitochondrial fission factor (MFF). Mitochondrial fusion and fission are generally in dynamic balance and this balance is important to preserve the proper mitochondrial morphology, function and distribution. Diabetic conditions lead to disturbances in mitochondrial dynamics, which in return causes a series of abnormalities in metabolism, including decreased bioenergy production, excessive production of reactive oxygen species (ROS), defective mitophagy and apoptosis, which are ultimately closely linked to multiple chronic complications of diabetes. Multiple researches have shown that the incidence of diabetic complications is connected with increased mitochondrial fission, for example, there is an excessive mitochondrial fission and impaired mitochondrial fusion in diabetic cardiomyocytes, and that the development of cardiac dysfunction induced by diabetes can be attenuated by inhibiting mitochondrial fission. Therefore, targeting the restoration of mitochondrial dynamics would be a promising therapeutic target within type II diabetes (T2D) and its complications. The molecular approaches to mitochondrial dynamics, their impairment in the context of T2D and its complications, and pharmacological approaches targeting mitochondrial dynamics are discussed in this review and promise benefits for the therapy of T2D and its comorbidities.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Suxian Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yang Lv
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
146
|
Tong W, Leng L, Wang Y, Guo J, Owusu FB, Zhang Y, Wang F, Li R, Li Y, Chang Y, Wang Y, Wang Q. Buyang huanwu decoction inhibits diabetes-accelerated atherosclerosis via reduction of AMPK-Drp1-mitochondrial fission axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116432. [PMID: 37003404 DOI: 10.1016/j.jep.2023.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese drugs, including Buyang Huanwu decoction (BYHWD), have been used in traditional practice to manage cardiovascular and cerebrovascular diseases. However, the effect and mechanisms by which this decoction alleviates diabetes-accelerated atherosclerosis are unknown and require exploration. AIM OF THE STUDY This study aims to investigate the pharmacological effects of BYHWD on preventing diabetes-accelerated atherosclerosis, and elucidate its underlying mechanism. MATERIALS AND METHODS Streptozotocin (STZ)-induced diabetic ApoE-/- mice were treated with BYHWD. Atherosclerotic aortic lesions, endothelial function, mitochondrial morphology, and mitochondrial dynamics-related proteins were evaluated in isolated aortas. High glucose-exposed human umbilical endothelial cells (HUVECs) were treated with BYHWD and its components. AMPK siRNA transfection, Drp1 molecular docking, Drp1 enzyme activity measurement, and so on were used to explore and verify the mechanism. RESULT BYHWD treatment inhibited the worsening of diabetes-accelerated atherosclerosis by lessening atherosclerotic lesions in diabetic ApoE-/- mice, by impeding endothelial dysfunction under diabetic conditions, and by inhibiting mitochondrial fragmentation by lowering protein expression levels of Drp1 and mitochondrial fission-1 protein (Fis1) in diabetic aortic endothelium. In high glucose-exposed HUVECs, BYHWD treatment also downgraded reactive oxygen species, promoted nitric oxide levels, and abated mitochondrial fission by reducing protein expression levels of Drp1 and fis1, but not mitofusin-1 and optic atrophy-1. Interestingly, we found that BYHWD's protective effect against mitochondrial fission is mediated by AMPK activation-dependent reduction of Drp1 levels. The main serum chemical components of BYHWD, ferulic acid, and calycosin-7-glucoside, can reduce the expression of Drp1 by regulating AMPK, and can inhibit the activity of GTPase of Drp1. CONCLUSION The above findings support the conclusion that BYHWD suppresses diabetes-accelerated atherosclerosis by reducing mitochondrial fission through modulation of the AMPK/Drp1 pathway.
Collapse
Affiliation(s)
- Wanyu Tong
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Yucheng Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jingwen Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China
| | - Yanxu Chang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
147
|
Zhang Y, Li M, Wang Y, Han F, Shen K, Luo L, Li Y, Jia Y, Zhang J, Cai W, Wang K, Zhao M, Wang J, Gao X, Tian C, Guo B, Hu D. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater 2023; 26:323-336. [PMID: 36950152 PMCID: PMC10027478 DOI: 10.1016/j.bioactmat.2023.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic diabetic wounds remain a globally recognized clinical challenge. They occur due to high concentrations of reactive oxygen species and vascular function disorders. A promising strategy for diabetic wound healing is the delivery of exosomes, comprising bioactive dressings. Metformin activates the vascular endothelial growth factor pathway, thereby improving angiogenesis in hyperglycemic states. However, multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported, and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear. Here, we engineered dual-loaded hydrogels possessing tissue adhesive, antioxidant, self-healing and electrical conductivity properties, wherein 4-armed SH-PEG cross-links with Ag+, which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair. Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group, creating a stable three-dimensional structure for exosome and metformin loading. The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M + E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury. The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission, thereby protecting F-actin homeostasis and alleviating microvascular dysfunction. Hence, we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Meng Li
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Fei Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaowen Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Corresponding author. State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
148
|
Cao X, Yao F, Zhang B, Sun X. Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng. Front Pharmacol 2023; 14:1218803. [PMID: 37547332 PMCID: PMC10399631 DOI: 10.3389/fphar.2023.1218803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Collapse
Affiliation(s)
- Xinxin Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
149
|
Ahmed A, Trezza A, Gentile M, Paccagnini E, Panti A, Lupetti P, Spiga O, Bova S, Fusi F. Dynamin-independent Ca V1.2 and K Ca1.1 channels regulation and vascular tone modulation by the mitochondrial fission inhibitors dynasore and dyngo-4a. Eur J Pharmacol 2023; 951:175786. [PMID: 37179045 DOI: 10.1016/j.ejphar.2023.175786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
A role for mitochondrial fission in vascular contraction has been proposed based on the vasorelaxant activity of the dynamin (and mitochondrial fission) inhibitors mdivi-1 and dynasore. However, mdivi-1 is capable to inhibit Ba2+ currents through CaV1.2 channels (IBa1.2), stimulate KCa1.1 channel currents (IKCa1.1), and modulate pathways key to the maintenance of vessel active tone in a dynamin-independent manner. Using a multidisciplinary approach, the present study demonstrates that dynasore, like mdivi-1, is a bi-functional vasodilator, blocking IBa1.2 and stimulating IKCa1.1 in rat tail artery myocytes, as well as promoting relaxation of rat aorta rings pre-contracted by either high K+ or phenylephrine. Conversely, its analogue dyngo-4a, though inhibiting mitochondrial fission triggered by phenylephrine and stimulating IKCa1.1, did not affect IBa1.2 but potentiated both high K+- and phenylephrine-induced contractions. Docking and molecular dynamics simulations identified the molecular basis supporting the different activity of dynasore and dyngo-4a at CaV1.2 and KCa1.1 channels. Mito-tempol only partially counteracted the effects of dynasore and dyngo-4a on phenylephrine-induced tone. In conclusion, the present data, along with previous observations (Ahmed et al., 2022) rise caution for the use of dynasore, mdivi-1, and dyngo-4a as tools to investigate the role of mitochondrial fission in vascular contraction: to this end, a selective dynamin inhibitor and/or a different experimental approach are needed.
Collapse
Affiliation(s)
- Amer Ahmed
- Dipartimento di Scienze della Vita, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Mariangela Gentile
- Dipartimento di Scienze della Vita, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Eugenio Paccagnini
- Dipartimento di Scienze della Vita, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Alice Panti
- Dipartimento di Scienze della Vita, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Pietro Lupetti
- Dipartimento di Scienze della Vita, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
150
|
Liu Y, Liu Q, Zhang Z, Yang Y, Zhou Y, Yan H, Wang X, Li X, Zhao J, Hu J, Yang S, Tian Y, Yao Y, Qiu Z, Song Y, Yang Y. The regulatory role of PI3K in ageing-related diseases. Ageing Res Rev 2023; 88:101963. [PMID: 37245633 DOI: 10.1016/j.arr.2023.101963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Ageing is a physiological/pathological process accompanied by the progressive damage of cell function, triggering various ageing-related disorders. Phosphatidylinositol 3-kinase (PI3K), which serves as one of the central regulators of ageing, is closely associated with cellular characteristics or molecular features, such as genome instability, telomere erosion, epigenetic alterations, and mitochondrial dysfunction. In this review, the PI3K signalling pathway was firstly thoroughly explained. The link between ageing pathogenesis and the PI3K signalling pathway was then summarized. Finally, the key regulatory roles of PI3K in ageing-related illnesses were investigated and stressed. In summary, we revealed that drug development and clinical application targeting PI3K is one of the focal points for delaying ageing and treating ageing-related diseases in the future.
Collapse
Affiliation(s)
- Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhe Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yaru Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yazhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Huanle Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xiaoru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jing Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jingyan Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Shulin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yifan Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, 43 North Street, Yan'an 716000, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|