101
|
Wu W, Zaal EA, Berkers CR, Lemeer S, Heck AJR. CTGF/VEGFA-activated Fibroblasts Promote Tumor Migration Through Micro-environmental Modulation. Mol Cell Proteomics 2018; 17:1502-1514. [PMID: 29669735 DOI: 10.1074/mcp.ra118.000708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/18/2018] [Indexed: 02/04/2023] Open
Abstract
Fibroblast activation is associated with tumor progression and implicated in metastasis, but the initial triggering signals required to kick-start this process remain largely unknown. Because small cancerous lesions share limited physical contact with neighboring fibroblasts, we reasoned the first tumor-derived signal for fibroblast activation should be secreted and diffusible. By pulsed metabolic labeling and click-chemistry based affinity enrichment, we sieved through the ductal carcinoma secretome for potential fibroblast activators. Using immuno-depletion/supplementation assays on various secreted factors, we pinpointed that tumor-secreted CTGF/VEGFA alone is sufficient to activate paired mammary fibroblasts from the same patient via ROCK1 and JunB signaling. Fibroblasts activated in this manner are distinct in morphology, growth, and adopt a highly tumor-like secretion profile, which in turn promotes tumor migration by counteracting oxidative and lactate stress. These findings reveal a profound division-of-labor between normal and cancer cells under the directive of the latter, and allude to potential metastatic prevention through inhibiting local fibroblast activation.
Collapse
Affiliation(s)
- Wei Wu
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,§Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Esther A Zaal
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Celia R Berkers
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Simone Lemeer
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,§Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; .,§Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
102
|
Khalid M, Brisson L, Tariq M, Hao Y, Guibon R, Fromont G, Mortadza SAS, Mousawi F, Manzoor S, Roger S, Jiang LH. Carcinoma-specific expression of P2Y11 receptor and its contribution in ATP-induced purinergic signalling and cell migration in human hepatocellular carcinoma cells. Oncotarget 2018; 8:37278-37290. [PMID: 28418839 PMCID: PMC5514908 DOI: 10.18632/oncotarget.16191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Extracellular ATP-induced Ca2+ signalling is critical in regulating diverse physiological and disease processes. Emerging evidence suggests high concentrations of extracellular ATP in tumour tissues. In this study, we examined the P2 receptor for ATP-induced Ca2+ signalling in human hepatocellular carcinoma (HCC) cells. Fura-2-based measurements of the intracellular Ca2+ concentration ([Ca2+]i) showed that extracellular ATP induced an increase in the [Ca2+]i in human HCC Huh-7 and HepG2 cells. NF546, a P2Y11 receptor agonist was equally effective in inducing an increase in the [Ca2+]i. In contrast, agonists for the P2X receptors (αβmeATP and BzATP), P2Y1 receptor (MRS2365) or P2Y2 receptor (MRS2768) were ineffective. In addition, ATP/NF546-induced increases in the [Ca2+]i were strongly inhibited by treatment with NF340, a P2Y11 receptor antagonist. Immunofluorescent confocal imaging and western blotting analysis consistently demonstrated the P2Y11 receptor expression in Huh-7 and HepG2 cells. Transfection with P2Y11-specific siRNA attenuated the P2Y11 receptor protein expression level and also reduced NF546-induced increase in the [Ca2+]i. Importantly, immunohistochemistry revealed that the P2Y11 receptor was expressed at very high level in human HCC tissues and, by contrast, it was barely detected in normal liver tissues. Trans-well cell migration assay demonstrated that ATP and NF546 induced concentration-dependent stimulation of Huh-7 cell migration. Treatment with NF340 prevented ATP-induced stimulation of cell migration. Taken together, our results show carcinoma-specific expression of the P2Y11 receptor and its critical role in mediating ATP-inducing Ca2+ signalling and regulating cell migration in human HCC cells.
Collapse
Affiliation(s)
- Madiha Khalid
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Lucie Brisson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, Tours, France
| | - Menahil Tariq
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yunjie Hao
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | - Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Sébastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, Tours, France.,Institut Universitaire de France, Paris Cedex 05, France
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, Tours, France.,Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, P. R. China.,Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, P. R. China
| |
Collapse
|
103
|
Catalytically defective receptor protein tyrosine kinase PTK7 enhances invasive phenotype by inducing MMP-9 through activation of AP-1 and NF-κB in esophageal squamous cell carcinoma cells. Oncotarget 2018; 7:73242-73256. [PMID: 27689325 PMCID: PMC5341976 DOI: 10.18632/oncotarget.12303] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022] Open
Abstract
Protein tyrosine kinase 7 (PTK7), a member of the catalytically defective receptor protein tyrosine kinase family, is upregulated in various cancers including esophageal squamous cell carcinoma (ESCC). Here, we have explored the molecular mechanism of PTK7-dependent invasiveness in ESCC cells. PTK7 knockdown reduced gelatin degradation and MMP-9 secretion in cultures of ESCC TE-10 cells, and showed reduced levels of MMP9 mRNA using real-time RT-PCR and luciferase reporter assays. PTK7 knockdown decreased not only phosphorylation of NF-κB, IκB, ERK, and JNK, but also nuclear localization of NF-κB and AP-1 consisting of c-Fos and c-Jun. Activation of AP-1 and NF-κB requires PTK7-mediated activation of tyrosine kinases, including Src. In addition, NF-κB activation by PTK7 involves the PI3K/Akt signaling pathway. PTK7-mediated upregulation of MMP9 was also observed in other ESCC cell lines and in three-dimensional cultures of TE-10 cells. Moreover, MMP-9 expression positively correlated with PTK7 expression in ESCC tumor tissue. These findings demonstrate that PTK7 upregulates MMP9 through activation of AP-1 and NF-κB and, thus increases invasive properties of ESCC cells.
Collapse
|
104
|
Miyoshi H, Suzuki K, Ju J, Ko JS, Adachi T, Yamagata Y. A Perturbation Analysis to Understand the Mechanism How Migrating Cells Sense and Respond to a Topography in the Extracellular Environment. ANAL SCI 2018; 32:1207-1211. [PMID: 27829627 DOI: 10.2116/analsci.32.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Migrating cells in vivo monitor the physiological state of an organism by integrating the physical as well as chemical cues in the extracellular microenvironment, and alter the migration mode, in order to achieve their unique function. The clarification of the mechanism focusing on the topographical cues is important for basic biological research, and for biomedical engineering specifically to establish the design concept of tissue engineering scaffolds. The aim of this study is to understand how cells sense and respond to the complex topographical cues in vivo by exploring in vitro analyses to complex in vivo situations in order to simplify the issue. Since the intracellular mechanical events at subcellular scales and the way of the coordination of these events are supposed to change in the migrating cells, a key to success of the analysis is a mechanical point of view with a particular focus of the subcellular mechanical events. We designed an experimental platform to explore the mechanical requirements in a migrating fibroma cell responding to micro-grooves. The micro-grooved structure is a model of gap structures, typically seen in the microenvironments in vivo. In our experiment, the contributions of actomyosin force generation can be spatially divided and analyzed in the cell center and peripheral regions. The analysis specified that rapid leading edge protrusion, and the cell body translocation coordinated with the leading edge protrusion are required for the turning response at a micro-groove.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies
| | | | | | | | | | | |
Collapse
|
105
|
Gibbons MC, Singh A, Engler AJ, Ward SR. The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. J Orthop Res 2018; 36:546-556. [PMID: 28755470 PMCID: PMC5788743 DOI: 10.1002/jor.23662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Rotator cuff (RC) muscles undergo several detrimental changes following mechanical unloading resulting from RC tendon tear. In this review, we highlight the pathological causes and consequences of mechanical alterations at the whole muscle, muscle fiber, and muscle resident cell level as they relate to RC disease progression. In brief, the altered mechanical loads associated with RC tear lead to architectural, structural, and compositional changes at the whole-muscle and muscle fiber level. At the cellular level, these changes equate to direct disruption of mechanobiological signaling, which is exacerbated by mechanically regulated biophysical and biochemical changes to the cellular and extra-cellular environment (also known as the stem cell "niche"). Together, these data have important implications for both pre-clinical models and clinical practice. In pre-clinical models, it is important to recapitulate both the atrophic and degenerative muscle loss found in humans using clinically relevant modes of injury. Clinically, understanding the mechanics and underlying biology of the muscle will impact both surgical decision-making and rehabilitation protocols, as interventions that may be good for atrophic muscle will have a detrimental effect on degenerating muscle, and vice versa. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:546-556, 2018.
Collapse
Affiliation(s)
| | | | - Adam J Engler
- University of California San Diego Department of Bioengineering
| | - Samuel R Ward
- University of California Department of Orthopedic Surgery,University of California Department of Radiology
| |
Collapse
|
106
|
Kinin-B1 Receptor Stimulation Promotes Invasion and is Involved in Cell-Cell Interaction of Co-Cultured Glioblastoma and Mesenchymal Stem Cells. Sci Rep 2018; 8:1299. [PMID: 29358738 PMCID: PMC5777993 DOI: 10.1038/s41598-018-19359-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) represents the most lethal brain tumour, and these tumours have very limited treatment options. Mesenchymal stem cells (MSC) are considered as candidates for advanced cell therapies, due to their tropism towards GBM, possibly affecting their malignancy, thus also representing a potential therapeutic vector. Therefore, we aimed to compare the effects of bone-marrow-derived versus adipose-tissue-derived MSC (BM-/AT-MSC) on heterogeneous populations of tumour cells. This cells' interplay was addressed by the in-vitro two-dimensional (monolayer) and three-dimensional (spheroid) co-culture models, using U87 and U373 GBM cell lines, expressing genotypically different mesenchymal transcriptome profiles. U87 cell low mesenchymal profile expressed high levels of kinin receptor 1 (B1R) and their invasion was greatly enhanced by the B1R agonist des-Arg9-bradykinin upon BM-MSC co-culturing in 3D co-cultures. This correlated to significantly higher cell-cell interactions in U87/BM-MSC mixed spheroids. This was not observed with the U373 cells and not in AT-MSC co-cultures. Altogether, these data support the on-going exploration of B1R as target for adjuvant approach in GBM therapy. Secondly, the results emphasize the need for further careful exploration of the selectivity regarding the origin of MSC as potential candidates for cell therapies, particular in cancer, where they may adversely affect heterogeneous tumour cell populations.
Collapse
|
107
|
Design of Fiber Networks for Studying Metastatic Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:289-318. [DOI: 10.1007/978-3-319-95294-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
108
|
Koons B, Sharma P, Ye Z, Mukherjee A, Lee MH, Wirtz D, Behkam B, Nain AS. Cancer Protrusions on a Tightrope: Nanofiber Curvature Contrast Quantitates Single Protrusion Dynamics. ACS NANO 2017; 11:12037-12048. [PMID: 29144730 DOI: 10.1021/acsnano.7b04567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell migration is studied with the traditional focus on protrusion-driven cell body displacement, while less is known on morphodynamics of individual protrusions themselves, especially in fibrous environments mimicking extracellular matrix. Here, using suspended fibers, we report integrative and multiscale abilities to study protrusive behavior independent of cell body migration. By manipulating the diameter of fibers in orthogonal directions, we constrain cell migration along large diameter (2 μm) base fibers, while solely allowing cells to sense, initiate, and mature protrusions on orthogonally deposited high-curvature/low diameter (∼100, 200, and 600 nm) protrusive fibers and low-curvature (∼300 and 600 nm width) protrusive flat ribbons. In doing so, we report a set of morphodynamic metrics that precisely quantitate protrusion dynamics. Protrusion growth and maturation occur by rapid broadening at the base to achieve long lengths, a behavior dramatically influenced by curvature. While flat ribbons universally induce the formation of broad and long protrusions, we quantitatively protrutype protrusive behavior of two highly invasive cancer cell lines and find breast adenocarcinoma (MDA-MB-231) to exhibit sensitivity to fiber curvature higher than that of brain glioblastoma DBTRG-05MG. Furthermore, while actin and microtubules localize within protrusions of all sizes, we quantify protrusion size-driven localization of vimentin and, contrary to current understanding, report that vimentin is not required to form protrusions. Using multiple protrusive fibers, we quantify high coordination between hierarchical branches of individual protrusions and describe how the spatial configuration of multiple protrusions regulates cell migratory state. Finally, we describe protrusion-driven shedding and collection of cytoplasmic debris.
Collapse
Affiliation(s)
| | | | | | | | - Meng Horng Lee
- Engineering in Oncology Center, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Denis Wirtz
- Engineering in Oncology Center, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | |
Collapse
|
109
|
Shao H, Wang A, Lauffenburger D, Wells A. Tyro3-mediated phosphorylation of ACTN4 at tyrosines is FAK-dependent and decreases susceptibility to cleavage by m-Calpain. Int J Biochem Cell Biol 2017; 95:73-84. [PMID: 29274473 DOI: 10.1016/j.biocel.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/14/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
Tyro3, a member of TAM receptor tyrosine kinase family, has been implicated in the regulation of melanoma progression and survival. In this study, we sought the molecular mechanism of Tyro3 effects avoiding endogenous background by overexpression of Tyro3 in fibroblasts that have negligible levels of Tyro3. This introduction triggers the tyrosyl-phosphorylation of ACTN4, a member of actin binding protein family involved in motility, a behavior critical for invasive progression, as shown by siRNA to Tyro3 limiting melanoma cell migration and invasion. Tyro3-mediated phosphorylation of ACTN4 required FAK activation at tyrosine 397 and the EGF receptor cascade, but not EGFR ligand binding. Using PCR-based mutagenesis, the sites of Tyro3-mediated ACTN4 phosphorylation were mapped to ACTN4 tyrosine 11 and 13, and this occurs in conjunction with EGF-mediated phosphorylation on Y4 and Y31. Interestingly, Tyro3-mediated phosphorylation only slightly decreases the actin binding activity of ACTN4. However, this rendered the phosphorylated ACTN4 resistant to the m-calpain cleavage between Y13 and G14, a limited proteolysis that prevents growth factor regulation of ACTN4 interaction with F-actin. Overexpression of both WT ACTN4 and ACTN4Y11/13E, a mimic of ACTN4 phosphorylated at tyrosine 11 and 13, in melanoma WM983b cells resulted in a likely mesenchymal to amoeboidal transition. ACTN4Y11/13E-expressing cells were more amoeboidal, less migratory on collagen I gel coated surface but more invasive through collagen networks. In parallel, expression of ACTN4Y11/13E, in ACTN4 knockdown melanoma WM1158 cells resulted in an increase of invasion compared to WT ACTN4. These findings suggest that Tyro3-mediated phosphorylation of ACTN4 is involved in invasion of melanoma cells.
Collapse
Affiliation(s)
- Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anna Wang
- University of Virginia, Charlottesville, VA 22904, United States
| | | | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Pittsburgh VA Health System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
110
|
Nagy N, de la Zerda A, Kaber G, Johnson PY, Hu KH, Kratochvil MJ, Yadava K, Zhao W, Cui Y, Navarro G, Annes JP, Wight TN, Heilshorn SC, Bollyky PL, Butte MJ. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem 2017; 293:567-578. [PMID: 29183997 DOI: 10.1074/jbc.ra117.000148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
We have identified a novel role for hyaluronan (HA), an extracellular matrix polymer, in governing the mechanical properties of inflamed tissues. We recently reported that insulitis in type 1 diabetes of mice and humans is preceded by intraislet accumulation of HA, a highly hygroscopic polymer. Using the double transgenic DO11.10 × RIPmOVA (DORmO) mouse model of type 1 diabetes, we asked whether autoimmune insulitis was associated with changes in the stiffness of islets. To measure islet stiffness, we used atomic force microscopy (AFM) and developed a novel "bed of nails"-like approach that uses quartz glass nanopillars to anchor islets, solving a long-standing problem of keeping tissue-scale objects immobilized while performing AFM. We measured stiffness via AFM nanoindentation with a spherical indenter and found that insulitis made islets mechanically soft compared with controls. Conversely, treatment with 4-methylumbelliferone, a small-molecule inhibitor of HA synthesis, reduced HA accumulation, diminished swelling, and restored basal tissue stiffness. These results indicate that HA content governs the mechanical properties of islets. In hydrogels with variable HA content, we confirmed that increased HA leads to mechanically softer hydrogels, consistent with our model. In light of recent reports that the insulin production of islets is mechanosensitive, these findings open up an exciting new avenue of research into the fundamental mechanisms by which inflammation impacts local cellular responses.
Collapse
Affiliation(s)
- Nadine Nagy
- From the Department of Medicine, Division of Infectious Diseases,
| | | | - Gernot Kaber
- From the Department of Medicine, Division of Infectious Diseases
| | - Pamela Y Johnson
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Michael J Kratochvil
- From the Department of Medicine, Division of Infectious Diseases.,the Department of Materials Science and Engineering
| | - Koshika Yadava
- From the Department of Medicine, Division of Infectious Diseases
| | - Wenting Zhao
- the Department of Materials Science and Engineering
| | - Yi Cui
- the Department of Materials Science and Engineering
| | | | - Justin P Annes
- the Department of Medicine, Division of Endocrinology, and
| | - Thomas N Wight
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Paul L Bollyky
- From the Department of Medicine, Division of Infectious Diseases
| | - Manish J Butte
- the Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Stanford University, Stanford, California 94305 and
| |
Collapse
|
111
|
Tornin J, Hermida-Prado F, Padda RS, Gonzalez MV, Alvarez-Fernandez C, Rey V, Martinez-Cruzado L, Estupiñan O, Menendez ST, Fernandez-Nevado L, Astudillo A, Rodrigo JP, Lucien F, Kim Y, Leong HS, Garcia-Pedrero JM, Rodriguez R. FUS-CHOP Promotes Invasion in Myxoid Liposarcoma through a SRC/FAK/RHO/ROCK-Dependent Pathway. Neoplasia 2017; 20:44-56. [PMID: 29190494 PMCID: PMC5747526 DOI: 10.1016/j.neo.2017.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/13/2023] Open
Abstract
Deregulated SRC/FAK signaling leads to enhanced migration and invasion in many types of tumors. In myxoid and round cell liposarcoma (MRCLS), an adipocytic tumor characterized by the expression of the fusion oncogene FUS-CHOP, SRC have been found as one of the most activated kinases. Here we used a cell-of-origin model of MRCLS and an MRCLS cell line to thoroughly characterize the mechanisms of cell invasion induced by FUS-CHOP using in vitro (3D spheroid invasion assays) and in vivo (chicken chorioallantoic membrane model) approaches. FUS-CHOP expression activated SRC-FAK signaling and increased the invasive ability of MRCLS cells. In addition, FAK expression was found to significantly correlate with tumor aggressiveness in sarcoma patient samples. The involvement of SRC/FAK activation in FUS-CHOP-mediated invasion was further confirmed using the SRC inhibitor dasatinib, the specific FAK inhibitor PF-573228, and FAK siRNA. Notably, dasatinib and PF573228 could also efficiently block the invasion of cancer stem cell subpopulations. Downstream of SRC/FAK signaling, we found that FUS-CHOP expression increases the levels of the RHO/ROCK downstream effector phospho-MLC2 (T18/S19) and that this activation was prevented by dasatinib or PF573228. Moreover, the ROCK inhibitor RKI-1447 was able to completely abolish invasion in FUS-CHOP-expressing cells. These data uncover the involvement of SRC/FAK/RHO/ROCK signaling axis in FUS-CHOP-mediated invasion, thus providing a rationale for testing inhibitors of this pathway as potential novel antimetastatic agents for MRCLS treatment.
Collapse
Affiliation(s)
- Juan Tornin
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Francisco Hermida-Prado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Ranjit Singh Padda
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada
| | - M Victoria Gonzalez
- CIBER de Cáncer (CIBERONC), Madrid, Spain; Departamento de Cirugía, Universidad de Oviedo and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Veronica Rey
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Oscar Estupiñan
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Sofia T Menendez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Lucia Fernandez-Nevado
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan P Rodrigo
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | | | - Yohan Kim
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Hon S Leong
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, ON, Canada; Department of Urology, Mayo Clinic, Rochester, MN
| | - Juana Maria Garcia-Pedrero
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
112
|
van Baal JOAM, van Noorden CJF, Nieuwland R, Van de Vijver KK, Sturk A, van Driel WJ, Kenter GG, Lok CAR. Development of Peritoneal Carcinomatosis in Epithelial Ovarian Cancer: A Review. J Histochem Cytochem 2017; 66:67-83. [PMID: 29164988 DOI: 10.1369/0022155417742897] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) metastasizes intra-abdominally with often numerous, superficial, small-sized lesions. This so-called peritoneal carcinomatosis is difficult to treat, and peritoneal recurrences are frequently observed, leading to a poor prognosis. Underlying mechanisms of interactions between EOC and peritoneal cells are incompletely understood. This review summarizes and discusses the development of peritoneal carcinomatosis from a cell-biological perspective, focusing on characteristics of EOC and peritoneal cells. We aim to provide insight into how peritoneum facilitates tumor adhesion but limits size of lesions and depth of invasion. The development of peritoneal carcinomatosis is a multistep process that requires adaptations of EOC and peritoneal cells. Mechanisms that enable tumor adhesion and growth involve cadherin restructuring on EOC cells, integrin-mediated adhesion, and mesothelial evasion by mechanical forces driven by integrin-ligand interactions. Clinical trials targeting these mechanisms, however, showed only limited effects. Other factors that inhibit tumor growth and deep invasion are virtually unknown. Future studies are needed to elucidate the exact mechanisms that underlie the development and limited growth of peritoneal carcinomatosis. This review on development of peritoneal carcinomatosis of EOC summarizes the current knowledge and its limitations. Clarification of the stepwise process may inspire future research to investigate new treatment approaches of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Juliette O A M van Baal
- Department of Gynecologic Oncology, Center for Gynecologic Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Cancer Center Amsterdam, Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Koen K Van de Vijver
- Division of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Auguste Sturk
- Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Willemien J van Driel
- Department of Gynecologic Oncology, Center for Gynecologic Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Gemma G Kenter
- Department of Gynecologic Oncology, Center for Gynecologic Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Christianne A R Lok
- Department of Gynecologic Oncology, Center for Gynecologic Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
113
|
Ivanovska J, Zehnder T, Lennert P, Sarker B, Boccaccini AR, Hartmann A, Schneider-Stock R, Detsch R. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells. Tissue Eng Part C Methods 2017; 22:708-15. [PMID: 27269631 DOI: 10.1089/ten.tec.2015.0452] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are an important class of biomaterials as they could mimic the extracellular matrix (ECM). Among the naturally occurring biopolymers, alginate and gelatin are extensively used for many biomedical applications. For developing biofabrication constructs as three-dimensional (3D) cell culture models, realistic imaging of cell spreading and proliferation inside the hydrogels represents a major challenge. Therefore, we aimed to establish a system that can mimic the structural architecture, composition, and biological functions of the ECM for cancer research approaches. For this, we compared the cell behavior of human colon cancer HCT116 cells in two biofabricated hydrogels as follows: pure alginate and cross-linked alginate-gelatin (ADA-GEL) matrixes. Our data indicate that cells from the ADA-GEL matrix showed highest proliferation and cellular networks through the material. Analyzing the mRNA expression of several integrins of cells cultured inside of the matrix, we showed that mRNA expression of integrin subunits differed based on the cell focal adhesion characteristics. Furthermore, we showed that recultured ADA-GEL immobilized cells do not differ from parental HCT116 cells regarding migration and proliferation capabilities. Comparing adhesion and other phenotypic characteristics of HCT116 tumor cells, we suggest that ADA-GEL hydrogel is a more suitable 3D system than pure alginate and seems to optimally mimic the physiological behavior of the tumor microenvironment. For the first time, we present a functional 3D hydrogel construct for colon cancer cells, which are supporting their physiological cell attachment, spreading, and viability. We strongly believe that it will be applicable as a suitable in vitro 3D tumor model to study different aspects of tumor cell behavior.
Collapse
Affiliation(s)
- Jelena Ivanovska
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Tobias Zehnder
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Pablo Lennert
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Bapi Sarker
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Aldo R Boccaccini
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Arndt Hartmann
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Regine Schneider-Stock
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Rainer Detsch
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| |
Collapse
|
114
|
Rudzka DA, Clark W, Hedley A, Kalna G, Olson MF. Transcriptomic profiling of human breast and melanoma cells selected by migration through narrow constraints. Sci Data 2017; 4:170172. [PMID: 29135975 PMCID: PMC5685158 DOI: 10.1038/sdata.2017.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/05/2017] [Indexed: 12/27/2022] Open
Abstract
The metastatic spread of cancer cells is a step-wise process that starts with dissociation from primary tumours and local invasion of adjacent tissues. The ability to invade local tissues is the product of several processes, including degradation of extracellular matrices (ECM) and movement of tumour cells through physically-restricting gaps. To identify properties contributing to tumour cells squeezing through narrow gaps, invasive MDA-MB-231 human breast cancer and MDA-MB-435 human melanoma cells were subjected to three successive rounds of selection using cell culture inserts with highly constraining 3 μm pores. For comparison purposes, flow cytometry was also employed to enrich for small diameter MDA-MB-231 cells. RNA-Sequencing (RNA-seq) using the Illumina NextSeq 500 platform was undertaken to characterize how gene expression differed between parental, invasive pore selected or small diameter cells. Gene expression results obtained by RNA-seq were validated by comparing with RT-qPCR. Transcriptomic data generated could be used to determine how alterations that enable cell passage through narrow spaces contribute to local invasion and metastasis.
Collapse
Affiliation(s)
- Dominika A. Rudzka
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Gabriela Kalna
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
115
|
Runa F, Hamalian S, Meade K, Shisgal P, Gray PC, Kelber JA. Tumor microenvironment heterogeneity: challenges and opportunities. ACTA ACUST UNITED AC 2017; 3:218-229. [PMID: 29430386 DOI: 10.1007/s40610-017-0073-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) has been recognized as an integral component of malignancies in breast and prostate tissues, contributing in confounding ways to tumor progression, metastasis, therapy resistance and disease recurrence. Major components of the TME are immune cells, fibroblasts, pericytes, endothelial cells, mesenchymal stroma/stem cells (MSCs), and extracellular matrix (ECM) components. Herein, we discuss the molecular and cellular heterogeneity within the TME and how this presents unique challenges and opportunities for treating breast and prostate cancers.
Collapse
Affiliation(s)
- F Runa
- Department of Biology, California State University, Northridge, CA
| | - S Hamalian
- Department of Biology, California State University, Northridge, CA
| | - K Meade
- Department of Biology, California State University, Northridge, CA
| | - P Shisgal
- Department of Biology, California State University, Northridge, CA
| | - P C Gray
- The Salk Institute for Biological Studies, La Jolla, CA
| | - J A Kelber
- Department of Biology, California State University, Northridge, CA
| |
Collapse
|
116
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
117
|
Myer NM, Myers KA. CLASP1 regulates endothelial cell branching morphology and directed migration. Biol Open 2017; 6:1502-1515. [PMID: 28860131 PMCID: PMC5665473 DOI: 10.1242/bio.028571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial cell (EC) branching is critically dependent upon the dynamic nature of the microtubule (MT) cytoskeleton. Extracellular matrix (ECM) mechanosensing is a prominent mechanism by which cytoskeletal reorganization is achieved; yet how ECM-induced signaling is able to target cytoskeletal reorganization intracellularly to facilitate productive EC branching morphogenesis is not known. Here, we tested the hypothesis that the composition and density of the ECM drive the regulation of MT growth dynamics in ECs by targeting the MT stabilizing protein, cytoplasmic linker associated protein 1 (CLASP1). High-resolution fluorescent microscopy coupled with computational image analysis reveal that CLASP1 promotes slow MT growth on glass ECMs and promotes short-lived MT growth on high-density collagen-I and fibronectin ECMs. Within EC branches, engagement of either high-density collagen-I or high-density fibronectin ECMs results in reduced MT growth speeds, while CLASP1-dependent effects on MT dynamics promotes elevated numbers of short, branched protrusions that guide persistent and directed EC migration. Summary: CLASP1 modulates microtubule dynamics with sub-cellular specificity in response to extracellular matrix density and composition. CLASP1 effects on microtubules promote short, branched protrusions that guide persistent and directional EC migration. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Nicole M Myer
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia PA 19104, USA
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia PA 19104, USA
| |
Collapse
|
118
|
Gayan S, Teli A, Dey T. Inherent aggressive character of invasive and non-invasive cells dictates the in vitro migration pattern of multicellular spheroid. Sci Rep 2017; 7:11527. [PMID: 28912559 PMCID: PMC5599661 DOI: 10.1038/s41598-017-10078-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
Cellular migration, a process relevant to metastasis, is mostly studied in the conventional 2D condition. However, cells cultured in the 3D condition assumed to mimic the in vivo conditions better. The current study is designed to compare an invasive and non-invasive adenocarcinoma cell with an invasive fibrosarcoma cell to understand the migration pattern of the multicellular spheroid. It is observed that conventional haplotaxis, chemotactic and pseudo-3D migration assay cannot distinguish between the invasive and non-invasive cells conclusively under 2D condition. Invasive spheroids migrate rapidly in sprouting assay in comparison to non-invasive spheroids. Effects of cytochalasin B, marimastat and blebbistatin are tested to determine the influence of different migration modality namely actin polymerization, matrix metalloprotease and acto-myosin in both culture conditions. Altered mRNA profile of cellular migration related genes (FAK, Talin, Paxillin, p130cas and Vinculin) is observed between 2D and 3D condition followed by the changed expression of matrix metallo proteases. A distinct difference is observed in distribution and formation of focal adhesion complex under these culture conditions. This study demonstrates the efficacy of multicellular spheroids in identifying the intrinsic aggressive behavior of different cell lines as a proof of concept and recognizes the potential of spheroids as a migration model.
Collapse
Affiliation(s)
- Sukanya Gayan
- Institute of Bioinformatics and Biotechnology,Savitribai Phule Pune University, Pune, India
| | - Abhishek Teli
- Institute of Bioinformatics and Biotechnology,Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology,Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
119
|
Włodarczyk-Biegun MK, del Campo A. 3D bioprinting of structural proteins. Biomaterials 2017; 134:180-201. [DOI: 10.1016/j.biomaterials.2017.04.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022]
|
120
|
Abstract
In this issue of Cell, Skau et al. show that the formin FMN2 organizes a perinuclear actin cytoskeleton that protects the nucleus and its genomic content of migrating cells squeezing through small spaces.
Collapse
Affiliation(s)
- Jörg Renkawitz
- Institute of Science and Technology Austria (IST Austria), am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
121
|
Maninova M, Caslavsky J, Vomastek T. The assembly and function of perinuclear actin cap in migrating cells. PROTOPLASMA 2017; 254:1207-1218. [PMID: 28101692 DOI: 10.1007/s00709-017-1077-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/24/2023]
Abstract
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.
Collapse
Affiliation(s)
- Miloslava Maninova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Caslavsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Vomastek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
122
|
Beiki B, Zeynali B, Seyedjafari E. Fabrication of a three dimensional spongy scaffold using human Wharton's jelly derived extra cellular matrix for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:627-638. [PMID: 28576031 DOI: 10.1016/j.msec.2017.04.074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 03/12/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
The Wharton's jelly (WJ) contains significant amounts of extracellular matrix (ECM) components and rich source of endogenous growth factors. In this study, we designed a new biomimetic spongy scaffold from decellularized WJ-derived ECM and used it as a skin substitute. Histological analysis and biochemical assays showed that bio-active molecules preserved in the fabricated scaffolds and that the scaffolds have highly interconnected porous structure. Cytotoxicity and mechanical evaluation of the scaffold indicated that it is non-toxic and has appropriate mechanical properties. MTT assay, SEM and histological analysis of human fibroblast, seeded on the scaffolds, confirmed cellular viability, attachment, penetration and proliferation. The effectiveness of WJ-derived scaffolds in the regeneration of full-thickness wound was assessed through an in vivo experiment. Our results demonstrated that the scaffolds were well integrated into the mouse tissue and absorbed the exudates after one week. Unlike the controls, in WJ group there were not only complete wound closing and disappearance of the scab, but also complete reepithelialization, newly generated epidermal layers and appendages after 12days of implantation. Taken together, our results indicate that WJ-derived scaffolds are able to improve attachment, penetration and growth of the fibroblast cells and speed up the healing processes, which would offer a proper skin graft for wound healing.
Collapse
Affiliation(s)
- Bahareh Beiki
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Bahman Zeynali
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
123
|
Giverso C, Arduino A, Preziosi L. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates. Bull Math Biol 2017; 80:1017-1045. [PMID: 28409417 DOI: 10.1007/s11538-017-0262-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/17/2017] [Indexed: 01/14/2023]
Abstract
In order to move in a three-dimensional extracellular matrix, the nucleus of a cell must squeeze through the narrow spacing among the fibers and, by adhering to them, the cell needs to exert sufficiently strong traction forces. If the nucleus is too stiff, the spacing too narrow, or traction forces too weak, the cell is not able to penetrate the network. In this article, we formulate a mathematical model based on an energetic approach, for cells entering cylindrical channels composed of extracellular matrix fibers. Treating the nucleus as an elastic body covered by an elastic membrane, the energetic balance leads to the definition of a necessary criterion for cells to pass through the regular network of fibers, depending on the traction forces exerted by the cells (or possibly passive stresses), the stretchability of the nuclear membrane, the stiffness of the nucleus, and the ratio of the pore size within the extracellular matrix with respect to the nucleus diameter. The results obtained highlight the importance of the interplay between mechanical properties of the cell and microscopic geometric characteristics of the extracellular matrix and give an estimate for a critical value of the pore size that represents the physical limit of migration and can be used in tumor growth models to predict their invasive potential in thick regions of ECM.
Collapse
Affiliation(s)
- Chiara Giverso
- Istituto Nazionale di Alta Matematica "F. Severi", Città Universitaria, P.le Aldo Moro 5, 00185, Rome, Italy.
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Alessandro Arduino
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Turin, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|
124
|
Zhuo B, Shi Y, Qin H, Sun Q, Li Z, Zhang F, Wang R, Wang X. Interleukin-24 inhibits osteosarcoma cell migration and invasion via the JNK/c-Jun signaling pathways. Oncol Lett 2017; 13:4505-4511. [PMID: 28599451 DOI: 10.3892/ol.2017.5990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/20/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 25% of osteosarcoma patients present with clinically detectable metastatic disease at the time of initial diagnosis. High-dose chemotherapy and/or surgery for the treatment of primary metastatic osteosarcoma is ineffective, and <20% of patients will survive 5 years from diagnosis. Therefore, the treatment of metastases is critical for the improvement of the prognosis of primary metastatic osteosarcoma patients. We have previously observed that overexpression of interleukin-24 (IL-24) inhibits neuroblastoma cell proliferation, migration and invasion in vitro. The present study investigated whether IL-24 may be a novel agent for osteosarcoma metastasis-suppressive treatment. It was observed that IL-24 is able to inhibit migration and invasion in spontaneously metastasizing human 143B osteosarcoma cells via the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway. IL-24 was effective in inhibiting JNK and c-Jun phosphorylation to downregulate matrix metalloproteinase (MMP)-2 and MMP-9, which contributed to the suppression of cell migration and invasion. It was concluded that IL-24 may be a potent agent in the inhibition of highly metastatic 143B osteosarcoma cells, and IL-24 may have translational potential as an effective therapeutic agent for the treatment of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Haihui Qin
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhengwei Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Fengfei Zhang
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Rong Wang
- Department of Ultrasound, The Affiliated Hospital Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaodong Wang
- Department of Surgery, The Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
125
|
Dumas JF, Brisson L, Chevalier S, Mahéo K, Fromont G, Moussata D, Besson P, Roger S. Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. Semin Cancer Biol 2017; 43:90-110. [DOI: 10.1016/j.semcancer.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
|
126
|
Chi Q, Shan J, Ding X, Yin T, Wang Y, Jia D, Wang G. Smart mechanosensing machineries enable migration of vascular smooth muscle cells in atherosclerosis-relevant 3D matrices. Cell Biol Int 2017; 41:586-598. [PMID: 28328100 DOI: 10.1002/cbin.10764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/19/2017] [Indexed: 11/05/2022]
Abstract
At the early stage of atherosclerosis, neointima is formed due to the migration of vascular smooth muscle cells (VSMCs) from the media to the intima. VSMCs are surrounded by highly adhesive 3D matrices. They take specific strategies to cross various 3D matrices in the media, including heterogeneous collagen and mechanically strong basement membrane. Migration of VSMCs is potentially caused by biomechanical mechanism. Most in vitro studies focus on cell migration on 2D substrates in response to biochemical factors. How the cells move through 3D matrices under the action of mechanosensing machineries remains unexplored. In this review, we propose that several interesting tension-dependent machineries act as "tractor"-posterior myosin II accumulation, and "wrecker"-anterior podosome maintaining, to power VSMCs ahead. VSMCs embedded in 3D matrices may accumulate a minor myosin II isoform, myosin IIB, at the cell rear. Anisotropic myosin IIB distribution creates cell rear, polarizes cell body, pushes the nucleus and reshapes the cell body, and cooperates with a uniformly distributed myosin IIA to propel the cell forward. On the other hand, matrix digestion by podosome further promote the migration when the matrix becomes denser. Actomyosin tension activates Src to induce podosome in soft 3D matrices and retain the podosome integrity to steadily digest the matrix.
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jieling Shan
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xiaorong Ding
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
127
|
Simiczyjew A, Mazur AJ, Dratkiewicz E, Nowak D. Involvement of β- and γ-actin isoforms in actin cytoskeleton organization and migration abilities of bleb-forming human colon cancer cells. PLoS One 2017; 12:e0173709. [PMID: 28333953 PMCID: PMC5363831 DOI: 10.1371/journal.pone.0173709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
Amoeboid movement is characteristic for rounded cells, which do not form strong adhesion contacts with the ECM and use blebs as migratory protrusions. It is well known that actin is the main component of mature forms of these structures, but the exact role fulfilled by non-muscle actin isoforms β- and γ- in bleb formation and migration of these cells is still not fully understood. The aim of this study was to establish the role of β- and γ-actin in migration of bleb-forming cancer cells using isoform-specific antibodies and expression of fluorescently tagged actin isoforms. We observed, after staining with monoclonal antibodies, that both actins are present in these cells in the form of a cortical ring as well as in the area of blebs. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we observed that the actin isoforms are present together in a single bleb. They were involved during bleb expansion as well as retraction. Also present in the area of these protrusions formed by both isoforms were the bleb markers–ezrin and myosin II. The overexpression of β- or γ-actin led to actin cytoskeletal rearrangement followed by the growth of migration and invasion abilities of examined human colon cancer cells, LS174T line. In summary these data prove that both actin isoforms have an impact on motility of bleb-forming cancer cells. Moreover, we conclude that monoclonal antibodies directed against actin isoforms in combination with the tagged actins are good tools to study their role in important biological processes.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
- * E-mail:
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| |
Collapse
|
128
|
Jones BC, Kelley LC, Loskutov YV, Marinak KM, Kozyreva VK, Smolkin MB, Pugacheva EN. Dual Targeting of Mesenchymal and Amoeboid Motility Hinders Metastatic Behavior. Mol Cancer Res 2017; 15:670-682. [PMID: 28235899 DOI: 10.1158/1541-7786.mcr-16-0411] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/14/2016] [Accepted: 02/04/2017] [Indexed: 01/22/2023]
Abstract
Commonly upregulated in human cancers, the scaffolding protein NEDD9/HEF1 is a known regulator of mesenchymal migration and cancer cell plasticity. However, the functional role of NEDD9 as a regulator of different migration/invasion modes in the context of breast cancer metastasis is currently unknown. Here, it is reported that NEDD9 is necessary for both mesenchymal and amoeboid individual cell migration/invasion in triple-negative breast cancer (TNBC). NEDD9 deficiency results in acquisition of the amoeboid morphology, but severely limits all types of cell motility. Mechanistically, NEDD9 promotes mesenchymal migration via VAV2-dependent Rac1 activation, and depletion of VAV2 impairs the ability of NEDD9 to activate Rac1. In addition, NEDD9 supports a mesenchymal phenotype through stimulating polymerization of actin via promoting CTTN phosphorylation in an AURKA-dependent manner. Interestingly, an increase in RhoA activity in NEDD9-depleted cells does not facilitate a switch to functional amoeboid motility, indicating a role of NEDD9 in the regulation of downstream RhoA signaling effectors. Simultaneous depletion of NEDD9 or inhibition of AURKA in combination with inhibition of the amoeboid driver ROCK results in an additional decrease in cancer cell migration/invasion. Finally, we confirmed that a dual targeting strategy is a viable and efficient therapeutic approach to hinder the metastasis of breast cancer in xenograft models, showcasing the important need for further clinical evaluation of this regimen to impede the spread of disease and improve patient survival.Implications: This study provides new insight into the therapeutic benefit of combining NEDD9 depletion with ROCK inhibition to reduce tumor cell dissemination and discovers a new regulatory role of NEDD9 in the modulation of VAV2-dependent activation of Rac1 and actin polymerization. Mol Cancer Res; 15(6); 670-82. ©2017 AACR.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Laura C Kelley
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Yuriy V Loskutov
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kristina M Marinak
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Varvara K Kozyreva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Elena N Pugacheva
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
129
|
Lauridsen HM, Gonzalez AL. Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers. PLoS One 2017; 12:e0171386. [PMID: 28234918 PMCID: PMC5325185 DOI: 10.1371/journal.pone.0171386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/18/2017] [Indexed: 11/18/2022] Open
Abstract
The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10μm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.
Collapse
Affiliation(s)
- Holly M. Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
130
|
Zhang M, Qin Y, Zuo B, Gong W, Zhang S, Gong Y, Quan Z, Chu B. Overexpression of NOTCH-regulated Ankyrin Repeat Protein is associated with papillary thyroid carcinoma progression. PLoS One 2017; 12:e0167782. [PMID: 28207739 PMCID: PMC5312965 DOI: 10.1371/journal.pone.0167782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/21/2016] [Indexed: 02/05/2023] Open
Abstract
Papillary thyroid cancer (PTC) is one of the endocrine cancers with high clinical and genetic heterogeneity. NOTCH signaling and its downstream NOTCH-Regulated Ankyrin Repeat Protein (NRARP) have been implicated in oncogenesis of many cancers, but the roles in PTCs are less studied. In this study, we show that NRARP is frequently over-expressed in thyroid carcinoma. The over-activation of NRARP is highly and positively correlated with NOTCH genes. Moreover, we find that the expression of NRARP is highly associated with several epithelial mesenchymal transition (EMT) markers and contributes to poor survival outcomes. Therefore, these results indicate that NRARP is an important clinical biomarker in thyroid carcinoma and it promotes EMT induction as well as the progression of PTCs via NOTCH signaling activation.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yiyu Qin
- Clinical College, Yancheng institute of Health Sciences, Yancheng, Jiangsu, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shenglai Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yurong Gong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (BC); (ZQ)
| | - Bingfeng Chu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (BC); (ZQ)
| |
Collapse
|
131
|
Valon L, Marín-Llauradó A, Wyatt T, Charras G, Trepat X. Optogenetic control of cellular forces and mechanotransduction. Nat Commun 2017; 8:14396. [PMID: 28186127 PMCID: PMC5309899 DOI: 10.1038/ncomms14396] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Contractile forces are the end effectors of cell migration, division, morphogenesis, wound healing and cancer invasion. Here we report optogenetic tools to upregulate and downregulate such forces with high spatiotemporal accuracy. The technology relies on controlling the subcellular activation of RhoA using the CRY2/CIBN light-gated dimerizer system. We fused the catalytic domain (DHPH domain) of the RhoA activator ARHGEF11 to CRY2-mCherry (optoGEF-RhoA) and engineered its binding partner CIBN to bind either to the plasma membrane or to the mitochondrial membrane. Translocation of optoGEF-RhoA to the plasma membrane causes a rapid and local increase in cellular traction, intercellular tension and tissue compaction. By contrast, translocation of optoGEF-RhoA to mitochondria results in opposite changes in these physical properties. Cellular changes in contractility are paralleled by modifications in the nuclear localization of the transcriptional regulator YAP, thus showing the ability of our approach to control mechanotransductory signalling pathways in time and space.
Collapse
Affiliation(s)
- Léo Valon
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
| | | | - Thomas Wyatt
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
- London Centre for Nanotechnology, London WC1H 0AH, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, London WC1H 0AH, UK
- Department of Cell and Developmental Biology and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
- Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona 08028, Spain
| |
Collapse
|
132
|
Abstract
Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
133
|
MIYOSHI H, NISHIMURA M, YAMAGATA Y, LIU H, WATANABE Y, SUGAWARA M. Cell migration guided by a groove with branches. ACTA ACUST UNITED AC 2017. [DOI: 10.1299/jbse.16-00613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiromi MIYOSHI
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies
- Health Metrics Development Team, RIKEN Compass to Healthy Life Research Complex Program
- PRIME, AMED
| | | | - Yutaka YAMAGATA
- Ultrahigh Precision Optics Technology Team, RIKEN Center for Advanced Photonics
| | - Hao LIU
- Graduate School of Engineering, Chiba University
| | - Yasuyoshi WATANABE
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies
- Health Metrics Development Team, RIKEN Compass to Healthy Life Research Complex Program
| | | |
Collapse
|
134
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
135
|
Bon E, Driffort V, Gradek F, Martinez-Caceres C, Anchelin M, Pelegrin P, Cayuela ML, Marionneau-Lambot S, Oullier T, Guibon R, Fromont G, Gutierrez-Pajares JL, Domingo I, Piver E, Moreau A, Burlaud-Gaillard J, Frank PG, Chevalier S, Besson P, Roger S. SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer. Nat Commun 2016; 7:13648. [PMID: 27917859 PMCID: PMC5150224 DOI: 10.1038/ncomms13648] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
The development of metastases largely relies on the capacity of cancer cells to invade extracellular matrices (ECM) using two invasion modes termed ‘mesenchymal' and ‘amoeboid', with possible transitions between these modes. Here we show that the SCN4B gene, encoding for the β4 protein, initially characterized as an auxiliary subunit of voltage-gated sodium channels (NaV) in excitable tissues, is expressed in normal epithelial cells and that reduced β4 protein levels in breast cancer biopsies correlate with high-grade primary and metastatic tumours. In cancer cells, reducing β4 expression increases RhoA activity, potentiates cell migration and invasiveness, primary tumour growth and metastatic spreading, by promoting the acquisition of an amoeboid–mesenchymal hybrid phenotype. This hyperactivated migration is independent of NaV and is prevented by overexpression of the intracellular C-terminus of β4. Conversely, SCN4B overexpression reduces cancer cell invasiveness and tumour progression, indicating that SCN4B/β4 represents a metastasis-suppressor gene. The capacity of cancer cells to migrate is intimately linked to their ability to induce metastasis. Here the authors show that the sodium channel β4 subunit regulates breast cancer cell migration via inhibition of RhoA activation, independently from its function as an auxiliary protein of the sodium channel.
Collapse
Affiliation(s)
- Emeline Bon
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Virginie Driffort
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Frédéric Gradek
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Carlos Martinez-Caceres
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | - Monique Anchelin
- Telomerase, Cancer and Aging Group, Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | - Pablo Pelegrin
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | - Maria-Luisa Cayuela
- Telomerase, Cancer and Aging Group, Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | | | - Thibauld Oullier
- Cancéropôle du Grand Ouest, Plateforme In Vivo, 44000 Nantes, France
| | - Roseline Guibon
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,CHRU de Tours, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Gaëlle Fromont
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,CHRU de Tours, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Jorge L Gutierrez-Pajares
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Isabelle Domingo
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Eric Piver
- CHRU de Tours, 2 Boulevard Tonnellé, 37000 Tours, France.,Inserm, U966, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Alain Moreau
- Inserm, U966, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Julien Burlaud-Gaillard
- Laboratoire de Biologie Cellulaire-Microscopie Electronique, Faculté de Médecine, Université François-Rabelais de Tours, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe G Frank
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Stéphan Chevalier
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,UFR Sciences Pharmaceutiques, Université François-Rabelais de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Pierre Besson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,UFR Sciences Pharmaceutiques, Université François-Rabelais de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Sébastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,UFR Sciences et Techniques, Département de Physiologie Animale, Université François-Rabelais de Tours, Parc de Grandmont, 37200 Tours, France.,Institut Universitaire de France, 1, Rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
136
|
Chan CK, Pan Y, Nyberg K, Marra MA, Lim EL, Jones SJM, Maar D, Gibb EA, Gunaratne PH, Robertson AG, Rowat AC. Tumour-suppressor microRNAs regulate ovarian cancer cell physical properties and invasive behaviour. Open Biol 2016; 6:160275. [PMID: 27906134 PMCID: PMC5133448 DOI: 10.1098/rsob.160275] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
The activities of pathways that regulate malignant transformation can be influenced by microRNAs (miRs). Recently, we showed that increased expression of five tumour-suppressor miRs, miR-508-3p, miR-508-5p, miR-509-3p, miR-509-5p and miR-130b-3p, correlate with improved clinical outcomes in human ovarian cancer patients, and that miR-509-3p attenuates invasion of ovarian cancer cell lines. Here, we investigate the mechanism underlying this reduced invasive potential by assessing the impact of these five miRs on the physical properties of cells. Human ovarian cancer cells (HEYA8, OVCAR8) that are transfected with miR mimics representing these five miRs exhibit decreased invasion through collagen matrices, increased cell size and reduced deformability as measured by microfiltration and microfluidic assays. To understand the molecular basis of altered invasion and deformability induced by these miRs, we use predicted and validated mRNA targets that encode structural and signalling proteins that regulate cell mechanical properties. Combined with analysis of gene transcripts by real-time PCR and image analysis of F-actin in single cells, our results suggest that these tumour-suppressor miRs may alter cell physical properties by regulating the actin cytoskeleton. Our findings provide biophysical insights into how tumour-suppressor miRs can regulate the invasive behaviour of ovarian cancer cells, and identify potential therapeutic targets that may be implicated in ovarian cancer progression.
Collapse
Affiliation(s)
- Clara K Chan
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Yinghong Pan
- Department of Biochemistry and Biology, University of Houston, Houston, TX, USA
| | - Kendra Nyberg
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco A Marra
- British Columbia Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia L Lim
- British Columbia Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- British Columbia Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Dianna Maar
- Bio-Rad Laboratories, The Digital Biology Center, Pleasanton, CA, USA
| | - Ewan A Gibb
- British Columbia Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Preethi H Gunaratne
- Department of Biochemistry and Biology, University of Houston, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - A Gordon Robertson
- British Columbia Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
137
|
Huber RJ, O'Day DH. Extracellular matrix dynamics and functions in the social amoeba Dictyostelium: A critical review. Biochim Biophys Acta Gen Subj 2016; 1861:2971-2980. [PMID: 27693486 DOI: 10.1016/j.bbagen.2016.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) is a dynamic complex of glycoproteins, proteoglycans, carbohydrates, and collagen that serves as an interface between mammalian cells and their extracellular environment. Essential for normal cellular homeostasis, physiology, and events that occur during development, it is also a key functionary in a number of human diseases including cancer. The social amoeba Dictyostelium discoideum secretes an ECM during multicellular development that regulates multicellularity, cell motility, cell differentiation, and morphogenesis, and provides structural support and protective layers to the resulting differentiated cell types. Proteolytic processing within the Dictyostelium ECM leads to specific bioactive factors that regulate cell motility and differentiation. SCOPE OF REVIEW Here we review the structure and functions of the Dictyostelium ECM and its role in regulating multicellular development. The questions and challenges that remain and how they can be answered are also discussed. MAJOR CONCLUSIONS The Dictyostelium ECM shares many of the features of mammalian and plant ECM, and thus presents an excellent system for studying the structure and function of the ECM. GENERAL SIGNIFICANCE As a genetically tractable model organism, Dictyostelium offers the potential to further elucidate ECM functions, and to possibly reveal previously unknown roles for the ECM.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | - Danton H O'Day
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
138
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
139
|
Appert-Collin A, Bennasroune A, Jeannesson P, Terryn C, Fuhrmann G, Morjani H, Dedieu S. Role of LRP-1 in cancer cell migration in 3-dimensional collagen matrix. Cell Adh Migr 2016; 11:316-326. [PMID: 27463962 DOI: 10.1080/19336918.2016.1215788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.
Collapse
Affiliation(s)
- Aline Appert-Collin
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| | - Amar Bennasroune
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France.,b UMR CNRS 7360, LIEC, Université de Lorraine , Metz , France
| | - Pierre Jeannesson
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Christine Terryn
- d Plateforme d'Imagerie Cellulaire et Tissulaire, URCA , Reims , France
| | - Guy Fuhrmann
- e UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie , Illkirch , France
| | - Hamid Morjani
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Stéphane Dedieu
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| |
Collapse
|
140
|
Geng F, Huang X, Ma M. Hen egg white ovomacroglobulin promotes fibroblast migration via mediating cell adhesion and cytoskeleton. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3188-3194. [PMID: 26467490 DOI: 10.1002/jsfa.7498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Hen egg white ovomacroglobulin (OVM) possesses a variety of bioactivities and could potentially be used as a pharmaceutical agent. It has been reported that OVM is involved in wound healing and cancer pathological processes, and previous results suggest that OVM plays a potential role in cell proliferation and migration; however, this has not yet been proven. In the present study, the effects of OVM on fibroblast proliferation and migration were evaluated. RESULTS Results of cell counting, cell viability, and cell cycle indicated that proliferation of fibroblasts was not altered by OVM treatment. However, scratch assays showed that OVM could promote the migration of 3 T6 mouse embryonic fibroblasts and human skin fibroblasts (HSF). Also, the adhesion of HSF to the collagen matrix was also enhanced by OVM treatment. RT-qPCR and western blot analysis showed that β1 -integrin, β-tubulin, and β-actin were up-regulated while E-cadherin was down-regulated in OVM-treated HSF cells. The effect of OVM was silenced after forming a complex with trypsin, suggesting that the protease inhibitory ability of OVM is important for its effect on cell migration. CONCLUSION These results suggested that promotion of OVM on cell migration was achieved by enhancing cell adhesion to extracellular matrix, reducing intercellular aggregation, and strengthening cytoskeleton. The finding of the promotion effect of OVM on cell migration is important for understanding its role in wound healing and cancer pathological processes. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Geng
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| | - Xi Huang
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei, 430070, China
| |
Collapse
|
141
|
Lautscham LA, Kämmerer C, Lange JR, Kolb T, Mark C, Schilling A, Strissel PL, Strick R, Gluth C, Rowat AC, Metzner C, Fabry B. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness. Biophys J 2016; 109:900-13. [PMID: 26331248 DOI: 10.1016/j.bpj.2015.07.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/13/2023] Open
Abstract
In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.
Collapse
Affiliation(s)
- Lena A Lautscham
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Christoph Kämmerer
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Janina R Lange
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thorsten Kolb
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Mark
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Achim Schilling
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pamela L Strissel
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University-Clinic Erlangen, Erlangen, Germany
| | - Reiner Strick
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University-Clinic Erlangen, Erlangen, Germany
| | - Caroline Gluth
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California
| | - Claus Metzner
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ben Fabry
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
142
|
Prunier C, Josserand V, Vollaire J, Beerling E, Petropoulos C, Destaing O, Montemagno C, Hurbin A, Prudent R, de Koning L, Kapur R, Cohen PA, Albiges-Rizo C, Coll JL, van Rheenen J, Billaud M, Lafanechère L. LIM Kinase Inhibitor Pyr1 Reduces the Growth and Metastatic Load of Breast Cancers. Cancer Res 2016; 76:3541-52. [DOI: 10.1158/0008-5472.can-15-1864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/03/2016] [Indexed: 11/16/2022]
|
143
|
King SJ, Asokan SB, Haynes EM, Zimmerman SP, Rotty JD, Alb JG, Tagliatela A, Blake DR, Lebedeva IP, Marston D, Johnson HE, Parsons M, Sharpless NE, Kuhlman B, Haugh JM, Bear JE. Lamellipodia are crucial for haptotactic sensing and response. J Cell Sci 2016; 129:2329-42. [PMID: 27173494 DOI: 10.1242/jcs.184507] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
Haptotaxis is the process by which cells respond to gradients of substrate-bound cues, such as extracellular matrix proteins (ECM); however, the cellular mechanism of this response remains poorly understood and has mainly been studied by comparing cell behavior on uniform ECMs with different concentrations of components. To study haptotaxis in response to gradients, we utilized microfluidic chambers to generate gradients of the ECM protein fibronectin, and imaged the cell migration response. Lamellipodia are fan-shaped protrusions that are common in migrating cells. Here, we define a new function for lamellipodia and the cellular mechanism required for haptotaxis - differential actin and lamellipodial protrusion dynamics lead to biased cell migration. Modest differences in lamellipodial dynamics occurring over time periods of seconds to minutes are summed over hours to produce differential whole cell movement towards higher concentrations of fibronectin. We identify a specific subset of lamellipodia regulators as being crucial for haptotaxis. Numerous studies have linked components of this pathway to cancer metastasis and, consistent with this, we find that expression of the oncogenic Rac1 P29S mutation abrogates haptotaxis. Finally, we show that haptotaxis also operates through this pathway in 3D environments.
Collapse
Affiliation(s)
- Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth M Haynes
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth P Zimmerman
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James G Alb
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alicia Tagliatela
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Devon R Blake
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Irina P Lebedeva
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Marston
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Heath E Johnson
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Maddy Parsons
- King's College London, Randall Institute, London SE1 8RT, UK
| | - Norman E Sharpless
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Kuhlman
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jason M Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
144
|
Bersini S, Arrigoni C, Lopa S, Bongio M, Martin I, Moretti M. Engineered miniaturized models of musculoskeletal diseases. Drug Discov Today 2016; 21:1429-1436. [PMID: 27132520 DOI: 10.1016/j.drudis.2016.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/31/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023]
Abstract
The musculoskeletal system is an incredible machine that protects, supports and moves the human body. However, several diseases can limit its functionality, compromising patient quality of life. Designing novel pathological models would help to clarify the mechanisms driving such diseases, identify new biomarkers and screen potential drug candidates. Miniaturized models in particular can mimic the structure and function of basic tissue units within highly controlled microenvironments, overcoming the limitations of traditional macroscale models and complementing animal studies, which despite being closer to the in vivo situation, are affected by species-specific differences. Here, we discuss the miniaturized models engineered over the past few years to analyze osteochondral and skeletal muscle pathologies, demonstrating how the rationale design of novel systems could provide key insights into the pathological mechanisms behind diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Chiara Arrigoni
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Matilde Bongio
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Ivan Martin
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland; Swiss Institute for Regenerative Medicine, Lugano, Switzerland; Fondazione Cardiocentro Ticino, Lugano, Switzerland.
| |
Collapse
|
145
|
Aranjuez G, Burtscher A, Sawant K, Majumder P, McDonald JA. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. Mol Biol Cell 2016; 27:1898-910. [PMID: 27122602 PMCID: PMC4907723 DOI: 10.1091/mbc.e15-10-0744] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
Abstract
A challenge for migrating collectives is to respond to physical changes in local environments. Border cells migrate collectively in the Drosophila ovary and require dynamic myosin to maintain their morphology. Border cells elevate active myosin in response to tissue compression. Myosin tension counteracts tissue constraints for collective movement. Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.
Collapse
Affiliation(s)
- George Aranjuez
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Ashley Burtscher
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ketki Sawant
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Pralay Majumder
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jocelyn A McDonald
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
146
|
Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials 2016; 81:135-156. [DOI: 10.1016/j.biomaterials.2015.12.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/15/2022]
|
147
|
Ruan J, Zheng H, Rong X, Rong X, Zhang J, Fang W, Zhao P, Luo R. Over-expression of cathepsin B in hepatocellular carcinomas predicts poor prognosis of HCC patients. Mol Cancer 2016; 15:17. [PMID: 26896959 PMCID: PMC4761221 DOI: 10.1186/s12943-016-0503-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background Several studies have found that Cathepsin B (CTSB) is up-regulated in many tumor types and facilitates tumor progression. However, the role of CTSB in hepatocellular carcinoma (HCC) progression remains unclear. This study was aimed at investigating the expression and role of CTSB in HCC in a large set of samples and cell lines (MHCC-97H and MHCC-97 L), and evaluating the clinical and prognostic significance of CTSB protein in patients with HCC. Methods The expression of CTSB was examined in HCC tissue and cell lines by Western-blotting, Real-time PCR, and immunohistochemical staining. Wound healing assay and invasion assay were used to verify the effect of CTSB on the migration and invasion ability of HCC cell lines. Tumor formation assay in nude mice was used to analyze the effect of CTSB on the tumorigenicity of HCC cell lines. Results The status of CTSB protein in carcinoma tissues is much higher than that in paracarcinoma tissues. The overall survival of the patients with high CTSB expression was significantly shorter than the low CTSB expression group. High CTSB expression was significantly correlated with advanced clinical staging, histological grade, and tumor recurrence. In vitro and in vivo experiments demonstrated that over-expression of CTSB in MHCC-97 L cells promoted cell invasion and tumor progression ability. Down-regulation of CTSB in MHCC-97H showed the opposite effects. These phenotypic changes caused by CTSB knockdown or over-expression correlated with expression of the matrix metallopeptidase MMP-9. Moreover, multivariate analysis suggested that CTSB expression might be an independent prognostic indicator for the survival of HCC patients after curative surgery. Conclusions CTSB might be involved in the development and progression of HCC as an oncogene, and thereby may be a valuable prognostic marker for HCC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0503-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Ruan
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| | - Haiyan Zheng
- The Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510315, Guangdong Province, People's Republic of China.
| | - Xiaodong Rong
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| | - Xiaomin Rong
- Department of pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| | - Junyi Zhang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, People's Republic of China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, People's Republic of China.
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
148
|
Abstract
The membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) mediates proteolysis-based invasive tumor growth. In this issue, Marchesin et al. (2015. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201506002) describe a tug-of-war mechanism regulating dynein and kinesin motors to drive endosome tubulation and MT1-MMP delivery to the surface of cancer cells, identifying a crucial regulatory axis for tumor metastasis.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
149
|
Holle AW, Young JL, Spatz JP. In vitro cancer cell-ECM interactions inform in vivo cancer treatment. Adv Drug Deliv Rev 2016; 97:270-9. [PMID: 26485156 DOI: 10.1016/j.addr.2015.10.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023]
Abstract
The general progression of cancer drug development involves in vitro testing followed by safety and efficacy evaluation in clinical trials. Due to the expense of bringing candidate drugs to trials, in vitro models of cancer cells and tumor biology are required to screen drugs. There are many examples of drugs exhibiting cytotoxic behavior in cancer cells in vitro but losing efficacy in vivo, and in many cases, this is the result of poorly understood chemoresistant effects conferred by the cancer microenvironment. To address this, improved methods for culturing cancer cells in biomimetic scaffolds have been developed; along the way, a great deal about the nature of cancer cell-extracellular matrix (ECM) interactions has been discovered. These discoveries will continue to be leveraged both in the development of novel drugs targeting these interactions and in the fabrication of biomimetic substrates for efficient cancer drug screening in vitro.
Collapse
|
150
|
Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn 2016; 245:351-60. [PMID: 26699796 DOI: 10.1002/dvdy.24379] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
During normal morphogenesis the extracellular matrix (ECM) influences cell motility, proliferation, apoptosis, and differentiation. Tissue engineers have attempted to harness the cell signaling potential of ECM to promote the functional reconstruction, if not regeneration, of injured or missing adult tissues that otherwise heal by the formation of scar tissue. ECM bioscaffolds, derived from decellularized tissues, have been used to promote the formation of site appropriate, functional tissues in many clinical applications including skeletal muscle, fibrocartilage, lower urinary tract, and esophageal reconstruction, among others. These scaffolds function by the release or exposure of growth factors and cryptic peptides, modulation of the immune response, and recruitment of progenitor cells. Herein, we describe this process of ECM induced constructive remodeling and examine similarities to normal tissue morphogenesis.
Collapse
Affiliation(s)
- Ilea T Swinehart
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|