101
|
Palma CA, Keast JR. Structural effects and potential changes in growth factor signalling in penis-projecting autonomic neurons after axotomy. BMC Neurosci 2006; 7:41. [PMID: 16716234 PMCID: PMC1479832 DOI: 10.1186/1471-2202-7-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 05/23/2006] [Indexed: 12/22/2022] Open
Abstract
Background The responses of adult parasympathetic ganglion neurons to injury and the neurotrophic mechanisms underlying their axonal regeneration are poorly understood. This is especially relevant to penis-projecting parasympathetic neurons, which are vulnerable to injury during pelvic surgery such as prostatectomy. We investigated the changes in pelvic ganglia of adult male rats in the first week after unilateral cavernous (penile) nerve axotomy (cut or crush lesions). In some experiments FluoroGold was injected into the penis seven days prior to injury to allow later identification of penis-projecting neurons. Neurturin and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors for penile parasympathetic neurons, so we also examined expression of relevant receptors, GFRα1 and GFRα2, in injured pelvic ganglion neurons. Results Axotomy caused prolific growth of axon collaterals (sprouting) in pelvic ganglia ipsilateral to the injury. These collaterals were most prevalent in the region near the exit of the penile nerve. This region contained the majority of FluoroGold-labelled neurons. Many sprouting fibres formed close associations with sympathetic and parasympathetic pelvic neurons, including many FluoroGold neurons. However immunoreactivity for synaptic proteins could not be demonstrated in these collaterals. Preganglionic terminals showed a marked loss of synaptic proteins, suggesting a retrograde effect of the injury beyond the injured neurons. GFRα2 immunofluorescence intensity was decreased in the cytoplasm of parasympathetic neurons, but GFRα1 immunofluorescence was unaffected in these neurons. Conclusion These studies show that there are profound changes within the pelvic ganglion after penile nerve injury. Sprouting of injured postganglionic axons occurs concurrently with structural or chemical changes in preganglionic terminals. New growth of postganglionic axon collaterals within the ganglion raises the possibility of the formation of aberrant synaptic connections between injured and un-injured ganglion neurons. Together these changes demonstrate a broader effect on the pelvic autonomic circuitry than simply loss of neuroeffector connections. These structural changes are accompanied by potential changes in neurotrophic factor signalling due to altered expression of receptors for members of the GDNF family. Together our results advance understanding of the responses of pelvic autonomic nerve circuits to injury and may assist in designing strategies for promoting regeneration.
Collapse
Affiliation(s)
- Catalina A Palma
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney NSW, Australia
| | - Janet R Keast
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney NSW, Australia
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards NSW 2065, Australia
| |
Collapse
|
102
|
Mabe AM, Hoard JL, Duffourc MM, Hoover DB. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene. Cell Tissue Res 2006; 326:57-67. [PMID: 16708241 DOI: 10.1007/s00441-006-0215-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 11/28/2022]
Abstract
Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.
Collapse
Affiliation(s)
- Abigail M Mabe
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | | | | | | |
Collapse
|
103
|
Nangle MR, Keast JR. Loss of nitrergic neurotransmission to mouse corpus cavernosum in the absence of neurturin is accompanied by increased response to acetylcholine. Br J Pharmacol 2006; 148:423-33. [PMID: 16682963 PMCID: PMC1751790 DOI: 10.1038/sj.bjp.0706760] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neurotrophic factor, neurturin (NTN), plays an important role in parasympathetic neural development. In the penis, parasympathetic nitrergic/cholinergic nerves mediate the erectile response. However, despite reduced parasympathetic penile innervation in mice lacking the NTN receptor, glial cell line-derived neurotrophic factor family receptor alpha (GFRalpha)2, they are capable of erection and reproduction. Our aim was to assess neural regulation of erectile tissues from mice lacking NTN. Responses of cavernosal smooth muscle were studied in vitro, monitoring agonist- and nerve-evoked changes in tension. Frequency-dependent nerve-evoked relaxations in the presence of guanethidine were markedly reduced in the mutant mice compared to wild types (19 vs 72% of phenylephrine pre-contraction). Atropine reduced the amplitude in wild-type mice to 61%, but abolished relaxations in knockout mice. In wild-type and knockout animals, nitric oxide synthase inhibition abolished neurogenic relaxations. In NTN knockout animals, EC(50) values for nitric oxide-dependent relaxations to acetylcholine and muscarine were increased approximately 0.5 log units. In contrast, contractions to electrical stimulation or phenylephrine, and relaxations to bradykinin or the nitric oxide donor, sodium nitroprusside, were unaltered. Immunohistochemistry confirmed that nerves immunoreactive for nitric oxide synthase, vesicular acetylcholine transporter and vasoactive intestinal polypeptide were substantially reduced in cavernosum of NTN knockout mice. Parallel immunohistochemical and pharmacological studies in GFRalpha2 knockout animals showed the same changes from their wild types as the NTN knockout animals. The data demonstrate that NTN is essential for normal development of penile erection-inducing nerves and that its absence leads to increased responsiveness to muscarinic agonists, possibly as a compensatory mechanism.
Collapse
Affiliation(s)
- Matthew R Nangle
- Pain Management Research Institute, Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - Janet R Keast
- Pain Management Research Institute, Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
- Author for correspondence:
| |
Collapse
|
104
|
Lindfors PH, Lindahl M, Rossi J, Saarma M, Airaksinen MS. Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Endocrinology 2006; 147:2237-44. [PMID: 16497798 DOI: 10.1210/en.2005-1620] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glial cell line-derived neurotrophic factor family receptor (GFRalpha) 4, the binding receptor for persephin, is coexpressed with the signaling Ret receptor tyrosine kinase predominantly in thyroid calcitonin-producing C cells. We show by in situ hybridization and immunohistochemistry that the functional, glycolipid-anchored form of GFRalpha4 is produced in mouse only in the C cells but not in parathyroid gland or in the brain. C cells expressed functional GFRalpha4 throughout postnatal development, whereas Ret expression in these cells decreased postnatally and was undetectable in adults. To understand the physiological role of GFRalpha4, we produced GFRalpha4-deficient [knockout (KO)] mice. No differences were observed between wild-type and GFRalpha4-KO littermate animals in growth, gross behavior, or viability. The number and morphology of the thyroid C cells were indistinguishable between the genotypes in both newborn and adult age. However, thyroid tissue calcitonin content was reduced by 60% in newborn and by 45% in 3-wk-old GFRalpha4-KO mice compared with wild-type controls. In contrast, thyroid calcitonin levels were similar in adult animals. Consistent with the reduced calcitonin levels, bone formation rate in juvenile GFRalpha4-KO mice was increased. In conclusion, this study indicates a novel role for endogenous GFRalpha4 signaling in regulating calcitonin production in thyroid C cells of young mice.
Collapse
|
105
|
Lindfors PH, Võikar V, Rossi J, Airaksinen MS. Deficient nonpeptidergic epidermis innervation and reduced inflammatory pain in glial cell line-derived neurotrophic factor family receptor alpha2 knock-out mice. J Neurosci 2006; 26:1953-60. [PMID: 16481427 PMCID: PMC6674922 DOI: 10.1523/jneurosci.4065-05.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unmyelinated nociceptive neurons that mediate pain and temperature sensation from the skin bind isolectin B4 (IB4)-lectin and express Ret, the common signaling component of glial cell line-derived neurotrophic factor (GDNF) family. One of these factors, neurturin, is expressed in the epidermis, whereas its GDNF family receptor alpha2 (GFRalpha2) is expressed in the majority of unmyelinated Ret-positive sensory neurons. However, the physiological roles of endogenous neurturin signaling in primary sensory neurons are poorly understood. Here, we show that the vast majority (approximately 85%) of IB4 binding and P2X3 purinoreceptor-positive neurons, but virtually none of the calcitonin gene-related peptide (CGRP) or vanilloid receptor transient receptor potential vanilloid 1-positive neurons in mouse dorsal root ganglion (DRG) express GFRalpha2. In GFRalpha2 knock-out (KO) mice, the IB4-binding and P2X3-positive DRG neurons were present but reduced in size, consistent with normal number but reduced caliber of unmyelinated axons in a cutaneous nerve. Strikingly, nonpeptidergic (CGRP-negative) free nerve endings in footpad epidermis were >70% fewer in GFRalpha2-KO mice than in their wild-type littermates. In contrast, the density of CGRP-positive epidermal innervation remained unaffected. In the formalin test, the KO mice showed a normal acute response but a markedly attenuated persistent phase, indicating a deficit in inflammatory pain response. Behavioral responses of GFRalpha2-KO mice to innocuous warm and noxious heat were not blunted; the mice were actually markedly hypersensitive to noxious cold in tail immersion test. Overall, our results indicate a critical role for endogenous GFRalpha2 signaling in maintaining the size and terminal innervation of the nonpeptidergic class of cutaneous nociceptors in vivo.
Collapse
|
106
|
Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N, Carlsson P. Foxf1andFoxf2control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 2006; 133:833-43. [PMID: 16439479 DOI: 10.1242/dev.02252] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the vertebrate gut is controlled by paracrine crosstalk between the endodermal epithelium and the associated splanchnic mesoderm. In the adult, the same types of signals control epithelial proliferation and survival, which account for the importance of the stroma in colon carcinoma progression. Here, we show that targeting murine Foxf1 and Foxf2, encoding forkhead transcription factors, has pleiotropic effects on intestinal paracrine signaling. Inactivation of both Foxf2alleles, or one allele each of Foxf1 and Foxf2, cause a range of defects, including megacolon, colorectal muscle hypoplasia and agangliosis. Foxf expression in the splanchnic mesoderm is activated by Indian and sonic hedgehog secreted by the epithelium. In Foxf mutants, mesenchymal expression of Bmp4 is reduced, whereas Wnt5a expression is increased. Activation of the canonical Wnt pathway – with nuclear localization of β-catenin in epithelial cells – is associated with over-proliferation and resistance to apoptosis. Extracellular matrix,particularly collagens, is severely reduced in Foxf mutant intestine, which causes epithelial depolarization and tissue disintegration. Thus, Foxf proteins are mesenchymal factors that control epithelial proliferation and survival, and link hedgehog to Bmp and Wnt signaling.
Collapse
Affiliation(s)
- Mattias Ormestad
- Department of Cell and Molecular Biology, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
107
|
Goldstein AM. Molecular Basis of Hirschsprung’s Disease and Other Congenital Enteric Neuropathies. SEMINARS IN COLON AND RECTAL SURGERY 2006. [DOI: 10.1053/j.scrs.2006.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
108
|
Sala E, Mologni L, Cazzaniga S, Papinutto E, Gambacorti-Passerini C. A rapid method for the purification of wild-type and V804M mutant ret catalytic domain: A tool to study thyroid cancer. Int J Biol Macromol 2006; 39:60-5. [PMID: 16490247 DOI: 10.1016/j.ijbiomac.2006.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/22/2022]
Abstract
RET (rearranged during transfection) is a transmembrane tyrosine kinase and acts as co-receptor of glial-derived neurotrophic factor (GDNF) family neurothrofic factors in complex with GFRalpha family proteins; RET is important for development of enteric nervous system and renal organogenesis during embryonal life. Alterations in Ret gene are related to several neoplasias: point mutations are identified in medullary thyroid carcinoma (MTC) and multiple endocrine neoplasias 2A and B (MEN2A and B), while translocations and chromosomal inversions cause papillary thyroid carcinoma (PTC). We expressed recombinant RET kinase domain (rRET) containing the active site, the ATP binding pocket, and the activation loop with regulatory activity, with the Baculovirus expression system. RET was purified by a two-step procedure consisting of an anion exchange chromatography followed by nickel affinity chromatography. Moreover a biochemical characterization of the recombinant product was performed in order to verify its activity (by ELISA) and physical state (dynamic light scattering). We used rRET to validate an ELISA-based kinase assay, by testing inhibitors reported in literature such as PP1 and PP2. This method represents an easy system to screen potential inhibitors found by computational methods. We also produced V804M mutants to identify inhibitors that can overcome resistance to PP1 and ZD6474. The catalytic domain of RET can be used also for X-ray diffraction to obtain information about the three-dimensional structure, necessary for a rational design of selective inhibitors: it represents an important tool to understand the molecular mechanisms causing thyroid cancer and to care it.
Collapse
Affiliation(s)
- Elisa Sala
- Department of Experimental Oncology, National Cancer Institute, Milan, Italy.
| | | | | | | | | |
Collapse
|
109
|
Pietsch J, Delalande JM, Jakaitis B, Stensby JD, Dohle S, Talbot WS, Raible DW, Shepherd IT. lessen encodes a zebrafish trap100 required for enteric nervous system development. Development 2006; 133:395-406. [PMID: 16396911 PMCID: PMC2651469 DOI: 10.1242/dev.02215] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest. The developmental controls that govern the specification and patterning of the ENS are not well understood. To identify genes required for the formation of the vertebrate ENS, we preformed a genetic screen in zebrafish. We isolated the lessen (lsn) mutation that has a significant reduction in the number of ENS neurons as well as defects in other cranial neural crest derived structures. We show that the lsn gene encodes a zebrafish orthologue of Trap100, one of the subunits of the TRAP/mediator transcriptional regulation complex. A point mutation in trap100 causes a premature stop codon that truncates the protein, causing a loss of function. Antisense-mediated knockdown of trap100 causes an identical phenotype to lsn. During development trap100 is expressed in a dynamic tissue-specific expression pattern consistent with its function in ENS and jaw cartilage development. Analysis of neural crest markers revealed that the initial specification and migration of the neural crest is unaffected in lsn mutants. Phosphohistone H3 immunocytochemistry revealed that there is a significant reduction in proliferation of ENS precursors in lsn mutants. Using cell transplantation studies, we demonstrate that lsn/trap100 acts cell autonomously in the pharyngeal mesendoderm and influences the development of neural crest derived cartilages secondarily. Furthermore, we show that endoderm is essential for ENS development. These studies demonstrate that lsn/trap100 is not required for initial steps of cranial neural crest development and migration, but is essential for later proliferation of ENS precursors in the intestine.
Collapse
Affiliation(s)
- Jacy Pietsch
- Department of Biology, Emory University, Rollins Research Center, 1510 Clifton Road, Atlanta GA 30322 Tel: (404) 727-2632 Fax: (404) 727-2880
| | - Jean-Marie Delalande
- Department of Biology, Emory University, Rollins Research Center, 1510 Clifton Road, Atlanta GA 30322 Tel: (404) 727-2632 Fax: (404) 727-2880
| | - Brett Jakaitis
- Department of Biology, Emory University, Rollins Research Center, 1510 Clifton Road, Atlanta GA 30322 Tel: (404) 727-2632 Fax: (404) 727-2880
| | - James D. Stensby
- Department of Biology, Emory University, Rollins Research Center, 1510 Clifton Road, Atlanta GA 30322 Tel: (404) 727-2632 Fax: (404) 727-2880
| | - Sarah Dohle
- Department of Biology, Emory University, Rollins Research Center, 1510 Clifton Road, Atlanta GA 30322 Tel: (404) 727-2632 Fax: (404) 727-2880
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford CA 94305
| | - David W. Raible
- Department of Biological Structure, University of Washington, Box 357420, Seattle WA 98195
| | - Iain T. Shepherd
- Department of Biology, Emory University, Rollins Research Center, 1510 Clifton Road, Atlanta GA 30322 Tel: (404) 727-2632 Fax: (404) 727-2880
| |
Collapse
|
110
|
Erzurumlu RS, Chen ZF, Jacquin MF. Molecular determinants of the face map development in the trigeminal brainstem. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:121-34. [PMID: 16432893 PMCID: PMC3556733 DOI: 10.1002/ar.a.20285] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The perception of external sensory information by the brain requires highly ordered synaptic connectivity between peripheral sensory neurons and their targets in the central nervous system. Since the discovery of the whisker-related barrel patterns in the mouse cortex, the trigeminal system has become a favorite model for study of how its connectivity and somatotopic maps are established during development. The trigeminal brainstem nuclei are the first CNS regions where whisker-specific neural patterns are set up by the trigeminal afferents that innervate the whiskers. In particular, barrelette patterns in the principal sensory nucleus of the trigeminal nerve provide the template for similar patterns in the face representation areas of the thalamus and subsequently in the primary somatosensory cortex. Here, we describe and review studies of neurotrophins, multiple axon guidance molecules, transcription factors, and glutamate receptors during early development of trigeminal connections between the whiskers and the brainstem that lead to emergence of patterned face maps. Studies from our laboratories and others' showed that developing trigeminal ganglion cells and their axons depend on a variety of molecular signals that cooperatively direct them to proper peripheral and central targets and sculpt their synaptic terminal fields into patterns that replicate the organization of the whiskers on the muzzle. Similar mechanisms may also be used by trigeminothalamic and thalamocortical projections in establishing patterned neural modules upstream from the trigeminal brainstem.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
111
|
Abstract
The RET proto-oncogene encodes a receptor tyrosine kinase that is a main component of the signaling pathway activated by the glial cell line-derived neurotrophic factor family ligands. Gene targeting studies revealed that signaling through RET plays a crucial role in neuronal and renal organogenesis. It is well-known that germline mutations in RET lead to the human inherited diseases, multiple endocrine neoplasia type 2 (MEN 2) and Hirschsprung's disease, and that somatic rearrangements of RET cause papillary thyroid carcinoma. Due to marked advances in understanding of the molecular mechanisms of the development of MEN 2, a consensus on MEN 2 management associated with RET status is being reached and currently put into general use as a guideline. In this review, we summarize progress in the study of RET from bench to bedside, focusing on pathophysiology of neuroendocrine tumors.
Collapse
Affiliation(s)
- Yoshiki Murakumo
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | |
Collapse
|
112
|
Glial Cell Line-derived Neurotrophic Factor in Myoepithelial Cells of Major and Minor Salivary Glands of Mice. J Oral Biosci 2006. [DOI: 10.1016/s1349-0079(06)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
113
|
Wanigasekara Y, Keast JR. Neurturin has multiple neurotrophic effects on adult rat sacral parasympathetic ganglion neurons. Eur J Neurosci 2005; 22:595-604. [PMID: 16101741 DOI: 10.1111/j.1460-9568.2005.04260.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurturin (NTN) is an important neurotrophic factor for parasympathetic neurons; however, no studies to date have investigated the signalling mechanisms downstream of GFRalpha2 and Ret activation underlying this neurotrophic support. This is particularly important for pelvic parasympathetic neurons, which are prone to injury during surgical procedures such as prostatectomy, and where there are no current therapies for axonal regeneration. To address this issue we have cultured dissociated adult rat pelvic ganglion neurons and also examined the structural changes in pelvic ganglion neurons after axotomy. Axotomised penile neurons deprived of target-derived support had smaller somata than intact neurons. Studies of cultured adult pelvic ganglion neurons also demonstrated that NTN stimulated soma growth. Further experiments showed that NTN reduced the up-regulation of tyrosine hydroxylase expression in cultured pelvic parasympathetic neurons. NTN stimulated the extension of neurites in cultured parasympathetic, but not sympathetic, pelvic ganglion neurons. Inhibition of phosphatidylinositol 3-kinase prevented initiation of neurite outgrowth, whereas inhibition of the mitogen-activated protein kinase and the Src family kinase pathways disrupted NTN-stimulated microtubule assembly. Surprisingly, NTN did not activate the transcription factor cAMP-response element binding protein (CREB), which is typically involved in neurotrophic signalling in sympathetic neurons. This is the first study to identify signalling pathways activated by NTN in adult parasympathetic neurons. Our results may lead to a better understanding of regenerative mechanisms in parasympathetic neurons, especially for those innervating urogenital organs. Our results also indicate that neurotrophic signalling in parasympathetic neurons is different from that in other types of peripheral neurons.
Collapse
Affiliation(s)
- Yewlan Wanigasekara
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick NSW 2031, Australia
| | | |
Collapse
|
114
|
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16:441-67. [PMID: 15982921 DOI: 10.1016/j.cytogfr.2005.05.010] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.
Collapse
Affiliation(s)
- Elena Arighi
- Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
115
|
Cobb J, Duboule D. Comparative analysis of genes downstream of the Hoxd cluster in developing digits and external genitalia. Development 2005; 132:3055-67. [PMID: 15944189 DOI: 10.1242/dev.01885] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian Hox genes encode transcription factors that are crucial for proper morphogenesis along the various body axes. Despite their extensive structural and functional characterization, the nature of their target genes remains elusive. We have addressed this question by using DNA microarrays to screen for genes whose expression in developing distal forelimbs and genital eminences was significantly modified in the absence of the full Hoxd gene complement. This comparative approach not only identified specific candidate genes, but also allowed the examination of whether a similar Hox expression pattern in distinct tissues leads to the modulation of the same or different downstream genes. We report here a set of potential target genes, most of which were not previously known to play a role in the early stages of either limb or genital bud development. Interestingly, we find that the majority of these candidate genes are differentially expressed in both structures,although often at different times. This supports the idea that both appendices involve similar genetic controls, both upstream and downstream of the Hox gene family. These results highlight the surprising mechanistic relationship between these rather different body parts and suggest a common developmental strategy to build up the most distal appendicular structures of the body, i.e. the digits and the penis/clitoris.
Collapse
Affiliation(s)
- John Cobb
- National Research Center (NCCR Zoology and Animal Biology, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
116
|
|
117
|
Srinivasan S, Anitha M, Mwangi S, Heuckeroth RO. Enteric neuroblasts require the phosphatidylinositol 3-kinase/Akt/Forkhead pathway for GDNF-stimulated survival. Mol Cell Neurosci 2005; 29:107-19. [PMID: 15866051 DOI: 10.1016/j.mcn.2005.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/19/2005] [Accepted: 02/07/2005] [Indexed: 12/19/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF)/Ret signaling is required for enteric neural crest survival, proliferation, migration and process extension, but signaling pathways that mediate enteric nervous system (ENS) precursor development are poorly understood. We therefore examined GDNF effects on immunoselected ENS precursor survival and neuronal process extension in the presence of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathway inhibitors. These studies demonstrated that GDNF promotes ENS precursor survival through phosphatidylinositol-3-kinase. Specifically, GDNF induces phosphorylation of Akt and loss of the Akt substrates FOXO1 and FOXO3a from the nucleus of ENS precursors. Furthermore, dominant negative Akt or active FOXO1 constructs promote ENS precursor cell death while a dominant negative FOXO1 construct prevents cell death. In contrast, the MAPK kinase inhibitor PD98059 did not influence ENS precursor survival or neurite extension. These data demonstrate a critical role for PI-3 kinase/Akt/FOXO signaling, but not for MAPK in ENS precursor survival and neurite extension.
Collapse
Affiliation(s)
- Shanthi Srinivasan
- Department of Medicine, Division of Digestive Diseases, Emory University, 615 Michael Street, Whitehead Research Building, Suite 246, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
118
|
Rossi J, Santamäki P, Airaksinen MS, Herzig KH. Parasympathetic innervation and function of endocrine pancreas requires the glial cell line-derived factor family receptor alpha2 (GFRalpha2). Diabetes 2005; 54:1324-30. [PMID: 15855316 DOI: 10.2337/diabetes.54.5.1324] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vagal parasympathetic input to the islets of Langerhans is a regulator of islet hormone secretion, but factors promoting parasympathetic islet innervation are unknown. Neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) has been demonstrated to be essential for the development of subsets of parasympathetic and enteric neurons. Here, we show that the parasympathetic nerve fibers and glial cells within and around the islets express GFRalpha2 and that islet parasympathetic innervation in GFRalpha2 knockout (KO) mice is reduced profoundly. In wild-type mice, neuroglucopenic stress produced a robust increase in plasma levels of islet hormones. In the GFRalpha2-KO mice, however, pancreatic polypeptide and insulin responses were completely lost and glucagon response was markedly impaired. Islet morphology and sympathetic innervation, as well as basal secretions of the islet hormones, were unaffected. Moreover, a glucose tolerance test failed to reveal differences between the genotypes, indicating that direct glucose-stimulated insulin secretion was not affected by GFRalpha2 deficiency. These results show that GFRalpha2 signaling is needed for development of the parasympathetic islet innervation that is critical for vagally induced hormone secretion. The GFRalpha2-KO mouse represents a useful model to study the role of parasympathetic innervation of the endocrine pancreas in glucose homeostasis.
Collapse
Affiliation(s)
- Jari Rossi
- Neuroscience Center, P.O. Box 56 (Viikinkaari 4), 00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
119
|
Enomoto H. Regulation of neural development by glial cell line-derived neurotrophic factor family ligands. Anat Sci Int 2005; 80:42-52. [PMID: 15794130 DOI: 10.1111/j.1447-073x.2005.00099.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and its three relatives constitute a novel family of neurotrophic factors, the GDNF family ligands. These factors signal through a multicomponent receptor complex comprising a glycosylphosphatidylinositol-anchored cell surface molecule (GDNF family receptor (GFR) alpha) and RET tyrosine kinase, triggering the activation of multiple signaling pathways in responsive cells. Recent gene-targeting studies have demonstrated that GDNF family ligands are essential for the development of a diverse set of neuronal populations and we have now started to understand how these ligands uniquely regulate the formation and sculpting of the nervous system. Recent studies have also revealed interactions by multiple extracellular signals during neural development. The deciphering of GDNF family ligand signaling in neural cells promises to provide vital new insights into the development and pathology of the nervous system.
Collapse
Affiliation(s)
- Hideki Enomoto
- RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| |
Collapse
|
120
|
Yang LX, Nelson PG. Glia cell line-derived neurotrophic factor regulates the distribution of acetylcholine receptors in mouse primary skeletal muscle cells. Neuroscience 2005; 128:497-509. [PMID: 15381279 DOI: 10.1016/j.neuroscience.2004.06.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 11/17/2022]
Abstract
It was recently reported that glia cell line-derived neurotrophic factor (GDNF) facilitates presynaptic axonal growth and neurotransmitter release at neuromuscular synapses. Little is known, however, whether GDNF can also act on the postsynaptic apparatus and its underlying mechanisms. Using biochemical cold blocking of existing membrane acetylcholine receptors (AchRs) and biotinylation of newly inserted receptors we demonstrate that GDNF increases the insertion of AChRs into the surface membrane of mouse primary cultured muscle cells and that this does not require protein synthesis. Quantitative data from double-label imaging indicate that GDNF induces a quick and substantial increase in AchR insertion as well as lateral movement into AchR aggregates, relative to a weak effect on reducing the loss of receptors from pre-existing AchR aggregates, which in contrast to the effect of PMA. These effects occur in both innervated and un-innervated muscles, and GDNF affects nerve-muscle co-cultures more than it affects muscle-only cultures. Neurturin, another member of GDNF-family ligands has similar effects on AchRs as GDNF but the unrelated growth factor, EGF does not. Studies on protein phosphorylation and specific inhibitors of cell signal transduction indicate that GDNF function is mediated by receptor GFRalpha1 and involves MAPK, cAMP/cAMP responsive element-binding factor and Src kinase activities. GDNF may signal through c-Ret as well as NCAM-140 pathways since both the signaling receptors are expressed in the neuromuscular junction (NMJ). These data suggest that GDNF is an autocrine regulator of NMJ to promote the insertion and stabilization of postsynaptic AchRs. In vivo, GDNF may function as a synaptotrophic modulator for both pre- and postsynaptic differentiation to strengthen the functional and structural connections between nerve and muscle, and contribute to the synaptogenesis and plasticity of neuromuscular synapses.
Collapse
Affiliation(s)
- L-X Yang
- Section on Neurobiology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bldg 49, Bethesda, MD 20892, USA.
| | | |
Collapse
|
121
|
Enomoto H, Hughes I, Golden J, Baloh RH, Yonemura S, Heuckeroth RO, Johnson EM, Milbrandt J. GFRalpha1 expression in cells lacking RET is dispensable for organogenesis and nerve regeneration. Neuron 2005; 44:623-36. [PMID: 15541311 DOI: 10.1016/j.neuron.2004.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 09/16/2004] [Accepted: 10/07/2004] [Indexed: 02/02/2023]
Abstract
The GDNF family ligands signal through a receptor complex composed of a ligand binding subunit, GFRalpha, and a signaling subunit, the RET tyrosine kinase. GFRalphas are expressed not only in RET-expressing cells, but also in cells lacking RET. A body of evidence suggests that RET-independent GFRalphas are important for (1) modulation of RET signaling in a non-cell-autonomous fashion (trans-signaling) and (2) regulation of NCAM function. To address the physiological significance of these roles, we generated mice specifically lacking RET-independent GFRalpha1. These mice exhibited no deficits in regions where trans-signaling has been implicated in vitro, including enteric neurons, motor neurons, kidney, and regenerating nerves. Furthermore, no abnormalities were found in the olfactory bulb, which requires proper NCAM function for its formation and is putatively a site of GDNF-GFRalpha-NCAM signaling. Thus RET-independent GFRalpha1 is dispensable for organogenesis and nerve regeneration in vivo, indicating that trans-signaling and GFRalpha-dependent NCAM signaling play a minor role physiologically.
Collapse
Affiliation(s)
- Hideki Enomoto
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Kawakoshi K, Suzuki Y, Okumura K, Shibata T, Takeda M. Expression of Nerve Growth Factor and Neurturin, and Their Receptors in Mouse Taste Buds. J Oral Biosci 2005. [DOI: 10.1016/s1349-0079(05)80023-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
Dudas M, Kaartinen V. Tgf-beta superfamily and mouse craniofacial development: interplay of morphogenetic proteins and receptor signaling controls normal formation of the face. Curr Top Dev Biol 2005; 66:65-133. [PMID: 15797452 DOI: 10.1016/s0070-2153(05)66003-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marek Dudas
- Developmental Biology Program at the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | |
Collapse
|
124
|
Jain S, Naughton CK, Yang M, Strickland A, Vij K, Encinas M, Golden J, Gupta A, Heuckeroth R, Johnson EM, Milbrandt J. Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development 2004; 131:5503-13. [PMID: 15469971 DOI: 10.1242/dev.01421] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Ret receptor tyrosine kinase mediates physiological signals of glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and is essential for postnatal survival in mice. It is implicated in a number of human diseases and developmental abnormalities. Here, we describe our analyses of mice expressing a Ret mutant (RetDN) with diminished kinase activity that inhibits wild-type Ret activity, including its activation of AKT. All RetDN/+ mice died by 1 month of age and had distal intestinal aganglionosis reminiscent of Hirschsprung disease (HSCR) in humans. The RetDN/+ proximal small intestine also had severe hypoganglionosis and reduction in nerve fiber density, suggesting a potential mechanism for the continued gastric dysmotility in postsurgical HSCR patients. Unlike Ret-null mice, which have abnormalities in the parasympathetic and sympathetic nervous systems, the RetDN/+ mice only had defects in the parasympathetic nervous system. A small proportion of RetDN/+ mice had renal agenesis, and the remainder had hypoplastic kidneys and developed tubulocystic abnormalities postnatally. Postnatal analyses of the testes revealed a decreased number of germ cells, degenerating seminiferous tubules,maturation arrest and apoptosis, indicating a crucial role for Ret in early spermatogenesis.
Collapse
Affiliation(s)
- Sanjay Jain
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Young HM, Anderson RB, Anderson CR. Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 2004; 112:1-14. [PMID: 15233925 DOI: 10.1016/j.autneu.2004.02.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 02/25/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
All peripheral autonomic neurons arise from neural crest cells that migrate away from the neural tube and navigate to the location where ganglia will form. After differentiating into neurons, their axons then navigate to a variety of targets. During the development of the enteric nervous system, GDNF appears to play a role in inducing vagal neural crest cells to enter the gut, in retaining neural crest cells within the gut and in promoting the migration of neural crest cells along the gut. Sema3A regulates the entry of extrinsic axons into the distal hindgut, netrin-DCC signaling is responsible for the centripetal migration of cells to form the submucosal ganglia within the gut, Slit-Robo signaling prevents trunk level neural crest cells from entering the gut, and neurturin plays a role in the innervation of the circular muscle layer. During the development of the sympathetic nervous system, the migration of trunk neural crest cells through the somites is influenced by ephrin-Bs, Sema3A and F-spondin. The migration of neural crest cells ventrally beyond the somites requires neuregulin signaling and the clumping of cells into columns adjacent to the dorsal aorta is regulated by Sema3A. The rostral migration of cells to form the superior cervical ganglion (SCG) and the extension of axons along blood vessels involves artemin signaling through Ret and GFRalpha3, and the entry of sympathetic axons into target tissues involves neurotrophins and GDNF. Relatively little is known about the development of parasympathetic ganglia, but GDNF appears to play a role in the migration of some cranial ganglion precursors to their correct location, and both GDNF and neurturin are involved in the growth of parasympathetic axons into particular targets.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010 VIC, Australia
| | | | | |
Collapse
|
126
|
Yan H, Bergner AJ, Enomoto H, Milbrandt J, Newgreen DF, Young HM. Neural cells in the esophagus respond to glial cell line-derived neurotrophic factor and neurturin, and are RET-dependent. Dev Biol 2004; 272:118-33. [PMID: 15242795 DOI: 10.1016/j.ydbio.2004.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 11/22/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is expressed in the gastrointestinal tract of the developing mouse and appears to play an important role in the migration of enteric neuron precursors into and along the small and large intestines. Two other GDNF family members, neurturin and artemin, are also expressed in the developing gut although artemin is only expressed in the esophagus. We examined the effects of GDNF, neurturin, and artemin on neural crest cell migration and neurite outgrowth in explants of mouse esophagus, midgut, and hindgut. Both GDNF and neurturin induced neural crest cell migration and neurite outgrowth in all regions examined. In the esophagus, the effect of GDNF on migration and neurite outgrowth declined with age between E11.5 and E14.5, but neurturin still had a strong neurite outgrowth effect at E14.5. Artemin did not promote neural migration or neurite outgrowth in any region investigated. The effects of GDNF family ligands are mediated by the Ret tyrosine kinase. We examined the density of neurons in the esophagus of Ret-/- mice, which lack neurons in the small and large intestines. The density of esophageal neurons in Ret-/- mice was only about 4% of the density of esophageal neurons in Ret+/- and Ret+/+ mice. These results show that GDNF and neurturin promote migration and neurite outgrowth of crest-derived cells in the esophagus as well as the intestine. Moreover, like intestinal neurons, the development of esophageal neurons is largely Ret-dependent.
Collapse
Affiliation(s)
- Hui Yan
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, 3010 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
127
|
Võikar V, Rossi J, Rauvala H, Airaksinen MS. Impaired behavioural flexibility and memory in mice lacking GDNF family receptor alpha2. Eur J Neurosci 2004; 20:308-12. [PMID: 15245503 DOI: 10.1111/j.1460-9568.2004.03475.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family receptor GFRalpha2 is the binding receptor for neurturin (NRTN). The main biological responses of GFRalpha2 are mediated via the Ret receptor tyrosine kinase, although it may also signal independently of Ret via the neural cell adhesion molecule NCAM. GFRalpha2 is expressed in many neurons of both the central and peripheral nervous system. Mice lacking GFRalpha2 receptors do not exhibit any gross defects in the central nervous system structure. However, they display profound deficits in the parasympathetic and enteric nervous system, accompanied by significant reduction in body weight after weaning. Here we present the results of behavioural analysis of the GFRalpha2-knockout mice. The knockout mice did not differ from wild-type mice in basic tests of motor and exploratory activity. However, differences were established in several memory tasks. The knockout mice were not impaired in the acquisition of spatial escape strategy. However, the deficit in flexibility in establishing a new strategy was revealed during reversal learning with the platform in the opposite quadrant of the pool. Furthermore, the knockout mice displayed significant impairment in contextual fear conditioning and conditioned taste aversion tests of memory. The results suggest that GFRalpha2 signalling plays a role in the development or maintenance of cognitive abilities that help in solving complex learning tasks.
Collapse
Affiliation(s)
- Vootele Võikar
- Department of Biosciences, PO Box 56, Viikinkaari 4, FIN-00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
128
|
Hiltunen PH, Airaksinen MS. Sympathetic cholinergic target innervation requires GDNF family receptor GFRα2. Mol Cell Neurosci 2004; 26:450-7. [PMID: 15234349 DOI: 10.1016/j.mcn.2004.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 11/22/2022] Open
Abstract
Many cholinergic parasympathetic and enteric neurons require neurturin signaling through GDNF family receptor GFRalpha2 for target innervation. Since a distinct minority of sympathetic neurons are cholinergic, we examined whether GFRalpha2 is important for their development. We detected GFRalpha2 in neonatal sympathetic cholinergic neurons and neurturin mRNA in their target tissues, sweat glands in footpads, and periosteum. Lack of GFRalpha2 in mice did not affect the number of sympathetic cholinergic neurons, but their soma size was decreased in comparison to wild types. In adult and in 3-week-old GFRalpha2 knockout mice, the density of sympathetic cholinergic innervation was reduced by 50-70% in the sweat glands, and was completely absent in the periosteum. Sympathetic noradrenergic innervation of blood vessels in the footpads was unchanged. The density of sympathetic axons in sweat glands was unaffected at postnatal day P4 reflecting successful growth into the target area. Our results indicate that the cholinergic subpopulation of sympathetic neurons requires GFRalpha2 signaling for soma size and for growth or maintenance of target innervation. Thus, neurturin may be a general target-derived innervation factor for postganglionic cholinergic neurons in all parts of the autonomic nervous system.
Collapse
|
129
|
Nguyen DH, Toshida H, Schurr J, Beuerman RW. Microarray analysis of the rat lacrimal gland following the loss of parasympathetic control of secretion. Physiol Genomics 2004; 18:108-18. [PMID: 15084711 PMCID: PMC2835548 DOI: 10.1152/physiolgenomics.00011.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies showed that loss of muscarinic parasympathetic input to the lacrimal gland (LG) leads to a dramatic reduction in tear secretion and profound changes to LG structure. In this study, we used DNA microarrays to examine the regulation of the gene expression of the genes for secretory function and organization of the LG. Long-Evans rats anesthetized with a mixture of ketamine/xylazine (80:10 mg/kg) underwent unilateral sectioning of the greater superficial petrosal nerve, the input to the pterygopalatine ganglion. After 7 days, tear secretion was measured, the animals were killed, and structural changes in the LG were examined by light microscopy. Total RNA from control and experimental LGs (n = 5) was used for DNA microarray analysis employing the U34A GeneChip. Three statistical algorithms (detection, change call, and signal log ratio) were used to determine differential gene expression using the Microarray Suite (5.0) and Data Mining Tools (3.0). Tear secretion was significantly reduced and corneal ulcers developed in all experimental eyes. Light microscopy showed breakdown of the acinar structure of the LG. DNA microarray analysis showed downregulation of genes associated with the endoplasmic reticulum and Golgi, including genes involved in protein folding and processing. Conversely, transcripts for cytoskeleton and extracellular matrix components, inflammation, and apoptosis were upregulated. The number of significantly upregulated genes (116) was substantially greater than the number of downregulated genes (49). Removal of the main secretory input to the rat LG resulted in clinical symptoms associated with severe dry eye. Components of the secretory pathway were negatively affected, and the increase in cell proliferation and inflammation may lead to loss of organization in the parasympathectomized lacrimal gland.
Collapse
Affiliation(s)
- Doan H Nguyen
- LSU Eye Center, Lions Eye Research Laboratories, Laboratory for the Molecular Biology of the Ocular Surface, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
130
|
Burns AJ, Pasricha PJ, Young HM. Enteric neural crest-derived cells and neural stem cells: biology and therapeutic potential. Neurogastroenterol Motil 2004; 16 Suppl 1:3-7. [PMID: 15065996 DOI: 10.1111/j.1743-3150.2004.00466.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system arises from two regions of the neural crest; the vagal neural crest which gives rise to the vast majority of enteric neurones throughout the gastrointestinal tract, and the sacral neural crest which contributes a smaller number of cells that are mainly distributed within the hindgut. The migration of vagal neural crest cells into, and along the gut is promoted by GDNF, which is expressed by the gut mesenchyme and is the ligand for the Ret/GFRalpha1 signalling complex present on migrating vagal-derived crest cells. Sacral neural crest cells enter the gut after it has been colonized by vagal neural crest cells, but the molecular control of sacral neural crest cell development has yet to be elucidated. Under the influence of both intrinsic and extrinsic cues, neural crest cells differentiate into glia and different types of enteric neurones at different developmental stages. Recently, the potential for neural stem cells to form an enteric nervous system has been examined, with the ultimate aim of using neural stem cells as a therapeutic strategy for some gut disorders where enteric neurones are reduced or absent.
Collapse
Affiliation(s)
- A J Burns
- Neural Development Unit, Institute of Child Health, University College London, London, UK.
| | | | | |
Collapse
|
131
|
Paveliev M, Airaksinen MS, Saarma M. GDNF family ligands activate multiple events during axonal growth in mature sensory neurons. Mol Cell Neurosci 2004; 25:453-9. [PMID: 15033173 DOI: 10.1016/j.mcn.2003.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 10/22/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022] Open
Abstract
The need for medical treatment of neuronal trauma motivates the search for new agents to stimulate posttraumatic axonal regrowth, as well as improving understanding of signaling cascades regulating this process. GDNF stimulates axonal regeneration in the peripheral nervous system, but little is known about the mechanism of this effect. Neurturin, artemin and persephin are homologs of GDNF, and their impact on axonal regeneration in adults has not been studied yet. Here we show that neurturin, artemin and GDNF, but not persephin, promote axonal initiation in cultured dorsal root ganglion neurons from young adult mice. This effect requires Src-family kinase activity as it was blocked by SU6656. In neurons from GFRalpha2-deficient mice, neurturin does not significantly promote axonal initiation. We also show that neurturin and GDNF induce extensive lamellipodia formation on neuronal somata and growth cones. GDNF, when applied after the time of axonal initiation in culture, also promotes axonal elongation.
Collapse
Affiliation(s)
- Mikhail Paveliev
- Program for Molecular Neurobiology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | |
Collapse
|
132
|
Wanigasekara Y, Airaksinen MS, Heuckeroth RO, Milbrandt J, Keast JR. Neurturin signalling via GFRα2 is essential for innervation of glandular but not muscle targets of sacral parasympathetic ganglion neurons. Mol Cell Neurosci 2004; 25:288-300. [PMID: 15019945 DOI: 10.1016/j.mcn.2003.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 10/20/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022] Open
Abstract
Neurturin, a member of the glial cell-derived neurotrophic factor familys of ligands, is important for development of many cranial parasympathetic ganglion neurons. We have investigated the sacral component of the parasympathetic nervous system in mice with gene deletions for neurturin or its preferred receptor, GFRalpha2. Disruption of neurturin signalling decreased cholinergic VIP innervation to the mucosa of the reproductive organs, but not to the smooth muscle layers of these organs or to the urinary bladder. Thus, neurturin and its receptor are involved in parasympathetic innervation of a select group of pelvic visceral tissues. In contrast, noradrenergic innervation was not affected by the gene ablations. The epithelium of reproductive organs from knockout animals was atrophied, indicating that cholinergic innervation may be important for the maintenance of normal structure. Cholinergic neurons express GFRalpha2 on their terminals and somata, indicating they can respond to neurotrophic support, and their somata are smaller when neurturin signalling is disrupted. Colocalisation studies showed that many peripheral glia express GFRalpha2 although its role in these cells is yet to be determined. Our results indicate that neurturin, acting through GFRalpha2, is essential for parasympathetic innervation of the mucosae of reproductive organs, as well as for maintenance of a broader group of sacral parasympathetic neurons.
Collapse
Affiliation(s)
- Y Wanigasekara
- Prince of Wales Medical Research Institute and University of New South Wales, Randwick 2031, Australia
| | | | | | | | | |
Collapse
|
133
|
Cho J, Kholodilov NG, Burke RE. Patterns of developmental mRNA expression of neurturin and GFRalpha2 in the rat striatum and substantia nigra do not suggest a role in the regulation of natural cell death in dopamine neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:143-9. [PMID: 14757528 DOI: 10.1016/j.devbrainres.2003.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We examined the mRNA expression of neurturin (NTN) and its receptor GFRalpha2 in rat substantia nigra (SN) and striatum by northern analysis at ages ranging from postnatal day (PND) 2 to adult. NTN mRNA expression is developmentally regulated in striatum with a peak at PND10, but its expression in striatum is low, and less than that of SN. In SN, there is no developmental regulation. GFRalpha2 was expressed most highly during the first two postnatal weeks. Like NTN, GFRalpha2 mRNA was also more abundant in SN, at both PND2 and 14. Our results show that NTN expression is relatively low in the striatum, the target of dopamine (DA) neurons, and there is no apparent pattern of developmental regulation in SN. Thus these studies are not strongly supportive of a role for NTN in regulating natural cell death (NCD) in DA neurons, either as a target-derived or as a local paracrine factor.
Collapse
Affiliation(s)
- JinWhan Cho
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
134
|
Golden JP, Milbrandt J, Johnson EM. Neurturin and persephin promote the survival of embryonic basal forebrain cholinergic neurons in vitro. Exp Neurol 2004; 184:447-55. [PMID: 14637114 DOI: 10.1016/j.expneurol.2003.07.999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The GDNF family ligands (GFLs) are a group of neurotrophic factors that influence the development, survival, and maintenance of specific populations of neurons in the central and peripheral nervous systems. The cholinergic neurons of the basal forebrain provide cholinergic innervation to cortical structures and their integrity is vital to normal cognitive function. GDNF, the original member of the GFL family promotes the survival of developing basal forebrain cholinergic neurons in vitro. We have now found that neurturin (NRTN) and persephin (PSPN) also promote the survival of basal forebrain neurons including both cholinergic neurons and a population of non-cholinergic neurons with an efficacy comparable to NGF. We also demonstrate that developing and mature basal forebrain cholinergic neurons (BFCN) express GFL receptors. Ret, the signaling component of the GFL-receptor complex, is expressed in most adult rat BFCN. In addition, Ret and the GFL co-receptors GFRalpha1 and GFRalpha2 are expressed in developing cholinergic neurons in cultures of embryonic basal forebrain. Our results suggest that the GFLs may be effective as neuroprotective agents for BFCNs in vivo.
Collapse
Affiliation(s)
- Judith P Golden
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
135
|
Shepherd IT, Pietsch J, Elworthy S, Kelsh RN, Raible DW. Roles for GFRα1 receptors in zebrafish enteric nervous system development. Development 2004; 131:241-9. [PMID: 14660438 DOI: 10.1242/dev.00912] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Components of the zebrafish GDNF receptor complex are expressed very early in the development of enteric nervous system precursors, and are already present as these cells begin to enter the gut and migrate caudally along its length. Both gfra1a and gfra1b as well as ret are expressed at this time, while gfra2 expression, the receptor component that binds the GDNF-related ligand neurturin, is not detected until the precursors have migrated along the gut. Gfra genes are also expressed in regions of the zebrafish brain and peripheral ganglia, expression domains conserved with other species. Enteric neurons are eliminated after injection with antisense morpholino oligonucleotides against ret or against both Gfra1 orthologs, but are not affected by antisense oligonucleotides against gfra2. Blocking GDNF signaling prevents migration of enteric neuron precursors, which remain positioned at the anterior end of the gut. Phenotypes induced by injection of antisense morpholinos against both Gfra orthologs can be rescued by introduction of mRNA for gfra1a or for gfra2, suggesting that GFRα1 and GFRα2 are functionally equivalent.
Collapse
Affiliation(s)
- Iain T Shepherd
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
136
|
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) was originally identified as a survival factor for midbrain dopaminergic neurons. GDNF and related ligands, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), maintain several neuronal populations in the central nervous systems, including midbrain dopamine neurons and motoneurons. In addition, GDNF, NRTN and ARTN support the survival and regulate the differentiation of many peripheral neurons, including sympathetic, parasympathetic, sensory and enteric neurons. GDNF has further critical roles outside the nervous system in the regulation of kidney morphogenesis and spermatogenesis. GDNF family ligands bind to specific GDNF family receptor alpha (GFRalpha) proteins, all of which form receptor complexes and signal through the RET receptor tyrosine kinase. The biology of GDNF signalling is much more complex than originally assumed. The neurotrophic effect of GDNF, except in motoneurons, requires the presence of transforming growth factor beta, which activates the transport of GFRalpha1 to the cell membrane. GDNF can also signal RET independently through GFR1alpha. Upon ligand binding, GDNF in complex with GFRalpha1 may interact with heparan sulphate glycosaminoglycans to activate the Met receptor tyrosine kinase through cytoplasmic Src-family kinases. GDNF family ligands also signal through the neural cell adhesion molecule NCAM. In cells lacking RET, GDNF binds with high affinity to the NCAM and GFRalpha1 complex, which activates Fyn and FAK.
Collapse
Affiliation(s)
- Hannu Sariola
- Institute of Biomedicine, University of Helsinki, PO Box 63 (Haartmaninkatu 8), FIN-00014, Finland.
| | | |
Collapse
|
137
|
Rossi J, Herzig KH, Võikar V, Hiltunen PH, Segerstråle M, Airaksinen MS. Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor α2. J Clin Invest 2003. [DOI: 10.1172/jci200317995] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
138
|
Rossi J, Herzig KH, Võikar V, Hiltunen PH, Segerstråle M, Airaksinen MS. Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2. J Clin Invest 2003; 112:707-16. [PMID: 12952919 PMCID: PMC182204 DOI: 10.1172/jci17995] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) for development and target innervation. Why GFRalpha2-deficient (Gfra2-/-) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRalpha2 protein was expressed in most substance P-containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2-/- mice, density of substance P-containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2-/- mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRalpha2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.
Collapse
Affiliation(s)
- Jari Rossi
- Program in Molecular Neurobiology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
139
|
Nanobashvili A, Kokaia Z, Lindvall O. Generalization of rapidly recurring seizures is suppressed in mice lacking glial cell line-derived neurotrophic factor family receptor alpha2. Neuroscience 2003; 118:845-52. [PMID: 12710991 DOI: 10.1016/s0306-4522(02)00998-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent experimental evidence indicates that neurotrophic factors play a role in the pathophysiology of epilepsy. The objective of this study was to explore whether signaling through one of the glial cell line-derived neurotrophic factor family receptors, GFRalpha2, influences the severity of kindling-evoked, rapidly recurring seizures and the subsequent development of permanent hyperexcitability. We applied the rapid kindling model to adult mice, using 40 threshold stimulations delivered with 5-min interval in the ventral hippocampus. Generalized seizures were fewer and developed later in response to kindling stimulations in mice lacking GFRalpha2. However, GFRalpha2 gene deletion did not influence the acquisition of the permanent abnormal excitability as assessed 4 weeks later. In situ hybridization revealed marked and dynamic changes of GFRalpha2 mRNA levels in several forebrain areas following the stimulus-evoked seizures. Our findings provide evidence that signaling through the GFRalpha2 receptor contributes to seizure generalization in rapid kindling.
Collapse
Affiliation(s)
- A Nanobashvili
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, University Hospital, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
140
|
Yan H, Newgreen DF, Young HM. Developmental changes in neurite outgrowth responses of dorsal root and sympathetic ganglia to GDNF, neurturin, and artemin. Dev Dyn 2003; 227:395-401. [PMID: 12815625 DOI: 10.1002/dvdy.10294] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ability of glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin to induce neurite outgrowth from dorsal root, superior cervical, and lumbar sympathetic ganglia from mice at a variety of development stages between embryonic day (E) 11.5 and postnatal day (P) 7 was examined by explanting ganglia onto collagen gels and growing them in the presence of agarose beads impregnated with the different GDNF family ligands. Artemin, GDNF, and neurturin were all capable of influencing neurite outgrowth from dorsal root and sympathetic ganglia, but the responses of each neuron type to the different ligands varied during development. Neurites from dorsal root ganglia responded to artemin at P0 and P7, to GDNF at E15.5 and P0, and to neurturin at E15.5, P0, and P6/7; thus, artemin, GDNF, and neurturin are all capable of influencing neurite outgrowth from dorsal root ganglion neurons. Neurites from superior cervical sympathetic ganglia responded significantly to artemin at E15.5, to GDNF at E15.5 and P0, and to neurturin at E15.5. Neurites from lumbar sympathetic ganglia responded to artemin at all stages from E11.5 to P7, to GDNF at P0 and P7 and to neurturin at E11.5 to P6/7. Combined with the data from previous studies that have examined the expression of GDNF family members, our data suggest that artemin plays a role in inducing neurite outgrowth from young sympathetic neurons in the early stages of sympathetic axon pathfinding, whereas GDNF and neurturin are likely to be important at later stages of sympathetic neuron development in inducing axons to enter particular target tissues once they are in the vicinity or to induce branching within target tissues. Superior cervical and lumbar sympathetic ganglia showed temporal differences in their responsiveness to artemin, GDNF, and neurturin, which probably partly reflects the rostrocaudal development of sympathetic ganglia and the tissues they innervate.
Collapse
Affiliation(s)
- H Yan
- Department of Anatomy and Cell Biology, University of Melbourne, VIC, Australia.
| | | | | |
Collapse
|
141
|
Rossi J, Airaksinen MS. GDNF family signalling in exocrine tissues: distinct roles for GDNF and neurturin in parasympathetic neuron development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:19-26. [PMID: 12613884 DOI: 10.1007/978-1-4615-0717-8_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jari Rossi
- Program in Molecular Neurobiology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
142
|
Kawakami T, Wakabayashi Y, Aimi Y, Isono T, Okada Y. Developmental expression of glial cell-line derived neurotrophic factor, neurturin, and their receptor mRNA in the rat urinary bladder. Neurourol Urodyn 2003; 22:83-8. [PMID: 12478607 DOI: 10.1002/nau.10074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIMS Glial cell-line derived neurotrophic factor (GDNF) and related factors neurturin (NRTN), artemin, and persephin are members of the GDNF family of neurotrophic factors. GDNF and NRTN bind to the tyrosine kinase receptor Ret and the receptors GFRalpha1 and GFRalpha2. The objective was to examine the developmental expression of GDNF, NRTN, and their receptors within the rat urinary bladder. METHODS Rat bladders dissected from embryonic day (E) 15, postnatal day (P) 0, P14, P28, and adult rats (P60) were investigated by semiquantitative reverse transcriptase polymerase chain reaction. Embryos (E15, E16, and E17) were immunohistochemically stained for neurofilament. RESULTS GDNF and Ret mRNA levels at E15 were the highest of all the stages we examined and then immediately decreased. In contrast, NRTN mRNA levels did not change between E15 and postnatal day 14; thereafter, they gradually but insignificantly increased. GFRalpha1 and GFRalpha2 mRNA levels were high at E15, after which their signal intensities decreased. In whole-mounted specimens, neurofilament-positive axons were first detected in the bladder at E16. CONCLUSIONS Our results suggest that GDNF and NRTN may act as trophic factors for neural in-growth to the bladder and/or for the maintenance of mature neurons innervating the bladder. These factors might also be involved in bladder morphogenesis.
Collapse
Affiliation(s)
- Takahiro Kawakami
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|
143
|
Kashiba H, Uchida Y, Senba E. Distribution and colocalization of NGF and GDNF family ligand receptor mRNAs in dorsal root and nodose ganglion neurons of adult rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:52-62. [PMID: 12573533 DOI: 10.1016/s0169-328x(02)00584-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To understand the dependence of primary sensory neurons on neurotrophic factors, we examined the distribution and colocalization of mRNAs for receptors of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) family ligands in dorsal root ganglion (DRG) and nodose ganglion (NG) neurons of adult rats by in situ hybridization (ISH) histochemistry using serial sections. About 35, 10, and 20% of the lumbar DRG neurons expressed trkA, trkB and trkC mRNAs, respectively. Messenger RNA signals for c-ret, a common signaling receptor of GDNF family ligands, were seen in about 60% of DRG neurons, and some of these neurons expressed trkA, trkB, or trkC mRNAs. Most (97%) of the DRG neurons observed were positive to at least one of these four mRNAs. About 50, 20, and 20% of DRG neurons expressed GDNF family receptor alpha1 (GFR alpha1), GFR alpha2, and GFR alpha3 mRNAs, respectively, and most of these neurons were positive to c-ret mRNA. Interestingly, GFR alpha2 and GFR alpha3 mRNA signals were frequently seen in the same neurons, which lack GFR alpha1 mRNA signals. On the other hand, 98% of NG neurons expressed trkB mRNA and 30-40% of NG neurons co-expressed c-ret and GFR alpha1 mRNAs. However, mRNA signals for other receptors (TrkA, TrkC, GFR alpha2, GFR alpha3) were seen in only a few NG neurons. These findings suggest that all the DRG neurons in adult rats depend on at least one of the NGF and GDNF family ligands, and that some DRG neurons depend on two ligands or more. In contrast, NG neurons were suggested to be divided into two major groups; one group depends on brain-derived neurotrophic factor (BDNF)/neurotrophin-4/5 (NT-4/5), and the other depends on both BDNF/NT-4/5 and GDNF.
Collapse
Affiliation(s)
- Hitoshi Kashiba
- Department of Physiology, Kansai College of Oriental Medicine, 2-11-1 Wakaba, Kumatori, Sennan, Osaka 590-0433, Japan
| | | | | |
Collapse
|
144
|
Schmidt RE. Neuropathology and pathogenesis of diabetic autonomic neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:257-92. [PMID: 12198813 DOI: 10.1016/s0074-7742(02)50080-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autonomic neuropathy is a significant complication of diabetes resulting in increased patient morbidity and mortality. A number of studies, which have shown correspondence between neuropathologic findings in experimental animals and human subjects, have demonstrated that axonal and dendritic pathology in sympathetic ganglia in the absence of significant neuron loss represents a neuropathologic hallmark of diabetic autonomic neuropathy. A recurring theme in sympathetic ganglia, as well as in the pot-ganglionic autonomic innervation of various end organs, is the involvement of distal portions of axons and nerve terminals by degenerative or dystrophic changes. In both animals and humans, there is a surprising selectivity of the diabetic process for subpopulations of autonomic ganglia, nerve terminals within sympathetic ganglia and end organs, from end organ to end organ, and between vascular and other targets within individual end organs. Although the involvement or autonomic axons in somatic nerves may reflect an ischemic pathogenesis, the selectivity of the diabetic process confounds simple global explanations of diabetic autonomic neuropathy as the result of diminished blood flow with resultant tissue hypoxia. A single unifying pathogenetic hypothesis has not yet emerged from clinical and experimental animal studies, and it is likely that diabetic autonomic neuropathy will be shown to have multiple causative mechanisms, which will interact to result in the variety of presentations of autonomic injury in diabetes. Some of these mechanisms will be shared with aging changes in the autonomic nervous system. The role of various neurotrophic substances and the polyol pathway in the pathogenesis and treatment of diabetic neuropathy likely represents a two-edged sword with both salutary and exacerbating effects. The basic neurobiologic process underlying the diabetes-induced development of neuroaxonal dystrophy, synaptic dysplasia, defective axonal regeneration, and alterations in neurotrophic substance may be mechanistically related.
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
145
|
Crone SA, Negro A, Trumpp A, Giovannini M, Lee KF. Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron 2003; 37:29-40. [PMID: 12526770 DOI: 10.1016/s0896-6273(02)01128-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We utilized the Cre-LoxP system to establish erbB2 conditional mutant mice in order to investigate the role of erbB2 in postnatal development of the enteric nervous system. The erbB2/nestin-Cre conditional mutants exhibit retarded growth, distended colons, and premature death, resembling human Hirschsprung's disease. Enteric neurons and glia are present at birth in the colon of erbB2/nestin-Cre mutants; however, a marked loss of multiple classes of enteric neurons and glia occurs by 3 weeks of age. Furthermore, we demonstrate that the requirement for erbB2 in maintaining the enteric nervous system is not cell autonomous, but rather erbB2 signaling in the colonic epithelia is required for the postnatal survival of enteric neurons and glia.
Collapse
Affiliation(s)
- Steven A Crone
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
146
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
147
|
Stucky CL, Rossi J, Airaksinen MS, Lewin GR. GFR alpha2/neurturin signalling regulates noxious heat transduction in isolectin B4-binding mouse sensory neurons. J Physiol 2002; 545:43-50. [PMID: 12433948 PMCID: PMC2290664 DOI: 10.1113/jphysiol.2002.027656] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The GFR alpha2 receptor is the cognate co-receptor for the neurotrophic factor neurturin and GFR alpha2 is selectively expressed by isolectin B(4) (IB(4))-binding nociceptive sensory neurons. Here, we used two physiological approaches in combination with mice that have a targeted deletion of the GFR alpha2 gene (GFR alpha2 -/- mice) in order to determine whether GFR alpha2/neurturin signalling regulates the functional properties or the survival of IB(4)-binding nociceptors. Because 50 % of IB(4)-binding neurons respond to noxious heat and because patch clamp recordings of isolated dorsal root ganglion sensory neurons allow one to neurochemically identify subpopulations of neurons, we analysed the noxious heat responsiveness of IB(4)-positive and -negative small-diameter neurons isolated from adult GFR alpha2 -/- and littermate control mice. The percentage of IB(4)-positive neurons that had large (> 100 pA) heat-evoked inward currents was severely reduced in GFR alpha2 -/- mice (12 %) compared to wild-type littermates (47 %), and this loss in large-magnitude heat currents was accounted for by an increase in neurons with very small (< 100 pA) heat-evoked currents as well as an increase in neurons with no detectable heat current. Counts of IB(4)-positive and -negative neurons, as well as counts of unmyelinated axons in the saphenous nerve, confirmed that the loss in neurons with large-amplitude heat currents was due to a deficit in heat transduction and not a decrease in cell survival. The effect was modality specific for heat because mechanical transduction of all fibre types, including IB(4)-positive C fibres, was normal. Our data are the first to indicate a transduction-function role for GFR alpha2/neurturin signalling in a specific class of sensory neurons.
Collapse
Affiliation(s)
- Cheryl L Stucky
- Growth Factors and Regeneration Group, Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, Berlin D-13092, Germany
| | | | | | | |
Collapse
|
148
|
Dolatshad NF, Silva AT, Saffrey MJ. Identification of GFR alpha-2 isoforms in myenteric plexus of postnatal and adult rat intestine. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 107:32-8. [PMID: 12414121 DOI: 10.1016/s0169-328x(02)00446-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glial cell line-derived neurotrophic factor family receptor alpha-2 (GFR alpha-2) is a GPI-linked receptor that preferentially binds neurturin (NTN), a member of the glial cell line-derived neurotrophic factor (GDNF) family. Three splice isoforms of GFR alpha-2 have been identified previously in mouse tissues, but the occurrence of splice isoforms in rats has not been described. The aim of this study was therefore to identify GFR alpha-2 splice isoforms in rat tissues using reverse transcription-polymerase chain reaction (RT-PCR) and gene cloning. Three isoforms were identified and sequenced, and named GFR alpha-2(a), (b) and (c), according to the nomenclature used for the previously identified mouse isoforms. The GFR alpha-2(a) and (b) isoforms were identical to those previously described in mice. The GFR alpha-2(c) isoform was novel. Sequences for GFR alpha-2(b) and (c) were deposited in the GenBank database (accession numbers GI: 16797788 and 16797786, respectively). All three isoforms were expressed in the brain, kidney, and intestine of both postnatal and adult rats.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Department of Biological Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | | | | |
Collapse
|
149
|
Murakami H, Yamamura Y, Shimono Y, Kawai K, Kurokawa K, Takahashi M. Role of Dok1 in cell signaling mediated by RET tyrosine kinase. J Biol Chem 2002; 277:32781-90. [PMID: 12087092 DOI: 10.1074/jbc.m202336200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a yeast two-hybrid screen, we identified Dok1 as a docking protein for RET tyrosine kinase. Dok1 bound more strongly to RET with a multiple endocrine neoplasia (MEN) 2B mutation than RET with a MEN2A mutation and was highly phosphorylated in the cells expressing the former mutant protein. Analysis by site-directed mutagenesis revealed that tyrosine 361 in mouse Dok1 represents a binding site for the Nck adaptor protein and tyrosines 295, 314, 361, 376, 397, and 408 for the Ras-GTPase-activating protein. We replaced tyrosine 361 or these six tyrosines with phenylalanine (designated Y361F or 6F) in Dok1 and introduced the mutant Dok1 genes into the cells expressing the wild-type RET or RET-MEN2B protein. Overexpression of Dok1 or Dok1-Y361F, but not Dok1-6F, suppressed the Ras/Erk activation induced by glial cell line-derived neurotrophic factor or RET-MEN2B, implying that this inhibitory effect requires the Ras-GTPase-activating protein binding to Dok1. In contrast, overexpression of Dok1, but not Dok1-Y361F or Dok1-6F, enhanced the c-Jun amino-terminal kinase (JNK) and c-Jun activation. This suggested that the association of Nck to tyrosine 361 in Dok1 is necessary for the JNK and c-Jun activation by glial cell line-derived neurotrophic factor or RET-MEN2B. Because a high level of the JNK phosphorylation was observed in the cells expressing RET-MEN2B, its strong activation via Nck binding to Dok1 may be responsible for aggressive properties of medullary thyroid carcinoma developed in MEN 2B.
Collapse
Affiliation(s)
- Hideki Murakami
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
150
|
Tomac AC, Agulnick AD, Haughey N, Chang CF, Zhang Y, Bäckman C, Morales M, Mattson MP, Wang Y, Westphal H, Hoffer BJ. Effects of cerebral ischemia in mice deficient in Persephin. Proc Natl Acad Sci U S A 2002; 99:9521-6. [PMID: 12093930 PMCID: PMC123173 DOI: 10.1073/pnas.152535899] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persephin (Pspn), a recently cloned member of the transforming growth factor-beta superfamily (TGF-beta) and glial cell line-derived neurotrophic factor (GDNF) subfamily, is distributed throughout the nervous system at extremely low levels and is thought to function as a survival factor for midbrain dopaminergic and spinal motor neurons in vivo. Here, we report that mice lacking Pspn by homologous recombination show normal development and behavior, but are hypersensitive to cerebral ischemia. A 300% increase in infarction volume was observed after middle cerebral artery occlusion. We find that glutamate-induced Ca(2+) influx, thought to be a major component of ischemic neuronal cell death, can be regulated directly by the Persephin protein (PSP) and that PSP can reduce hypoxia/reperfusion cell death in vitro. Neuronal cell death can be prevented or markedly attenuated by administration of recombinant human PSP in vivo before ischemia in both mouse and rat models. Taken together, these data indicate that PSP is a potent modulator of excitotoxicity in the central nervous system with pronounced neuroprotective activity. Our findings support the view that PSP signaling can exert an important control function in the context of stroke and glutamate-mediated neurotoxicity, and also suggest that future therapeutic approaches may involve this novel trophic protein.
Collapse
Affiliation(s)
- Andreas C Tomac
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|