101
|
Hewes SA, Wilson RL, Estes MK, Shroyer NF, Blutt SE, Grande-Allen KJ. In Vitro Models of the Small Intestine: Engineering Challenges and Engineering Solutions. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:313-326. [PMID: 32046599 PMCID: PMC7462033 DOI: 10.1089/ten.teb.2019.0334] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Pathologies affecting the small intestine contribute significantly to the disease burden of both the developing and the developed world, which has motivated investigation into the disease mechanisms through in vitro models. Although existing in vitro models recapitulate selected features of the intestine, various important aspects have often been isolated or omitted due to the anatomical and physiological complexity. The small intestine's intricate microanatomy, heterogeneous cell populations, steep oxygen gradients, microbiota, and intestinal wall contractions are often not included in in vitro experimental models of the small intestine, despite their importance in both intestinal biology and pathology. Known and unknown interdependencies between various physiological aspects necessitate more complex in vitro models. Microfluidic technology has made it possible to mimic the dynamic mechanical environment, signaling gradients, and other important aspects of small intestinal biology. This review presents an overview of the complexity of small intestinal anatomy and bioengineered models that recapitulate some of these physiological aspects.
Collapse
Affiliation(s)
- Sarah A. Hewes
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
102
|
Dai X, Guo Z, Chen D, Li L, Song X, Liu T, Jin G, Li Y, Liu Y, Ajiguli A, Yang C, Wang B, Cao H. Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood. Gut Microbes 2020; 11:1043-1063. [PMID: 32228300 PMCID: PMC7524393 DOI: 10.1080/19490976.2020.1738187] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is considered to be associated with diet and gut dysbiosis. Excessive sucralose can induce gut dysbiosis and negatively affect host health. Maternal diet shapes the microbial communities of neonate and this effect continues in later life. We aimed to investigate the effects of maternal sucralose (MS) intake on the susceptibility of offspring to hepatic steatosis in adulthood. METHODS C57BL/6 pregnant mice were randomized into MS group (MS during gestation and lactation) and maternal control (MC) group (MC diet). After weaning, all offspring were fed a control diet until 8 weeks of age, and then treated with a high-fat diet (HFD) for 4 weeks. The intestinal development, mucosal barrier function, and gut microbiota were assessed in the 3-week-old offspring. Moreover, the severity of hepatic steatosis, serum biochemistry, lipid metabolism, and gut microbiota was then assessed in the 12th week. RESULTS MS significantly inhibited intestinal development and disrupted barrier function in 3-week-old offspring. MS also induced intestinal low-grade inflammation, significantly changed the compositions and diversity of gut microbiota including reducing butyrate-producing bacteria and cecal butyrate production with down-regulation of GPR43. Mechanically, blocking GPR43 blunted the anti-inflammatory effect of one of the butyrate-producing bacteria, Clostridium butyricum in vitro. After HFD treatment, MS exacerbated hepatic steatosis, and disturbed fatty acid biosynthesis and metabolism, accompanied by inducing gut dysbiosis compared with MC group. CONCLUSIONS MS intake inhibits intestinal development, induces gut dysbiosis in offspring through down-regulation of GPR43, and exacerbates HFD-induced hepatic steatosis in adulthood.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yun Li
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yi Liu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China,Department of Gastroenterology and Hepatology, Hotan District People’s Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Aihemaiti Ajiguli
- Department of Gastroenterology and Hepatology, Hotan District People’s Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Cheng Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine,Tianjin
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China,CONTACT Bangmao Wang Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, 154 Anshan Road, Heping District, China, Tianjin , 300052
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China,Department of Gastroenterology and Hepatology, Hotan District People’s Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine,Tianjin,Hailong Cao Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, 154 Anshan Road, Heping District, Tianjin300052, China
| |
Collapse
|
103
|
Pian Y, Chai Q, Ren B, Wang Y, Lv M, Qiu J, Zhu M. Type 3 Innate Lymphoid Cells Direct Goblet Cell Differentiation via the LT-LTβR Pathway during Listeria Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:853-863. [PMID: 32591396 DOI: 10.4049/jimmunol.2000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
As a specialized subset of intestinal epithelial cells (IECs), goblet cells (GCs) play an important role during the antibacterial response via mucin production. However, the regulatory mechanisms involved in GC differentiation and function during infection, particularly the role of immune cell-IEC cross-talk, remain largely unknown. In this study, using Villin∆Ltbr conditional knockout mice, we demonstrate that LTβR, expressed on IECs, is required for GC hyperplasia and mucin 2 (MUC2) expression during Listeria infection for host defense but not homeostatic maintenance in the naive state. Analysis of single gene-deficient mice revealed that the ligand lymphotoxin (LT), but not LIGHT, and type 3 innate lymphoid cells (ILC3s), but not conventional T cells, are required for MUC2-dependent Listeria control. Conditional deficiency of LT in ILC3s further confirmed the importance of LT signals derived from ILC3s. Lack of ILC3-derived LT or IEC-derived LTβR resulted in the defective expression of genes related to GC differentiation but was not correlated with IEC proliferation and cell death, which were found to be normal by Ki-67 and Annexin V staining. In addition, the alternative NF-κB signaling pathway (involving RelB) in IECs was found to be required for the expression of GC differentiation-related genes and Muc2 and required for the anti-Listeria response. Therefore, our data together suggest a previously unrecognized ILC3-IEC interaction and LT-LTβR-RelB signaling axis governing GC differentiation and function during Listeria infection for host defense.
Collapse
Affiliation(s)
- Yaya Pian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Chai
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Boyang Ren
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Yue Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Mengjie Lv
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingzhao Zhu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| |
Collapse
|
104
|
Ahmadi S, Razazan A, Nagpal R, Jain S, Wang B, Mishra SP, Wang S, Justice J, Ding J, McClain DA, Kritchevsky SB, Kitzman D, Yadav H. Metformin Reduces Aging-Related Leaky Gut and Improves Cognitive Function by Beneficially Modulating Gut Microbiome/Goblet Cell/Mucin Axis. J Gerontol A Biol Sci Med Sci 2020; 75:e9-e21. [PMID: 32129462 PMCID: PMC7302182 DOI: 10.1093/gerona/glaa056] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Aging-related illnesses are increasing and effective strategies to prevent and/or treat them are lacking. This is because of a poor understanding of therapeutic targets. Low-grade inflammation is often higher in older adults and remains a key risk factor of aging-related morbidities and mortalities. Emerging evidence indicates that abnormal (dysbiotic) gut microbiome and dysfunctional gut permeability (leaky gut) are linked with increased inflammation in older adults. However, currently available drugs do not treat aging-related microbiome dysbiosis and leaky gut, and little is known about the cellular and molecular processes that can be targeted to reduce leaky gut in older adults. Here, we demonstrated that metformin, a safe Food and Drug Administration-approved antidiabetic drug, decreased leaky gut and inflammation in high-fat diet-fed older obese mice, by beneficially modulating the gut microbiota. In addition, metformin increased goblet cell mass and mucin production in the obese older gut, thereby decreasing leaky gut and inflammation. Mechanistically, metformin increased the goblet cell differentiation markers by suppressing Wnt signaling. Our results suggest that metformin can be used as a regimen to prevent and treat aging-related leaky gut and inflammation, especially in obese individuals and people with western-style high-fat dietary lifestyle, by beneficially modulating gut microbiome/goblet cell/mucin biology.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Atefeh Razazan
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shalini Jain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jamie Justice
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jingzhong Ding
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Donald A McClain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephen B Kritchevsky
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Dalane Kitzman
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
105
|
Pascual A, Pauletto M, Giantin M, Radaelli G, Ballarin C, Birolo M, Zomeño C, Dacasto M, Bortoletti M, Vascellari M, Xiccato G, Trocino A. Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens. J Anim Sci Biotechnol 2020; 11:40. [PMID: 32377338 PMCID: PMC7193382 DOI: 10.1186/s40104-020-00448-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background The dietary supplementation of yeast cell wall extracts (YCW) has been found to reduce pathogenic bacteria load, promote immunoglobulin production, prevent diseases by pro-inflammatory responses, and alter gut microbiota composition. This study evaluated growth and slaughter results, health, gut morphology, immune status and gut transcriptome of 576 male chickens fed two diets, i.e. C (control) or Y (with 250-500 g/t of YCW fractions according to the growth period). At 21 and 42 d the jejunum of 12 chickens per diet were sampled and stained with hematoxylin/eosin for morphometric evaluation, with Alcian-PAS for goblet cells, and antibodies against CD3+ intraepithelial T-cells and CD45+ intraepithelial leukocytes. The jejunum sampled at 42 d were also used for whole-transcriptome profiling. Results Dietary YCW supplementation did not affect final live weight, whereas it decreased feed intake (114 to 111 g/d; P ≤ 0.10) and improved feed conversion (1.74 to 1.70; P ≤ 0.01). Regarding the gut, YCW supplementation tended to increase villi height (P = 0.07); it also increased the number of goblet cells and reduced the density of CD45+ cells compared to diet C (P < 0.001). In the gut transcriptome, four genes were expressed more in broilers fed diet Y compared to diet C, i.e. cytochrome P450, family 2, subfamily C, polypeptide 23b (CYP2C23B), tetratricopeptide repeat domain 9 (TTC9), basic helix-loop-helix family member e41 (BHLHE41), and the metalloreductase STEAP4. Only one gene set (HES_PATHWAY) was significantly enriched among the transcripts more expressed in broilers fed diet Y. However, a total of 41 gene sets were significantly over-represented among genes up-regulated in control broilers. Notably, several enriched gene sets are implicated in immune functions and related to NF-κB signaling, apoptosis, and interferon signals. Conclusions The dietary YCW supplementation improved broiler growth performance, increased gut glycoconjugate secretion and reduced the inflammatory status together with differences in the gut transcriptome, which can be considered useful to improve animal welfare and health under the challenging conditions of intensive rearing systems in broiler chickens.
Collapse
Affiliation(s)
- A Pascual
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Pauletto
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Giantin
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - G Radaelli
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - C Ballarin
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Birolo
- 2Department of Agronomy, Food, Natural Resources, Animal, and Environment (DAFNAE), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - C Zomeño
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Dacasto
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Bortoletti
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - M Vascellari
- 3Histopathology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro, Padova Italy
| | - G Xiccato
- 2Department of Agronomy, Food, Natural Resources, Animal, and Environment (DAFNAE), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| | - A Trocino
- 1Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, I-35020 Legnaro, Padova Italy
| |
Collapse
|
106
|
Maltseva D, Raygorodskaya M, Knyazev E, Zgoda V, Tikhonova O, Zaidi S, Nikulin S, Baranova A, Turchinovich A, Rodin S, Tonevitsky A. Knockdown of the α5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy. Biochimie 2020; 174:107-116. [PMID: 32334043 DOI: 10.1016/j.biochi.2020.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
The interaction of tumor cells with the extracellular matrix (ECM) may affect the rate of cancer progression and metastasis. One of the major components of ECM are laminins, the heterotrimeric glycoproteins consisting of α-, β-, and γ-chains (αβγ). Laminins interact with their cell surface receptors and, thus, regulate multiple cellular processes. In this work, we demonstrate that shRNA-mediated knockdown of the α5 laminin chain results in Wnt- and mTORC1-dependent partial dedifferentiation of colorectal cancer cells. Furthermore, we showed that this dedifferentiation involved activation of ER-stress signaling, pathway promoting the sensitivity of cells to 5-fluorouracil.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| | - Maria Raygorodskaya
- Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia; Research Center of Medical Genetics, Moskvorechye str. 1, 115522, Moscow, Russia
| | | | - Sergey Rodin
- Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| |
Collapse
|
107
|
Kaur A, Goggolidou P. Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies. JOURNAL OF INFLAMMATION-LONDON 2020; 17:15. [PMID: 32336953 PMCID: PMC7175540 DOI: 10.1186/s12950-020-00246-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Dynamic interactions between the gastrointestinal epithelium and the mucosal immune system normally contribute to ensuring intestinal homeostasis and optimal immunosurveillance, but destabilisation of these interactions in genetically predisposed individuals can lead to the development of chronic inflammatory diseases. Ulcerative colitis is one of the main types of inflammatory diseases that affect the bowel, but its pathogenesis has yet to be completely defined. Several genetic factors and other inflammation-related genes are implicated in mediating the inflammation and development of the disease. Some susceptibility loci associated with increased risk of ulcerative colitis are found to be implicated in mucosal barrier function. Different biomarkers that cause damage to the colonic mucosa can be detected in patients, including perinuclear ANCA, which is also useful in distinguishing ulcerative colitis from other colitides. The choice of treatment for ulcerative colitis depends on disease severity. Therapeutic strategies include anti-tumour necrosis factor alpha (TNF-α) monoclonal antibodies used to block the production of TNF-α that mediates intestinal tract inflammation, an anti-adhesion drug that prevents lymphocyte infiltration from the blood into the inflamed gut, inhibitors of JAK1 and JAK3 that suppress the innate immune cell signalling and interferons α/β which stimulate the production of anti-inflammatory cytokines, as well as faecal microbiota transplantation. Although further research is still required to fully dissect the pathophysiology of ulcerative colitis, understanding its cellular pathology and molecular mechanisms has already proven beneficial and it has got the potential to identify further novel, effective targets for therapy and reduce the burden of this chronic disease.
Collapse
Affiliation(s)
- Amandip Kaur
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| | - Paraskevi Goggolidou
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| |
Collapse
|
108
|
Lara-Hidalgo CE, Dorantes-Álvarez L, Hernández-Sánchez H, Santoyo-Tepole F, Martínez-Torres A, Villa-Tanaca L, Hernández-Rodríguez C. Isolation of Yeasts from Guajillo Pepper (Capsicum annuum L.) Fermentation and Study of Some Probiotic Characteristics. Probiotics Antimicrob Proteins 2020; 11:748-764. [PMID: 29696516 DOI: 10.1007/s12602-018-9415-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three yeast strains were isolated from the spontaneous fermentation of guajillo pepper: Hanseniaspora opuntiae, Pichia kudriavzevii, and Wickerhamomyces anomalus, which were identified by amplification of the ITS/5.8S ribosomal DNA. Some probiotic characteristics of these strains were evaluated and compared with one commercial probiotic yeast (Saccharomyces boulardii). The survival percentage of all the yeasts was similar to that of the commercial product. They showed different hydrophobicity characteristics with hydrocarbons, autoaggregation > 90%, and characteristics of co-aggregation with pathogenic microorganisms. The adhesion capacity to mucin of the three yeast samples was similar to the reference yeast. The antioxidant activity of the yeasts varied between 155 and 178 μM Trolox equivalents. All exhibited cholesterol reduction capacity, and W. anomalus was able to decrease up to 83% of cholesterol after 48 h of incubation. The 7.5-fold concentrated H. opuntiae supernatant had antimicrobial activity against Salmonella enterica ser. Typhimurium ATCC 14028 and Candida albicans ENCBDM2; tests suggest this activity against S. Typhimurium is due to a proteinaceous metabolite with a weight between 10 and 30 kDa. Among the yeasts, P. kudriavzevii exhibited the highest protective effect on the viability of Lactobacillus casei Shirota in gastric and intestinal conditions. These results suggest that yeasts isolated from guajillo pepper may have a probiotic potential.
Collapse
Affiliation(s)
- C E Lara-Hidalgo
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico
| | - L Dorantes-Álvarez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico.
| | - H Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico
| | - F Santoyo-Tepole
- Departamento de Investigación, Central de Instrumentación de Espectroscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - A Martínez-Torres
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - L Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - C Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| |
Collapse
|
109
|
Ruder B, Günther C, Stürzl M, Neurath MF, Cesarman E, Ballon G, Becker C. Viral FLIP blocks Caspase-8 driven apoptosis in the gut in vivo. PLoS One 2020; 15:e0228441. [PMID: 31999759 PMCID: PMC6992192 DOI: 10.1371/journal.pone.0228441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/15/2020] [Indexed: 01/01/2023] Open
Abstract
A strict cell death control in the intestinal epithelium is indispensable to maintain barrier integrity and homeostasis. In order to achieve a balance between cell proliferation and cell death, a tight regulation of Caspase-8, which is a key player in controlling apoptosis, is required. Caspase-8 activity is regulated by cellular FLIP proteins. These proteins are expressed in different isoforms (cFLIPlong and cFLIPshort) which determine cell death and survival. Interestingly, several viruses encode FLIP proteins, homologous to cFLIPshort, which are described to regulate Caspase-8 and the host cell death machinery. In the current study a mouse model was generated to show the impact of viral FLIP (vFLIP) from Kaposi’s Sarcoma-associated Herpesvirus (KSHV)/ Human Herpesvirus-8 (HHV-8) on cell death regulation in the gut. Our results demonstrate that expression of vFlip in intestinal epithelial cells suppressed cFlip expression, but protected mice from lethality, tissue damage and excessive apoptotic cell death induced by genetic cFlip deletion. Finally, our model shows that vFlip expression decreases cFlip mediated Caspase-8 activation in intestinal epithelial cells. In conclusion, our data suggests that viral FLIP neutralizes and compensates for cellular FLIP, efficiently counteracting host cell death induction and facilitating further propagation in the host organism.
Collapse
Affiliation(s)
- Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, United States of America
| | - Gianna Ballon
- Department of Pathology and Laboratory Services, Cooper University Health Care, Camden, NY, United States of America
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
110
|
Qi D, Shi W, Black AR, Kuss MA, Pang X, He Y, Liu B, Duan B. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials 2020; 240:119832. [PMID: 32113114 DOI: 10.1016/j.biomaterials.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
The small intestine (SI) is difficult to regenerate or reconstruct due to its complex structure and functions. Recent developments in stem cell research, advanced engineering technologies, and regenerative medicine strategies bring new hope of solving clinical problems of the SI. This review will first summarize the structure, function, development, cell types, and matrix components of the SI. Then, the major cell sources for SI regeneration are introduced, and state-of-the-art biofabrication technologies for generating engineered SI tissues or models are overviewed. Furthermore, in vitro models and in vivo transplantation, based on intestinal organoids and tissue engineering, are highlighted. Finally, current challenges and future perspectives are discussed to help direct future applications for SI repair and regeneration.
Collapse
Affiliation(s)
- Dianjun Qi
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xining Pang
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Academician Expert Workstation and Liaoning Province Human Amniotic Membrane Dressings Stem Cells and Regenerative Medicine Engineering Research Center, Shenyang Amnion Biological Engineering Technology Research and Development Center Co., Ltd, Shenyang, Liaoning, China
| | - Yini He
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
111
|
Uribe-Lewis S, Carroll T, Menon S, Nicholson A, Manasterski PJ, Winton DJ, Buczacki SJA, Murrell A. 5-hydroxymethylcytosine and gene activity in mouse intestinal differentiation. Sci Rep 2020; 10:546. [PMID: 31953501 PMCID: PMC6969059 DOI: 10.1038/s41598-019-57214-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Cytosine hydroxymethylation (5hmC) in mammalian DNA is the product of oxidation of methylated cytosines (5mC) by Ten-Eleven-Translocation (TET) enzymes. While it has been shown that the TETs influence 5mC metabolism, pluripotency and differentiation during early embryonic development, the functional relationship between gene expression and 5hmC in adult (somatic) stem cell differentiation is still unknown. Here we report that 5hmC levels undergo highly dynamic changes during adult stem cell differentiation from intestinal progenitors to differentiated intestinal epithelium. We profiled 5hmC and gene activity in purified mouse intestinal progenitors and differentiated progeny to identify 43425 differentially hydroxymethylated regions and 5325 differentially expressed genes. These differentially marked regions showed both losses and gains of 5hmC after differentiation, despite lower global levels of 5hmC in progenitor cells. In progenitors, 5hmC did not correlate with gene transcript levels, however, upon differentiation the global increase in 5hmC content showed an overall positive correlation with gene expression level as well as prominent associations with histone modifications that typify active genes and enhancer elements. Our data support a gene regulatory role for 5hmC that is predominant over its role in controlling DNA methylation states.
Collapse
Affiliation(s)
- Santiago Uribe-Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University New York, New York, NY, 10065, USA
| | - Suraj Menon
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Anna Nicholson
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Piotr J Manasterski
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Simon J A Buczacki
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Addenbrookes Biomedical Campus, Cambridge, CB2 0AF, UK
| | - Adele Murrell
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
112
|
Kondo S, Mizuno S, Hashita T, Iwao T, Matsunaga T. Establishment of a novel culture method for maintaining intestinal stem cells derived from human induced pluripotent stem cells. Biol Open 2020; 9:bio049064. [PMID: 31919043 PMCID: PMC6955217 DOI: 10.1242/bio.049064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The small intestine plays an important role in the pharmacokinetics of orally administered drugs due to the presence of drug transporters and drug-metabolizing enzymes. However, few appropriate methods exist to investigate intestinal pharmacokinetics. Induced pluripotent stem (iPS) cells can form various types of cells and represent a potentially useful tool for drug discovery. We previously reported that differentiated enterocytes from human iPS cells are useful for pharmacokinetic studies; however, the process is time and resource intensive. Here, we established a new two-dimensional culture method for maintaining human iPS-cell-derived intestinal stem cells (ISCs) with differentiation potency and evaluated their ability to differentiate into enterocytes exhibiting appropriate pharmacokinetic function. The culture method used several factors to activate signalling pathways required for maintaining stemness, followed by differentiation into enterocytes. Functional evaluation was carried out to verify epithelial-marker expression and inducibility and activity of metabolic enzymes and transporters. Our results confirmed the establishment of an ISC culture method for maintaining stemness and verified that the differentiated enterocytes from the maintained ISCs demonstrated proper pharmacokinetic function. Thus, our findings describe a time- and cost-effective approach that can be used as a general evaluation tool for evaluating intestinal pharmacokinetics.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
113
|
Vales S, Poling HM, Sundaram N, Helmrath MA, Mahe MM. In Vivo Human PSC-Derived Intestinal Organoids to Study Stem Cell Maintenance. Methods Mol Biol 2020; 2171:201-214. [PMID: 32705643 DOI: 10.1007/978-1-0716-0747-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human intestinal organoids (HIOs), derived from pluripotent stem cells, are a new tool to gain insights in gastrointestinal development, physiology, and associated diseases. Herein, we present a method for renal transplantation of HIOs in immunocompromised mice and subsequent analysis to study intestinal epithelial cell proliferation. In addition, we describe how to generate enteroids from transplanted HIOs. The method highlights the specific steps to successful engraftment and provides insight into the study of human intestinal stem cells.
Collapse
Affiliation(s)
- Simon Vales
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Holly M Poling
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nambirajan Sundaram
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Maxime M Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, Nantes Cedex 1, France.
| |
Collapse
|
114
|
Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden Berghe P. Development of the intrinsic innervation of the small bowel mucosa and villi. Am J Physiol Gastrointest Liver Physiol 2020; 318:G53-G65. [PMID: 31682159 DOI: 10.1152/ajpgi.00264.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Anatomy and Neuroscience, the University of Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Pathology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Katrien Lowette
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Jan Tack
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| |
Collapse
|
115
|
Lopez AM, Ramirez CM, Taylor AM, Jones RD, Repa JJ, Turley SD. Ontogenesis and Modulation of Intestinal Unesterified Cholesterol Sequestration in a Mouse Model of Niemann-Pick C1 Disease. Dig Dis Sci 2020; 65:158-167. [PMID: 31312996 DOI: 10.1007/s10620-019-05736-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-β-cyclodextrin (2HPβCD). RESULTS By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPβCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPβCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin/pharmacology
- Animals
- Cholesterol/metabolism
- Disease Models, Animal
- Ezetimibe/pharmacology
- Female
- Intestinal Absorption/drug effects
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Male
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Niemann-Pick C1 Protein
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Sterol O-Acyltransferase/genetics
- Sterol O-Acyltransferase/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
116
|
Li HJ, Ray SK, Pan N, Haigh J, Fritzsch B, Leiter AB. Intestinal Neurod1 expression impairs paneth cell differentiation and promotes enteroendocrine lineage specification. Sci Rep 2019; 9:19489. [PMID: 31862906 PMCID: PMC6925293 DOI: 10.1038/s41598-019-55292-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transcription factor Neurod1 is required for enteroendocrine progenitor differentiation and maturation. Several earlier studies indicated that ectopic expression of Neurod1 converted non- neuronal cells into neurons. However, the functional consequence of ectopic Neurod1 expression has not been examined in the GI tract, and it is not known whether Neurod1 can similarly switch cell fates in the intestine. We generated a mouse line that would enable us to conditionally express Neurod1 in intestinal epithelial cells at different stages of differentiation. Forced expression of Neurod1 throughout intestinal epithelium increased the number of EECs as well as the expression of EE specific transcription factors and hormones. Furthermore, we observed a substantial reduction of Paneth cell marker expression, although the expressions of enterocyte-, tuft- and goblet-cell specific markers are largely not affected. Our earlier study indicated that Neurog3+ progenitor cells give rise to not only EECs but also Goblet and Paneth cells. Here we show that the conditional expression of Neurod1 restricts Neurog3+ progenitors to adopt Paneth cell fate, and promotes more pronounced EE cell differentiation, while such effects are not seen in more differentiated Neurod1+ cells. Together, our data suggest that forced expression of Neurod1 programs intestinal epithelial cells more towards an EE cell fate at the expense of the Paneth cell lineage and the effect ceases as cells mature to EE cells.
Collapse
Affiliation(s)
- Hui Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Subir K Ray
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Ning Pan
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Decibel Pharmaceutical, Boston, MA, USA
| | - Jody Haigh
- Department of Biomedical, Molecular Biology, Ghent University, Ghent, Belgium
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
117
|
Xie S, Zhao S, Jiang L, Lu L, Yang Q, Yu Q. Lactobacillus reuteri Stimulates Intestinal Epithelial Proliferation and Induces Differentiation into Goblet Cells in Young Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13758-13766. [PMID: 31789514 DOI: 10.1021/acs.jafc.9b06256] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Probiotics, such as Lactobacillus, have been proven to be effective in maintaining intestinal homeostasis. The modulatory effect of Lactobacillus on intestinal epithelial development in early life is still unclear. In this study, Lactobacillus isolates with good probiotic abilities were screened and orally administered to detect their regulatory effect on intestinal development in chickens. L. reuteri 22 was isolated from chickens and chosen for subsequent chicken experiments due to its strong acid and bile salt resistance and ability to adhere to epithelial cells. The 3-day-old chickens were orally administrated with 108 CFU L. reuteri 22 for consecutive 7 days. L. reuteri 22 increased Lgr5 mRNA expression (3.23 ± 0.40, P = 0.001) and activated the Wnt/β-catenin signaling pathway, with increasing expression of proliferating cell nuclear antigen (PCNA) (49.27 ± 9.81, P = 0.021) to support the proliferation of chicken intestinal epithelial cells. Moreover, L. reuteri 22 also inhibited the Notch signaling pathway to induce intestinal stem cell differentiation into goblet cells with increased mucin 2 (Muc-2) expression (1.72 ± 0.34, P = 0.047). L. reuteri 22 significantly enhanced lysozyme mRNA expression (2.32 ± 0.55, P = 0.019) to improve intestinal innate mucosal immunity. This study demonstrated that L. reuteri administration could regulate chicken intestinal epithelium development to ensure the function of the intestinal mucosal barrier, which is beneficial for newborn animals.
Collapse
Affiliation(s)
- Shuang Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Weigang 1 , Nanjing , Jiangsu 210095 , P.R. China
| | - Shiyi Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Weigang 1 , Nanjing , Jiangsu 210095 , P.R. China
| | - Lan Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Weigang 1 , Nanjing , Jiangsu 210095 , P.R. China
| | - Linhao Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Weigang 1 , Nanjing , Jiangsu 210095 , P.R. China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Weigang 1 , Nanjing , Jiangsu 210095 , P.R. China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Weigang 1 , Nanjing , Jiangsu 210095 , P.R. China
| |
Collapse
|
118
|
Grazioso TP, Brandt M, Djouder N. Diet, Microbiota, and Colorectal Cancer. iScience 2019; 21:168-187. [PMID: 31669832 PMCID: PMC6889474 DOI: 10.1016/j.isci.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/03/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium is a very dynamic tissue under a high regenerative pressure, which makes it susceptible to malignant transformation. Proper integration of various cell signaling pathways and a balanced cross talk between different cell types composing the organ are required to maintain intestinal homeostasis. Dysregulation of this balance can lead to colorectal cancer (CRC). Here, we review important insights into molecular and cellular mechanisms of CRC. We discuss how perturbation in complex regulatory networks, including the Wnt, Notch, BMP, and Hedgehog pathways; and how variations in inflammatory signaling, nutrients, and microbiota can affect intestinal homeostasis contributing to the malignant transformation of intestinal cells.
Collapse
Affiliation(s)
- Tatiana P Grazioso
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Marta Brandt
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, CNIO, Madrid 28029, Spain.
| |
Collapse
|
119
|
Dos Reis CA, de Miranda Soares MA, Gomes JR. Expression of the matrix metalloproteinases 2 and 9 in the rat small intestine during intrauterine and postnatal life. Anat Rec (Hoboken) 2019; 303:2839-2846. [PMID: 31680487 DOI: 10.1002/ar.24314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 11/06/2022]
Abstract
The expressions of matrix metalloproteinases 2 and 9 have been described during the development, as an example in heart and tooth but not in the small intestine yet. In this context, this study aimed to evaluate the expressions of MMP-2 and MMP-9 in the small intestine of Wistar rats during intrauterine (IU) and postnatal (PN) life. Expressions were determined on the 15th and 18th days of IU life and the 3rd, 10th, 17th, 25th, and 32nd days of PN life. Intestinal samples obtained from six animals were submitted to zymography, immunohistochemistry, and staining with Masson's trichrome. The results showed that MMP-2 and MMP-9 were not expressed during IU life; however, after birth, MMP-9 was immunolocalized in the goblet and mast cells. In conclusion, our results showed that MMP-2 and MMP-9 were not expressed in absorptive epithelial cells during the IU period of the small intestine but after birth, MMP-9 was expressed in the goblet cells, and mast cells present in the lamina propria.
Collapse
Affiliation(s)
- Camila Audrey Dos Reis
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | | - José Rosa Gomes
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
120
|
Song S, Li X, Geng C, Li Y, Wang C. Somatostatin stimulates colonic MUC2 expression through SSTR5-Notch-Hes1 signaling pathway. Biochem Biophys Res Commun 2019; 521:1070-1076. [PMID: 31733832 DOI: 10.1016/j.bbrc.2019.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023]
Abstract
Colonic mucus barrier is regarded as the first defense line against bacteria and antigens from directly attaching to the epithelium, which would further lead to intestinal inflammation activation and pathological conditions. As MUC2 mucin is the predominant component of the mucus, understanding the regulatory mechanisms of MUC2 is important for mucus barrier protection. Somatostatin (SST) has been found to play a role in colon protection through various manners. However, whether SST involves in colonic mucus barrier regulation is still unclear. The aim of this study is to investigate the effects and potential mechanisms of SST on colonic MUC2 expression and mucus secretion. In vivo study, exogenous somatostatin (octreotide) administration effectively stimulated mice colonic MUC2 expression and mucus secretion. In human goblet-like cell LS174T cells, SST exposure also significantly stimulated MUC2 expression and mucus secretion. Further studies indicated that SST receptor 5 (SSTR5) was significantly activated by SST, whereas specific SSTR5 siRNA transfection of LS174T cells significantly blocked SST-induced increase in MUC2 expression and mucus secretion. In addition, SSTR5 agonist L817,818 also upregulated MUC2 expression and mucus secretion in LS174T cells. Mechanistic studies further demonstrated that SST/SSTR5-mediated MUC2 upregulation was dependent on Notch-Hes1 pathway suppression by detecting notch intracellular domain (NICD) and Hes1 proteins. Taken together, our findings suggested that SST could participate in colonic mucus barrier regulation through SSTR5-Notch-Hes1-MUC2 signaling pathway. These findings provide a deep insight into the role of SST on colonic mucus regulation under physiological conditions.
Collapse
Affiliation(s)
- Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
121
|
Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, Read MN, Valtchev P, Khademhosseini A, Dehghani F. Models of the Gut for Analyzing the Impact of Food and Drugs. Adv Healthc Mater 2019; 8:e1900968. [PMID: 31592579 DOI: 10.1002/adhm.201900968] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.
Collapse
Affiliation(s)
- Chiara Anna Maria Fois
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Thi Yen Loan Le
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Dale David McClure
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Mark Norman Read
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering Department of Bioengineering Department of Radiology California NanoSystems Institute (CNSI) University of California Los Angeles CA 90095 USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
122
|
Zhang H, Li D, Liu L, Xu L, Zhu M, He X, Liu Y. Cellular Composition and Differentiation Signaling in Chicken Small Intestinal Epithelium. Animals (Basel) 2019; 9:E870. [PMID: 31717851 PMCID: PMC6912625 DOI: 10.3390/ani9110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
The small intestine plays an important role for animals to digest and absorb nutrients. The epithelial lining of the intestine develops from the embryonic endoderm of the embryo. The mature intestinal epithelium is composed of different types of functional epithelial cells that are derived from stem cells, which are located in the crypts. Chickens have been widely used as an animal model for researching vertebrate embryonic development. However, little is known about the molecular basis of development and differentiation within the chicken small intestinal epithelium. This review introduces processes of development and growth in the chicken gut, and compares the cellular characteristics and signaling pathways between chicken and mammals, including Notch and Wnt signaling that control the differentiation in the small intestinal epithelium. There is evidence that the chicken intestinal epithelium has a distinct cellular architecture and proliferation zone compared to mammals. The establishment of an in vitro cell culture model for chickens will provide a novel tool to explore molecular regulation of the chicken intestinal development and differentiation.
Collapse
Affiliation(s)
- Haihan Zhang
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, IN 47408, USA
| | - Dongfeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Ling Xu
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
| | - Mo Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| | - Xi He
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
| | - Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| |
Collapse
|
123
|
Kim JT, Li C, Weiss HL, Zhou Y, Liu C, Wang Q, Evers BM. Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-catenin/PPARγ Pathway in Intestinal Cells. Cells 2019; 8:cells8091106. [PMID: 31546785 PMCID: PMC6770209 DOI: 10.3390/cells8091106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin pathway plays a crucial role in development and renewal of the intestinal epithelium. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme in the synthesis of ketone body β-hydroxybutyrate (βHB), contributes to the regulation of intestinal cell differentiation. Here, we have shown that HMGCS2 is a novel target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cancer cell lines and normal intestinal organoids. Inhibition of the Wnt/β-catenin pathway resulted in increased protein and mRNA expression of HMGCS2 and βHB production in human colon cancer cell lines LS174T and Caco2. In addition, Wnt inhibition increased expression of PPARγ and its target genes, FABP2 and PLIN2, in these cells. Conversely, activation of Wnt/β-catenin signaling decreased protein and mRNA levels of HMGCS2, βHB production, and expression of PPARγ and its target genes in LS174T and Caco2 cells and mouse intestinal organoids. Moreover, inhibition of PPARγ reduced HMGCS2 expression and βHB production, while activation of PPARγ increased HMGCS2 expression and βHB synthesis. Furthermore, PPARγ bound the promoter of HMGCS2 and this binding was enhanced by β-catenin knockdown. Finally, we showed that HMGCS2 inhibited, while Wnt/β-catenin stimulated, glycolysis, which contributed to regulation of intestinal cell differentiation. Our results identified HMGCS2 as a downstream target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cells. Moreover, our findings suggest that Wnt/β-catenin/PPARγ signaling regulates intestinal cell differentiation, at least in part, through regulation of ketogenesis.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Chang Li
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| |
Collapse
|
124
|
Link-Lenczowski P, Jastrzębska M, Chwalenia K, Pierzchalska M, Leja-Szpak A, Bonior J, Pierzchalski P, Jaworek J. A switch of N-glycosylation of proteome and secretome during differentiation of intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118555. [PMID: 31499077 DOI: 10.1016/j.bbamcr.2019.118555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
The maintenance of homeostasis of the intestinal epithelium depends on the complex process of epithelial cells differentiation, which repeatedly continues throughout the entire life. Many studies suggest, that cellular differentiation is regulated by glycosylation, or at least that changes of the latter are the hallmark of the process. The detailed description and understanding of this relationship are important in the context of gastrointestinal tract disease, including cancer. Here we employ a broadly used in vitro model of intestinal cell differentiation to track the glycosylation changes in details. We analyzed the glycoproteome- and glycosecretome-derived N-glycomes of undifferentiated Caco-2 adenocarcinoma cells and Caco-2-derived enterocyte-like cells. We used HILIC-HPLC and MALDI-ToF-MS approach together with exoglycosidases digestions to describe qualitative and quantitative N-glycosylation changes upon differentiation. Derived glycan traits analysis revealed, that differentiation results in substantial upregulation of sialylation of glycoproteome and increment of fucosylation within glycosecretome. This was also clearly visible when we analyzed the abundances of individual glycan species. Moreover, we observed the characteristic shift within oligomannose N-glycans, suggesting the augmentation of mannose trimming, resulting in downregulation of H8N2 and upregulation of H5N2 glycan. This was supported by elevated expression of Golgi alpha-mannosidases (especially MAN1C1). We hypothesize, that intensified mannose trimming at the initial steps of N-glycosylation pathway during differentiation, together with the remodeling of the expression of key glycosyltransferases leads to increased diversity of N-glycans and enhanced fucosylation and sialylation of complex structures. Finally, we propose H4N5F1 glycan as a potential biomarker of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland.
| | - Martyna Jastrzębska
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Chwalenia
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland; Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Małgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Kraków, Poland
| | - Anna Leja-Szpak
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
125
|
Li N, Lu N, Xie C. The Hippo and Wnt signalling pathways: crosstalk during neoplastic progression in gastrointestinal tissue. FEBS J 2019; 286:3745-3756. [PMID: 31342636 DOI: 10.1111/febs.15017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
The Hippo and Wnt signalling pathways play crucial roles in maintaining tissue homeostasis and organ size by orchestrating cell proliferation, differentiation and apoptosis. These pathways have been frequently found to be dysregulated in human cancers. While the canonical signal transduction of Hippo and Wnt has been well studied, emerging evidence shows that these two signalling pathways contribute to and exhibit overlapping functions in gastrointestinal (GI) tumorigenesis. In fact, the core effectors YAP/TAZ in Hippo signalling pathway cooperate with β-catenin in Wnt signalling pathway to promote GI neoplasia. Here, we provide a brief review to summarize the molecular mechanisms underlying the crosstalk between these two pathways and elucidate their involvement in GI tumorigenesis, particularly focusing on the intestine, stomach and liver.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
126
|
Li J, Dedloff MR, Stevens K, Maney L, Prochaska M, Hongay CF, Wallace KN. A novel group of secretory cells regulates development of the immature intestinal stem cell niche through repression of the main signaling pathways driving proliferation. Dev Biol 2019; 456:47-62. [PMID: 31398318 DOI: 10.1016/j.ydbio.2019.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium has constant turnover throughout the life of the organ, with apoptosis of cells at the tips of folds or villi releasing cells into the lumen. Due to constant turnover, epithelial cells need to be constantly replaced. Epithelial cells are supplied by stem cell niches that form at the base of the interfold space (zebrafish) and crypts (birds and mammals). Within the adult stem cell niche of mammals, secretory cells such as Paneth and goblet cells play a role in modulation of proliferation and stem cell activity, producing asymmetric divisions. Progeny of asymmetric divisions move up the fold or villi, giving rise to all of the epithelial cell types. Although much is known about function and organization of the adult intestinal stem cell niche, less is understood about regulation within the immature stem cell compartment. Following smooth muscle formation, the intestinal epithelium folds and proliferation becomes restricted to the interfold base. Symmetric divisions continue in the developing interfold niche until stem cell progeny begin asymmetric divisions, producing progeny that migrate up the developing folds. Proliferative progeny from the developing stem cell niche begin migrating out of the niche during the third week post-embryogenesis (zebrafish) or during the postnatal period (mammals). Regulation and organization of epithelial proliferation in the immature stem cell niche may be regulated by signals comparable to the adult niche. Here we identify a novel subset of secretory cells associated with the developing stem cell niche that receive Notch signaling (referred to as NRSCs). Inhibition of the embryonic NRSCs between 74 hpf to 120 hpf increases epithelial proliferation as well as EGF and IGF signaling. Inhibition of post-embryonic NRSCs (6 hpf to 12 dpf) also increases epithelial proliferation and expression level of Wnt target genes. We conclude that NRSCs play a role in modulation of epithelial proliferation through repression of signaling pathways that drive proliferation during both embryogenesis and the post embryonic period.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Katrina Stevens
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Lea Maney
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | | - Cintia F Hongay
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | | |
Collapse
|
127
|
Flatres C, Loffet É, Neunlist M, Mahé MM. Façonner l’intestin à partir des cellules souches pluripotentes humaines. Med Sci (Paris) 2019; 35:549-555. [DOI: 10.1051/medsci/2019096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
L’étude des maladies digestives est parfois limitée par l’accès aux tissus de patients et les modèles précliniques ne sont pas toujours fidèles aux pathologies observées chez l’homme. Dans ce contexte, le développement d’organoïdes intestinaux à partir de cellules souches pluripotentes humaines représente une avancée importante dans l’étude des processus physiologiques et des pathologies digestives. Dans cette revue, nous rappelons les étapes majeures du développement du tractus digestif chez l’homme et décrivons le rationnel de la différenciation dirigée des cellules souches pluripotentes humaines. Nous faisons également un état des lieux sur les différents types d’organoïdes intestinaux existants et leurs applications en recherche fondamentale et préclinique. Enfin, nous discutons des opportunités offertes par les organoïdes intestinaux humains dans un contexte de médecine de précision et de médecine réparatrice.
Collapse
|
128
|
Kaur H, Moreau R. Role of mTORC1 in intestinal epithelial repair and tumorigenesis. Cell Mol Life Sci 2019; 76:2525-2546. [PMID: 30944973 PMCID: PMC11105546 DOI: 10.1007/s00018-019-03085-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
mTORC1 signaling is the prototypical pathway regulating protein synthesis and cell proliferation. mTORC1 is active in stem cells located at the base of intestinal crypts but silenced as transit-amplifying cells differentiate into enterocytes or secretory cells along the epithelium. After an insult or injury, self-limiting and controlled activation of mTORC1 is critical for the renewal and repair of intestinal epithelium. mTORC1 promotes epithelial cell renewal by driving cryptic stem cell division, and epithelial cell repair by supporting the dedifferentiation and proliferation of enterocytes or secretory cells. Under repeated insult or injury, mTORC1 becomes constitutively active, triggering an irreversible return to stemness, cell division, proliferation, and inflammation among dedifferentiated epithelial cells. Epithelium-derived cytokines promulgate inflammation within the lamina propria, which in turn releases inflammatory factors that act back on the epithelium where undamaged intestinal epithelial cells participate in the pervading state of inflammation and become susceptible to tumorigenesis.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
129
|
Costa J, Ahluwalia A. Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front Bioeng Biotechnol 2019; 7:144. [PMID: 31275931 PMCID: PMC6591368 DOI: 10.3389/fbioe.2019.00144] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
The physiological environment of the intestine is characterized by its variegated composition, numerous functions and unique dynamic conditions, making it challenging to recreate the organ in vitro. This review outlines the requirements for engineering physiologically relevant intestinal in vitro models, mainly focusing on the importance of the mechano-structural cues that are often neglected in classic cell culture systems. More precisely: the topography, motility and flow present in the intestinal epithelium. After defining quantitative descriptors for these features, we describe the current state of the art, citing relevant approaches used to address one (or more) of the elements in question, pursuing a progressive conceptual construction of an "ideal" biomimetic intestinal model. The review concludes with a critical assessment of the currently available methods to summarize the important features of the intestinal tissue in the light of their different applications.
Collapse
Affiliation(s)
| | - Arti Ahluwalia
- Research Center “E. Piaggio” and Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
130
|
Mahe MM. Engineering a second brain in a dish. Brain Res 2019; 1693:165-168. [PMID: 29903618 DOI: 10.1016/j.brainres.2018.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
The utilization of human pluripotent stem cells holds great promise in elucidating principles of developmental biology and applications in personalized and regenerative medicine. Breakthroughs from the last decade have allowed the scientific community to better understand and successfully manipulate human pluripotent stem cells using distinct differentiation strategies into a variety of target tissues. This manipulation relies solely on our understanding of developmental processes occurring in model organisms. The in vitro translation of our developmental knowledge upon stem cells provides a new means to generate specific tissue to understand developmental and disease mechanisms, as well as physiological processes. The generation of an integrated human intestinal tissue is one such example. In this review, we highlight the biological motivation behind the generation of human intestinal organoids. We further describe the integration of an enteric nervous system within the organoid to generate a functional intestine. Forthcoming strategies to add additional complexities to the intestinal tissue so as to better understand how our "second brain" functions within the gut are also discussed. The organoid system offers a promising avenue to understand how the enteric nervous system works and patterns the human intestine during both physiology and disease.
Collapse
Affiliation(s)
- Maxime M Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, S6.609, Building, 3333 Burnet Avenue, Cincinnati, OH, USA; Inserm UMR 1235 - TENS, INSERM, University of Nantes, Rm427, Faculty of Medicine, 1 Rue Gaston Veil, Nantes, France.
| |
Collapse
|
131
|
Huycke TR, Tabin CJ. Chick midgut morphogenesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:109-119. [PMID: 29616718 DOI: 10.1387/ijdb.170325ct] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The gastrointestinal tract is an essential system of organs required for nutrient absorption. As a simple tube early in development, the primitive gut is patterned along its anterior-posterior axis into discrete compartments with unique morphologies relevant to their functions in the digestive process. These morphologies are acquired gradually through development as the gut is patterned by tissue interactions, both molecular and mechanical in nature, involving all three germ layers. With a focus on midgut morphogenesis, we review work in the chick embryo demonstrating how these molecular signals and mechanical forces sculpt the developing gut tube into its mature form. In particular, we highlight two mechanisms by which the midgut increases its absorptive surface area: looping and villification. Additionally, we review the differentiation and patterning of the intestinal mesoderm into the layers of smooth muscle that mechanically drive peristalsis and the villification process itself. Where relevant, we discuss the mechanisms of chick midgut morphogenesis in the context of experimental data from other model systems.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
132
|
SETIAWAN JAJAR, KOTANI TAKENORI, KONNO TASUKU, SAITO YASUYUKI, MURATA YOJI, NODA TETSUO, MATOZAKI TAKASHI. Regulation of Small Intestinal Epithelial Homeostasis by Tsc2-mTORC1 Signaling. THE KOBE JOURNAL OF MEDICAL SCIENCES 2019; 64:E200-E209. [PMID: 31327863 PMCID: PMC6668652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 06/10/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1), a protein complex containing the serine/threonine kinase mTOR, integrates various growth stimulating signals. mTORC1 is expressed in intestinal epithelial cells (IECs), whereas the physiological roles of this protein complex in homeostasis of IECs remain virtually unknown. We here generated mice, in which tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, was specifically ablated in IECs (Tsc2 CKO mice). Ablation of Tsc2 enhanced the phosphorylation of mTORC1 downstream molecules such as ribosomal S6 protein and 4E-BP1 in IECs. Tsc2 CKO mice manifested the enhanced proliferative activity of IECs in intestinal crypts as well as the promoted migration of these cells along the crypt-villus axis. The mutant mice also manifested the increased apoptotic rate of IECs as well as the increased ectopic Paneth cells, which are one of the major differentiated IECs. In addition, in vitro study showed that ablation of Tsc2 promoted the development of intestinal organoids without epidermal growth factor, while mTORC1 inhibitor, rapamycin, diminished this phenotype. Our results thus suggest that Tsc2-mTORC1 signaling regulates the proliferation, migration, and positioning of IECs, and thereby contributes to the proper regulation of intestinal homeostasis.
Collapse
Affiliation(s)
- JAJAR SETIAWAN
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - TAKENORI KOTANI
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TASUKU KONNO
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YASUYUKI SAITO
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOJI MURATA
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TETSUO NODA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - TAKASHI MATOZAKI
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
133
|
Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q, Wannemuehler M, Ellinwood NM, Snella E, Martin M, Skala M, Meyerholz D, Estes M, Fernandez-Zapico ME, Jergens AE, Mochel JP, Allenspach K. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol 2019; 17:33. [PMID: 30975131 PMCID: PMC6460554 DOI: 10.1186/s12915-019-0652-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background Large animal models, such as the dog, are increasingly being used for studying diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between commonly used animal models, such as rodents, and humans, and expand the translational potential of the dog model, we developed a three-dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures. Results Organoids were derived from tissue of more than 40 healthy dogs and dogs with GI conditions, including inflammatory bowel disease (IBD) and intestinal carcinomas. Adult intestinal stem cells (ISC) were isolated from whole jejunal tissue as well as endoscopically obtained duodenal, ileal, and colonic biopsy samples using an optimized culture protocol. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization, and transmission electron microscopy, to determine the extent to which they recapitulated the in vivo tissue characteristics. Physiological relevance of the enteroid system was defined using functional assays such as optical metabolic imaging (OMI), the cystic fibrosis transmembrane conductance regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research. We have furthermore created a collection of cryopreserved organoids to facilitate future research. Conclusions We establish the canine GI organoid systems as a model to study naturally occurring intestinal diseases in dogs and humans, and that can be used for toxicology studies, for analysis of host-pathogen interactions, and for other translational applications. Electronic supplementary material The online version of this article (10.1186/s12915-019-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lawrance Chandra
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | | | - Dawn Kingsbury
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Todd Atherly
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | | | | | - Wang Yuan
- Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Michael Kimber
- Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Yijun Qi
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Qun Wang
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Michael Wannemuehler
- Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | - Melissa Skala
- Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - David Meyerholz
- Division of Comparative Pathology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Mary Estes
- Baylor College of Medicine, Houston, TX, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Albert E Jergens
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | | | - Karin Allenspach
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA.
| |
Collapse
|
134
|
Suarez-Trujillo A, Chen Y, Aduwari C, Cummings S, Kuang S, Buhman KK, Hedrick V, Sobreira TJP, Aryal UK, Plaut K, Casey T. Maternal high-fat diet exposure during gestation, lactation, or gestation and lactation differentially affects intestinal morphology and proteome of neonatal mice. Nutr Res 2019; 66:48-60. [PMID: 31051321 DOI: 10.1016/j.nutres.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Offspring nutrition depends on the mother during gestation and lactation; thus, maternal nutrition and metabolism can affect their development. We hypothesized that maternal exposure to high-fat (HF) diet affects neonate's gastrointestinal tract development. Our objective was to determine the effect of maternal HF diet during gestation and lactation on neonate's duodenum histomorphology and proteome. Female mice were fed either a control (C, 10% kcal fat) or an HF (60% kcal fat) diet for 4 weeks and bred. On postnatal day 2, half the pups were cross-fostered to dams fed on different diet, creating 4 treatments: C-C, C-HF, HF-C, and HF-HF, indicating maternal diet during gestation-lactation, respectively. On postnatal day 12, pups' duodenum was excised and prepared for histology and liquid chromatography-tandem mass spectrometry analysis of proteome. Villi were significantly longer in HF-HF pups, and crypt cell proliferation rate was not different among treatments. Between C-C and HF-HF, HF-C, or C-HF, 812, 601, or 894 proteins were differentially expressed (Tukey adjusted P < .05), respectively. Functional analysis clustered proteins upregulated in HF-HF vs C-C in fat digestion and absorption, extracellular matrix, cell adhesion, immune response, oxidation-reduction processes, phagocytosis, and transport categories. Proteins downregulated were classified as RNA splicing, translation, protein folding, endocytosis, and transport. There was evidence for a carryover effect of exposure to HF diet during gestation to the postnatal period. Alterations in proteome relative to HF exposure potentially reflect long-term changes in the functioning of the duodenum.
Collapse
Affiliation(s)
| | - Yulu Chen
- Department of Animal Sciences, Purdue University; Department for Animal Sciences, Iowa State University.
| | | | | | | | | | - Victoria Hedrick
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University.
| | | | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University.
| | - Karen Plaut
- Department of Animal Sciences, Purdue University.
| | | |
Collapse
|
135
|
Sims KC, Schwendinger KL, Szymkowicz DB, Swetenburg JR, Bain LJ. Embryonic arsenic exposure reduces intestinal cell proliferation and alters hepatic IGF mRNA expression in killifish (Fundulus heteroclitus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:142-156. [PMID: 30729860 PMCID: PMC6397093 DOI: 10.1080/15287394.2019.1571465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is a toxicant found in food and water throughout the world, and studies suggested that exposure early in life reduces growth. Thus, the goal of this study was to examine mechanisms by which As impacted organismal growth. Killifish (Fundulus heteroclitus) were exposed to 0, 10, 50, or 200 ppb As as embryos and, after hatching, were reared in clean water for up to 40 weeks. Metabolism studies revealed that killifish biotransform As such that monomethylated and dimethylated arsenicals account for 15-17% and 45-61%, respectively, of the total metal. Growth, as measured by condition factor (CF), was significantly and dose-dependently reduced at 8 weeks of age but was similar to controls by 40 weeks. To determine mechanisms underlying the observed initial decrease, intestinal proliferation and morphology were examined. Arsenic-exposed fish exhibited significant 1.3- to 1.5-fold reduction in intestinal villus height and 1.4- to 1.6-fold decrease in proliferating cell nuclear antigen (PCNA+) intestinal cells at all weeks examined. In addition, there were significant correlations between CF, PCNA+ cells, and intestinal villus height. Upon examining whether fish might compensate for the intestinal changes, it was found that hepatic mRNA expression of insulin-like growth factor 1 (IGF-1) and its binding protein (IGFBP-1) were dose-dependently increased. These results indicate that embryonic exposure initially diminished growth, and while intestinal cell proliferation remained reduced, fish appear to compensate by enhancing transcript levels of hepatic IGF-1 and IGFBP-1.
Collapse
Affiliation(s)
- Kaleigh C. Sims
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
| | | | - Dana B. Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
| | | | - Lisa J. Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
136
|
Roles of Autophagy-Related Genes in the Pathogenesis of Inflammatory Bowel Disease. Cells 2019; 8:cells8010077. [PMID: 30669622 PMCID: PMC6356351 DOI: 10.3390/cells8010077] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an intracellular catabolic process that is essential for a variety of cellular responses. Due to its role in the maintenance of biological homeostasis in conditions of stress, dysregulation or disruption of autophagy may be linked to human diseases such as inflammatory bowel disease (IBD). IBD is a complicated inflammatory colitis disorder; Crohn’s disease and ulcerative colitis are the principal types. Genetic studies have shown the clinical relevance of several autophagy-related genes (ATGs) in the pathogenesis of IBD. Additionally, recent studies using conditional knockout mice have led to a comprehensive understanding of ATGs that affect intestinal inflammation, Paneth cell abnormality and enteric pathogenic infection during colitis. In this review, we discuss the various ATGs involved in macroautophagy and selective autophagy, including ATG16L1, IRGM, LRRK2, ATG7, p62, optineurin and TFEB in the maintenance of intestinal homeostasis. Although advances have been made regarding the involvement of ATGs in maintaining intestinal homeostasis, determining the precise contribution of autophagy has remained elusive. Recent efforts based on direct targeting of ATGs and autophagy will further facilitate the development of new therapeutic opportunities for IBD.
Collapse
|
137
|
Abstract
The adult gastrointestinal tract (GI) is a series of connected organs (esophagus, stomach, small intestine, colon) that develop via progressive regional specification of a continuous tubular embryonic organ anlage. This chapter focuses on organogenesis of the small intestine. The intestine arises by folding of a flat sheet of endodermal cells into a tube of highly proliferative pseudostratified cells. Dramatic elongation of this tube is driven by rapid epithelial proliferation. Then, epithelial-mesenchymal crosstalk and physical forces drive a stepwise cascade that results in convolution of the tubular surface into finger-like projections called villi. Concomitant with villus formation, a sharp epithelial transcriptional boundary is defined between stomach and intestine. Finally, flask-like depressions called crypts are established to house the intestinal stem cells needed throughout life for epithelial renewal. New insights into these events are being provided by in vitro organoid systems, which hold promise for future regenerative engineering of the small intestine.
Collapse
Affiliation(s)
- Sha Wang
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| | - Katherine D Walton
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States.
| | - Deborah L Gumucio
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| |
Collapse
|
138
|
Xie R, Sun Y, Wu J, Huang S, Jin G, Guo Z, Zhang Y, Liu T, Liu X, Cao X, Wang B, Cao H. Maternal High Fat Diet Alters Gut Microbiota of Offspring and Exacerbates DSS-Induced Colitis in Adulthood. Front Immunol 2018; 9:2608. [PMID: 30483266 PMCID: PMC6243010 DOI: 10.3389/fimmu.2018.02608] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating evidence shows that high fat diet is closely associated with inflammatory bowel disease. However, the effects and underlying mechanisms of maternal high fat diet (MHFD) on the susceptibility of offspring to colitis in adulthood lacks confirmation. Methods: C57BL/6 pregnant mice were given either a high fat (60 E% fat, MHFD group) or control diet [10 E% fat, maternal control diet (MCD) group] during gestation and lactation. The intestinal development, mucosal barrier function, microbiota, and mucosal inflammation of 3-week old offspring were assessed. After weaning all mice were fed a control diet until 8 weeks of age when the microbiota was analyzed. Offspring were also treated with 2% DSS solution for 5 days and the severity of colitis was assessed. Results: The offspring in MHFD group were significantly heavier than those in MCD group only at 2–4 weeks of age, while no differences were found in the body weight between two groups at other measured time points. Compared with MCD group, MHFD significantly inhibited intestinal development and disrupted barrier function in 3-week old offspring. Although H&E staining showed no obvious microscopic inflammation in both groups of 3-week old offspring, increased production of inflammatory cytokines indicated low-grade inflammation was induced in MHFD group. Moreover, fecal analysis of the 3-week old offspring indicated that the microbiota compositions and diversity were significantly changed in MHFD group. Interestingly after 5 weeks consumption of control diet in both groups, the microbiota composition of offspring in MHFD group was still different from that in MCD group, although the bacterial diversity was partly recovered at 8 weeks of age. Finally, after DSS treatment in 8-week old offspring, MHFD significantly exacerbated the severity of colitis and increased the production of proinflammatory cytokine. Conclusions: Our data reveal that MHFD in early life can inhibit intestinal development, induce dysbiosis and low-grade inflammation and lead to the disruption of intestinal mucosal barrier in offspring, and enhance DSS-induced colitis in adulthood.
Collapse
Affiliation(s)
- Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Shumin Huang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
139
|
Role of AMP activated protein kinase signaling pathway in intestinal development of mammals. Ann Anat 2018; 220:51-54. [DOI: 10.1016/j.aanat.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|
140
|
Jang H, Lee J, Park S, Myung H, Kang J, Kim K, Kim H, Jang WS, Lee SJ, Shim S, Myung JK. Pravastatin Attenuates Acute Radiation-Induced Enteropathy and Improves Epithelial Cell Function. Front Pharmacol 2018; 9:1215. [PMID: 30459609 PMCID: PMC6232864 DOI: 10.3389/fphar.2018.01215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Radiation-induced enteropathy is frequently observed after radiation therapy for abdominal and pelvic cancer or occurs secondary to accidental radiation exposure. The acute effects of irradiation on the intestine might be attributed to inhibition of mitosis in the crypts, as the loss of proliferative functions impairs development of the small intestinal epithelium and its barrier function. Especially, oxidative damage to intestinal epithelial cells is a key event in the initiation and progression of radiation-induced enteropathy. Pravastatin is widely used clinically to lower serum cholesterol levels and has been reported to have anti-inflammatory effects on endothelial cells. Here, we investigated the therapeutic effects of pravastatin on damaged epithelial cells after radiation-induced enteritis using in vitro and in vivo systems. Materials and Methods: To evaluate the effects of pravastatin on intestinal epithelial cells, we analyzed proliferation and senescence, oxidative damage, and inflammatory cytokine expression in an irradiated human intestinal epithelial cell line (InEpC). In addition, to investigate the therapeutic effects of pravastatin in mice, we performed histological analysis, bacterial translocation assays, and intestinal permeability assays, and also assessed inflammatory cytokine expression, using a radiation-induced enteropathy model. Results: Histological damage such as shortening of villi length and impaired intestinal crypt function was observed in whole abdominal-irradiated mice. However, damage was attenuated in pravastatin-treated animals, in which normalization of intestinal epithelial cell differentiation was also observed. Using in vitro and in vivo systems, we also showed that pravastatin improves the proliferative properties of intestinal epithelial cells and decreases radiation-induced oxidative damage to the intestine. In addition, pravastatin inhibited levels of epithelial-derived inflammatory cytokines including IL-6, IL-1β, and TNF-α in irradiated InEpC cells. We also determined that pravastatin could rescue intestinal barrier dysfunction via anti-inflammatory effects using the mouse model. Conclusion: Pravastatin has a therapeutic effect on intestinal lesions and attenuates radiation-induced epithelial damage by suppressing oxidative stress and the inflammatory response.
Collapse
Affiliation(s)
- Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jihoon Kang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae K Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| |
Collapse
|
141
|
Parang B, Thompson JJ, Williams CS. Blood Vessel Epicardial Substance (BVES) in junctional signaling and cancer. Tissue Barriers 2018; 6:1-12. [PMID: 30307367 DOI: 10.1080/21688370.2018.1499843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blood vessel epicardial substance (BVES) is a tight-junction associated protein that was originally discovered from a cDNA screen of the developing heart. Research over the last decade has shown that not only is BVES is expressed in cardiac and skeletal tissue, but BVES is also is expressed throughout the gastrointestinal epithelium. Mice lacking BVES sustain worse intestinal injury and inflammation. Furthermore, BVES is suppressed in gastrointestinal cancers, and mouse modeling has shown that loss of BVES promotes tumor formation. Recent work from multiple laboratories has revealed that BVES can regulate several molecular pathways, including cAMP, WNT, and promoting the degradation of the oncogene, c-Myc. This review will summarize our current understanding of how BVES regulates the intestinal epithelium and discuss how BVES functions at the molecular level to preserve epithelial phenotypes and suppress tumorigenesis.
Collapse
Affiliation(s)
- Bobak Parang
- a Department of Medicine , Cornell University , New York , NY , USA
| | - Joshua J Thompson
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA
| | - Christopher S Williams
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA.,c Veterans Affairs Tennessee Valley Health Care System , Nashville , TN , USA
| |
Collapse
|
142
|
Sinagoga KL, McCauley HA, Múnera JO, Reynolds NA, Enriquez JR, Watson C, Yang HC, Helmrath MA, Wells JM. Deriving functional human enteroendocrine cells from pluripotent stem cells. Development 2018; 145:dev.165795. [PMID: 30143540 DOI: 10.1242/dev.165795] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Enteroendocrine cells (EECs) are a minor cell population in the intestine yet they play a major role in digestion, satiety and nutrient homeostasis. Recently developed human intestinal organoid models include EECs, but their rarity makes it difficult to study their formation and function. Here, we used the EEC-inducing property of the transcription factor NEUROG3 in human pluripotent stem cell-derived human intestinal organoids and colonic organoids to promote EEC development in vitro An 8-h pulse of NEUROG3 expression induced expression of known target transcription factors and after 7 days organoids contained up to 25% EECs in the epithelium. EECs expressed a broad array of human hormones at the mRNA and/or protein level, including motilin, somatostatin, neurotensin, secretin, substance P, serotonin, vasoactive intestinal peptide, oxyntomodulin, GLP-1 and INSL5. EECs secreted several hormones including gastric inhibitory polypeptide (GIP), ghrelin, GLP-1 and oxyntomodulin. Injection of glucose into the lumen of organoids caused an increase in both GIP secretion and K-cell number. Lastly, we observed formation of all known small intestinal EEC subtypes following transplantation and growth of human intestinal organoids in mice.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Nichole A Reynolds
- Endocrine/Cardiovascular Division, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Hsiu-Chiung Yang
- Endocrine/Cardiovascular Division, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA .,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
143
|
Optimal branched-chain amino acid ratio improves cell proliferation and protein metabolism of porcine enterocytesin in vivo and in vitro. Nutrition 2018; 54:173-181. [DOI: 10.1016/j.nut.2018.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
|
144
|
Wu H, Ye L, Lu X, Xie S, Yang Q, Yu Q. Lactobacillus acidophilus Alleviated Salmonella-Induced Goblet Cells Loss and Colitis by Notch Pathway. Mol Nutr Food Res 2018; 62:e1800552. [PMID: 30198100 DOI: 10.1002/mnfr.201800552] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/06/2018] [Indexed: 12/24/2022]
Abstract
SCOPE The intestinal mucosal barrier, including the mucus layer, protects against invasion of enteropathogens, thereby inhibiting infection. In this study, the protective effect of Lactobacillus on the intestinal barrier against Salmonella infection is investigated. The underlying mechanism of its effect, specifically on the regulation of goblet cells through the Notch pathway, is also elucidated. METHODS AND RESULTS Here, the protective effect of Lactobacillus on alleviating changes in the intestinal barrier caused by Salmonella infection is explored. It has been found that Salmonella typhimurium colonizes the colon and damages colonic mucosa. However, Lactobacillus acidophilus ATCC 4356 alleviates the colitis caused by Salmonella infection. Moreover, S. typhimurium infection causes colonic crypt hyperplasia with increased PCNA+ cells, while L. acidophilus administration resolves these pathological changes. In addition, it has been further demonstrated that Salmonella results in severe colitis associated with goblet cells, and Lactobacillus improves colitis similarly associated with goblet cells. Salmonella infection induces goblet cell loss and reduces MUC2 expression by increasing Dll1, Dll4, and HES1 expression, while L. acidophilus reverses epithelial damage by balancing the Notch pathway. CONCLUSION The study demonstrates that colitis improvement is controlled by Lactobacillus ATCC 4356 by regulation of the Notch pathway; this finding will be useful for prevention against animal S. typhimurium infection.
Collapse
Affiliation(s)
- Haiqin Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P. R. China
| | - Lulu Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P. R. China
| | - Xiaoxi Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P. R. China
| | - Shuang Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P. R. China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P. R. China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P. R. China
| |
Collapse
|
145
|
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Ann Biomed Eng 2018; 47:1-21. [DOI: 10.1007/s10439-018-02124-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
|
146
|
Pham VT, Seifert N, Richard N, Raederstorff D, Steinert RE, Prudence K, Mohajeri MH. The effects of fermentation products of prebiotic fibres on gut barrier and immune functions in vitro. PeerJ 2018; 6:e5288. [PMID: 30128177 PMCID: PMC6089210 DOI: 10.7717/peerj.5288] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
The beneficial effects of prebiotic fibres on human health have been related to their capacities to alter the gut microbiota and modify the growth of beneficial microorganisms. It is long appreciated that bacterial metabolites affect the host’s physiology. The inner lining of the intestinal tract is the first level of interaction between the host and bacteria and their metabolites. Therefore, we set out to test the effects of five common dietary fibres (oat β-glucan 28%; oat β-glucan 94%; dried chicory root containing inulin 75%; xylo-oligosaccharide; inulin 90%) and maltodextrin, after fermentation by human gut microbiota in vitro, on measures of gut barrier integrity using a Caco-2/HT29-MTX co-culture as well as mucus production and immune parameters using HT29-MTX and HT29 cell models, respectively. Our data show that all fibres, fermentation products increased the tightness of the gut barrier with oat β-glucan 28% having the largest effect. Fermentation supernatants were tested also in models of the compromised gut barrier (leaky gut). After the addition of ethanol as basolateral stressor, only fermentation supernatant of oat β-glucan 28%, oat β-glucan 94% and maltodextrin improved the gut barrier integrity, while oat β-glucan 28% and dried chicory root containing inulin 75% significantly improved the gut barrier integrity after addition of rhamnolipids as apical stressor. Using the Luminex Technology, we demonstrated an important role of oat β-glucan fermentation products in modulating cytokine and chemokine productions. Furthermore, treating the goblet cells with effluent from xylo-oligosaccharide fermentation significantly increased mucus production. In summary, our data emphasize the potential positive effects of fermentation supernatant of dietary fibres on gut-related physiological outcomes and show that prebiotic fibres may have promising potential to induce specific gut health benefits.
Collapse
Affiliation(s)
- Van T Pham
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nicole Seifert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nathalie Richard
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Daniel Raederstorff
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Robert E Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Kevin Prudence
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - M Hasan Mohajeri
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| |
Collapse
|
147
|
Wang S, Cebrian C, Schnell S, Gumucio DL. Radial WNT5A-Guided Post-mitotic Filopodial Pathfinding Is Critical for Midgut Tube Elongation. Dev Cell 2018; 46:173-188.e3. [PMID: 30016620 DOI: 10.1016/j.devcel.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023]
Abstract
The early midgut undergoes intensive elongation, but the underlying cellular and molecular mechanisms are unknown. The early midgut epithelium is pseudostratified, and its nuclei travel between apical and basal surfaces in concert with cell cycle. Using 3D confocal imaging and 2D live imaging, we profiled behaviors of individual dividing cells. As nuclei migrate apically for mitosis, cells maintain a basal process (BP), which splits but is inherited by only one daughter. After mitosis, some daughters directly use the inherited BP as a "conduit" to transport the nucleus basally, while >50% of daughters generate a new basal filopodium and use it as a path to return the nucleus. Post-mitotic filopodial "pathfinding" is guided by mesenchymal WNT5A. Without WNT5A, some cells fail to tether basally and undergo apoptosis, leading to a shortened midgut. Thus, these studies reveal previously unrecognized strategies for efficient post-mitotic nuclear trafficking, which is critical for early midgut elongation.
Collapse
Affiliation(s)
- Sha Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | - Cristina Cebrian
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
148
|
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15:787-804. [PMID: 30025212 DOI: 10.1080/17425247.2018.1503249] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The major challenge of first pass metabolism in oral drug delivery can be surmounted by directing delivery toward intestinal lymphatic system (ILS). ILS circumvents the liver and transports drug directly into systemic circulation via thoracic duct. Lipid and polymeric nanoparticles are transported into ILS through lacteal and Peyer's patches. Moreover, surface modification of nanoparticles with ligand which is specific for Peyer's patches enhances the uptake of drugs into ILS. Bioavailability enhancement by lymphatic uptake is an advantageous approach adopted by scientists today. Therefore, it is important to understand clear insight of ILS in targeted drug delivery and challenges involved in it. AREAS COVERED Current review includes an overview of ILS, factors governing lymphatic transport of nanoparticles and absorption mechanism of lipid and polymeric nanoparticles into ILS. Various ligands used to target Peyer's patch and their conjugation strategies to nanoparticles are explained in detail. In vitro and in vivo models used to assess intestinal lymphatic transport of molecules are discussed further. EXPERT OPINION Although ILS offers a versatile pathway for nanotechnology based targeted drug delivery, extensive investigations on validation of the lymphatic transport models and on the strategies for gastric protection of targeted nanocarriers have to be perceived in for excellent performance of ILS in oral drug delivery.
Collapse
Affiliation(s)
- Renuka Suresh Managuli
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Sushil Yadaorao Raut
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Meka Sreenivasa Reddy
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Srinivas Mutalik
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| |
Collapse
|
149
|
Gao S, Yan L, Wang R, Li J, Yong J, Zhou X, Wei Y, Wu X, Wang X, Fan X, Yan J, Zhi X, Gao Y, Guo H, Jin X, Wang W, Mao Y, Wang F, Wen L, Fu W, Ge H, Qiao J, Tang F. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat Cell Biol 2018; 20:721-734. [DOI: 10.1038/s41556-018-0105-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
|
150
|
Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2819154. [PMID: 29854738 PMCID: PMC5966675 DOI: 10.1155/2018/2819154] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells (IECs) line the surface of intestinal epithelium, where they play important roles in the digestion of food, absorption of nutrients, and protection of the human body from microbial infections, and others. Dysfunction of IECs can cause diseases. The development, maintenance, and functions of IECs are strongly influenced by external nutrition, such as amino acids. Amino acids play important roles in regulating the properties and functions of IECs. In this article, we briefly reviewed the current understanding of the roles of amino acids in the regulation of IECs' properties and functions in physiological state, including in IECs homeostasis (differentiation, proliferation, and renewal), in intestinal epithelial barrier structure and functions, and in immune responses. We also summarized some important findings on the effects of amino acids supplementation (e.g., glutamine and arginine) in restoring IECs' and intestine functions in some diseased states. These findings will further our understanding of the important roles of amino acids in the homeostasis of IECs and could potentially help identify novel targets and reagents for the therapeutic interventions of diseases associated with dysfunctional IECs.
Collapse
|