101
|
Sanicas M, Sanicas M, Diop D, Montomoli E. A review of COVID-19 vaccines in development: 6 months into the pandemic. Pan Afr Med J 2020; 37:124. [PMID: 33425157 PMCID: PMC7755367 DOI: 10.11604/pamj.2020.37.124.24973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
The advent of the COVID-19 pandemic and the dynamics of its spread is unprecedented. Therefore, the need for a vaccine against the virus is huge. Researchers worldwide are working around the clock to find a vaccine. Experts estimate that a fast-tracked vaccine development process could speed a successful candidate to market in approximately 12-18 months. The objective of this review was to describe the coronavirus vaccines candidates in development and the important considerations. The review was conducted through a thematic analysis of the literature on COVID-19 vaccines in development. It only included data until the end of June 2020, 6 months after the emergence of the COVID-19. Different approaches are currently used to develop COVID-19 vaccines from traditional live-attenuated, inactivated, subunit vaccines, to more novel technologies such as DNA or mRNA vaccines. The race is on to find both medicines and vaccines for the COVID-19 pandemic. As with drugs, vaccine candidates go through pre-clinical testing first before they go through the three phases of clinical trials in humans. Of the over 130 vaccine candidates, 17 are in clinical trials while others are expected to move to clinical testing after the animal studies.
Collapse
Affiliation(s)
- Merlin Sanicas
- Centre de Recherche en Cancérologie de Marseille, Université Aix-Marseille, Marseille, France
| | - Melvin Sanicas
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi Life Science Research, Siena, Italy
| |
Collapse
|
102
|
Pan C, Wu J, Qing S, Zhang X, Zhang L, Yue H, Zeng M, Wang B, Yuan Z, Qiu Y, Ye H, Wang D, Liu X, Sun P, Liu B, Feng E, Gao X, Zhu L, Wei W, Ma G, Wang H. Biosynthesis of Self-Assembled Proteinaceous Nanoparticles for Vaccination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002940. [PMID: 32881121 DOI: 10.1002/adma.202002940] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Recent years have seen enormous advances in nanovaccines for both prophylactic and therapeutic applications, but most of these technologies employ chemical or hybrid semi-biosynthetic production methods. Thus, production of nanovaccines has to date failed to exploit biology-only processes like complex sequential post-translational biochemical modifications and scalability, limiting the realization of the initial promise for offering major performance advantages and improved therapeutic outcomes over conventional vaccines. A Nano-B5 platform for in vivo production of fully protein-based, self-assembling, stable nanovaccines bearing diverse antigens including peptides and polysaccharides is presented here. Combined with the self-assembly capacities of pentamer domains from the bacterial AB5 toxin and unnatural trimer peptides, diverse nanovaccine structures can be produced in common Escherichia coli strains and in attenuated pathogenic strains. Notably, the chassis of these nanovaccines functions as an immunostimulant. After showing excellent lymph node targeting and immunoresponse elicitation and safety performance in both mouse and monkey models, the strong prophylactic effects of these nanovaccines against infection, as well as their efficient therapeutic effects against tumors are further demonstrated. Thus, the Nano-B5 platform can efficiently combine diverse modular components and antigen cargos to efficiently generate a potentially very large diversity of nanovaccine structures using many bacterial species.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Shuang Qing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Tiao, Zhong-Guan-Cun, Haidian District, Beijing, 100190, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Tiao, Zhong-Guan-Cun, Haidian District, Beijing, 100190, P. R. China
| | - Lulu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Tiao, Zhong-Guan-Cun, Haidian District, Beijing, 100190, P. R. China
| | - Ming Zeng
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxin District, Beijing, 102629, P. R. China
| | - Bin Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxin District, Beijing, 102629, P. R. China
| | - Zheng Yuan
- Animal Center of the Academy of Military Medical Sciences, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Yefeng Qiu
- Animal Center of the Academy of Military Medical Sciences, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Huahu Ye
- Animal Center of the Academy of Military Medical Sciences, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Erling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Xiaoyong Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Tiao, Zhong-Guan-Cun, Haidian District, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Tiao, Zhong-Guan-Cun, Haidian District, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing, 100071, P. R. China
| |
Collapse
|
103
|
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol 2020; 11:583077. [PMID: 33101309 PMCID: PMC7554600 DOI: 10.3389/fimmu.2020.583077] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Natalie Kirk
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
- Comparative Molecular Biosciences Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| |
Collapse
|
104
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
105
|
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and Vaccine Development. Pharm Nanotechnol 2020; 8:6-21. [PMID: 31647394 DOI: 10.2174/2211738507666191024162042] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses. The use of nanoparticles in vaccine formulations allows not only enhanced immunogenicity and stability of antigen, but also targeted delivery and slow release. Over the past decade, nanoscale size materials such as virus-like particles, liposomes, ISCOMs, polymeric, inorganic nanoparticles and emulsions have gained attention as potential delivery vehicles for vaccine antigens, which can both stabilize vaccine antigens and act as adjuvants. This advantage is attributable to the nanoscale particle size, which facilitates uptake by Antigen- Presenting Cells (APCs), then leading to efficient antigen recognition and presentation. Modifying the surfaces of nanoparticles with different targeting moieties permits the delivery of antigens to specific receptors on the cell surface, thereby stimulating selective and specific immune responses. This review provides an overview of recent advances in nanovaccinology.
Collapse
Affiliation(s)
- Mehdi Kheirollahpour
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.,Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Naser Mohammadpour Dounighi
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
106
|
Fontana D, Marsili F, Etcheverrigaray M, Kratje R, Prieto C. Rabies VLPs adjuvanted with saponin-based liposomes induce enhanced immunogenicity mediated by neutralizing antibodies in cattle, dogs and cats. J Virol Methods 2020; 286:113966. [PMID: 32905818 DOI: 10.1016/j.jviromet.2020.113966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
We carried out an investigation on rabies virus-like particles (RV-VLPs) expressed in HEK293 cells using serum free medium. These RV-VLPs were formulated with two different adjuvants in order to analyse the enhancement of the triggered immune response and its stability. In experiments in mice, RV-VLPs showed an enhanced humoral immune response when injected with adjuvant, in contrast to the obtained for the RV-VLPs without adjuvant addition. Besides, higher titers of neutralizing antibodies were induced when RV-VLPs were formulated with LipoSap® in comparison with the obtained with Alhydrogel®. At the same time, the positive effect of this adjuvant in vaccine's potency and stability was demonstrated, showing that LipoSap® significantly increases the value obtained in NIH efficiency test for rabies vaccine, and proving that this value is maintained after 15 months storage at 4 °C. Further, we showed that RV-VLPs induces an immune response based on neutralizing antibodies when cat, dogs and bovines were vaccinated with only one dose of RV-VLPs. These results demonstrated that this vaccine candidate could be applied for the prevention of rabies in pets as well as for the control of paralytic rabies in cattle.
Collapse
Affiliation(s)
- Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina; UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina.
| | - Federico Marsili
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina; Cellargen Biotech S.R.L., Antonia Godoy 6369, S3000ZAA, Santa Fe, Argentina
| |
Collapse
|
107
|
SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2020; 16:136-146. [PMID: 32905011 PMCID: PMC7462629 DOI: 10.1016/j.ajps.2020.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
The development of a massively producible vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, is essential for stopping the current coronavirus disease (COVID-19) pandemic. A vaccine must stimulate effective antibody and T cell responses in vivo to induce long-term protection. Scientific researchers have been developing vaccine candidates for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) since the outbreaks of these diseases. The prevalence of new biotechnologies such as genetic engineering has shed light on the generation of vaccines against novel viruses. In this review, we present the status of the development of coronavirus vaccines, focusing particularly on the biomimetic nanoparticle technology platform, which is likely to have a major role in future developments of personalized medicine.
Collapse
|
108
|
Shin JI, Park YC, Song JM. Influence of temperature on the antigenic changes of virus-like particles. Clin Exp Vaccine Res 2020; 9:126-132. [PMID: 32864369 PMCID: PMC7445320 DOI: 10.7774/cevr.2020.9.2.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose In this study, we investigated whether the antigenic changes of the virus-like particles (VLPs) are affected by the temperature during storage. Materials and Methods After exposing the recombinant influenza VLPs to various temperatures for a period, antigenic changes were examined through in vitro hemagglutination receptor binding assay and in vivo mouse experiments. Results Influenza VLPs were exposed at three different temperatures of low, middle, and high on a thermo-hygrostat. High temperature exposed influenza VLPs were showed significantly reduced HA activity and immunogenicity after mouse single immunization over time compared low and middle. When the VLPs exposed to the high temperature were inoculated once in the mice, it was found that the immunogenicity was significantly reduced compared to the VLPs exposed to the low temperature. However, these differences were almost neglected when mice were inoculated twice even with VLPs exposed to high temperatures. Conclusion This study suggests that similar protective effects can be expected by controlling the number of vaccination and storage conditions, although the antigenic change in the VLP vaccines occurred when exposed to high temperature.
Collapse
Affiliation(s)
- Jae-In Shin
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Young Chan Park
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Jae Min Song
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| |
Collapse
|
109
|
Zhang N, Li C, Jiang S, Du L. Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030481. [PMID: 32867194 PMCID: PMC7565697 DOI: 10.3390/vaccines8030481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
Flaviviruses include several medically important viruses, such as Zika virus (ZIKV), Dengue virus (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV). They have expanded in geographic distribution and refocused international attention in recent years. Vaccination is one of the most effective public health strategies for combating flavivirus infections. In this review, we summarized virus-like particle (VLP)-based vaccines against the above four mentioned flaviviruses. Potential strategies to improve the efficacy of VLP-based flavivirus vaccines were also illustrated. The applications of flavivirus VLPs as tools for viral detection and antiviral drug screening were finally proposed.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Shibo Jiang
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| |
Collapse
|
110
|
Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim JH, Song H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1645. [PMID: 32825737 PMCID: PMC7557932 DOI: 10.3390/nano10091645] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. Highly infectious viral diseases such as severe acute respiratory (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease (COVID-19) are emerging more frequently and their worldwide spread poses a serious threat to human health and the global economy. The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 27 July 2020, SARS-CoV-2 has infected over 16 million people and led to the death of more than 652,434 individuals as on 27 July 2020 while also causing significant economic losses. To date, there are no vaccines or specific antiviral drugs to prevent or treat COVID-19. Hence, it is necessary to accelerate the development of antiviral drugs and vaccines to help mitigate this pandemic. Non-Conventional antiviral agents must also be considered and exploited. In this regard, nanoparticles can be used as antiviral agents for the treatment of various viral infections. The use of nanoparticles provides an interesting opportunity for the development of novel antiviral therapies with a low probability of developing drug resistance compared to conventional chemical-based antiviral therapies. In this review, we first discuss viral mechanisms of entry into host cells and then we detail the major and important types of nanomaterials that could be used as antiviral agents. These nanomaterials include silver, gold, quantum dots, organic nanoparticles, liposomes, dendrimers and polymers. Further, we consider antiviral mechanisms, the effects of nanoparticles on coronaviruses and therapeutic approaches of nanoparticles. Finally, we provide our perspective on the future of nanoparticles in the fight against viral infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| |
Collapse
|
111
|
Müller H, Fehling SK, Dorna J, Urbanowicz RA, Oestereich L, Krebs Y, Kolesnikova L, Schauflinger M, Krähling V, Magassouba N, Fichet-Calvet E, Ball JK, Kaufmann A, Bauer S, Becker S, von Messling V, Strecker T. Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. NPJ Vaccines 2020; 5:71. [PMID: 32802410 PMCID: PMC7403343 DOI: 10.1038/s41541-020-00219-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023] Open
Abstract
Lassa mammarenavirus (LASV) is a rodent-borne arenavirus endemic to several West African countries. It is the causative agent of human Lassa fever, an acute viral hemorrhagic fever disease. To date, no therapeutics or vaccines against LASV have obtained regulatory approval. Polyclonal neutralizing antibodies derived from hyperimmunized animals may offer a useful strategy for prophylactic and therapeutic intervention to combat human LASV infections. The LASV envelope surface glycoprotein complex (GP) is the major target for neutralizing antibodies, and it is the main viral antigen used for the design of an LASV vaccine. Here, we assessed the immunogenic potential of mammalian cell-derived virus-like particles (VLPs) expressing GP from the prototypic LASV strain Josiah in a native-like conformation as the sole viral antigen. We demonstrate that an adjuvanted prime-boost immunization regimen with GP-derived VLPs elicited neutralizing antibody responses in rabbits, suggesting that effective antigenic epitopes of GP were displayed. Notably, these antibodies exhibited broad reactivity across five genetic lineages of LASV. VLP-based immunization strategies may represent a powerful approach for generating polyclonal sera containing cross-reactive neutralizing antibodies against LASV.
Collapse
Affiliation(s)
- Helena Müller
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Jens Dorna
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Richard A Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Lisa Oestereich
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Yvonne Krebs
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | - Verena Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | | | - Elisabeth Fichet-Calvet
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andreas Kaufmann
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Veronika von Messling
- German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany.,Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany.,Present Address: Federal Ministry for Education and Research, Berlin, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
112
|
Progress in the Production of Virus-Like Particles for Vaccination against Hepatitis E Virus. Viruses 2020; 12:v12080826. [PMID: 32751441 PMCID: PMC7472025 DOI: 10.3390/v12080826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV), a pathogen that causes acute viral hepatitis, is a small icosahedral, quasi-enveloped, positive ssRNA virus. Its genome has three open reading frames (ORFs), with ORF1 and ORF3 encoding for nonstructural and regulatory proteins, respectively, while ORF2 is translated into the structural, capsid protein. ORF2 is most widely used for vaccine development in viral hepatitis. Hepatitis E virus-like particles (VLPs) are potential vaccine candidates against HEV infection. VLPs are composed of capsid subunits mimicking the natural configuration of the native virus but lack the genetic material needed for replication. As a result, VLPs are unable to replicate and cause disease, constituting safe vaccine platforms. Currently, the recombinant VLP-based vaccine Hecolin® against HEV is only licensed in China. Herein, systematic information about the expression of various HEV ORF2 sequences and their ability to form VLPs in different systems is provided.
Collapse
|
113
|
Xu R, Shi M, Li J, Song P, Li N. Construction of SARS-CoV-2 Virus-Like Particles by Mammalian Expression System. Front Bioeng Biotechnol 2020; 8:862. [PMID: 32850726 PMCID: PMC7409377 DOI: 10.3389/fbioe.2020.00862] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Virus-like particle (VLP) is a self-assembled nanostructure incorporating key viral structural proteins. VLP resembles molecular and morphological features of authentic viruses but is non-infectious and non-replicating due to lack of genetic materials. Successful applications of VLP has been shown in vaccinological and virological research. As an accessibly safe and relevant substitute of naturally pathogenic viruses, the construction of SARS-CoV-2 VLPs is much in demand in the ongoing fight against 2019 Coronavirus disease (COVID-19) pandemics. In the current study, using mammalian expression system, which is advantageous in maintaining correct protein glycosylation patterns, we efficiently constructed SARS-CoV-2 VLPs. We showed that among four SARS-CoV-2 structural proteins, expression of membrane protein (M) and small envelope protein (E) are essential for efficient formation and release of SARS-CoV-2 VLPs. Moreover, the corona-like structure presented in SARS-CoV-2 VLPs from Vero E6 cells is more stable and unified, as compared to those from HEK-293T cells. Our data demonstrate that SARS-CoV-2 VLPs possess molecular and morphological properties of native virion particles, which endow such VLPs with a promising vaccine candidate and a powerful tool for the research of SARS-CoV-2.
Collapse
Affiliation(s)
- Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
114
|
Hua T, Zhang D, Tang B, Chang C, Liu G, Zhang X. The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet Microbiol 2020; 248:108795. [PMID: 32827923 DOI: 10.1016/j.vetmic.2020.108795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Porcine parvovirus (PPV) is a major cause of the syndrome of sow reproductive failure that can cause economic losses. In this study, we developed a subunit vaccine against porcine parvovirus (PPV), composed of virus-like particles (VLPs) derived from a prokaryotic system, and evaluated its potential against PPV infection. The soluble recombinant VP2 protein was expressed in E. coli Transetta(DE3) cells using a pCold II prokaryotic expression vector at a low temperature of 15 °C. After expression and purification, the recombinant VP2 protein was successfully assembled into VLPs with a similar shape of PPV viron and also hemagglutination activity. PPV VLPs formulated in a water-in-oil-in-water adjuvant evoked high hemagglutination inhibition antibody and neutralization antibody titres in both guinea pigs, used as reference model, and target species, pigs. Immunization with VLPs vaccine stimulated high hemagglutination inhibition antibody and neutralization antibody responses in guinea pigs, used as reference, and target species, weaned pigs, and primiparous gilts. PPV VLPs from E. coli yielded complete fetal protection against PPV infection in primiparous gilts immunized with a single-dose vaccine. PPV VLPs inhibited the replication and spread of PPV in primiparous gilts, which was confirmed by the detection of PPV DNA and infectious PPV in nasal and rectal swabs of challenged sows. These results suggest that VLPs-based PPV vaccine is a promising PPV vaccine candidate.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Guoyang Liu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| |
Collapse
|
115
|
Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front Bioeng Biotechnol 2020; 8:627. [PMID: 32626700 PMCID: PMC7311577 DOI: 10.3389/fbioe.2020.00627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nanoparticle-based drug delivery systems have been synthesized from a wide array of materials. The therapeutic success of these platforms hinges upon their ability to favorably interact with the biological environment (both systemically and locally) and recognize the diseased target tissue. The immune system, composed of a highly coordinated organization of cells trained to recognize foreign bodies, represents a key mediator of these interactions. Although components of this system may act as a barrier to nanoparticle (NP) delivery, the immune system can also be exploited to target and trigger signaling cues that facilitate the therapeutic response stemming from systemic administration of NPs. The nano-bio interface represents the key facilitator of this communication exchange, where the surface properties of NPs govern their in vivo fate. Cell membrane-based biomimetic nanoparticles have emerged as one approach to achieve targeted drug delivery by actively engaging and communicating with the biological milieu. In this review, we will highlight the relationship between these biomimetic nanoparticles and the immune system, emphasizing the role of tuning the nano-bio interface in the immunomodulation of diseases. We will also discuss the therapeutic applications of this approach with biomimetic nanoparticles, focusing on specific diseases ranging from cancer to infectious diseases. Lastly, we will provide a critical evaluation on the current state of this field of cell membrane-based biomimetic nanoparticles and its future directions in immune-based therapy.
Collapse
Affiliation(s)
- Manuela Sushnitha
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
116
|
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020; 11:1100. [PMID: 32582186 PMCID: PMC7297083 DOI: 10.3389/fimmu.2020.01100] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
117
|
Ninyio NN, Ho KL, Ong HK, Yong CY, Chee HY, Hamid M, Tan WS. Immunological Analysis of the Hepatitis B Virus "a" Determinant Displayed on Chimeric Virus-Like Particles of Macrobrachium rosenbergii Nodavirus Capsid Protein Produced in Sf9 Cells. Vaccines (Basel) 2020; 8:vaccines8020275. [PMID: 32512923 PMCID: PMC7350026 DOI: 10.3390/vaccines8020275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Chimeric virus-like particles (VLPs) have been widely exploited for various purposes including their use as vaccine candidates, particularly due to their ability to induce stronger immune responses than VLPs consisting of single viral proteins. In the present study, VLPs of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (Nc) displaying the hepatitis B virus “a” determinant (aD) were produced in Spodoptera frugiperda (Sf9) insect cells. BALB/c mice immunised with the purified chimeric Nc-aD VLPs elicited a sustained titre of anti-aD antibody, which was significantly higher than that elicited by a commercially available hepatitis B vaccine and Escherichia coli-produced Nc-aD VLPs. Immunophenotyping showed that the Sf9-produced Nc-aD VLPs induced proliferation of cytotoxic T-lymphocytes and NK1.1 natural killer cells. Furthermore, enzyme-linked immunospot (ELISPOT)analysis showed the presence of antibody-secreting memory B cells in the mice splenocytes stimulated with the synthetic aD peptide. The significant humoral, natural killer cell and memory B cell immune responses induced by the Sf9-produced Nc-aD VLPs suggest that they present good prospects for use as a hepatitis B vaccine candidate.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Department of Microbiology, Faculty of Science, Kaduna State University, P.M.B. 2339, Tafawa Balewa Way, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Hui Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-6715; Fax: +603-9769-7590
| |
Collapse
|
118
|
El-Sayed A, Kamel M. Advanced applications of nanotechnology in veterinary medicine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19073-19086. [PMID: 30547342 DOI: 10.1007/s11356-018-3913-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
119
|
Jonsdottir S, Fettelschoss V, Olomski F, Talker SC, Mirkovitch J, Rhiner T, Birkmann K, Thoms F, Wagner B, Bachmann MF, Kündig TM, Marti E, Fettelschoss-Gabriel A. Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses. Vaccines (Basel) 2020; 8:vaccines8020213. [PMID: 32397549 PMCID: PMC7349629 DOI: 10.3390/vaccines8020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Insect bite hypersensitivity (IBH) is an eosinophilic allergic dermatitis of horses caused by type I/IVb reactions against mainly Culicoides bites. The vaccination of IBH-affected horses with equine IL-5 coupled to the Cucumber mosaic virus-like particle (eIL-5-CuMVTT) induces IL-5-specific auto-antibodies, resulting in a significant reduction in eosinophil levels in blood and clinical signs. Objective: the preclinical and clinical safety of the eIL-5-CuMVTT vaccine. Methods: The B cell responses were assessed by longitudinal measurement of IL-5- and CuMVTT-specific IgG in the serum and plasma of vaccinated and unvaccinated horses. Further, peripheral blood mononuclear cells (PBMCs) from the same horses were re-stimulated in vitro for the proliferation and IFN-γ production of specific T cells. In addition, we evaluated longitudinal kidney and liver parameters and the general blood status. An endogenous protein challenge was performed in murine IL-5-vaccinated mice. Results: The vaccine was well tolerated as assessed by serum and cellular biomarkers and also induced reversible and neutralizing antibody titers in horses and mice. Endogenous IL-5 stimulation was unable to re-induce anti-IL-5 production. The CD4+ T cells of vaccinated horses produced significantly more IFN-γ and showed a stronger proliferation following stimulation with CuMVTT as compared to the unvaccinated controls. Re-stimulation using E. coli-derived proteins induced low levels of IFNγ+CD4+ cells in vaccinated horses; however, no IFN-γ and proliferation were induced following the HEK-eIL-5 re-stimulation. Conclusions: Vaccination using eIL-5-CuMVTT induces a strong B-cell as well as CuMVTT-specific T cell response without the induction of IL-5-specific T cell responses. Hence, B-cell unresponsiveness against self-IL-5 can be bypassed by inducing CuMVTT carrier-specific T cells, making the vaccine a safe therapeutic option for IBH-affected horses.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Clinical Immunology Group, Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (S.J.); (J.M.); (E.M.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Victoria Fettelschoss
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
- Evax AG, Hörnlistrass 3, 9542 Münchwilen, Switzerland;
| | - Florian Olomski
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Stephanie C. Talker
- Institute of Virology and Immunology, Länggassstrasse 122, 3012 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jelena Mirkovitch
- Clinical Immunology Group, Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (S.J.); (J.M.); (E.M.)
| | - Tanya Rhiner
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | | | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Bettina Wagner
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-0001, USA;
| | - Martin F. Bachmann
- RIA Immunology, Inselspital, University of Bern, 3012 Bern, Switzerland;
- Jenner Institute, Nuffield Department of Medicine, Henry Welcome Building for Molecular Physiology, University of Oxford, OX1 2JD Oxford, UK
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland;
| | - Eliane Marti
- Clinical Immunology Group, Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (S.J.); (J.M.); (E.M.)
| | - Antonia Fettelschoss-Gabriel
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
- Evax AG, Hörnlistrass 3, 9542 Münchwilen, Switzerland;
- Correspondence:
| |
Collapse
|
120
|
Yan F, Li E, Li L, Schiffman Z, Huang P, Zhang S, Li G, Jin H, Wang H, Zhang X, Gao Y, Feng N, Zhao Y, Wang C, Xia X. Virus-Like Particles Derived From a Virulent Strain of Pest des Petits Ruminants Virus Elicit a More Vigorous Immune Response in Mice and Small Ruminants Than Those From a Vaccine Strain. Front Microbiol 2020; 11:609. [PMID: 32390966 PMCID: PMC7190788 DOI: 10.3389/fmicb.2020.00609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminants (PPRs) is highly contagious, acute or subacute disease of small ruminants caused by peste des petits ruminants virus (PPRV). To date, several studies have designed and evaluated PPRV-like particles (VLPs) as a vaccine candidate for the prevention and control of PPR, with the majority of these VLPs constructed using sequences derived from a PPRV vaccine strain due to its high immunogenicity. However, because of the lack of available genetic material and certain structural proteins and/or the alteration of posttranslational glycosylation modifications, the immunogenicity of VLPs derived from a vaccine strain is not always optimal. In this study, two PPRV VLP candidates, derived from either the lineage IV Tibet/30 virulent strain or the lineage II Nigeria 75/1 vaccine strain, were generated using a baculovirus system through the coexpression of the PPRV matrix (M), hemagglutinin (H), and fusion (F) proteins in the high expression level cell line High Five. These VLPs were then used to immunize mice, goats, and sheep followed by two boosts after primary immunization. Both VLPs were found to induce a potent humoral immune response as demonstrated by the high ratio of immunoglobulin G1 (IgG1) to IgG2a. In all animals, both VLPs induced high titers of virus-neutralizing antibodies (VNAs), as well as H- and F-specific antibodies, with the Tibet/30 VLPs yielding higher antibody titers by comparison to the Nigeria 75/1 VLPs. Studies in mice also demonstrated that the Tibet/30 VLPs induced a more robust interleukin 4 and interferon γ response than the Nigeria 75/1 VLPs. Goats and sheep immunized with both VLPs exhibited a robust humoral and cell-mediated immune response. Furthermore, our results demonstrated that the VLPs derived from the virulent lineage IV Tibet/30 strain were more immunogenic, inducing a more potent and robust humoral and cell-mediated immune response in vaccinated animals by comparison to the lineage II Nigeria 75/1 vaccine strain VLPs. In addition, VNA titers were significantly higher among animals vaccinated with the Tibet/30 VLPs by comparison to the Nigeria 75/1 VLPs. Taken together, these findings suggest that VLPs derived from the virulent lineage IV Tibet/30 strain are more immunogenic by comparison to those derived from the lineage II Nigeria 75/1 vaccine strain and thus represent a promising vaccine candidate for the control and eradication of PPR.
Collapse
Affiliation(s)
- Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Zachary Schiffman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Shengnan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Guohua Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
121
|
Lu Y, Dong H, Li J, Li L, Wang M, Liu H, Teng Z, Zhang Y, Jin Y, Guo H, Yang Y, Wen X, Sun S. Enhanced protective immune response of foot-and-mouth disease vaccine through DNA-loaded virus-like particles. Microb Pathog 2020; 143:104130. [PMID: 32165331 DOI: 10.1016/j.micpath.2020.104130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects cloven-hoofed animals. Virus-like particles (VLPs) can induce a robust immune response and deliver DNA and small molecules. In this study, a VLP-harboring pcDNA3.1/P12A3C plasmid was generated, and the protective immune response was characterized. Guinea pigs were injected with VLPs, naked DNA vaccine, DNA-loaded VLPs, or phosphate-buffered saline twice subcutaneously at four-week intervals. Results demonstrated that the VLPs protected the naked DNA from DNase degeneration and delivered the DNA into the cells in vitro. The DNA-loaded VLPs and the VLPs alone induced a similar level of specific antibodies (P > 0.05) except at 49 dpv (P < 0.05). The difference in interferon-γ was consistent with that in specific antibodies. The levels of neutralizing antibodies induced by the DNA-loaded VLPs were significantly higher than those of other samples (P < 0.01). Similarly, the lymphocyte proliferation by using DNA-loaded VLPs was significantly higher than those using other formulas after booster immunization. Vaccination with DNA-loaded VLPs provided higher protection (100%) against viral challenge compared with vaccination with VLPs (75%) and DNA vaccine (25%). This study suggested that VLPs can be used as a delivery carrier for DNA vaccine. In turn, the DNA vaccine can enhance the immune response and prolong the serological duration of the VLP vaccine. This phenomenon contributes in providing complete protection against the FMDV challenge in guinea pigs and can be valuable in exploring novel nonreplicating vaccines and controlling FMD in endemic countries worldwide.
Collapse
Affiliation(s)
- Yuanlu Lu
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; College of Animal Science, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Jielin Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Luying Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Miaomiao Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Haiyun Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, Haidian Island, Haikou, 570228, PR China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and OIE/CHINA National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
122
|
Salazar-González JA, Ruiz-Cruz AA, Bustos-Jaimes I, Moreno-Fierros L. Expression of Breast Cancer-Related Epitopes Targeting the IGF-1 Receptor in Chimeric Human Parvovirus B19 Virus-Like Particles. Mol Biotechnol 2020; 61:742-753. [PMID: 31317318 DOI: 10.1007/s12033-019-00198-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Breast cancer is a worldwide health problem, and the complexity of the disease, as well as the lack of treatment specificity, generates an urgent need for developing prophylactic and therapeutic measures. Searching for novel epitope-based approaches able to induce tumour immunity, we designed virus-like particles (VLPs) derived from Human parvovirus B19 assembled of chimeric VP2 proteins displaying two epitopes from the insulin-like growth factor-1 receptor (IGF-1R). Here, we present the generation of two chimeric VP2s that retain the stability, solubility and conditions of purification and assembly of the native VP2. We generated versatile chimeric multiepitope anti-cancer vaccine candidates, which prevented and delayed tumour growth when used in a prophylactic scheme of 4 weekly immunizations prior to 4T1 cell inoculation in female BALB/c mice. The presence of specific antibodies against the displayed epitopes suggests their participation in the protective effect; in contrast, no significant proliferative T-cell responses were recorded following stimulation by specific epitopes. The results comprise an approach whereby fusing desired epitopes from cancer to the N-terminus of B19 VP2 protein can generate a library of chimeric VP2-desired epitopes for further assembly in a designed and personalized epitope delivery system.
Collapse
Affiliation(s)
- Jorge Alberto Salazar-González
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico.
| | - Alail Antonio Ruiz-Cruz
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico
| | - Ismael Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U., 04510, Mexico City, Mexico
| | - Leticia Moreno-Fierros
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
123
|
Quan FS, Basak S, Chu KB, Kim SS, Kang SM. Progress in the development of virus-like particle vaccines against respiratory viruses. Expert Rev Vaccines 2020; 19:11-24. [PMID: 31903811 PMCID: PMC7103727 DOI: 10.1080/14760584.2020.1711053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Influenza virus, human respiratory syncytial virus (RSV), and human metapneumovirus (HMPV) are important human respiratory pathogens. Recombinant virus-like particle (VLP) vaccines are suggested to be potential promising platforms to protect against these respiratory viruses. This review updates important progress in the development of VLP vaccines against respiratory viruses.Areas Covered: This review summarizes progress in developing VLP and nanoparticle-based vaccines against influenza virus, RSV, and HMPV. The PubMed was mainly used to search for important research articles published since 2010 although earlier key articles were also referenced. The research area covered includes VLP and nanoparticle platform vaccines against seasonal, pandemic, and avian influenza viruses as well as RSV and HMPV respiratory viruses. The production methods, immunogenic properties, and vaccine efficacy of respiratory VLP vaccines in preclinical animal models and clinical studies were reviewed in this article.Expert opinion: Previous and current preclinical and clinical studies suggest that recombinant VLP and nanoparticle vaccines are expected to be developed as promising alternative platforms against respiratory viruses in future. Therefore, continued research efforts are warranted.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| | - Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
124
|
Khalaj‐Hedayati A, Chua CLL, Smooker P, Lee KW. Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza Other Respir Viruses 2020; 14:92-101. [PMID: 31774251 PMCID: PMC6928032 DOI: 10.1111/irv.12697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
Collapse
Affiliation(s)
- Atin Khalaj‐Hedayati
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Caroline Lin Lin Chua
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Peter Smooker
- Department of Biosciences and Food TechnologySchool of ScienceRMIT UniversityBundooraVictoriaAustralia
| | - Khai Wooi Lee
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| |
Collapse
|
125
|
Venkataraman S, Reddy VS, Khurana SMP. Biomedical Applications of Viral Nanoparticles in Vaccine Therapy. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
126
|
Yang L, Wang B, Qiu L, Wan B, Yang Y, Liu M, Wang F, Fang Q, Stanley DW, Ye G. Functional Characterization of a Venom Protein Calreticulin in the Ectoparasitoid Pachycrepoideus vindemiae. INSECTS 2019; 11:E29. [PMID: 31906042 PMCID: PMC7023170 DOI: 10.3390/insects11010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/28/2022]
Abstract
Venom proteins act in the immunological interactions between parasitoids and their host insects. The effect of venom proteins on host immunity is not fully understood in pupal parasitoids. We identified the functions of a venom protein, calreticulin (PvCRT), in the pupal ectoparasitoid Pachycrepoideus vindemiae. Here, we report that PvCRT features a signal peptide and two conserved "calreticulin" domains. Multiple sequence alignments show that PvCRT shares 83.54% amino acid identity with CRT from both Pteromalus puparum and Nasonia vitripennis, which infers a close relationship among these three species. Using qPCR analysis, we found a lower expression level of PvCRT (0.27-fold) in the venom apparatus compared to the corresponding carcass. Immunohistochemical localization revealed that PvCRT was ubiquitously expressed in venom gland. The expression of the PvCRT gene in Drosophila transgenic lines via the UAS/Gal4 binary expression system reduced the self-encapsulation phenotype of tu(1)Sz1 mutants. Additionally, studies on humoral immunity indicate that PvCRT does not affect the antimicrobial immune responses of the host. This work on an ectoparasitoid will increase our understanding of venom-mediated host-parasitoid interactions.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - Beibei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - Liming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - Bin Wan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - Mingming Liu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| | - David W. Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA;
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.Y.); (B.W.); (L.Q.); (B.W.); (Y.Y.); (M.L.); (F.W.); (Q.F.)
| |
Collapse
|
127
|
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7:78-93. [PMID: 32010725 PMCID: PMC6968591 DOI: 10.1080/23144599.2019.1691379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is a fast-growing technology that plays an important great impact on various fields of therapeutic applications. It is capable for solving several problems related to animal health and production. There are different nano-systems such as liposomes, metallic nanoparticles, polymeric micelles, polymeric nanospheres, functionalized fullerenes, carbon nanotubes, dendrimers, polymer-coated nanocrystals and nanoshells. In this review, we mentioned different methods for the preparation and characterization of nanoparticles. This review is concerned mainly on nanoparticle systems for antibiotic delivery which suffer from poor bioavailability and many side effects. Nanoparticles are characterized by many features include their minimal size, colossal surface zone to mass extent. The development of antimicrobials in nanoparticle systems is considered an excellent alternative delivery system for antimicrobials for the treatment of microbial diseases by increasing therapeutic effect and overcoming the side effects. In this paper, we reviewed some antimicrobial nanoparticle preparations and we focused on florfenicol and neomycin nanoparticle preparations as well as chitosan and silver nanoparticles preparations to prepare, characterize and compare their different pharmacological effects.
Collapse
Affiliation(s)
- Fady Sayed Youssef
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny Awad El-Banna
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed Mohamed Galal
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
128
|
Masuda A, Lee JM, Miyata T, Sato T, Hayashi S, Hino M, Morokuma D, Karasaki N, Mon H, Kusakabe T. Purification and characterization of immunogenic recombinant virus-like particles of porcine circovirus type 2 expressed in silkworm pupae. J Gen Virol 2019; 99:917-926. [PMID: 29851377 DOI: 10.1099/jgv.0.001087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is a primary causative agent of postweaningmultisystemic wasting syndrome (PMWS), which has a significant economic impact on the swine industry. The capsid protein (Cap) encoded by ORF2 of the viral genome has been used effectively as a vaccine against PCV2 infection. The Cap protein can spontaneously assemble into virus-like particles (VLPs) that are safe and highly immunogenic for vaccine applications. Several expression systems, including bacteria, yeast and insect cells, have been utilized to produce PCV2 VLPs. However, in some cases, the recombinant Cap (rCap) proteins produced in bacteria and yeast do not assemble spontaneously. In this study, we expressed rCap protein using a silkworm-baculovirus expression vector system (silkworm-BEVS) for mass production of PCV2 VLPs and established a simple three-step protocol for its purification from pupae: extraction by detergent, ammonium sulfate precipitation and anion exchange column chromatography. Size-exclusion chromatography (SEC) analysis and transmission electron microscope (TEM) observation showed that purified rCap proteins formed VLPs with a similar morphology to that of the original virus. Furthermore, the VLPs produced in silkworms were capable of inducing neutralizing antibodies against PCV2 in mice. Our results demonstrated that the silkworm system is a powerful tool for the production of PCV2 VLPs and will be useful for the development of a reliable and cost-effective PCV2 vaccine.
Collapse
Affiliation(s)
- Akitsu Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tetsuo Sato
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Shizuka Hayashi
- Nippon Institute for Biological Science, 9-2221-1 Shin-machi, Ome, Tokyo 198-0024, Japan
| | - Masato Hino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Daisuke Morokuma
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Noriko Karasaki
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
129
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
130
|
Dai X, Jian C, Na L, Wang X, Dai Y, Li D. Production and characterization of Hantaan virus-like particles from baculovirus expression system. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
131
|
Ma J, Bruce TJ, Jones EM, Cain KD. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019; 7:E569. [PMID: 31744151 PMCID: PMC6920890 DOI: 10.3390/microorganisms7110569] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Fish immunization has been carried out for over 50 years and is generally accepted as an effective method for preventing a wide range of bacterial and viral diseases. Vaccination efforts contribute to environmental, social, and economic sustainability in global aquaculture. Most licensed fish vaccines have traditionally been inactivated microorganisms that were formulated with adjuvants and delivered through immersion or injection routes. Live vaccines are more efficacious, as they mimic natural pathogen infection and generate a strong antibody response, thus having a greater potential to be administered via oral or immersion routes. Modern vaccine technology has targeted specific pathogen components, and vaccines developed using such approaches may include subunit, or recombinant, DNA/RNA particle vaccines. These advanced technologies have been developed globally and appear to induce greater levels of immunity than traditional fish vaccines. Advanced technologies have shown great promise for the future of aquaculture vaccines and will provide health benefits and enhanced economic potential for producers. This review describes the use of conventional aquaculture vaccines and provides an overview of current molecular approaches and strategies that are promising for new aquaculture vaccine development.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Timothy J. Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Evan M. Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Kenneth D. Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
132
|
Wetzel D, Barbian A, Jenzelewski V, Schembecker G, Merz J, Piontek M. Bioprocess optimization for purification of chimeric VLP displaying BVDV E2 antigens produced in yeast Hansenula polymorpha. J Biotechnol 2019; 306:203-212. [PMID: 31634510 DOI: 10.1016/j.jbiotec.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Chimeric virus-like particles (VLP) are known as promising tools in the development of safe and effective subunit vaccines. Recently, a technology platform to produce VLP based on the small surface protein (dS) of the duck hepatitis B virus was established. In this study, chimeric VLP were investigated displaying the 195 N-terminal amino acids derived from the glycoprotein E2 of the bovine viral diarrhea virus (BVDV) on their surface. Isolation of the VLP from methylotrophic yeast Hansenula polymorpha was allowed upon co-expression of wild-type dS and a fusion protein composed of the BVDV-derived antigen N-terminally fused to the dS. It was shown the VLP could be purified by a process adapted from the production of a recombinant hepatitis B VLP vaccine. However, the process essentially depended on costly ultracentrifugation which is critical for low cost production. In novel process variants, this step was avoided after modification of the initial batch capture step, the introduction of a precipitation step and adjusting the ion exchange chromatography. The product yield could be improved by almost factor 8 to 93 ± 12 mg VLP protein per 100 g dry cell weight while keeping similar product purity and antigenicity. This allows scalable and cost efficient VLP production.
Collapse
Affiliation(s)
- David Wetzel
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany; Technical University of Dortmund, Laboratory of Plant and Process Design, Emil-Figge-Strasse 70, 44227 Dortmund, Germany.
| | - Andreas Barbian
- Duesseldorf University Hospital, Institute for anatomy I, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Volker Jenzelewski
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany
| | - Gerhard Schembecker
- Technical University of Dortmund, Laboratory of Plant and Process Design, Emil-Figge-Strasse 70, 44227 Dortmund, Germany
| | - Juliane Merz
- Evonik Technology & Infrastructure GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Michael Piontek
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany
| |
Collapse
|
133
|
Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics 2019; 11:E534. [PMID: 31615112 PMCID: PMC6835828 DOI: 10.3390/pharmaceutics11100534] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable vaccine candidates need to be designed to elicit appropriate immune responses. Nanotechnology has been found to play a unique role in the design of vaccines, providing them with enhanced specificity and potency. Nano-scaled materials, such as virus-like particles, liposomes, polymeric nanoparticles (NPs), and protein NPs, have received considerable attention over the past decade as potential carriers for the delivery of vaccine antigens and adjuvants, due to their beneficial advantages, like improved antigen stability, targeted delivery, and long-time release, for which antigens/adjuvants are either encapsulated within, or decorated on, the NP surface. Flexibility in the design of nanomedicine allows for the programming of immune responses, thereby addressing the many challenges encountered in vaccine development. Biomimetic NPs have emerged as innovative natural mimicking biosystems that can be used for a wide range of biomedical applications. In this review, we discuss the recent advances in biomimetic nanovaccines, and their use in anti-bacterial therapy, anti-HIV therapy, anti-malarial therapy, anti-melittin therapy, and anti-tumor immunity.
Collapse
Affiliation(s)
- Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| |
Collapse
|
134
|
Yang L, Wan B, Wang BB, Liu MM, Fang Q, Song QS, Ye GY. The Pupal Ectoparasitoid Pachycrepoideus vindemmiae Regulates Cellular and Humoral Immunity of Host Drosophila melanogaster. Front Physiol 2019; 10:1282. [PMID: 31680999 PMCID: PMC6798170 DOI: 10.3389/fphys.2019.01282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
The immunological interaction between Drosophila melanogaster and its larval parasitoids has been thoroughly investigated, however, little is known about the interaction between the host and its pupal parasitoids. Pachycrepoideus vindemmiae, a pupal ectoparasitoid of D. melanogaster, injects venom into its host while laying eggs on the puparium, which regulates host immunity and interrupts host development. To resist the invasion of parasitic wasps, various immune defense strategies have been developed in their hosts as a consequence of co-evolution. In this study, we mainly focused on the host immunomodulation by P. vindemmiae and thoroughly investigated cellular and humoral immune response, including cell adherence, cell viability, hemolymph melanization and the Toll, Imd, and JAK/STAT immune pathways. Our results indicated that venom had a significant inhibitory effect on lamellocyte adherence and induced plasmatocyte cell death. Venom injection and in vitro incubation strongly inhibited hemolymph melanization. More in-depth investigation revealed that the Toll and Imd immune pathways were immediately activated upon parasitization, followed by the JAK/STAT pathway, which was activated within the first 24 h post-parasitism. These regulatory effects were further validated by qPCR. Our present study manifested that P. vindemmiae regulated the cellular and humoral immune system of host D. melanogaster in many aspects. These findings lay the groundwork for studying the immunological interaction between D. melanogaster and its pupal parasitoid.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bin Wan
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bei-Bei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Ming Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
135
|
Yuste-Calvo C, López-Santalla M, Zurita L, Cruz-Fernández CF, Sánchez F, Garín MI, Ponz F. Elongated Flexuous Plant Virus-Derived Nanoparticles Functionalized for Autoantibody Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1438. [PMID: 31658770 PMCID: PMC6835482 DOI: 10.3390/nano9101438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles derived from the elongated flexuous capsids of Turnip mosaic virus (TuMV) have been shown to be efficient tools for antibody sensing with a very high sensitivity if adequately functionalized with the corresponding epitopes. Taking advantage of this possibility, TuMV virus-like particles (VLPs) have been genetically derivatized with a peptide from the chaperonin Hsp60, a protein described to be involved in inflammation processes and autoimmune diseases. Antibodies against the peptide have been previously shown to have a diagnostic value in at least one autoimmune disease, multiple sclerosis. The functionalized Hsp60-VLPs showed their significant increase in sensing potency when compared to monoclonal antibody detection of the peptide in a conventional immunoassay. Additionally, the developed Hsp60-VLPs allowed the detection of autoantibodies against the Hsp60 peptide in an in vivo mouse model of dextran sodium sulfate (DSS)-induced colitis. The detection of minute amounts of the autoantibodies allowed us to perform the analysis of their evolution during the progression of the disease. The anti-Hsp60 autoantibody levels in the sera of the inflamed mice went down during the induction phase of the disease. Increased levels of the anti-HSP60 autoantibodies were detected during the resolution phase of the disease. An extension of a previously proposed model for the involvement of Hsp60 in inflammatory processes is considered, incorporating a role for Hsp60 autoantibodies. This, and related models, can now be experimentally tested thanks to the autoantibody detection hypersensitivity provided by the functionalized VLPs.
Collapse
Affiliation(s)
- Carmen Yuste-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Mercedes López-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Lucía Zurita
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - César F Cruz-Fernández
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Marina I Garín
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
136
|
Nipah Virus-Like Particle Egress Is Modulated by Cytoskeletal and Vesicular Trafficking Pathways: a Validated Particle Proteomics Analysis. mSystems 2019; 4:4/5/e00194-19. [PMID: 31551400 PMCID: PMC6759566 DOI: 10.1128/msystems.00194-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classified as a biosafety level 4 (BSL4) select agent, Nipah virus (NiV) is a deadly henipavirus in the Paramyxoviridae family, with a nearly 75% mortality rate in humans, underscoring its global and animal health importance. Elucidating the process of viral particle production in host cells is imperative both for targeted drug design and viral particle-based vaccine development. However, little is understood concerning the functions of cellular machinery in paramyxoviral and henipaviral assembly and budding. Recent studies showed evidence for the involvement of multiple NiV proteins in viral particle formation, in contrast to the mechanisms understood for several paramyxoviruses as being reliant on the matrix (M) protein alone. Further, the levels and purposes of cellular factor incorporation into viral particles are largely unexplored for the paramyxoviruses. To better understand the involvement of cellular machinery and the major structural viral fusion (F), attachment (G), and matrix (M) proteins, we performed proteomics analyses on virus-like particles (VLPs) produced from several combinations of these NiV proteins. Our findings indicate that NiV VLPs incorporate vesicular trafficking and actin cytoskeletal factors. The involvement of these biological processes was validated by experiments indicating that the perturbation of key factors in these cellular processes substantially modulated viral particle formation. These effects were most impacted for NiV-F-modulated viral particle formation either autonomously or in combination with other NiV proteins, indicating that NiV-F budding relies heavily on these cellular processes. These findings indicate a significant involvement of the NiV fusion protein, vesicular trafficking, and actin cytoskeletal processes in efficient viral particle formation.IMPORTANCE Nipah virus is a zoonotic biosafety level 4 agent with high mortality rates in humans. The genus to which Nipah virus belongs, Henipavirus, includes five officially recognized pathogens; however, over 20 species have been identified in multiple continents within the last several years. As there are still no vaccines or treatments for NiV infection, elucidating its process of viral particle production is imperative both for targeted drug design as well as for particle-based vaccine development. Developments in high-throughput technologies make proteomic analysis of isolated viral particles a highly insightful approach to understanding the life cycle of pathogens such as Nipah virus.
Collapse
|
137
|
Dennis SJ, Meyers AE, Hitzeroth II, Rybicki EP. African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses 2019; 11:E844. [PMID: 31514299 PMCID: PMC6783979 DOI: 10.3390/v11090844] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
African horse sickness is a devastating disease that causes great suffering and many fatalities amongst horses in sub-Saharan Africa. It is caused by nine different serotypes of the orbivirus African horse sickness virus (AHSV) and it is spread by Culicoid midges. The disease has significant economic consequences for the equine industry both in southern Africa and increasingly further afield as the geographic distribution of the midge vector broadens with global warming and climate change. Live attenuated vaccines (LAV) have been used with relative success for many decades but carry the risk of reversion to virulence and/or genetic re-assortment between outbreak and vaccine strains. Furthermore, the vaccines lack DIVA capacity, the ability to distinguish between vaccine-induced immunity and that induced by natural infection. These concerns have motivated interest in the development of new, more favourable recombinant vaccines that utilize viral vectors or are based on reverse genetics or virus-like particle technologies. This review summarizes the current understanding of AHSV structure and the viral replication cycle and also evaluates existing and potential vaccine strategies that may be applied to prevent or control the disease.
Collapse
Affiliation(s)
- Susan J Dennis
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
138
|
Chan JA, Wetzel D, Reiling L, Miura K, Drew DR, Gilson PR, Anderson DA, Richards JS, Long CA, Suckow M, Jenzelewski V, Tsuboi T, Boyle MJ, Piontek M, Beeson JG. Malaria vaccine candidates displayed on novel virus-like particles are immunogenic and induce transmission-blocking activity. PLoS One 2019; 14:e0221733. [PMID: 31504038 PMCID: PMC6736250 DOI: 10.1371/journal.pone.0221733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 01/23/2023] Open
Abstract
The development of effective malaria vaccines remains a global health priority. Currently, the most advanced vaccine, known as RTS,S, has only shown modest efficacy in clinical trials. Thus, the development of more efficacious vaccines by improving the formulation of RTS,S for increased efficacy or to interrupt malaria transmission are urgently needed. The RTS,S vaccine is based on the presentation of a fragment of the sporozoite antigen on the surface of virus-like particles (VLPs) based on human hepatitis B virus (HBV). In this study, we have developed and evaluated a novel VLP platform based on duck HBV (known as Metavax) for malaria vaccine development. This platform can incorporate large and complex proteins into VLPs and is produced in a Hansenula cell line compatible with cGMP vaccine production. Here, we have established the expression of leading P. falciparum malaria vaccine candidates as VLPs. This includes Pfs230 and Pfs25, which are candidate transmission-blocking vaccine antigens. We demonstrated that the VLPs effectively induce antibodies to malaria vaccine candidates with minimal induction of antibodies to the duck-HBV scaffold antigen. Antibodies to Pfs230 also recognised native protein on the surface of gametocytes, and antibodies to both Pfs230 and Pfs25 demonstrated transmission-reducing activity in standard membrane feeding assays. These results establish the potential utility of this VLP platform for malaria vaccines, which may be suitable for the development of multi-component vaccines that achieve high vaccine efficacy and transmission-blocking immunity.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute, Life Sciences, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, VIC, Australia
| | - David Wetzel
- ARTES Biotechnology GmbH, Langenfeld, Germany
- Technical University of Dortmund, Laboratory of Plant and Process Design, Dortmund, Germany
| | - Linda Reiling
- Burnet Institute, Life Sciences, Melbourne, VIC, Australia
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Damien R. Drew
- Burnet Institute, Life Sciences, Melbourne, VIC, Australia
| | - Paul R. Gilson
- Burnet Institute, Life Sciences, Melbourne, VIC, Australia
| | | | - Jack S. Richards
- Burnet Institute, Life Sciences, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | | | - Takafumi Tsuboi
- Proteo-Science Centre, Ehime University, Matsuyama, Ehime, Japan
| | - Michelle J. Boyle
- Immunology Department, QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - James G. Beeson
- Burnet Institute, Life Sciences, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, VIC, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
- * E-mail:
| |
Collapse
|
139
|
Wetzel D, Chan JA, Suckow M, Barbian A, Weniger M, Jenzelewski V, Reiling L, Richards JS, Anderson DA, Kouskousis B, Palmer C, Hanssen E, Schembecker G, Merz J, Beeson JG, Piontek M. Display of malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived virus-like particles produced in Hansenula polymorpha. PLoS One 2019; 14:e0221394. [PMID: 31483818 PMCID: PMC6726142 DOI: 10.1371/journal.pone.0221394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.
Collapse
Affiliation(s)
- David Wetzel
- ARTES Biotechnology GmbH, Langenfeld, Germany
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | - Andreas Barbian
- Düsseldorf University Hospital, Institute for Anatomy I, Düsseldorf, Germany
| | | | | | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Jack S. Richards
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - David A. Anderson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Betty Kouskousis
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Catherine Palmer
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Eric Hanssen
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Gerhard Schembecker
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Juliane Merz
- Evonik Technology & Infrastructure GmbH, Hanau, Germany
| | - James G. Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
140
|
The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles. MATERIALS 2019; 12:ma12172671. [PMID: 31443361 PMCID: PMC6747576 DOI: 10.3390/ma12172671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.
Collapse
|
141
|
Vaccine Development against the Renin-Angiotensin System for the Treatment of Hypertension. Int J Hypertens 2019; 2019:9218531. [PMID: 31485348 PMCID: PMC6710730 DOI: 10.1155/2019/9218531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023] Open
Abstract
Hypertension is a global public health issue and the most important preventable cause of cardiovascular diseases. Despite the clinical availability of many antihypertensive drugs, many hypertensive patients have poor medication adherence and blood pressure control due, at least partially, to the asymptomatic and chronic characteristics of hypertension. Immunotherapeutic approaches have the potential to improve medication adherence in hypertension because they induce prolonged therapeutic effects and need a low frequency of administration. The first attempts to reduce blood pressure by using vaccines targeting the renin-angiotensin system were made more than half a century ago; however, at the time, a poor understanding of immunology and the mechanisms of hypertension and a lack of optimal vaccine technologies such as suitable antigen design, proper adjuvants, and effective antigen delivery systems meant that attempts to develop antihypertensive vaccines failed. Recent advances in immunology and vaccinology have provided potential therapeutic immunologic approaches to treat not only infectious diseases but also cancers and other noncommunicable diseases. One important biotechnology that has had a major impact on modern vaccinology is virus-like particle technology, which can efficiently deliver vaccine antigens without the need for artificial adjuvants. A human clinical trial that indicated the effectiveness and safety of a virus-like particle-based antiangiotensin II vaccine marked a turning point in the field of therapeutic antihypertensive vaccines. Here, we review the history of the development of immunotherapies for the treatment of hypertension and discuss the current perspectives in the field.
Collapse
|
142
|
Cervera L, Gòdia F, Tarrés-Freixas F, Aguilar-Gurrieri C, Carrillo J, Blanco J, Gutiérrez-Granados S. Production of HIV-1-based virus-like particles for vaccination: achievements and limits. Appl Microbiol Biotechnol 2019; 103:7367-7384. [DOI: 10.1007/s00253-019-10038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|
143
|
Maharjan PM, Choe S. Transient expression of hemagglutinin antigen from canine influenza virus H3N2 in Nicotiana benthamiana and Lactuca sativa. Clin Exp Vaccine Res 2019; 8:124-131. [PMID: 31406694 PMCID: PMC6689504 DOI: 10.7774/cevr.2019.8.2.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Canine influenza virus (CIV), H3N2, carries potentiality for zoonotic transmission and genetic assortment which raises a concern on possible epidemics, and human threats in future. To manage possible threats, the development of rapid and effective methods of CIV vaccine production is required. The plant provides economical, safe, and robust production platform. We investigated whether hemagglutinin (HA) antigen from Korea-originated CIV could be produced in Nicotiana benthamiana and lettuce, Lactuca sativa by a DNA viral vector system. Materials and Methods We used DNA sequences of the HA gene from Korean CIV strain influenza A/canine/Korea/S3001/2015 (H3N2) for cloning into a geminiviral expression vectors to express recombinant HA (rHA) antigen in the plant. Agrobacterium-mediated infiltration was performed to introduce HA-carrying vector into host plants cells. Laboratory-grown N. benthamiana, and grocery-purchased or hydroponically-grown lettuce plant leaves were used as host plants. Results CIV rHA antigen was successfully expressed in host plant species both N. benthamiana and L. sativa by geminiviral vector. Both complex-glycosylated and basal-glycosylated form of rHA were produced in lettuce, depending on presence of endoplasmic reticulum (ER) retention signal. In terms of rHA expression level, canine HA (H3N2) showed preference to the native signal peptide than ER retention signal peptide in the tested geminiviral vector system. Conclusion Grocery-purchased lettuce leaves could serve as an instant host system for the transient expression of influenza antigen at the time of emergency. The geminiviral vector was able to induce expression of complex-glycosylated and basal-glycosylated rHA in lettuce and tobacco.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.,G+FLAS Life Sciences, Seoul, Korea
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.,G+FLAS Life Sciences, Seoul, Korea
| |
Collapse
|
144
|
Chen W, Guo J, Cai Y, Fu Q, Chen B, Chou JJ. Unidirectional Presentation of Membrane Proteins in Nanoparticle-Supported Liposomes. Angew Chem Int Ed Engl 2019; 58:9866-9870. [PMID: 30990942 PMCID: PMC6660371 DOI: 10.1002/anie.201903093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Presentation of membrane proteins to host immune systems has been a challenging problem owing to complexity arising from the poor in vivo stability of the membrane-mimetic media often used for solubilizing the membrane proteins. The use of functionalized, biocompatible nanoparticles as substrates is shown to guide the formation of proteoliposomes, which can present many copies of membrane proteins in a unidirectional manner. The approach was demonstrated to present the membrane-proximal region of the HIV-1 envelope glycoprotein. These nanoparticle-supported liposomes are broadly applicable as membrane antigen vehicles for inducing host immune responses.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| | - Junling Guo
- Department of Biomass Science and Engineering, Sichuan University, 252 Shuncheng Street, Chengdu, Sichuan 610065, China
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, United States
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
145
|
Chen W, Cai Y, Fu Q, Chen B, Guo J, Chou JJ. Unidirectional Presentation of Membrane Proteins in Nanoparticle‐Supported Liposomes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| | - Yongfei Cai
- Division of Molecular MedicineBoston Children's HospitalDepartment of PediatricsHarvard Medical School 3 Blackfan Street Boston MA 02115 USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| | - Bing Chen
- Division of Molecular MedicineBoston Children's HospitalDepartment of PediatricsHarvard Medical School 3 Blackfan Street Boston MA 02115 USA
| | - Junling Guo
- Department of Biomass Science and EngineeringSichuan University 24 South Section Yihuan Road Chengdu Sichuan 610065 China
| | - James J. Chou
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School 250 Longwood Avenue Boston MA 02115 USA
| |
Collapse
|
146
|
Marsian J, Hurdiss DL, Ranson NA, Ritala A, Paley R, Cano I, Lomonossoff GP. Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease. FRONTIERS IN PLANT SCIENCE 2019; 10:880. [PMID: 31354759 PMCID: PMC6629939 DOI: 10.3389/fpls.2019.00880] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/20/2019] [Indexed: 05/27/2023]
Abstract
Virus-like particles (VLPs) of the fish virus, Atlantic Cod Nervous necrosis virus (ACNNV), were successfully produced by transient expression of the coat protein in Nicotiana benthamiana plants. VLPs could also be produced in transgenic tobacco BY-2 cells. The protein extracted from plants self-assembled into T = 3 particles, that appeared to be morphologically similar to previously analyzed NNV VLPs when analyzed by high resolution cryo-electron microscopy. Administration of the plant-produced VLPs to sea bass (Dicentrarchus labrax) showed that they could protect the fish against subsequent virus challenge, indicating that plant-produced vaccines may have a substantial future role in aquaculture.
Collapse
Affiliation(s)
- Johanna Marsian
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Daniel L. Hurdiss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Anneli Ritala
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Richard Paley
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | - Irene Cano
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, United Kingdom
| | | |
Collapse
|
147
|
Daniell H, Rai V, Xiao Y. Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1357-1368. [PMID: 30575284 PMCID: PMC6576100 DOI: 10.1111/pbi.13060] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 05/20/2023]
Abstract
To prevent vaccine-associated paralytic poliomyelitis, WHO recommended withdrawal of Oral Polio Vaccine (Serotype-2) and a single dose of Inactivated Poliovirus Vaccine (IPV). IPV however is expensive, requires cold chain, injections and offers limited intestinal mucosal immunity, essential to prevent polio reinfection in countries with open sewer system. To date, there is no virus-free and cold chain-free polio vaccine capable of inducing robust mucosal immunity. We report here a novel low-cost, cold chain/poliovirus-free, booster vaccine using poliovirus capsid protein (VP1, conserved in all serotypes) fused with cholera non-toxic B subunit (CTB) expressed in lettuce chloroplasts. PCR using unique primer sets confirmed site-specific integration of CTB-VP1 transgene cassettes. Absence of the native chloroplast genome in Southern blots confirmed homoplasmy. Codon optimization of the VP1 coding sequence enhanced its expression 9-15-fold in chloroplasts. GM1-ganglioside receptor-binding ELISA confirmed pentamer assembly of CTB-VP1 fusion protein, fulfilling a key requirement for oral antigen delivery through gut epithelium. Transmission Electron Microscope images and hydrodynamic radius analysis confirmed VP1-VLPs of 22.3 nm size. Mice primed with IPV and boosted three times with lyophilized plant cells expressing CTB-VP1co, formulated with plant-derived oral adjuvants, enhanced VP1-specific IgG1, VP1-IgA titres and neutralization (80%-100% seropositivity of Sabin-1, 2, 3). In contrast, IPV single dose resulted in <50% VP1-IgG1 and negligible VP1-IgA titres, poor neutralization and seropositivity (<20%, <40% Sabin 1,2). Mice orally boosted with CTB-VP1co, without IPV priming, failed to produce any protective neutralizing antibody. Because global population is receiving IPV single dose, booster vaccine free of poliovirus or cold chain offers a timely low-cost solution to eradicate polio.
Collapse
Affiliation(s)
- Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vineeta Rai
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yuhong Xiao
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
148
|
Pattinson DJ, Apte SH, Wibowo N, Chuan YP, Rivera-Hernandez T, Groves PL, Lua LH, Middelberg APJ, Doolan DL. Chimeric Murine Polyomavirus Virus-Like Particles Induce Plasmodium Antigen-Specific CD8 + T Cell and Antibody Responses. Front Cell Infect Microbiol 2019; 9:215. [PMID: 31275867 PMCID: PMC6593135 DOI: 10.3389/fcimb.2019.00215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
An effective vaccine against the Plasmodium parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8+ or CD4+ T cell or B cell repeat epitopes derived from the Plasmodium yoelii circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model. Robust CD8+ T cell responses were induced by immunization with the chimeric CD8+ T cell epitope virus-like particles, however CD4+ T cell responses were very low. The B cell chimeric construct induced robust antibody responses but there was no apparent synergy when T cell and B cell constructs were administered as a pool. A heterologous prime/boost regimen using plasmid DNA priming followed by a VLP boost was more effective than homologous VLP immunization for cellular immunity and protection. These data show that chimeric murine polyomavirus virus-like particles are a good platform for induction of CD8+ T cell responses as well as antibody responses.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan
- Antibody Formation/immunology
- Antigens, Protozoan/immunology
- B-Lymphocytes
- CD4-Positive T-Lymphocytes
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Immunity, Cellular
- Immunization
- Immunization, Secondary
- Malaria Vaccines
- Mice
- Mice, Inbred BALB C
- Plasmodium yoelii
- Polyomavirus/genetics
- Polyomavirus/immunology
- Protozoan Proteins/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- David J. Pattinson
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Simon H. Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nani Wibowo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Yap P. Chuan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Penny L. Groves
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Linda H. Lua
- Protein Expression Facility, University of Queensland, Brisbane, QLD, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Denise L. Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
149
|
Current and Novel Approaches in Influenza Management. Vaccines (Basel) 2019; 7:vaccines7020053. [PMID: 31216759 PMCID: PMC6630949 DOI: 10.3390/vaccines7020053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza is a disease that poses a significant health burden worldwide. Vaccination is the best way to prevent influenza virus infections. However, conventional vaccines are only effective for a short period of time due to the propensity of influenza viruses to undergo antigenic drift and antigenic shift. The efficacy of these vaccines is uncertain from year-to-year due to potential mismatch between the circulating viruses and vaccine strains, and mutations arising due to egg adaptation. Subsequently, the inability to store these vaccines long-term and vaccine shortages are challenges that need to be overcome. Conventional vaccines also have variable efficacies for certain populations, including the young, old, and immunocompromised. This warrants for diverse efficacious vaccine developmental approaches, involving both active and passive immunization. As opposed to active immunization platforms (requiring the use of whole or portions of pathogens as vaccines), the rapidly developing passive immunization involves administration of either pathogen-specific or broadly acting antibodies against a kind or class of pathogens as a treatment to corresponding acute infection. Several antibodies with broadly acting capacities have been discovered that may serve as means to suppress influenza viral infection and allow the process of natural immunity to engage opsonized pathogens whilst boosting immune system by antibody-dependent mechanisms that bridge the innate and adaptive arms. By that; passive immunotherapeutics approach assumes a robust tool that could aid control of influenza viruses. In this review, we comment on some improvements in influenza management and promising vaccine development platforms with an emphasis on the protective capacity of passive immunotherapeutics especially when coupled with the use of antivirals in the management of influenza infection.
Collapse
|
150
|
Yang C, Huang K. Clinical Applications of Virus-like Particles: Opportunities and Challenges. Curr Protein Pept Sci 2019; 20:488-489. [PMID: 30942144 DOI: 10.2174/138920372005190327120752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|