101
|
Dopico JG, González-Hernández T, Pérez IM, García IG, Abril AM, Inchausti JO, Rodríguez Díaz M. Glycine release in the substantia nigra: Interaction with glutamate and GABA. Neuropharmacology 2006; 50:548-57. [PMID: 16337663 DOI: 10.1016/j.neuropharm.2005.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 09/28/2005] [Accepted: 10/25/2005] [Indexed: 01/25/2023]
Abstract
Previous studies have reported a high number of glycine (GLY) receptors in the substantia nigra (SN) but a low number of GLY-neurons, suggesting that taurine, a partial agonist of GLY-receptors, is the natural substrate for SN GLY-receptors. By using microdialysis to quantify amino acids in the extracellular space of the SN, we observed an extracellular pool of GLY in the rat that increased after depolarizing with high-K+ in a Ca2+-dependent manner and that diffuses through the extracellular space. GLY markedly increased after blocking either the tricarboxylic cycle with fluorocitrate or the glutamine synthetase activity with MSO. Because these products act selectively on glial cells, their effects show glia as a key cell in maintaining the extracellular pool of GLY in the SN. Extracellular GLY was modified by glutamate and glutamate receptor agonists. The local administration of GLY modified the extracellular concentration of GABA. Taken together, the complex regulation of the extracellular level of GLY, its possible glial origin and interaction with glutamate and GABA suggest a volume transmitter role for GLY in the SN, a possibility which also agrees with the recent finding of GLY-transporters in this centre.
Collapse
Affiliation(s)
- José García Dopico
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | | | | | | |
Collapse
|
102
|
da Cruz MTG, Cardoso ALC, de Almeida LP, Simões S, de Lima MCP. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 2006; 12:1242-52. [PMID: 15815700 DOI: 10.1038/sj.gt.3302516] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of efficient systems for in vivo gene transfer to the central nervous system (CNS) may provide a useful therapeutic strategy for the alleviation of several neurological disorders. In this study, we evaluated the feasibility of nonviral gene therapy to the CNS mediated by cationic liposomes. We present evidence of the successful delivery and expression of both a reporter and a therapeutic gene in the rodent brain, as evaluated by immunohistochemical assays. Our results indicate that transferrin-associated cationic liposome/DNA complexes (Tf-lipoplexes) allow a significant enhancement of transfection activity as compared to plain complexes, and that 8/1 (+/-) Tf-lipoplexes constitute the best formulation to mediate in vivo gene transfer. We demonstrated that Tf-lipoplex-mediated nerve growth factor transgene expression attenuates the morphological damages of the kainic acid-induced lesion as assessed by 2,3,5-triphenyltetrazolium chloride (TTC) vital staining. These findings suggest the usefulness of these lipid-based vectors in mediating the delivery of therapeutic genes to the CNS.
Collapse
Affiliation(s)
- M Teresa Girão da Cruz
- Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, Apartado 3126, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
103
|
Youssef FF, Addae JI, Stone TW. NMDA-induced preconditioning attenuates synaptic plasticity in the rat hippocampus. Brain Res 2006; 1073-1074:183-9. [PMID: 16472785 DOI: 10.1016/j.brainres.2005.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/24/2005] [Accepted: 12/05/2005] [Indexed: 01/01/2023]
Abstract
It was recently demonstrated that glutamate could precondition hippocampal slices against the damaging effects of hypoxia, and we have now extended this observation by investigating (i) the ability of glutamate receptor agonists to act as preconditioning agents and (ii) the effects of preconditioning on synaptic plasticity. Using rat hippocampal slices, 15 microM NMDA applied for 10 min (chemical insult) caused abolition of the population spike potentials (PS) followed by approximately 33% recovery at 60 min post-insult. In comparison, a 5 min preconditioning exposure of 10 microM NMDA given 30 min prior to the insult significantly improved the recovery to 69%. Preconditioning did not alter paired pulse facilitation; however, it significantly enhanced paired pulse depression and reduced population spike long-term potentiation (PS-LTP) and LTP in field recordings. This effect on PS-LTP appeared to be NMDA receptor dependent and was blocked by the nitric oxide synthase inhibitors nitro-L-arginine methyl ester (L-NAME) and 7-nitro indazole (7-NI) but not by the adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). We conclude that preconditioning by NMDA can improve recovery following acute insults but may have deleterious effects on neuronal plasticity.
Collapse
Affiliation(s)
- Farid F Youssef
- Department of Preclinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine Campus, Trinidad and Tobago.
| | | | | |
Collapse
|
104
|
Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M, Tavazzi B, Vagnozzi R, Signoretti S, Amorini AM, Bellia F, Lazzarino G. Extracellular N-acetylaspartate depletion in traumatic brain injury. J Neurochem 2006; 96:861-9. [PMID: 16371008 DOI: 10.1111/j.1471-4159.2005.03602.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
N-Acetylaspartate (NAA) is almost exclusively localized in neurons in the adult brain and is present in high concentration in the CNS. It can be measured by proton magnetic resonance spectroscopy and is seen as a marker of neuronal damage and death. NMR spectroscopy and animal models have shown NAA depletion to occur in various types of chronic and acute brain injury. We investigated 19 patients with traumatic brain injury (TBI). Microdialysis was utilized to recover NAA, lactate, pyruvate, glycerol and glutamate, at 12-h intervals. These markers were correlated with survival and a 6-month Glasgow Outcome Score. Eleven patients died and eight survived. A linear mixed model analysis showed a significant effect of outcome and of the interaction between time of injury and outcome on NAA levels (p = 0.009 and p = 0.004, respectively). Overall, extracellular NAA was 34% lower in non-survivors. A significant non-recoverable fall was observed in this group from day 4 onwards, with a concomitant rise in lactate-pyruvate ratio and glycerol. These results suggest that mitochondrial dysfunction is a significant contributor to poor outcome following TBI and propose extracellular NAA as a potential marker for monitoring interventions aimed at preserving mitochondrial function.
Collapse
Affiliation(s)
- Antonio Belli
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Topic B, Willuhn I, Palomero-Gallagher N, Zilles K, Huston JP, Hasenöhrl RU. Impaired maze performance in aged rats is accompanied by increased density of NMDA, 5-HT1A, and α-adrenoceptor binding in hippocampus. Hippocampus 2006; 17:68-77. [PMID: 17111411 DOI: 10.1002/hipo.20246] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using quantitative receptor autoradiography, we assessed binding site densities and distribution patterns of glutamate, GABA(A), acetylcholine (ACh), and monoamine receptors in the hippocampus of 32-month-old Fischer 344/Brown Norway rats. Prior to autoradiography, the rats were divided into two groups according to their retention performance in a water maze reference memory task, which was assessed 1 week after 8 days of daily maze training. The animals of the inferior group showed less long-term retention of the hidden-platform task but did not differ from superior rats in their navigation performance during place training and cued trials. The decreased retention performance in the group of inferior learners was primarily accompanied by increased alpha(1)-adrenoceptors in all hippocampal subregions under inspection (CA1-CA4 and dentate gyrus), while elevated alpha(2)-adrenoceptor binding was observed in the CA1 region and DG. Furthermore, inferior learners had higher NMDA binding in the CA2 and CA4 and increased 5-HT(1A) binding sites in the CA2, CA3, and CA4 region. No significant differences between inferior and superior learners were evident with regard to AMPA, kainate, GABA(A), muscarinergic M(1), dopamine D(1), and 5-HT(2) binding densities in any hippocampal region analyzed. These results show that increased NMDA, 5-HT(1A), and alpha-adrenoceptor binding in the hippocampus is associated with a decline in spatial memory. The increased receptor binding observed in the group of old rats with inferior maze performance might be the result of neural adaptation triggered by age-related changes in synaptic connectivity and/or synaptic activity.
Collapse
Affiliation(s)
- B Topic
- Institute of Physiological Psychology, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
106
|
Ramonet D, de Yebra L, Fredriksson K, Bernal F, Ribalta T, Mahy N. Similar calcification process in acute and chronic human brain pathologies. J Neurosci Res 2006; 83:147-56. [PMID: 16323208 DOI: 10.1002/jnr.20711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cellular microcalcification observed in a diversity of human pathologies, such as vascular dementia, Alzheimer's disease, Parkinson's disease, astrogliomas, and posttraumatic epilepsy, also develops in rodent experimental models of central nervous system (CNS) neurodegeneration. Central to the neurodegenerative process is the inability of neurons to regulate intracellular calcium levels properly, and this is extensible to fine regulation of the CNS. This study provides evidence of a common pattern of brain calcification taking place in several human pathologies, and in the rat with glutamate-derived CNS lesions, regarding the chemical composition, physical characteristics, and histological environment of the precipitates. Furthermore, a common physical mechanism of deposit formation through nucleation, lineal growth, and aggregation is presented, under the modulation of protein deposition and elemental composition factors. Insofar as calcium precipitation reduces activity signals at no energy expense, the presence in human and rodent cerebral brain lesions of a common pattern of calcification may reflect an imbalance between cellular signals of activity and energy availability for its execution. If this is true, this new step of calcium homeostasis can be viewed as a general cellular adaptative mechanism to reduce further brain damage.
Collapse
Affiliation(s)
- David Ramonet
- Unitat de Bioquímica, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
107
|
Ayala GX, Tapia R. LateN-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur J Neurosci 2005; 22:3067-76. [PMID: 16367773 DOI: 10.1111/j.1460-9568.2005.04509.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intrahippocampal perfusion of 4-aminopyridine (4-AP) in the rat produces immediate seizures and delayed neuronal death, due to the overactivation of N-methyl-D-aspartate (NMDA) receptors by endogenous glutamate released from nerve endings. With the same time course, 4-AP also induces the expression of the cell stress marker heat shock protein 70 (HSP70) in the contralateral non-damaged hippocampus. We have used this experimental model to study the mechanisms of the delayed neuronal stress and death. The NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801), administered intraperitoneally 30 or 60 but not 120 min after 4-AP perfusion, when animals show intense electroencephalography epileptiform activity, prevented the delayed neurodegeneration whereas the seizures continued for about 3 h as in the control animals. With an identical time window, MK-801 treatment also modified the pattern of HSP70 expression; the protein was expressed in the protected perfused hippocampus but no longer in the undamaged contralateral hippocampus. The possible role of Ca2+ in the delayed cell death and HSP70 expression was also studied by coperfusing the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) with 4-AP. This treatment resulted in protective and HSP70 effects very similar to those of MK-801. These results suggest that the seizures are not linked to neurodegeneration and that NMDA receptors need to be continuously overactivated by endogenous glutamate for at least 60 min in order to induce delayed neuronal stress and death, which are dependent on Ca2+ entry through the NMDA receptor channel.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, DF, México
| | | |
Collapse
|
108
|
Takeda A, Tamano H, Nagayoshi A, Yamada K, Oku N. Increase in hippocampal cell death after treatment with kainate in zinc deficiency. Neurochem Int 2005; 47:539-44. [PMID: 16169125 DOI: 10.1016/j.neuint.2005.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 07/19/2005] [Accepted: 07/20/2005] [Indexed: 01/04/2023]
Abstract
Susceptibility to kainate-induced seizures is enhanced by zinc deficiency. To evaluate kainate-induced excitotoxicity in zinc deficiency, the relationship between kainate-induced seizures and hippocampal cell death was examined in control and zinc-deficient mice. Mice were fed a control and zinc-deficient diet for 4 weeks, and then intraperitoneally injected with 12 mg/kg kainate every 60 min three times. The rate of dead mice to the total mice was higher in zinc-deficient group than in control group 3 days after the last injection of kainate. In the survivals, which exhibited tonic convulsions in both control and zinc-deficient groups, kainate-induced hippocampal cell death was also analyzed by cresyl violet staining. Neuronal loss was more observed in the CA1, CA2 and CA3 pyramidal cell layers of zinc-deficient group than those of the control group. TUNEL-positive cells were significantly more detected in the CA1 and CA3 pyramidal cell layers of zinc-deficient group. These results demonstrate that kainate-induced hippocampal cell death occurs more easily in zinc deficiency. Extracellular zinc concentration detected with ZnAF-2 was significantly decreased in the hippocampal CA3 of zinc-deficient mice, in agreement with the previous data measured by in vivo microdialsysis. Synaptically released zinc may be less involved in kainate-induced hippocampal cell death in zinc deficiency.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | |
Collapse
|
109
|
Rodríguez MJ, Robledo P, Andrade C, Mahy N. In vivo co-ordinated interactions between inhibitory systems to control glutamate-mediated hippocampal excitability. J Neurochem 2005; 95:651-61. [PMID: 16135094 DOI: 10.1111/j.1471-4159.2005.03394.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA(A) receptor labelling in the hippocampal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extracellular levels were studied in control and lesioned rats. In vivo effects of 100 mm KCl perfusion and adenosine A(1) receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA(A) receptors and decreased glutamate neurotransmission. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.
Collapse
Affiliation(s)
- M J Rodríguez
- Unitat de Bioquímica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
110
|
Montiel T, Camacho A, Estrada-Sánchez AM, Massieu L. Differential effects of the substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 2005; 133:667-78. [PMID: 15890455 DOI: 10.1016/j.neuroscience.2004.11.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/14/2004] [Accepted: 11/23/2004] [Indexed: 11/22/2022]
Abstract
The extracellular concentration of glutamate is highly regulated by transporter proteins, due to its neurotoxic properties. Dysfunction or reverse activation of these transporters is related to the extracellular accumulation of excitatory amino acids and neuronal damage associated with ischemia and hypoglycemia. We have investigated by microdialysis the effects of the substrate and the non-substrate inhibitors of glutamate transporters, l-trans-2,4-pyrrolidine dicarboxylate (PDC) and DL-threo-beta-benzyloxyaspartate (DL-TBOA), respectively, on the extracellular levels of amino acids in the rat hippocampus in vivo. In addition, we have studied the effect of both inhibitors on neuronal damage after direct administration into the hippocampus and striatum. Electroencephalographic activity was recorded after the intrahippocampal infusion of DL-TBOA or PDC. Microdialysis administration of 500 microM DL-TBOA into the hippocampus increased 3.4- and nine-fold the extracellular levels of aspartate and glutamate, respectively. Upon stereotaxic administration it induced neuronal damage dose-dependently in CA1 and dentate gyrus, and convulsive behavior. Electroencephalographic recording showed the appearance of limbic seizures in the hippocampus after DL-TBOA infusion. In the striatum it also induced dose-dependent neuronal damage. These effects were prevented by the i.p. administration of the glutamate receptor antagonists (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclohepten-5,10-iminemaleate and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)-quinoxaline. In contrast to dl-TBOA, PDC (500 microM) induced a more discrete elevation of excitatory amino acids levels (2.6- and three-fold in aspartate and glutamate, respectively), no neuronal damage or behavioral changes, and no alterations in electroencephalographic activity. The differential results obtained with DL-TBOA and PDC might be attributed to their distinct effects on the extracellular concentration of amino acids. Results are relevant to the understanding of the role of glutamate transporters in amino acid removal or release and the induction of excitotoxic cell death.
Collapse
Affiliation(s)
- T Montiel
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, México D.F., CP 04510, Mexico
| | | | | | | |
Collapse
|
111
|
Arrigoni E, Crocker AJ, Saper CB, Greene RW, Scammell TE. Deletion of presynaptic adenosine A1 receptors impairs the recovery of synaptic transmission after hypoxia. Neuroscience 2005; 132:575-80. [PMID: 15837119 PMCID: PMC2259447 DOI: 10.1016/j.neuroscience.2004.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2004] [Indexed: 11/26/2022]
Abstract
Adenosine protects neurons during hypoxia by inhibiting excitatory synaptic transmission and preventing NMDA receptor activation. Using an adeno-associated viral (AAV) vector containing Cre recombinase, we have focally deleted adenosine A(1) receptors in specific hippocampal regions of adult mice. Recently, we found that deletion of A(1) receptors in the CA1 area blocks the postsynaptic responses to adenosine in CA1 pyramidal neurons, and deletion of A(1) receptors in CA3 neurons abolishes the presynaptic effects of adenosine on the Schaffer collateral input [J Neurosci 23 (2003) 5762]. In the current study, we used this technique to delete A(1) receptors focally from CA3 neurons to investigate whether presynaptic A(1) receptors protect synaptic transmission from hypoxia. We studied the effects of prolonged (1 h) hypoxia on the evoked field excitatory postsynaptic potentials (fEPSPs) in the CA1 region using in vitro slices. Focal deletion of the presynaptic A(1) receptors on the Schaffer collateral input slowed the depression of the fEPSPs in response to hypoxia and impaired the recovery of the fEPSPs after hypoxia. Delayed responses to hypoxia linearly correlated with impaired recovery. These findings provide direct evidence that the neuroprotective role of adenosine during hypoxia depends on the rapid inhibition of synaptic transmission by the activation of presynaptic A(1) receptors.
Collapse
Affiliation(s)
- E Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
112
|
Takeda A, Tamano H, Oku N. Involvement of unusual glutamate release in kainate-induced seizures in zinc-deficient adult rats. Epilepsy Res 2005; 66:137-43. [PMID: 16157475 DOI: 10.1016/j.eplepsyres.2005.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 07/24/2005] [Accepted: 07/28/2005] [Indexed: 01/12/2023]
Abstract
Enhanced susceptibility to kainate-induced seizures is linked to a lack of increase in GABA release in zinc-deficient young rats. In the present study, susceptibility to kainate-induced seizures was examined in adult (12-week-old) rats fed a zinc-deficient diet for 4 weeks to evaluate the relationship between the dysfunction of GABAergic neurotransmitter system and seizure susceptibility in zinc deficiency. Susceptibility to kainate-induced seizures was enhanced in zinc-deficient adult rats. Extracellular glutamate concentration in the hippocampus was markedly (>2 times) higher in zinc-deficient adult rats than in the control before and after treatment with kainate. Extracellular zinc concentration in the hippocampus was also higher in zinc-deficient adult rats. Interestingly, it was decreased in both zinc-deficient and control rats after treatment with kainate. In some zinc-deficient adult rats, extracellular GABA concentration in the hippocampus was increased with extracellular glutamate concentration after treatment with kainate. When the capacity for GABA release was examined by excessive stimulation with 100mM KCl, extracellular GABA concentrations were significantly increased even in zinc-deficient adult rats. These results suggest that GABA can be excessively released in zinc-deficient adult rats. An unusual glutamate release may be involved in the enhanced susceptibility to kainate-induced seizures in zinc-deficient adult rats.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | |
Collapse
|
113
|
Chaparro-Huerta V, Rivera-Cervantes MC, Flores-Soto ME, Gómez-Pinedo U, Beas-Zárate C. Proinflammatory cytokines and apoptosis following glutamate-induced excitotoxicity mediated by p38 MAPK in the hippocampus of neonatal rats. J Neuroimmunol 2005; 165:53-62. [PMID: 15972237 DOI: 10.1016/j.jneuroim.2005.04.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Revised: 04/08/2005] [Accepted: 04/08/2005] [Indexed: 11/24/2022]
Abstract
The proinflammatory cytokines TNF-alpha, IL-1beta, and IL-6 rise during neuronal damage and activate the apoptotic mitogen-activated protein kinase p38. We studied apoptosis, the levels of TNF-alpha, IL-1beta, and IL-6, and the cell type producing TNF-alpha in rats at 8, 10, and 14 days of age after neonatal exposure to glutamate, which induces neuronal damage. TNF-alpha production was significantly increased by glutamate, but inhibited by SB203580 (a p38 inhibitor). TNF-alpha, IL-1beta, and IL-6 mRNA levels increased, but SB203580 did not modify their expression. Thus, the p38 signaling pathway influences the expression of inflammatory genes and its inhibition may offer anti-inflammatory therapy.
Collapse
Affiliation(s)
- V Chaparro-Huerta
- Laboratorio de Neurobiología Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, México
| | | | | | | | | |
Collapse
|
114
|
FLOYD CANDACEL, GORIN FREDRICA, LYETH BRUCEG. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 2005; 51:35-46. [PMID: 15779085 PMCID: PMC2996279 DOI: 10.1002/glia.20183] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traditionally, astrocytes have been considered less susceptible to injury than neurons. Yet, we have recently shown that astrocyte death precedes neuronal death in a rat model of traumatic brain injury (TBI) (Zhao et al.: Glia 44:140-152, 2003). A main mechanism hypothesized to contribute to cellular injury and death after TBI is elevated intracellular calcium ([Ca2+]i). Since calcium regulation is also influenced by regulation of intracellular sodium ([Na+]i), we used an in vitro model of strain-induced traumatic injury and live-cell fluorescent digital imaging to investigate alterations in [Na+]i in cortical astrocytes after injury. Changes in [Na+]i, or [Ca2+]i were monitored after mechanical injury or L-glutamate exposure by ratiometric imaging of sodium-binding benzofuran isophthalate (SBFI-AM), or Fura-2-AM, respectively. Mechanical strain injury or exogenous glutamate application produced increases in [Na+]i that were dependent on the severity of injury or concentration. Injury-induced increases in [Na+]i were significantly reduced, but not completely eliminated, by inhibition of glutamate uptake by DL-threo-beta-benzyloxyaspartate (TBOA). Blockade of sodium-dependent calcium influx through the sodium-calcium exchanger with 2-[2-[4-(4-Nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate (KB-R7943) reduced [Ca2+]i after injury. KB-R7943 also reduced astrocyte death after injury. These findings suggest that in astrocytes subjected to mechanical injury or glutamate excitotoxicity, increases in intracellular Na+ may be a critical component in the injury cascade and a therapeutic target for reduction of lasting deficits after traumatic brain injury.
Collapse
Affiliation(s)
- CANDACE L. FLOYD
- Department of Neurological Surgery, Center for Neuroscience, University of California, Davis, California
| | - FREDRIC A. GORIN
- Department of Neurology, Center for Neuroscience, University of California, Davis, California
| | - BRUCE G. LYETH
- Department of Neurological Surgery, Center for Neuroscience, University of California, Davis, California
- Correspondence to: Bruce G. Lyeth, Department of Neurological Surgery, University of California at Davis, 1515 Newton Court, One Shields Avenue, Davis, CA 95616-8797.
| |
Collapse
|
115
|
Mokrushin AA, Pavlinova LI, Plekhanov AY. Heat Shock Protein HSP70 Increases the Resistance of Cortical Cells to Glutamate Excitotoxicity. Bull Exp Biol Med 2005; 140:1-5. [PMID: 16254606 DOI: 10.1007/s10517-005-0396-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preincubation of cultured slices of the olfactory cortex of rat brain with heat shock protein in a concentration of 1 microg/ml protected the pre- and postsynaptic mechanisms of glutamatergic synaptic transmission from glutamate excitotoxicity (50 mM) inducing blockade of excitatory postsynaptic function and reducing presynaptic processes. It was hypothesized that heat shock protein protects AMPA and NMDA receptor-mediated processes.
Collapse
Affiliation(s)
- A A Mokrushin
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences; B. P. Konstantinov St. Petersburg Institute of Nuclear Researches, Russian Academy of Sciences, Gatchina.
| | | | | |
Collapse
|
116
|
Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 2005; 22:3-41. [PMID: 15665601 DOI: 10.1089/neu.2005.22.3] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microdialysis (MD) was introduced as an intracerebral sampling method for clinical neurosurgery by Hillered et al. and Meyerson et al. in 1990. Since then MD has been embraced as a research tool to measure the neurochemistry of acute human brain injury and epilepsy. In general investigators have focused their attention to relative chemical changes during neurointensive care, operative procedures, and epileptic seizure activity. This initial excitement surrounding this technology has subsided over the years due to concerns about the amount of tissue sampled and the complicated issues related to quantification. The interpretation of mild to moderate MD fluctuations in general remains an issue relating to dynamic changes of the architecture and size of the interstitial space, blood-brain barrier (BBB) function, and analytical imprecision, calling for additional validation studies and new methods to control for in vivo recovery variations. Consequently, the use of this methodology to influence clinical decisions regarding the care of patients has been restricted to a few institutions. Clinical studies have provided ample evidence that intracerebral MD monitoring is useful for the detection of overt adverse neurochemical conditions involving hypoxia/ischemia and seizure activity in subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), thromboembolic stroke, and epilepsy. There is some data strongly suggesting that MD changes precede the onset of secondary neurological deterioration following SAH, hemispheric stroke, and surges of increased ICP in fulminant hepatic failure. These promising investigations have relied on MD-markers for disturbed glucose metabolism (glucose, lactate, and pyruvate) and amino acids. Others have focused on trying to capture other important neurochemical events, such as excitotoxicity, cell membrane degradation, reactive oxygen species (ROS) and nitric oxide (NO) formation, cellular edema, and BBB dysfunction. However, these other applications need additional validation. Although these cerebral events and their corresponding changes in neurochemistry are important, other promising MD applications, as yet less explored, comprise local neurochemical provocations, drug penetration to the human brain, MD as a tool in clinical drug trials, and for studying the proteomics of acute human brain injury. Nevertheless, MD has provided new important insights into the neurochemistry of acute human brain injury. It remains one of very few methods for neurochemical measurements in the interstitial compartment of the human brain and will continue to be a valuable translational research tool for the future. Therefore, this technology has the potential of becoming an established part of multimodality neuro-ICU monitoring, contributing unique information about the acute brain injury process. However, in order to reach this stage, several issues related to quantification and bedside presentation of MD data, implantation strategies, and quality assurance need to be resolved. The future success of MD as a diagnostic tool in clinical neurosurgery depends heavily on the choice of biomarkers, their sensitivity, specificity, and predictive value for secondary neurochemical events, and the availability of practical bedside methods for chemical analysis of the individual markers. The purpose of this review was to summarize the results of clinical studies using cerebral MD in neurosurgical patients and to discuss the current status of MD as a potential method for use in clinical decision-making. The approach was to focus on adverse neurochemical conditions in the injured human brain and the MD biomarkers used to study those events. Methodological issues that appeared critical for the future success of MD as a routine intracerebral sampling method were addressed.
Collapse
Affiliation(s)
- Lars Hillered
- Division of Neurosurgery, Department of Surgery, The David Geffen UCLA School of Medicine, Los Angeles, California, USA.
| | | | | |
Collapse
|
117
|
Molz S, Decker H, Oliveira IJL, Souza DO, Tasca CI. Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevented by GMP. Neurochem Res 2005; 30:83-9. [PMID: 15756936 DOI: 10.1007/s11064-004-9689-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Guanosine-5'-monophosphate (GMP) was evaluated as a neuroprotective agent against the damage induced by glutamate in rat hippocampal slices submitted to glucose deprivation. In slices maintained under physiological conditions, glutamate (0.01 to 10 mM), Kainate, alpha-amino-3-hydroxi-5-methylisoxazole-propionic acid (AMPA), N-methyl-D-aspartate (NMDA), 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), or L-2-amino-4-phosphonobutanoic acid (L-AP4) (100 microM) did not alter cell membrane permeability, as evaluated by lactate dehydrogenase (LDH) release assay. In slices submitted to glucose deprivation, GMP (from 0.5 mM) prevented LDH leakage and the loss of cell viability induced by 10 mM glutamate. LDH leakage induced by Kainate, AMPA, NMDA or 1S,3R-ACPD was fully prevented by 1 mM GMP. However, glutamate uptake was not altered in slices submitted to glucose deprivation and glutamate analogues. Glucose deprivation induced a significant decrease in ATP levels which was unchanged by addition of glutamate or GMP. Our results show that glucose deprivation decreases the energetic charge of cells, making hippocampal slices more susceptible to excitotoxicity and point to GMP as a neuroprotective agent acting as a glutamatergic antagonist.
Collapse
Affiliation(s)
- Simone Molz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
118
|
Rodríguez Díaz M, Alonso TJ, Perdomo Diaz J, Gonzalez Hernández T, Castro Fuentes R, Sabate M, Garcia Dopico J. Glial regulation of nonsynaptic extracellular glutamate in the substantia nigra. Glia 2005; 49:134-42. [PMID: 15390097 DOI: 10.1002/glia.20100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GLU is the main neurotransmitter in the brain, where it induces a synaptic excitatory action. There is recent evidence for an extracellular nonsynaptic GLU (EnS-GLU) pool in different brain nuclei that, released from glial cells, may act on extrasynaptic GLU receptors of cells located far from the position in which it was released. In the present work, the EnS-GLU pool was studied with microdialysis in the rat substantia nigra (SN). We observed an EnS-GLU pool that increased in a Ca2+-dependent manner during cell depolarization. The selective alteration of with methionine sulfoximide (MSO) and fluorocitrate induced marked modifications in EnS-GLU suggesting that EnS-GLU is dependent on glial cells. Glutamine administration increased GLU, suggesting that neurons are also involved in EnS-GLU modulation. GLU administered in the rostral SN showed a long-distance diffusion to the caudal SN. The ionotropic GLU receptors agonist N-methyl-D-aspartate and kainate and the metabotropic GLU receptors agonist ACPD increased EnS-GLU and decreased extracellular glutamine. Taken together, these data indicate that nigral glia releases GLU, which probably performs a volume transmitter role.
Collapse
Affiliation(s)
- Manuel Rodríguez Díaz
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | | | | | | | |
Collapse
|
119
|
Berry CB, Hayes D, Murphy A, Wiessner M, Rauen T, McBean GJ. Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid. Brain Res 2005; 1037:123-33. [PMID: 15777760 DOI: 10.1016/j.brainres.2005.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 12/20/2004] [Accepted: 01/01/2005] [Indexed: 11/19/2022]
Abstract
At present, the ability of polyunsaturated fatty acids (PUFAs) to regulate individual glutamate transporter subtypes is poorly understood and very little information exists on the mechanism(s) by which PUFAs achieve their effects on the transport process. Here we investigate the effect of cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) on the activity of the mammalian glutamate transporter subtypes, GLT1, GLAST and EAAC1 individually expressed in human embryonic kidney (HEK) cells. Exposure of cells to 100 muM DHA increased the rate of d-[(3)H]aspartate uptake by over 72% of control in HEK(GLT1) cells, and by 45% of control in HEK(EAAC1) cells. In contrast, exposure of HEK(GLAST) cells to 200 muM DHA resulted in almost 40% inhibition of d-[(3)H]aspartate transport. Removal of extracellular calcium increased the inhibitory potential of DHA in HEK(GLAST) cells. In contrast, in the absence of extracellular calcium, the stimulatory effect of DHA on d-[(3)H]aspartate uptake in HEK(GLT1) and HEK(EAAC1) cells was abolished, and significant inhibition of the transport process by DHA was observed. Inhibition of CaM kinase II or PKC had no effect on the ability of DHA to inhibit transport into HEK(GLAST) cells but abolished the stimulatory effect of DHA on d-[(3)H]aspartate transport into HEK(GLT1) and HEK(EAAC1) cells. Inhibition of PKA had no effect on the modulation of d-[(3)H]aspartate transport by DHA in any of the cell lines. We conclude that DHA differentially modulates the GLT1, GLAST and EAAC1 glutamate transporter subtypes via different mechanisms. In the case of GLT1 and EAAC1, DHA appears to stimulate d-[(3)H]aspartate uptake via a mechanism requiring extracellular calcium and involving CaM kinase II and PKC, but not PKA. In contrast, the inhibitory effect of DHA on GLAST does not require extracellular calcium and does not involve CaM kinase II, PKC or PKA.
Collapse
Affiliation(s)
- Colm B Berry
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
120
|
Dunlop J, Zaleska MM, Eliasof S, Moyer JA. Excitatory amino acid transporters as emerging targets for central nervous system therapeutics. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.4.543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
121
|
Babot Z, Cristòfol R, Suñol C. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAAreceptors and niflumic acid-sensitive chloride channels. Eur J Neurosci 2005; 21:103-12. [PMID: 15654847 DOI: 10.1111/j.1460-9568.2004.03848.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl(-) channels.
Collapse
Affiliation(s)
- Zoila Babot
- Department of Neurochemistry, Institut d'Investigacions Biomediques de Barcelona, Consejo Superior de Investigaciones Cientificas, CSIC, IDIBAPS, Rossello 161, 08036 Barcelona, Spain
| | | | | |
Collapse
|
122
|
Abstract
Trace metals such as zinc, manganese, and iron are necessary for the growth and function of the brain. The transport of trace metals into the brain is strictly regulated by the brain barrier system, i.e., the blood-brain and blood-cerebrospinal fluid barriers. Trace metals usually serve the function of metalloproteins in neurons and glial cells, while a portion of trace metals exists in the presynaptic vesicles and may be released with neurotransmitters into the synaptic cleft. Zinc and manganese influence the concentration of neurotransmitters in the synaptic cleft, probably via the action against neurotransmitter receptors and transporters and ion channels. Zinc may be an inhibitory neuromodulator of glutamate release in the hippocampus, while neuromodulation by manganese might mean functional and toxic aspects in the synapse. Dietary zinc deficiency affects zinc homeostasis in the brain, followed by an enhanced susceptibility to the excitotoxicity of glutamate in the hippocampus. Transferrin may be involved in the physiological transport of iron and manganese into the brain and their utilization there. It is reported that the brain transferrin concentration is decreased in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease and that brain iron metabolism is also altered. The homeostasis of trace metals in the brain is important for brain function and also for the prevention of brain diseases.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| |
Collapse
|
123
|
Hachimi-Idrissi S, Van Hemelrijck A, Michotte A, Smolders I, Sarre S, Ebinger G, Huyghens L, Michotte Y. Postischemic mild hypothermia reduces neurotransmitter release and astroglial cell proliferation during reperfusion after asphyxial cardiac arrest in rats. Brain Res 2004; 1019:217-25. [PMID: 15306256 DOI: 10.1016/j.brainres.2004.06.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2004] [Indexed: 12/15/2022]
Abstract
The present study investigated whether postischemic mild hypothermia attenuates the ischemia-induced striatal glutamate (GLU) and dopamine (DA) release, as well as astroglial cell proliferation in the brain. Anesthetized rats were exposed to 8 min of asphyxiation, including 5 min of cardiac arrest. The cardiac arrest was reversed to restoration of spontaneous circulation (ROSC), by brief external heart massage and ventilation within a period of 2 min. After the insult and during reperfusion, the extracellular glutamate and dopamine overflow increased to, respectively, 3000% and 5000% compared with the baseline values in the normothermic group and resulted in brain damage, ischemic neurons and gliosis. However, when hypothermia was induced for a period of 60 min after the insult and restoration of spontaneous circulation, the glutamate and dopamine overflows were not significantly different from that in the sham group. Histological analysis of the brain showed that postischemic mild hypothermia reduced brain damage, ischemic neurons, as well as astroglial cell proliferation. Thus, postischemic mild hypothermia reduces the excitotoxic process, brain damage, as well as astroglial cell proliferation during reperfusion. Moreover, these results emphasize the trigger effect of dopamine on the excitotoxic pathway.
Collapse
Affiliation(s)
- S Hachimi-Idrissi
- Department of Critical Care Medicine and Cerebral Resuscitation Research Group, van de Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels B-1090, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
de Oliveira DL, Horn JF, Rodrigues JM, Frizzo MES, Moriguchi E, Souza DO, Wofchuk S. Quinolinic acid promotes seizures and decreases glutamate uptake in young rats: reversal by orally administered guanosine. Brain Res 2004; 1018:48-54. [PMID: 15262204 DOI: 10.1016/j.brainres.2004.05.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 11/25/2022]
Abstract
Quinolinic acid (QA) has been used as a model for experimental overstimulation of the glutamatergic system. Glutamate uptake is the main mechanism involved in the maintenance of extracellular glutamate below toxic levels. Guanosine systemically administered prevents quinolinic acid-induced seizures in adult mice and increases basal glutamate uptake by cortical astrocyte culture and slices from young rats. The immature brain differs from the adult brain in its susceptibility to seizures, seizure characteristics, and responses to antiepileptic drugs (AED). Here we investigated the effect of guanosine p.o. on QA-induced seizures in young rats (P12-14) and upon ex vivo glutamate uptake by cortical slices from these animals. I.c.v. infusion of 250 nmol QA induced seizures in all animals and decreased glutamate uptake. I.p. injection of MK-801 and phenobarbital 30 min before QA administration prevented seizures in all animals. Guanosine (7.5 mg/kg) 75 min before QA prevented seizures in 50% of animals as well as prevented the decrease of glutamate uptake in the protected animals. To investigate if the anticonvulsive effect of guanosine was specific for QA-induced seizures, the picrotoxin-induced seizures model was also performed. Pretreatment with phenobarbital i.p. (60 mg/kg-30 min) prevented picrotoxin-induced seizures in all animals, whereas guanosine p.o. (7.5 mg/kg-75 min) and MK-801 i.p. (0.5 mg/kg-30 min) had no effect. Thus, guanosine protection on the QA-induced seizures in young rats and on the decrease of glutamate uptake showed some specificity degree towards the QA-induced toxicity. This points that guanosine could be considered for treatments of epilepsy, and possibly other neurological disorders in children.
Collapse
Affiliation(s)
- Diogo Losch de Oliveira
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90.035.003 Brazil
| | | | | | | | | | | | | |
Collapse
|
125
|
Anderson TR, Jarvis CR, Biedermann AJ, Molnar C, Andrew RD. Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices. J Neurophysiol 2004; 93:963-79. [PMID: 15456803 DOI: 10.1152/jn.00654.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Within 2 min of stroke onset, neurons and glia in brain regions most deprived of blood (the ischemic core) undergo a sudden and profound loss of membrane potential caused by failure of the Na+/K+ ATPase pump. This anoxic depolarization (AD) represents a collapse in membrane ion selectivity that causes acute neuronal injury because neurons simply cannot survive the energy demands of repolarization while deprived of oxygen and glucose. In vivo and in live brain slices, the AD resists blockade by antagonists of neurotransmitter receptors (including glutamate) or by ion channel blockers. Our neuroprotective strategy is to identify AD blockers that minimally affect neuronal function. If the conductance underlying AD is not normally active, its selective blockade should not alter neuronal excitability. Imaging changes in light transmittance in live neocortical and hippocampal slices reveal AD onset, propagation, and subsequent dendritic damage. Here we identify several sigma-1 receptor ligands that block the AD in slices that are pretreated with 10-30 microM of ligand. Blockade prevents subsequent cell swelling, dendritic damage, and loss of evoked field potentials recorded in layers II/III of neocortex and in the CA1 region of hippocampus. Even when AD onset is merely delayed, electrophysiological recovery is markedly improved. With ligand treatment, evoked axonal conduction and synaptic transmission remain intact. The large nonselective conductance that drives AD is still unidentified but represents a prime upstream target for suppressing acute neuronal damage arising during the first critical minutes of stroke. Sigma receptor ligands provide insight to better define the properties of the channel responsible for anoxic depolarization. Video clips of anoxic depolarization and spreading depression can be viewed at http://anatomy.queensu.ca/faculty/andrew.cfm.
Collapse
Affiliation(s)
- Trent R Anderson
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
126
|
Tamano H, Takeda A. Suppressive effect of Saiko-ka-ryukotsu-borei-to, a herbal medicine, on excessive release of glutamate in the hippocampus. Brain Res Bull 2004; 64:273-7. [PMID: 15464865 DOI: 10.1016/j.brainresbull.2004.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 07/06/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, and the excess of glutamate concentration in the synaptic cleft is a cause of neuronal injury or death. To find out a drug suppressing the excess of extracellular glutamate concentration, the effect of Saiko-ka-ryukotsu-borei-to, a herbal medicine, was examined in the control and zinc-deficient rats, a neurological disease model, by using in vivo microdialysis. The excessive increase in extracellular glutamate in the hippocampus was induced by perfusion with 100 mM KCl for 40 min. Administration of Saiko-ka-ryukotsu-borei-to did not appreciably influence the increase in body weight of the control rats and the retarded increase in body weight of zinc-deficient rats. However, administration of Saiko-ka-ryukotsu-borei-to to the control rats completely suppressed the increase in glutamate concentration in the hippocampal extracellular fluid during stimulation with high K+. The suppressive effect of Saiko-ka-ryukotsu-borei-to was also observed in zinc-deficient rats, in which extracellular glutamate concentration was markedly increased during stimulation with high K+. These results suggest that Saiko-ka-ryukotsu-borei-to is a useful drug for prevention or cure of excitotoxicity of glutamate.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | | |
Collapse
|
127
|
Jayakar SS, Dikshit M. AMPA receptor regulation mechanisms: future target for safer neuroprotective drugs. Int J Neurosci 2004; 114:695-734. [PMID: 15204061 DOI: 10.1080/00207450490430453] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The post-synaptic AMPA receptors play an important role in mediating fast excitatory transmission in the mammalian brain. Over-activated AMPA receptors induce excitotoxicity, implicated in a number of Chronic neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and AIDS encephalitis. AMPA receptor antagonists offer protection against neurodegeneration in the experimental models even if they are given 24 h after the injury. Because AMPA receptors seem to be involved in the neurodegenerative diseases, modulating the activity of the AMPA receptors could be an attractive approach to reduce or prevent excitotoxicity. Studies conducted recently have exhibited a number of new mechanisms for AMPA receptor regulation. Modulations of these were found to have protective implications. AMPA receptor depolarization and desensitization are protective to the neurons. Receptor desensitization depends on the receptor subunit composition. The R/G editing site and the flip/flop cassettes in AMPA receptor subunits contribute to a great extent in receptor desensitization and recovery rates. Molecules that could quicken receptor desensitization or delay recovery could be of use. AMPA receptors limit neuronal entry of Ca2+ ions by regulating Ca2+-permeability. Ca2+-permeable receptor channels are made up of GluR1, GluR3, or GluR4 subunits, whereas presence of the GluR2 subunit restricts Ca2+ entry and renders the receptor Ca2+-impermeable. GluR2 levels, however, experience a fall after neuronal insult rendering the AMPA receptors Ca2+-permeable, thus factors that could interfere with this event might prove to be very beneficial against excitotoxicity. AMPA receptor clusters are stabilized by PSD-95, which requires palmitoylation at two sites. Targeting palmitoylation of the PSD-95 can also be a useful approach to disperse AMPA clusters at the synapse. In the perisynaptic region, mGluRs are present a little away from the synapse and are among the glutamate transporters, which require high-frequency firing for activation. On activation they might enhance the activity of NMDA receptors at the synapse to increase the levels of AMPA receptors. AMPA receptors surfaced at this juncture can contribute to heavy Ca2+ influx. Thus, blocking this pathway could be of considerable importance in preventing the excitotoxicity. A number of proteins such as the GRIP, PICK, and NSF also modulate the functions of AMPA receptors. Polyamines also block Ca2+ permeable AMPA receptors and thus are protective. NO and cGMP also play an important role in negatively regulating AMPA receptors and thus could offer protection. Modulation of AMPA receptor by different mechanisms has been discussed in the present review to implicate importance of these targets/pathways for safer and future neuroprotective drugs.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Division of Pharmacology, Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
128
|
Rosi S, Ramirez-Amaya V, Hauss-Wegrzyniak B, Wenk GL. Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. J Neuroinflammation 2004; 1:12. [PMID: 15285803 PMCID: PMC500869 DOI: 10.1186/1742-2094-1-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 07/07/2004] [Indexed: 11/22/2022] Open
Abstract
Background Neuroinflammation plays a prominent role in the progression of Alzheimer's disease and may be responsible for degeneration in vulnerable regions such as the hippocampus. Neuroinflammation is associated with elevated levels of extracellular glutamate and potentially an enhanced stimulation of glutamate N-methyl-D-aspartate receptors. This suggests that neurons that express these glutamate receptors might be at increased risk of degeneration in the presence of chronic neuroinflammation. Methods We have characterized a novel model of chronic brain inflammation using a slow infusion of lipopolysaccharide into the 4th ventricle of rats. This model reproduces many of the behavioral, electrophysiological, neurochemical and neuropathological changes associated with Alzheimer's disease. Results The current study demonstrated that chronic neuroinflammation is associated with the loss of N-methyl-D-aspartate receptors, as determined both qualitatively by immunohistochemistry and quantitatively by in vitro binding studies using [3H]MK-801, within the hippocampus and entorhinal cortex. Conclusion The gradual loss of function of this critical receptor within the temporal lobe region may contribute to some of the cognitive deficits observed in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Susanna Rosi
- Arizona Research Laboratories, Division of Neural Systems, Memory & Aging; University of Arizona, Tucson, AZ, USA
| | - Victor Ramirez-Amaya
- Arizona Research Laboratories, Division of Neural Systems, Memory & Aging; University of Arizona, Tucson, AZ, USA
| | - Beatrice Hauss-Wegrzyniak
- Arizona Research Laboratories, Division of Neural Systems, Memory & Aging; University of Arizona, Tucson, AZ, USA
| | - Gary L Wenk
- Arizona Research Laboratories, Division of Neural Systems, Memory & Aging; University of Arizona, Tucson, AZ, USA
| |
Collapse
|
129
|
García Dopico J, Perdomo Díaz J, Alonso TJ, González Hernández T, Castro Fuentes R, Rodríguez Díaz M. Extracellular taurine in the substantia nigra: Taurine-glutamate interaction. J Neurosci Res 2004; 76:528-38. [PMID: 15114625 DOI: 10.1002/jnr.20108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Taurine has been proposed as an inhibitory transmitter in the substantia nigra (SN), but the mechanisms involved in its release and uptake remain practically unexplored. We studied the extracellular pool of taurine in the rat's SN by using microdialysis methods, paying particular attention to the taurine-glutamate (GLU) interaction. Extracellular taurine increased after cell depolarization with high-K(+) in a Ca(2+)-dependent manner, being modified by the local perfusion of GLU, GLU receptor agonists, and zinc. Nigral administration of taurine increased the extracellular concentration of gamma-aminobutyric acid (GABA) and GLU, the transmitters of the two main inputs of the SN. The modification of the glial metabolism with fluocitrate and L-methionine sulfoximine also changed the extracellular concentration of taurine. The complex regulation of the extracellular pool of taurine, its interaction with GABA and GLU, and the involvement of glial cells in its regulation suggest a volume transmission role for taurine in the SN.
Collapse
Affiliation(s)
- José García Dopico
- Unidad de Investigación del Hospital Universitario de Canarias, La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | | | | |
Collapse
|
130
|
Ramonet D, Rodríguez MJ, Fredriksson K, Bernal F, Mahy N. In vivo neuroprotective adaptation of the glutamate/glutamine cycle to neuronal death. Hippocampus 2004; 14:586-94. [PMID: 15301436 DOI: 10.1002/hipo.10188] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptic increase of glutamate level, when not coupled to a heightened energy production, renders neurons susceptible to death. Astrocyte uptake and recycling of synaptic glutamate as glutamine is a major metabolic pathway dependent on energy metabolism, which inter-relationships are not fully understood and remain controversial. We examine how the glutamate-glutamine cycle and glucose metabolism are modified in two in vivo models of severe and mild brain injury. Graded reductions of glutaminase, the glutamate synthetic enzyme, were evidenced combined with increases in glutamine synthetase, the inactivating glutamate enzyme. Increased lactate dhydrogenase (LDH) activity was only present after a more severe injury. These results indicate an in vivo adaptation of the glutamate-glutamine cycle in order to increase the net glutamine output, reduce glutamate excitotoxicity, and avoid neuronal death. We conclude that the graded modification of the glutamate-glutamine correlation and neuronal lactate availability may be key factors in the apoptotic and necrotic neuronal demise, whose control may prove highly useful to potentiate neuronal survival.
Collapse
Affiliation(s)
- D Ramonet
- Unitat de Bioquímica, Institut d'lnvestigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
131
|
Takeda A. Analysis of Brain Function and Prevention of Brain Diseases: the Action of Trace Metals. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.429] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
132
|
Tebano MT, Pintor A, Frank C, Domenici MR, Martire A, Pepponi R, Potenza RL, Grieco R, Popoli P. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. J Neurosci Res 2004; 77:100-7. [PMID: 15197743 DOI: 10.1002/jnr.20138] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.
Collapse
|
133
|
Wilson MMG, Morley JE. Impaired cognitive function and mental performance in mild dehydration. Eur J Clin Nutr 2003; 57 Suppl 2:S24-9. [PMID: 14681710 DOI: 10.1038/sj.ejcn.1601898] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dehydration is a reliable predictor of impaired cognitive status. Objective data, using tests of cortical function, support the deterioration of mental performance in mildly dehydrated younger adults. Dehydration frequently results in delirium as a manifestation of cognitive dysfunction. Although, the occurrence of delirium suggests transient acute global cerebral dysfunction, cognitive impairment may not be completely reversible. Animal studies have identified neuronal mitochondrial damage and glutamate hypertransmission in dehydrated rats. Additional studies have identified an increase in cerebral nicotinamide adenine dinucleotide phosphate-diaphorase activity (nitric oxide synthase, NOS) with dehydration. Available evidence also implicates NOS as a neurotransmitter in long-term potentiation, rendering this a critical enzyme in facilitating learning and memory. With ageing, a reduction of NOS activity has been identified in the cortex and striatum of rats. The reduction of NOs synthase activity that occurs with ageing may blunt the rise that occurs with dehydration, and possibly interfere with memory processing and cognitive function. Dehydration has been shown to be a reliable predictor of increasing frailty, deteriorating mental performance and poor quality of life. Intervention models directed toward improving outcomes in dehydration must incorporate strategies to enhance prompt recognition of cognitive dysfunction.
Collapse
Affiliation(s)
- M-M G Wilson
- Division of Geriatric Medicine, St Louis University Health Sciences Center, and GRECC, Veteran's Administration Medical Center, MO 63104, USA.
| | | |
Collapse
|
134
|
Massieu L, Haces ML, Montiel T, Hernández-Fonseca K. Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 2003; 120:365-78. [PMID: 12890508 DOI: 10.1016/s0306-4522(03)00266-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucose is the main substrate that fulfills energy brain demands. However, in some circumstances, such as diabetes, starvation, during the suckling period and the ketogenic diet, brain uses the ketone bodies, acetoacetate and beta-hydroxybutyrate, as energy sources. Ketone body utilization in brain depends directly on its blood concentration, which is normally very low, but increases substantially during the conditions mentioned above. Glutamate neurotoxicity has been implicated in neurodegeneration associated with brain ischemia, hypoglycemia and cerebral trauma, conditions related to energy failure, and to elevation of glutamate extracellular levels in brain. In recent years substantial evidence favoring a close relation between glutamate neurotoxic potentiality and cellular energy levels, has been compiled. We have previously demonstrated that accumulation of extracellular glutamate after inhibition of its transporters, induces neuronal death in vivo during energy impairment induced by glycolysis inhibition. In the present study we have assessed the protective potentiality of the ketone body, acetoacetate, against glutamate-mediated neuronal damage in the hippocampus of rats chronically treated with the glycolysis inhibitor, iodoacetate, and in hippocampal cultured neurons exposed to a toxic concentration of iodoacetate. Results show that acetoacetate efficiently protects against glutamate neurotoxicity both in vivo and in vitro probably by a mechanism involving its role as an energy substrate.
Collapse
Affiliation(s)
- L Massieu
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, AP 70-253, Mexico D.F., Mexico.
| | | | | | | |
Collapse
|
135
|
Ayala GX, Tapia R. Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo. Neuropharmacology 2003; 45:649-60. [PMID: 12941378 DOI: 10.1016/s0028-3908(03)00230-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The intrahippocampal administration of 4-aminopyridine (4-AP) induces epileptic seizures and neurodegeneration, due probably to stimulation of glutamate release from synaptic terminals. We have studied the time course of the neurodegenerative changes produced by 4-AP, perfused through microdialysis cannulas in rat hippocampus, and correlated them with the expression of the inducible heat shock protein 70 (HSP70), detected immunocytochemically. Electroencephalographic seizure activity appeared immediately after the beginning of 4-AP perfusion. The first signs of histological neuronal damage were observed in CA1 and CA3 subfields of the perfused hippocampus 3 h after treatment and progressed until reaching a maximal neuronal loss at 24 h. In 4-AP-treated rats HSP70 was expressed mainly in neurons of the contralateral hippocampus, with a time course and cellular distribution very similar to the neurodegeneration observed in the perfused hippocampus, but no neuronal damage was observed. The N-methyl-D-aspartate (NMDA) receptor antagonists MK-801 and (3-phosphonopropyl)-piperazine-2-carboxylic acid prevented the seizures, the neurodegeneration and the expression of HSP70. These data demonstrate that the 4-AP-induced release of endogenous glutamate overactivates NMDA receptors in the perfused hippocampus and that the resulting neuronal hyperexcitability propagates to the contralateral hippocampus, generating a glutamate-mediated neuronal stress sufficient to induce the expression of HSP70 but not to produce neurodegeneration. These findings provide a useful model for investigating the relationships between neuronal hyperexcitation, neurodegeneration and the role of HSP expression.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, C.P. 04510 México D.F., Mexico
| | | |
Collapse
|
136
|
Fazal A, Parker F, Palmer AM, Croucher MJ. Characterisation of the actions of group I metabotropic glutamate receptor subtype selective ligands on excitatory amino acid release and sodium-dependent re-uptake in rat cerebrocortical minislices. J Neurochem 2003; 86:1346-58. [PMID: 12950444 DOI: 10.1046/j.1471-4159.2003.01932.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we have tested the effects of a wide range of metabotropic glutamate receptor ligands on (i) depolarisation-evoked efflux of pre-accumulated d-[3H]aspartic acid (d-[3H]asp) from rapidly superfused rat cerebrocortical minislices, and (ii) Na+-dependent uptake of d-[3H]asp into cerebrocortical tissue. Transient elevations in extracellular K+ produced concentration-dependent increases in d-[3H]asp efflux. A submaximally effective concentration (50 mm) was used in all subsequent experiments. The broad-spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD; EC50 17.8 microm], the group I mGlu-selective agonist (S)-3,5-dihydroxyphenylglycine [(S)-3,5-DHPG; EC50 0.5 microm] and the mGlu5 receptor subtype-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine [(RS)-CHPG; EC50 7.3 microm] all concentration-dependently potentiated high K+-evoked d-[3H]asp efflux in the absence of effects on basal outflow of radiolabel. At concentrations selective for mGlu1 receptors, the antagonists (RS)-1-aminoindan-1,5-dicarboxylic acid [(RS)-AIDA; 10-300 microm]; (+)-2-methyl-4-carboxyphenylglycine [LY367385; 1-100 microm] and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylate ethyl ester [CPCCOEt, 1-30 microm] all failed to inhibit responses to (S)-3,5-DHPG. However, the broad-spectrum mGlu receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine [(S)-MCPG; IC50 88.5 microm] together with the recently described mGlu5-selective antagonists, 2-methyl-6-(phenylethynyl)-pyridine (MPEP; IC50 0.6 microm), 6-methyl-2-(phenyl-azo)-3-pyridinol (SIB-1757; IC50 4.4 microm) and (E)-2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893; IC50 3.1 microm), at mGlu5-selective concentrations, all powerfully and concentration-dependently inhibited (S)-3,5-DHPG-evoked responses. Two selective excitatory amino acid (EAA) uptake inhibitors, l-trans-2,4-pyrrolidine dicarboxylate (l-trans-2,4-PDC; IC50 229 microm) and dl-threo-beta-benzyloxyaspartate (dl-TBOA; IC50 665 microm) both inhibited the Na+-dependent uptake of d-[3H]asp into cerebrocortical minislices. Importantly, none of the mGlu ligands utilized in the present study significantly inhibited d-[3H]asp uptake at concentrations shown to potentiate K+-evoked efflux. These data demonstrate for the first time that mGlu5 ligands modulate extracellular EAA concentrations by a direct effect on mGlu5-type autoreceptors on EAA nerve terminals as they evoke clear changes in EAA release in the absence of any effects on EAA uptake. Selective mGlu5 receptor antagonists that show high potency and good central bioavailability may provide novel classes of neuroprotective agents for the treatment of brain disorders associated with abnormal EAAergic neurotransmission.
Collapse
Affiliation(s)
- Abidali Fazal
- Department of Neuroinflammation, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, UK
| | | | | | | |
Collapse
|
137
|
Giaroni C, Zanetti E, Chiaravalli AM, Albarello L, Dominioni L, Capella C, Lecchini S, Frigo G. Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur J Pharmacol 2003; 476:63-9. [PMID: 12969750 DOI: 10.1016/s0014-2999(03)02147-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several reports suggest that enteric cholinergic neurons are subject to a tonic inhibitory modulation, whereas few studies are available concerning the role of facilitatory pathways. Glutamate, the main excitatory neurotransmitter in the central nervous system (CNS), has recently been described as an excitatory neurotransmitter also in the guinea-pig enteric nervous system (ENS). The present study aimed at investigating the presence of glutamatergic neurons in the ENS of the human colon. At this level, the presence of ionotropic glutamate receptors of the NMDA type, and their possible interaction with the enteric cholinergic function was also studied. In the human colon, L-glutamate and NMDA concentration dependently enhance spontaneous endogenous acetylcholine overflow in Mg2+-free buffer, both effects being significantly reduced by the antagonists, (+/-)-2-amino-5-phosphonopentanoic acid (+/- AP5) and 5,7-diCl-kynurenic acid. In the presence of Mg2+, the facilitatory effect of L-glutamate changes to inhibition, while the effect of NMDA is significantly reduced. In addition, morphological investigations reveal that glutamate- and NR1-immunoreactivities are present in enteric cholinergic neurons and glial cells in both myenteric and submucosal plexus. These findings suggest that, as described for the guinea-pig ileum, glutamatergic neurons are present in enteric plexuses of the human colon. Modulation of the cholinergic function can be accomplished through NMDA receptors.
Collapse
Affiliation(s)
- Cristina Giaroni
- Clinical and Applied Pharmacology Centre, University of Insubria and University of Pavia, via O. Rossi, 9 I-21100 Varese, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Choi YM, Kim SH, Uhm DY, Park MK. Glutamate-mediated [Ca2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta. J Cell Sci 2003; 116:2665-75. [PMID: 12746490 DOI: 10.1242/jcs.00481] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which glutamate regulates the cytosolic free Ca2+ concentration ([Ca2+]c) in spontaneously firing dopamine neurons is not clear. Thus we have investigated the glutamate-mediated [Ca2+]c dynamics in the acutely isolated dopamine neurons from the rat substantia nigra pars compacta by measuring [Ca2+]c and spontaneously occurring action potentials (SAPs). The freshly isolated dopamine neurons showed tetrodotoxin (TTX)-sensitive spontaneous firing of 2-3 Hz and the resting [Ca2+]c decreased with abolition of the SAPs. The level of [Ca2+]c was affected by the spontaneous firing rate. In the presence of the Na+ channel antagonist, TTX (0.5 microM), glutamate increased [Ca2+]c by activating different glutamate receptors depending on the glutamate concentration used. Addition of glutamate at low concentrations (<3 microM) raised [Ca2+]c mainly by activating metabotropic glutamate receptors (mGluR), whereas at high concentrations (>10 microM) it raised [Ca2+]c mainly by activating AMPA/kainate receptors. The contribution of NMDA receptors to the glutamate-mediated [Ca2+]c rises was largest at intermediate concentrations of glutamate. Activation of mGluR elicited a Ca2+ release from intracellular Ca2+ stores and continuous Ca2+ influx out of the cell. The spontaneous firing activities were highly enhanced by submicromolar levels of glutamate and abolished at levels above 10 microM. From these results, we conclude that at low glutamate concentrations the [Ca2+]c in the dopamine neurons is mainly governed by mGluR and the firing activities, whose rate is regulated at submicromolar glutamate concentrations, but at higher glutamate concentrations [Ca2+]c is dominantly affected by AMPA/kainate receptors.
Collapse
Affiliation(s)
- Yu Mi Choi
- Medical Research Center for Regulation of Neuronal Cell Excitability and Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong Jangan-ku, Suwon 440-746, Korea
| | | | | | | |
Collapse
|
139
|
Wang SJ. Cannabinoid CB1 receptor-mediated inhibition of glutamate release from rat hippocampal synaptosomes. Eur J Pharmacol 2003; 469:47-55. [PMID: 12782184 DOI: 10.1016/s0014-2999(03)01734-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cannabinoid receptors are widely expressed in the brain and have been shown to regulate synaptic transmission through a presynaptic mechanism. Using synaptosomal preparation, I show here that 2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)-pyrrolo-1,4-benzoxazin-6-yl-1-naphthalenylmethanone (WIN 55212-2) strongly depressed 4-aminopyridine-evoked glutamate release in a concentration-dependent manner, and this effect was reversed by the selective cannabinoid CB(1) receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281). The inhibitory modulation by WIN 55212-2 was not due to a decrease in synaptosomal excitability or a direct effect on the release machinery because WIN 55212-2 did not alter 4-aminopyridine-mediated depolarization and ionomycin-induced glutamate release. In addition, the WIN 55212-2-mediated inhibition of glutamate release was blocked by the G(i)/G(o) protein inhibitor pertussis toxin, but not by the protein kinase A inhibitor 2,3,9,10,11,12-Hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo-benzodiazocine-10-carboxylic acid, hexyl ester (KT 5720). Furthermore, this inhibitory effect was associated with a decrease in 4-aminopyridine-evoked Ca(2+) influx, which could be completely prevented in synaptosomes pretreated with the N- and P/Q-type Ca(2+) channel blockers. Together, these observations indicate that activation of cannabinoid CB(1) receptors inhibit 4-aminopyridie-evoked glutamate release from hippocampal synaptosomes through a inhibitory G protein to suppress N- and P/Q-type Ca(2+) channel activity.
Collapse
Affiliation(s)
- Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, 510, Chung-Cheng Road, Hsin-Chuang, Taipei Hsien, 24205, Taiwan.
| |
Collapse
|
140
|
Sinclair C, Reavy H, Grieve A, Schousboe A, Morelli E, Novellino E, Campiani G, Griffiths R. Inherent desensitisation-preventing properties of a novel, subtype-selective AMPA receptor agonist, (S)-CPW 399, as a possible explanation for its excitotoxic action in cultured cerebellar granule cells. Neurochem Int 2003; 42:499-510. [PMID: 12547649 DOI: 10.1016/s0197-0186(02)00141-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The synthesis and pharmacological characterisation of (S)-CPW 399 as a novel, potent and subtype-selective agonist of the AMPA receptor was recently reported. Studies have been extended to investigate its excitotoxic action in primary cultures of mouse cerebellar granule cells. (S)-CPW 399 induced neuronal cell death in a time- and concentration-dependent manner (EC(50) approximately 70 microM) at 24-h exposure. (S)-CPW-induced neuronal death could be prevented by co-administration with either of the AMPA/kainate selective receptor antagonists 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX) or by the 2,3-benzodiazepine, GYKI 53655 (a selective AMPA receptor antagonist); while no protection was afforded by either the NMDA receptor antagonist D,L(+/-)-2-amino-5-phosphonopentanoate (APV) or by nifedipine (an L-type calcium channel antagonist) when used alone or in combination. Cyclothiazide, which blocks AMPA receptor desensitisation, caused minimal potentiation of (S)-CPW 399-induced neuronal death, supporting accumulating evidence that (S)-CPW 399 is a full AMPA receptor agonist that markedly prevents a receptor desensitised conformation. (S)-AMPA, (S)-willardiine (a naturally-occurring heterocyclic excitatory amino acid) and its halogenated derivative, (S)-5-fluorowillardiine, had no deleterious effect on neuronal viability when used alone but each, in the presence of cyclothiazide, induced a concentration-dependent excitotoxic cell death with a rank order of potency (fluorowillardiine>>AMPA=willardiine). (S)-CPW 399 stimulated an increase in intracellular free-calcium levels ([Ca(2+)](i)) in a concentration-dependent fashion (EC(50) approximately 5 microM) attaining a value of six-fold that of 'resting' cells at maximum stimulation; achieved at approximately 100 microM (S)-CPW 399. The (S)-CPW 399-stimulated increase in [Ca(2+)](i) was virtually abolished by GYKI 53655, NBQX, CNQX and by cobalt ions; markedly inhibited by nifedipine and marginally affected by D-APV. These results suggest that (S)-CPW 399 may be used as a pharmacological tool to aid in the investigation of the role of AMPA receptors in excitotoxicity and their molecular mechanisms of desensitisation.
Collapse
Affiliation(s)
- Colin Sinclair
- Neurochemistry Group, BioMolecular Sciences Centre, School of Biology, University of St Andrews, Fife KY16 9ST, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Errington ML, Galley PT, Bliss TVP. Long-term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in extracellular glutamate: real-time measurements using a novel dialysis electrode. Philos Trans R Soc Lond B Biol Sci 2003; 358:675-87. [PMID: 12740113 PMCID: PMC1693151 DOI: 10.1098/rstb.2002.1251] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have used a glutamate-specific dialysis electrode to obtain real-time measurements of changes in the concentration of glutamate in the extracellular space of the hippocampus during low-frequency stimulation and following the induction of long-term potentiation (LTP). In the dentate gyrus, stimulation of the perforant path at 2 Hz for 2 min produced a transient increase in glutamate current relative to the basal value at control rates of stimulation (0.033 Hz). This activity-dependent glutamate current was significantly enhanced 35 and 90 min after the induction of LTP. The maximal 2 Hz signal was obtained during post-tetanic potentiation (PTP). There was also a more gradual increase in the basal level of extracellular glutamate following the induction of LTP. Both the basal and activity-dependent increases in glutamate current induced by tetanic stimulation were blocked by local infusion of the N-methyl-D-aspartate receptor antagonist D-APV. In areas CA1 and CA3 we were unable to detect a 2 Hz glutamate signal either before or after the induction of LTP, possibly owing to a more avid uptake of glutamate in the pyramidal cell fields. These results demonstrate that LTP in the dentate gyrus is associated with a greater concentration of extracellular glutamate following activation of potentiated synapses, either because potentiated synapses release more transmitter per impulse, or because of reduced uptake by glutamate transporters. We present arguments favouring increased release rather than decreased uptake.
Collapse
Affiliation(s)
- M L Errington
- Division of Neurophysiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
142
|
Stover JF, Sakowitz OW, Beyer TF, Dohse NK, Kroppenstedt SN, Thomale UW, Schaser KD, Unterberg AW. Effects of LY379268, a selective group II metabotropic glutamate receptor agonist on EEG activity, cortical perfusion, tissue damage, and cortical glutamate, glucose, and lactate levels in brain-injured rats. J Neurotrauma 2003; 20:315-26. [PMID: 12866811 DOI: 10.1089/089771503765172273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activating presynaptic group II metabotropic glutamate (mGlu II) receptors reduces synaptic glutamate release. Attenuating glutamatergic transmission without blocking ionotropic glutamate receptors, thus avoiding unfavorable psychomimetic side effects, makes mGlu II receptor agonists a promising target in treating brain-injured patients. Neuroprotective effects of LY379268 were investigated in rats following controlled cortical impact injury (CCI). At 30 min after CCI, rats received a single intraperitoneal injection of LY379268 (10 mg/kg/body weight) or NaCl. Changes in EEG activity and pericontusional cortical perfusion were determined before trauma, at 4, 24, and 48 h, and 7 days after CCI. Brain edema and contusion volume were determined at 24 h and 7 days after CCI, respectively. Before brain removal pericontusional cortical glutamate, glucose, and lactate were measured via microdialysis. During the early period following CCI, EEG activity and cortical perfusion were significantly reduced in rats receiving LY379268. At 7 days, cortical perfusion was significantly increased in rats treated with LY379268, while EEG activity was depressed as in control rats. While brain edema remained unchanged at 24 h, cortical contusion was significantly decreased by 56% at 7 days after CCI. Cortical glutamate, glucose, and lactate were not influenced. Significant reductions in EEG activity and contusion volume by LY379268 do not appear mediated by attenuated excitotoxicity and energetic impairment. Overall, an additional decrease in cortical perfusion seems to interfere with the anti-edematous potential of LY379268 during the early period following CCI, while an increase in perfusion in LY379268-treated rats at 7 days might contribute to tissue protection.
Collapse
Affiliation(s)
- John F Stover
- Department of Neurosurgery, Charité-Virchow Medical Center, Humboldt-University Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Canudas AM, Pubill D, Sureda FX, Verdaguer E, Camps P, Muñoz-Torrero D, Jiménez A, Camins A, Pallàs M. Neuroprotective effects of (+/-)-huprine Y on in vitro and in vivo models of excitoxicity damage. Exp Neurol 2003; 180:123-30. [PMID: 12684026 DOI: 10.1016/s0014-4886(02)00029-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have investigated the neuroprotective effects of (+/-)-huprine Y on excitotoxic lesions in rat cerebellar granule cells (CGCs). (+/-)-Huprine Y prevented cell death induced by 100 microM glutamate, as well as, 10 microM MK-801, a NMDA receptor antagonist, in a significant manner. On the other hand, intracellular calcium increase induced by NMDA (200 microM), measured by fura-2 fluorescence, was prevented by (+/-)-huprine Y with an EC(50) of 12.44 microM, which evidences the modulatory action of this compound on NMDA-induced calcium currents. In vivo, we have studied (+/-)-huprine Y neuroprotective effects on striatal lesions induced by the subacute administration of the mitochondrial toxin 3-nitropropionic acid (3-NP, 30 mg/kg, ip, for 10 days). We have assessed that both the behavioral and the morphological consequences of the lesion were prevented by pretreatment with (+/-)-huprine Y (2.5 mg/kg/twice a day, ip). Striatal gliosis induced by 3-NP treatment was prevented by (+/-)-huprine Y pretreatment, as demonstrated by the attenuation of both the increase in [(3)H]PK 11195 specific binding indicative of microgliosis and the expression of hsp27 kDa, a chaperone expressed mainly in astrocytes. In conclusion, (+/-)-huprine Y attenuated excitotoxic-induced lesions, both in vitro and in vivo, and further evidence is provided for the potential use of this compound in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna M Canudas
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Sakowitz OW, Unterberg AW, Stover JF. Neuronal activity determined by quantitative EEG and cortical microdialysis is increased following controlled cortical impact injury in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 81:221-3. [PMID: 12168309 DOI: 10.1007/978-3-7091-6738-0_57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Following brain injury increased glutamate release is linked to sustained neuronal activation resulting in excitotoxic tissue damage. Isoflurane anesthesia has been shown to decrease electroencephalographic (EEG) activity and extracellular (e.c.) glutamate, possibly attenuating excitotoxic tissue damage. However, based on clinical experience EEG activity can fluctuate despite stable isoflurane concentrations. Therefore, the aims of this study were to investigate the impact of neuronal activity assessed by quantitative EEG on e.c. glutamate during isoflurane anesthesia following controlled cortical impact injury (CCII). In 10 rats balanced anesthesia using isoflurane was induced at 4 hours after CCII. Under steady-state conditions maintaining isoflurane at 1.8 vol%, EEG was recorded for 3 hours. During this period, e.c. glutamate was sampled in the pericontusional cortex by microdialysis. Despite maintaining isoflurane at 1.8 vol%, neuronal activity expressed as low frequency EEG power showed marked fluctuations. Spontaneous increases in neuronal activity coincided with elevated e.c. glutamate levels and vice versa. Overall, EEG power correlated significantly with pathologically elevated e.c. glutamate levels (n = 58; R2 = 0.54; p < 0.05). Despite unchanged isoflurance concentrations fluctuations in neuronal activity were reflected by altered EEG power and e.c. glutamate concentrations. Therefore, neuronal activity needs to be considered for the interpretation of e.c. glutamate levels.
Collapse
|
145
|
Saulle E, Centonze D, Martín AB, Moratalla R, Bernardi G, Calabresi P. Endogenous dopamine amplifies ischemic long-term potentiation via D1 receptors. Stroke 2002; 33:2978-84. [PMID: 12468800 DOI: 10.1161/01.str.0000038093.42512.0f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Several observations indicate that, during energy deprivation, endogenous dopamine may become neurotoxic. Accordingly, the nucleus striatum is a preferential site of silent infarcts in humans, and experimental ischemia caused by homolateral carotid occlusion selectively damages this dopamine-enriched brain area. In an attempt to clarify how dopamine takes part in ischemia-induced neuronal damage, we performed in vitro electrophysiological recordings from neurons of the nucleus striatum. METHODS Intracellular recordings with sharp microelectrodes were performed from corticostriatal slices. Slices were obtained from both rats and wild-type and dopamine D1 receptor-lacking mice. In some experiments, the striatum was unilaterally denervated by injecting the dopamine-specific neurotoxin 6-hydroxydopamine in the homolateral substantia nigra. Dopamine agonists and antagonists, as well as drugs targeting the intracellular cascade coupled to dopamine receptor stimulation, were applied at known concentrations. RESULTS Manipulation of the dopamine system failed to affect the membrane depolarization of striatal neurons exposed to combined oxygen and glucose deprivation of short duration, but it reduced the amplitude of postischemic long-term potentiation (LTP) expressed at corticostriatal synapses. In particular, pharmacological blockade or genetic inactivation of D1/cAMP/protein kinase A pathway prevented the long-term increase of the excitatory postsynaptic potential (EPSP) amplitude caused by a transient ischemic episode, while it failed to prevent the increase of the EPSP half-decay coupled to ischemic LTP. CONCLUSIONS The present data suggest that endogenous dopamine, via D1 receptors, selectively facilitates the expression of ischemic LTP on the AMPA-mediated component of the EPSPs, while it does not alter the expression of this form of synaptic plasticity on the N-methyl-D-aspartate-mediated component of corticostriatal synaptic potentials. Understanding the cellular and molecular mechanisms of ischemia-triggered excitotoxicity offers hope for the development of specific treatments able to interfere with this pathological process.
Collapse
Affiliation(s)
- Emilia Saulle
- Clinica Neurologica, Dipartimento di Neuroscienze, Università "Tor Vergata," and IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | |
Collapse
|
146
|
Anderson TR, Andrew RD. Spreading depression: imaging and blockade in the rat neocortical brain slice. J Neurophysiol 2002; 88:2713-25. [PMID: 12424306 DOI: 10.1152/jn.00321.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spreading depression (SD) is a profound but transient depolarization of neurons and glia that migrates across the cortical and subcortical gray at 2-5 mm/min. Under normoxic conditions, SD occurs during migraine aura where it precedes migraine pain but does not damage tissue. During stroke and head trauma, however, SD can arise repeatedly near the site of injury and may promote neuronal damage. We developed a superfused brain slice preparation that can repeatedly support robust SD during imaging and electrophysiological recording to test drugs that may block SD. Submerged rat neocortical slices were briefly exposed to artificial cerebrospinal fluid (ACSF) with KCl elevated to 26 mM. SD was evoked within 2 min, recorded in layers II/III both as a negative DC shift and as a propagating front of elevated light transmittance (LT) representing transient cell swelling in all cortical layers. An SD episode was initiated focally and could be repeatedly evoked and imaged with no damage to slices. As reported in vivo, pretreatment with one of several N-methyl-D-aspartate (NMDA) receptor antagonists blocked SD, but a non-NMDA glutamate receptor antagonist (CNQX) had no effect. NMDA receptor (NMDAR) activation does not initiate SD nor are NMDAR antagonists tolerated therapeutically so we searched for more efficacious drugs to block SD generation. Pretreatment with the sigma-one receptor (sigma(1)R) agonists dextromethorphan (10-100 microM), carbetapentane (100 microM), or 4-IBP (30 microM) blocked SD, even when KCl exposure was extended beyond 5 min. The block was independent of NMDA receptor antagonism. Two sigma(1)R antagonists [(+)-3PPP and BD-1063] removed this block but had no effect upon SD alone. Remarkably, the sigma(1)R agonists also substantially reduced general cell swelling evoked by bath application of 26 mM KCl. More potent sigma(1)R ligands that are therapeutically tolerated could prove useful in reducing SD associated with migraine and be of potential use in stroke or head trauma.
Collapse
Affiliation(s)
- Trent R Anderson
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
147
|
Abstract
Glutamine and glutamate with proline, histidine, arginine and ornithine, comprise 25% of the dietary amino acid intake and constitute the "glutamate family" of amino acids, which are disposed of through conversion to glutamate. Although glutamine has been classified as a nonessential amino acid, in major trauma, major surgery, sepsis, bone marrow transplantation, intense chemotherapy and radiotherapy, when its consumption exceeds its synthesis, it becomes a conditionally essential amino acid. In mammals the physiological levels of glutamine is 650 micromol/l and it is one of the most important substrate for ammoniagenesis in the gut and in the kidney due to its important role in the regulation of acid-base homeostasis. In cells, glutamine is a key link between carbon metabolism of carbohydrates and proteins and plays an important role in the growth of fibroblasts, lymphocytes and enterocytes. It improves nitrogen balance and preserves the concentration of glutamine in skeletal muscle. Deamidation of glutamine via glutaminase produces glutamate a precursor of gamma-amino butyric acid, a neurotransmission inhibitor. L-Glutamic acid is a ubiquitous amino acid present in many foods either in free form or in peptides and proteins. Animal protein may contain from 11 to 22% and plants protein as much as 40% glutamate by weight. The sodium salt of glutamic acid is added to several foods to enhance flavor. L-Glutamate is the most abundant free amino acid in brain and it is the major excitatory neurotransmitter of the vertebrate central nervous system. Most free L-glutamic acid in brain is derived from local synthesis from L-glutamine and Kreb's cycle intermediates. It clearly plays an important role in neuronal differentiation, migration and survival in the developing brain via facilitated Ca++ transport. Glutamate also plays a critical role in synaptic maintenance and plasticity. It contributes to learning and memory through use-dependent changes in synaptic efficacy and plays a role in the formation and function of the cytoskeleton. Glutamine via glutamate is converted to alpha-ketoglutarate, an integral component of the citric acid cycle. It is a component of the antioxidant glutathione and of the polyglutamated folic acid. The cyclization of glutamate produces proline, an amino acid important for synthesis of collagen and connective tissue. Our aim here is to review on some amino acids with high functional priority such as glutamine and to define their effective activity in human health and pathologies.
Collapse
Affiliation(s)
- H Tapiero
- Faculté de pharmacie, Université de Paris, CNRS UMR 8612, 5, rue Jean-Baptiste-Clément, 94200 Chatenay-Malabry, France.
| | | | | | | |
Collapse
|
148
|
Kanamori K, Ross BD, Kondrat RW. Glial uptake of neurotransmitter glutamate from the extracellular fluid studied in vivo by microdialysis and (13)C NMR. J Neurochem 2002; 83:682-95. [PMID: 12390530 DOI: 10.1046/j.1471-4159.2002.01161.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glial uptake of neurotransmitter glutamate (GLU) from the extracellular fluid was studied in vivo in rat brain by (13)C NMR and microdialysis combined with gas-chromatography/mass-spectrometry. Brain GLU C5 was (13)C enriched by intravenous [2,5-(13)C]glucose infusion, followed by [(12)C]glucose infusion to chase (13)C from the small glial GLU pool. This leaves [5-(13)C]GLU mainly in the large neuronal metabolic pool and the vesicular neurotransmitter pool. During the chase, the (13)C enrichment of whole-brain GLU C5 was significantly lower than that of extracellular GLU (GLU(ECF)) derived from exocytosis of vesicular GLU. Glial uptake of neurotransmitter [5-(13)C]GLU(ECF) was monitored in vivo through the formation of [5-(13)C,(15)N]GLN during (15)NH(4)Ac infusion. From the rate of [5-(13)C,(15)N]GLN synthesis (1.7 +/- 0.03 micromol/g/h), the mean (13)C enrichment of extracellular GLU (0.304 +/- 0.011) and the (15)N enrichment of precursor NH(3) (0.87 +/- 0.014), the rate of synthesis of GLN (V'(GLN)), derived from neurotransmitter GLU(ECF), was determined to be 6.4 +/- 0.44 micromol/g/h. Comparison with V(GLN) measured previously by an independent method showed that the neurotransmitter provides 80-90% of the substrate GLU pool for GLN synthesis. Hence, under our experimental conditions, the rate of 6.4 +/- 0.44 micromol/g/h also represents a reasonable estimate for the rate of glial uptake of GLU(ECF), a process that is crucial for protecting the brain from GLU excitotoxicity.
Collapse
Affiliation(s)
- Keiko Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, 660 South Fair Oaks Avenue, Pasadena, CA 91105, USA.
| | | | | |
Collapse
|
149
|
Kondrat RW, Kanamori K, Ross BD. In vivo microdialysis and gas-chromatography/mass-spectrometry for 13C-enrichment measurement of extracellular glutamate in rat brain. J Neurosci Methods 2002; 120:179-92. [PMID: 12385768 DOI: 10.1016/s0165-0270(02)00201-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extracellular glutamate (GLU(ECF)) was collected by microdialysis from the corticostriatal region of awake rats, at the basal level and after elevation by perfusion of GLU uptake inhibitor, L-trans-pyrrolidine-2,4-dicarboxylic acid. Concurrently, [2,5-(13)C]glucose was infused intravenously to 13C-enrich brain GLU predominantly at C5. The 13C enrichment of GLU(ECF) was measured, after tert-butyldimethylsilylation, by gas-chromatography/mass-spectrometry. Excellent signal-to-noise ratios of the analyte signals at three selected ion-pairs were achieved at approximately 20 pmol. The fractional 13C enrichment of basal dialysate GLU C5, collected during 0.75-1.25 h of [2,5-(13)C]glucose infusion, was 0.263+/-0.01, very close to the enrichment of whole-brain (predominantly intracellular) GLU C5 measured in parallel NMR study. The result strongly suggests that the dialysate GLU consists predominantly of neurotransmitter GLU, which was 13C-enriched in, and released from, neurons by exocytosis and had diffused to the dialysis probe; the label is undiluted by 12C-GLU(ECF) present before the enrichment. Hence, our result supports the view, proposed on the basis of Ca(2+)- and tetrodotoxin-sensitivity of dialysate GLU, that basal dialysate GLU in awake non-stimulated brain mainly represents neurotransmitter GLU. Isotope labeling provides a novel method for determining the extent to which dialysate GLU reflects synaptic GLU(ECF), and for measuring its turnover under physiological or pathological conditions.
Collapse
Affiliation(s)
- Richard W Kondrat
- Mass Spectrometry Facility, University of California, Riverside, CA, USA
| | | | | |
Collapse
|
150
|
Chalimoniuk M, Snoek GT, Strosznajder JB. Alteration of phosphatidylinositol transfer protein during global brain ischemia-reperfusion in gerbils. Neurochem Int 2002; 41:229-36. [PMID: 12106774 DOI: 10.1016/s0197-0186(02)00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphatidylinositol transfer proteins (PI-TPs) are responsible for the transport of phosphatidylinositol and other phospholipids. Moreover, these proteins are involved in vesicle transport and in the function of cytoskeleton. Our previous data indicated that brain ischemia affected phosphoinositides metabolism and the level of lipid derived second messengers. In this study, the effect of ischemia-reperfusion injury on the level of PI-TPs and of the role of NMDA receptor stimulation on the alteration of these proteins was investigated during reperfusion after 5 min of forebrain ischemia in gerbils. Some groups of animals were injected intraperitoneally with MK-801, an antagonist of NMDA receptor 30 min before ischemia. The levels of both PI-TP isoforms alpha+beta and separately the alpha-isoform were determined in cytosol and membrane fraction from brain cortex and hippocampus using Western blot analysis. In the cytosolic fractions, the concentration of both isoforms of PI-TP was 2 times higher when compared to the membrane fraction. In brain cortex, PI-TP alpha isoform consist about 32-44% but in hippocampus 72-82% of both isoforms (PI-TP alpha+beta) in cytosolic and membrane fraction respectively. Ischemia-reperfusion had no effect on PI-TPs in brain cortex. However, in hippocampus after 5 min ischemia and during whole reperfusion time up till 7 days the level of PI-TP alpha+beta and PI-TP alpha was significantly higher by about 20-55%, respectively when compared to control. MK-801 eliminated ischemia-reperfusion evoked alteration of PI-TPs. To confirm the role of NMDA receptor in PI-TP alteration additional experiments were carried out on PC-12 cells in culture. The results indicated that activation of NMDA receptor enhances significantly the level of PI-TP alpha. The competitive antagonist of NMDA receptor inhibited this effect. These results indicated that activation of NMDA receptor is connected with PI-TPs alteration and plays an important role in modulation of PI-TPs during ischemia-reperfusion injury that may have important physiopathological consequence.
Collapse
Affiliation(s)
- Malgorzata Chalimoniuk
- Department of Cellular Signalling, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | | | | |
Collapse
|