101
|
Cuevas H, Stuifbergen AK, Hilsabeck RC, Sales A, Wood S, Kim J. The role of cognitive rehabilitation in people with type 2 diabetes: A study protocol for a randomized controlled trial. PLoS One 2023; 18:e0285553. [PMID: 37186584 PMCID: PMC10184896 DOI: 10.1371/journal.pone.0285553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Today, the prevalence of cognitive dysfunction and the prevalence of diabetes are increasing. Research shows that diabetes increases cognitive impairment risk, and cognitive impairment makes diabetes self-management more challenging. Diabetes self-management, essential to good glycemic control, requires patients to assimilate knowledge about their complex disease and to engage in activities such as glucose self-monitoring and the management of their medications. To test a comprehensive cognitive rehabilitation intervention-the Memory, Attention, and Problem-Solving Skills for Persons with Diabetes (MAPSS-DM) program. Our central hypothesis is that participants who take part in the MAPSS-DM intervention will have improved memory and executive function, increased use of compensatory cognitive skills, and improved self-management. We will also explore the role of glucose variability in those changes. This is a randomized controlled trial. Sixty-six participants with cognitive concerns and type 2 diabetes will be assigned to either the full MAPSS-DM intervention or an active control. Participants will use continuous glucose monitoring pre- and post-intervention to identify changes in glycemic variability. All participants will also be evaluated systematically via questionnaires and neuropsychological tests at three timepoints: baseline, immediately post-intervention, and 3 months post-intervention. This study will fill an important gap by addressing cognitive function in the management of diabetes. Diabetes is related to accelerated cognitive aging, cognitive deficits are related to poorer self-management, and improvements in cognitive performance as a result of cognitive rehabilitation can translate into improved performance in everyday life and, potentially, diabetes self-management. The results of the proposed study will therefore potentially inform strategies to support cognitive function and diabetes self-management, as well as offer new mechanistic insights into cognitive function through the use of continuous glucose monitoring. Trial registration: This study has been registered at ClinicalTrials.gov (NCT04831775).
Collapse
Affiliation(s)
- Heather Cuevas
- School of Nursing, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alexa K. Stuifbergen
- School of Nursing, The University of Texas at Austin, Austin, Texas, United States of America
| | - Robin C. Hilsabeck
- Department of Neurology, Dell Medical School, Austin, Texas, United States of America
| | - Adam Sales
- Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Shenell Wood
- School of Nursing, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jeeyeon Kim
- School of Nursing, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
102
|
Wang Q, Sun D, Ma X, Huang R, Xu J, Xu X, Cai L, Xu L. Surface enhanced Raman scattering active substrate based on hydrogel microspheres for pretreatment-free detection of glucose in biological samples. Talanta 2023; 260:124657. [PMID: 37187030 DOI: 10.1016/j.talanta.2023.124657] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Determining glucose in biological samples is tedious and time-consuming due to sample pretreatment. The sample is usually pretreated to remove lipids, proteins, hemocytes and other sugars that interfere with glucose detection. A surface-enhanced Raman scattering (SERS) active substrate based on hydrogel microspheres has been developed to detect glucose in biological samples. Due to the specific catalytic action of glucose oxidase (GOX), the high selectivity of detection is guaranteed. The hydrogel substrate prepared by microfluidic droplets technology protects the silver nanoparticles from the surrounding environment and improves the stability and reproducibility of the assay. In addition, the hydrogel microspheres have size-adjustable pores that selectively allow small molecules to pass through. The pores block the entry of large molecules, such as impurities, enabling glucose detection through glucose oxidase etching without sample pretreatment. This hydrogel microsphere-SERS platform is highly sensitive and enables reproducible detection of different glucose concentrations in biological samples. The use of SERS to detect glucose provides clinicians with new diagnostic methods for diabetes and a new application opportunity for SERS-based molecular detection techniques.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinqiu Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China.
| |
Collapse
|
103
|
Jiang W, Ding K, Huang W, Xu F, Lei M, Yue R. Potential effects of bisphenol A on diabetes mellitus and its chronic complications: A narrative review. Heliyon 2023; 9:e16340. [PMID: 37251906 PMCID: PMC10213369 DOI: 10.1016/j.heliyon.2023.e16340] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease caused by multiple factors such as genetics, environment, and lifestyle. Bisphenol A (BPA), as one of the most common endocrine-disrupting chemicals (EDCs), has been strongly implicated in the development of type 2 diabetes mellitus (T2DM). BPA exposure is associated with target organ damage in DM and may exacerbate the progression of some chronic complications of DM. This paper reviews relevant epidemiological, in vivo, and in vitro studies to better understand BPA's potential risk associations and pathological mechanisms in several chronic diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenjie Huang
- Chengdu University of Technology, College of Ecology and Environment, Chengdu, 610075, China
| | - Feng Xu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
104
|
Colin IM, Szczepanski LW, Gérard AC, Elosegi JA. Emerging Evidence for the Use of Antidiabetic Drugs, Glucagon-like Peptide 1 Receptor Agonists, for the Treatment of Alzheimer's Disease. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:16-24. [PMID: 37313236 PMCID: PMC10258618 DOI: 10.17925/ee.2023.19.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 06/15/2023]
Abstract
From an epidemiological and pathophysiological point of view, Alzheimer's disease (AD) and type 2 diabetes (T2DM) should be considered 'sister' diseases. T2DM significantly increases the risk of developing AD, and the mechanisms of neuronal degeneration themselves worsen peripheral glucose metabolism in multiple ways. The pathophysiological links between the two diseases, particularly cerebral insulin resistance, which causes neuronal degeneration, are so close that AD is sometimes referred to as 'type 3 diabetes'. Although the latest news on the therapeutic front for AD is encouraging, no treatment has been shown to halt disease progression permanently. At best, the treatments slow down the progression; at worst, they are inactive, or cause worrying side effects, preventing their use on a larger scale. Therefore, it appears logical that optimizing the metabolic milieu through preventive or curative measures can also slow down the cerebral degeneration that characterizes AD. Among the different classes of hypoglycaemic drugs, glucagon-like peptide 1 receptor agonists, which are widely used in the treatment of T2DM, were shown to slow down, or even prevent, neuronal degeneration. Data from animal, preclinical, clinical phase II, cohort and large cardiovascular outcomes studies are encouraging. Of course, randomized clinical phase III studies, which are on-going, will be essential to verify this hypothesis. Thus, for once, there is hope for slowing down the neurodegenerative processes associated with diabetes, and that hope is the focus of this review.
Collapse
Affiliation(s)
- Ides M Colin
- Endocrino-Diabetology Research Unit, Department of Internal Medicine, Centre Hospitalier Régional Mons-Hainaut/Groupe Jolimont, Mons Belgium/Groupe Helora, Mons, Belgium
| | - Lidia W Szczepanski
- Endocrino-Diabetology Research Unit, Department of Internal Medicine, Centre Hospitalier Régional Mons-Hainaut/Groupe Jolimont, Mons Belgium/Groupe Helora, Mons, Belgium
| | - Anne-Catherine Gérard
- Endocrino-Diabetology Research Unit, Department of Internal Medicine, Centre Hospitalier Régional Mons-Hainaut/Groupe Jolimont, Mons Belgium/Groupe Helora, Mons, Belgium
- Group of Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Jose-Antonio Elosegi
- Neurology Unit, Centre Hospitalier Universitaire Ambroise Paré, Mons Belgium/Groupe Helora, Mons, Belgium
| |
Collapse
|
105
|
Marunaka Y. Molecular Mechanisms of Obesity-Induced Development of Insulin Resistance and Promotion of Amyloid-β Accumulation: Dietary Therapy Using Weak Organic Acids via Improvement of Lowered Interstitial Fluid pH. Biomolecules 2023; 13:biom13050779. [PMID: 37238649 DOI: 10.3390/biom13050779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Insulin resistance is one of the etiologies of type 2 diabetes mellitus (T2DM) and has been suggested to contribute to the development of Alzheimer's disease by promoting amyloid-β accumulation. Various causes of insulin resistance have been suggested; however, mechanisms of insulin resistance development remain to be elucidated in many respects. Elucidating the mechanisms underlying the development of insulin resistance is one of the key factors in developing methods to prevent the onset of T2DM and Alzheimer's disease. It has been suggested that the body pH environment plays an important role in the control of cellular functions by regulating the action of hormones including insulin and the activity of enzymes and neurons, thereby maintaining homeostatic conditions of the body. This review introduces: (1) Mitochondrial dysfunction through oxidative stress caused by obesity-induced inflammation. (2) Decreased pH of interstitial fluid due to mitochondrial dysfunction. (3) Development of insulin resistance due to diminution of insulin affinity to its receptor caused by the lowered interstitial fluid pH. (4) Accelerated accumulation of amyloid-β due to elevated activities of β- and γ-secretases caused by the lowered interstitial fluid pH. (5) Diet therapies for improving insulin resistance with weak organic acids that act as bases in the body to raise the pH of lowered interstitial fluid and food factors that promote absorption of weak organic acids in the gut.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
106
|
Longo M, Di Meo I, Caruso P, Francesca Muscio M, Scappaticcio L, Maio A, Ida Maiorino M, Bellastella G, Signoriello G, Knop FK, Rosaria Rizzo M, Esposito K. Circulating levels of endothelial progenitor cells are associated with better cognitive function in older adults with glucagon-like peptide 1 receptor agonist-treated type 2 diabetes. Diabetes Res Clin Pract 2023; 200:110688. [PMID: 37116797 DOI: 10.1016/j.diabres.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
AIMS To evaluate cognitive function in subjects with type 2 diabetes (T2D) treated with glucagon-like peptide 1 receptor agonist (GLP-1RA) plus metformin or metformin alone and its association with endothelial progenitor cells (EPCs). METHODS Adults with T2D treated with GLP-1RA plus metformin (GLP-1RA + MET) or MET alone for at least 12 months were included. Montreal Cognitive Assessment test (MoCA), Mini-Mental State Examination (MMSE), Mini Nutritional Assessment (MNA) and disability tests were administered. Circulating levels of seven EPCs phenotypes were measured by flow cytometry. RESULTS A total of 154 elderly patients were included, of whom 78 in GLP-1RA + MET group and 76 in MET group. The GLP-1RA + MET group showed better cognitive function as indicated by a significant higher MoCA and MMSE scores, and higher levels of CD34+ CD133+, CD133+ KDR+, and CD34+ CD133+ KDR+ as compared with MET group. The number of CD34+ CD133+ KDR+ cells was an independent predictor of higher MoCA, MMSE and MNA scores. CONCLUSIONS People with T2D on GLP-1RA + MET treatment had better cognitive function and higher circulating levels of EPCs as compared with those on MET alone warranting further studies to understand the interrelationship between EPCs, GLP-RA treatment and cognitive health.
Collapse
Affiliation(s)
- Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Caruso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Francesca Muscio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Maio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Signoriello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
107
|
Chen M, Yan R, Luo J, Ning J, Zhou R, Ding L. The Role of PGC-1α-Mediated Mitochondrial Biogenesis in Neurons. Neurochem Res 2023:10.1007/s11064-023-03934-8. [PMID: 37097395 DOI: 10.1007/s11064-023-03934-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Neurons are highly dependent on mitochondrial ATP production and Ca2+ buffering. Neurons have unique compartmentalized anatomy and energy requirements, and each compartment requires continuously renewed mitochondria to maintain neuronal survival and activity. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key factor in the regulation of mitochondrial biogenesis. It is widely accepted that mitochondria are synthesized in the cell body and transported via axons to the distal end. However, axonal mitochondrial biogenesis is necessary to maintain axonal bioenergy supply and mitochondrial density due to limitations in mitochondrial axonal transport rate and mitochondrial protein lifespan. In addition, impaired mitochondrial biogenesis leading to inadequate energy supply and neuronal damage has been observed in neurological disorders. In this review, we focus on the sites where mitochondrial biogenesis occurs in neurons and the mechanisms by which it maintains axonal mitochondrial density. Finally, we summarize several neurological disorders in which mitochondrial biogenesis is affected.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
108
|
Ertas B, Hazar-Yavuz AN, Topal F, Keles-Kaya R, Karakus Ö, Ozcan GS, Taskin T, Cam ME. Rosa canina L. improves learning and memory-associated cognitive impairment by regulating glucose levels and reducing hippocampal insulin resistance in high-fat diet/streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116541. [PMID: 37088237 DOI: 10.1016/j.jep.2023.116541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recent studies claim that Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) overlap in several common pathological pathways which from neuronal damage to impaired memory performance. It is known that the use of Rosa canina L. (R. canina) as medicine in folk medicine dates back to ancient times and is used in the treatment of nervous diseases in Persian medicine. However, the effect of R. canina on diabetes-related cognitive decline and memory impairment has not yet been studied. AIM OF THE STUDY We evaluated the impact of T2DM on AD-like alterations and examined the molecular mechanism of a possible effect of R. canina on cognitive alterations in diabetic rats. MATERIALS&METHODS R. canina ethanol extract was obtained by maceration method. This study was performed with male Spraque-Dawley rats fed with a high-fat diet (HFD) for 8 weeks, low-dose streptozotocin (STZ; 35 mg/kg IP) injection for 4 weeks, and R. canina (250 mg/kg; per oral) and metformin (400 mg/kg; per oral) administration for 4 weeks. The weight and blood glucose of rats were measured weekly. To evaluate glucose tolerance area under the curve (AUC) was calculated by performing an oral glucose tolerance test. Then the rats were subjected to behavioural tests, and their hippocampus and cortex tissues were obtained for biochemical and morphological analyses. RESULTS R. canina could manage glucose responsiveness by reducing post-prandial blood glucose levels, preventing weight loss, and raising serum insulin levels in T2DM-induced rats. Behavioural tests showed that R. canina significantly improves diabetes-related cognitive decline in recall and long-term memory. Treatment with R. canina significantly reversed HFD/STZ-induced increases in insulin, amyloid-β, amyloid precursor protein levels, and acetylcholinesterase activity in the prefrontal cortex and hippocampus. Furthermore, histological analyzes revealed the protection of R. canina against neuronal disruption in the cortical and hippocampal CA3 region caused by chronic hyperglycemia. CONCLUSION Analyzed collectively, these results suggest that R. canina can correct T2DM-related cognitive decline may be attributed to insulin pathway modulation, prevention of amyloid deposition, and increased cholinergic transmission.
Collapse
Affiliation(s)
- Busra Ertas
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722, Istanbul, Turkey
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Fadime Topal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Rumeysa Keles-Kaya
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, 34854, Turkey
| | - Özge Karakus
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Gul Sinemcan Ozcan
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722, Istanbul, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; Biomedical Engineering Department, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul, 34722, Turkey.
| |
Collapse
|
109
|
Besnier F, Gagnon C, Monnet M, Dupuy O, Nigam A, Juneau M, Bherer L, Gayda M. Acute Effects of a Maximal Cardiopulmonary Exercise Test on Cardiac Hemodynamic and Cerebrovascular Response and Their Relationship with Cognitive Performance in Individuals with Type 2 Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085552. [PMID: 37107835 PMCID: PMC10138481 DOI: 10.3390/ijerph20085552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular and cerebrovascular diseases are prevalent in individuals with type 2 diabetes (T2D). Among people with T2D aged over 70 years, up to 45% might have cognitive dysfunction. Cardiorespiratory fitness (V˙O2max) correlates with cognitive performances in healthy younger and older adults, and individuals with cardiovascular diseases (CVD). The relationship between cognitive performances, V˙O2max, cardiac output and cerebral oxygenation/perfusion responses during exercise has not been studied in patients with T2D. Studying cardiac hemodynamics and cerebrovascular responses during a maximal cardiopulmonary exercise test (CPET) and during the recovery phase, as well as studying their relationship with cognitive performances could be useful to detect patients at greater risk of future cognitive impairment. Purposes: (1) to compare cerebral oxygenation/perfusion during a CPET and during its post-exercise period (recovery); (2) to compare cognitive performances in patients with T2D to those in healthy controls; and (3) to examine if V˙O2max, maximal cardiac output and cerebral oxygenation/perfusion are associated with cognitive function in individuals with T2D and healthy controls. Nineteen patients with T2D (61.9 ± 7 years old) and 22 healthy controls (HC) (61.8 ± 10 years old) were evaluated on the following: a CPET test with impedance cardiography and cerebral oxygenation/perfusion using a near-infrared spectroscopy. Prior to the CPET, the cognitive performance assessment was performed, targeting: short-term and working memory, processing speed, executive functions, and long-term verbal memory. Patients with T2D had lower V˙O2max values compared to HC (34.5 ± 5.6 vs. 46.4 ± 7.6 mL/kg fat free mass/min; p < 0.001). Compared to HC, patients with T2D showed lower maximal cardiac index (6.27 ± 2.09 vs. 8.70 ± 1.09 L/min/m2, p < 0.05) and higher values of systemic vascular resistance index (826.21 ± 308.21 vs. 583.35 ± 90.36 Dyn·s/cm5·m2) and systolic blood pressure at maximal exercise (204.94 ± 26.21 vs. 183.61 ± 19.09 mmHg, p = 0.005). Cerebral HHb during the 1st and 2nd min of recovery was significantly higher in HC compared to T2D (p < 0.05). Executive functions performance (Z score) was significantly lower in patients with T2D compared to HC (-0.18 ± 0.7 vs. -0.40 ± 0.60, p = 0.016). Processing speed, working and verbal memory performances were similar in both groups. Brain tHb during exercise and recovery (-0.50, -0.68, p < 0.05), and O2Hb during recovery (-0.68, p < 0.05) only negatively correlated with executive functions performance in patients with T2D (lower tHb values associated with longer response times, indicating a lower performance). In addition to reduced V˙O2max, cardiac index and elevated vascular resistance, patients with T2D showed reduced cerebral hemoglobin (O2Hb and HHb) during early recovery (0-2 min) after the CPET, and lower performances in executive functions compared to healthy controls. Cerebrovascular responses to the CPET and during the recovery phase could be a biological marker of cognitive impairment in T2D.
Collapse
Affiliation(s)
- Florent Besnier
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Gagnon
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
| | - Meghann Monnet
- Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Université de Poitiers, 86073 Poitiers, France
| | - Olivier Dupuy
- Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Université de Poitiers, 86073 Poitiers, France
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Anil Nigam
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Martin Juneau
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Louis Bherer
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
- Research Centre, Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada
| | - Mathieu Gayda
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
110
|
Maimaitituerxun R, Chen W, Xiang J, Xie Y, Kaminga AC, Wu XY, Chen L, Yang J, Liu A, Dai W. The use of nomogram for detecting mild cognitive impairment in patients with type 2 diabetes mellitus. J Diabetes 2023; 15:448-458. [PMID: 37057310 PMCID: PMC10172024 DOI: 10.1111/1753-0407.13384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is highly prevalent worldwide and may lead to a higher rate of cognitive dysfunction. This study aimed to develop and validate a nomogram-based model to detect mild cognitive impairment (MCI) in T2DM patients. METHODS Inpatients with T2DM in the endocrinology department of Xiangya Hospital were consecutively enrolled between March and December 2021. Well-qualified investigators conducted face-to-face interviews with participants to retrospectively collect sociodemographic characteristics, lifestyle factors, T2DM-related information, and history of depression and anxiety. Cognitive function was assessed using the Mini-Mental State Examination scale. A nomogram was developed to detect MCI based on the results of the multivariable logistic regression analysis. Calibration, discrimination, and clinical utility of the nomogram were subsequently evaluated by calibration plot, receiver operating characteristic curve, and decision curve analysis, respectively. RESULTS A total of 496 patients were included in this study. The prevalence of MCI in T2DM patients was 34.1% (95% confidence interval [CI]: 29.9%-38.3%). Age, marital status, household income, diabetes duration, diabetic retinopathy, anxiety, and depression were independently associated with MCI. Nomogram based on these factors had an area under the curve of 0.849 (95% CI: 0.815-0.883), and the threshold probability ranged from 35.0% to 85.0%. CONCLUSIONS Almost one in three T2DM patients suffered from MCI. The nomogram, based on age, marital status, household income, duration of diabetes, diabetic retinopathy, anxiety, and depression, achieved an optimal diagnosis of MCI. Therefore, it could provide a clinical basis for detecting MCI in T2DM patients.
Collapse
Affiliation(s)
- Rehanguli Maimaitituerxun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Wenhang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingsha Xiang
- Human Resources Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Xie
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Atipatsa C Kaminga
- Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Xin Yin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Letao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| | - Wenjie Dai
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| |
Collapse
|
111
|
Nolasco-Rosales GA, Villar-Juárez GE, Pérez-Osorio DA, Cruz-Castillo JD, Molina-Guzmán G, González-Castro TB, Tovilla-Zárate CA, Rodríguez-Sánchez E, Genis-Mendoza AD, Hernández-Palacios F, Juárez-Rojop IE. Assessment of cognitive impairment and depressive signs in patients with type 2 diabetes treated with metformin from Southeast Mexico: A cross-sectional study. J Psychiatr Res 2023; 162:65-70. [PMID: 37088045 DOI: 10.1016/j.jpsychires.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
Multiple factors associate diabetes with cognitive impairment and depression. Antidiabetic drugs have reported antidepressant and pro-cognitive effects in diabetic and non-diabetic subjects. Antidepressant and pro-cognitive effects of metformin are reported in various studies; however, these effects are not consistent among researches. We designed a cross-sectional study. We recruited patients with T2D diagnosis from the Diabetes Clinic of the Regional Hospital of High Specialty "Dr. Gustavo A. Rovirosa Pérez" from January 2019 to May 2022. We included 431 subjects with T2D, 374 patients with metformin treatment and 57 subjects without metformin. These patients were on intensive therapies and had not a previous diagnosis of cognitive impairment or depression. We applied Mini-Mental State Examination (MMSE) to evaluate cognitive impairment, and Hamilton Depression Rating Scale (HAM-D) to assess depressive signs. Our sample had a mean age of 53.77 ± 13.43 years. Metformin users were 374 individuals, and 57 subjects didn't use metformin. MMSE found cognitive impairment in 8.3% (n = 31) of metformin users, and 14.8% (n = 8) of patients without metformin. HAM-D scale showed that 39.5% (n = 147) of patients with metformin had depression signs, subjects without metformin and depressive signs were 44.6% (n = 25). We found no differences between groups for cognitive impairment and depression grades. We did not find associations between metformin treatment, cognitive impairment measures and depression sign measures. However, chronic metformin treatment, insulin use, glycemic control and age could influence our results.
Collapse
Affiliation(s)
| | | | - Daniel Arturo Pérez-Osorio
- Universidad Juarez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, Mexico
| | - Juan Daniel Cruz-Castillo
- Universidad Juarez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, Mexico
| | - Gabriel Molina-Guzmán
- Instituto Mexicano del Seguro Social, Hospital General de Zona 46, Villahermosa, Tabasco, Mexico; Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Hospital General Dr. Daniel Gurría Urgell, Villahermosa, Tabasco, Mexico
| | - Thelma Beatriz González-Castro
- Universidad Juarez Autónoma de Tabasco, División Académica Multidisciplinaria de Jalpa de Méndez, Jalpa de Méndez, Tabasco, Mexico
| | - Carlos Alfonso Tovilla-Zárate
- Universidad Juarez Autónoma de Tabasco, División Académica Multidisciplinaria de Comalcalco, Comalcalco, Tabasco, Mexico
| | - Ester Rodríguez-Sánchez
- Hospital Regional de Alta Especialidad "Gustavo A. Rovirosa Perez", Villahermosa, Tabasco, Mexico
| | - Alma Delia Genis-Mendoza
- Departamento de Genética Psiquiátrica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Filiberto Hernández-Palacios
- Universidad Juarez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, Mexico
| | - Isela Esther Juárez-Rojop
- Universidad Juarez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, Mexico.
| |
Collapse
|
112
|
Du K, Zhai C, Li X, Gang H, Gao X. Feature-Based Molecular Networking Facilitates the Comprehensive Identification of Differential Metabolites in Diabetic Cognitive Dysfunction Rats. Metabolites 2023; 13:metabo13040538. [PMID: 37110195 PMCID: PMC10142102 DOI: 10.3390/metabo13040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Cognitive dysfunction is a frequent complication of type 2 diabetes mellitus (T2DM), usually accompanied by metabolic disorders. However, the metabolic changes in diabetic cognitive dysfunction (DCD) patients, especially compared to T2DM groups, are not fully understood. Due to the subtle differences in metabolic alterations between DCD groups and T2DM groups, the comprehensive detection of the untargeted metabolic profiles of hippocampus and urine samples of rats was conducted by LC-MS, considering the different ionization modes and polarities of the examined compounds, and feature-based molecular networking (FBMN) was performed to help identify differential metabolites from a comprehensive perspective in this study. In addition, an association analysis of the differential metabolites in hippocampus and urine was conducted by the O2PLS model. Finally, a total of 71 hippocampal tissue differential metabolites and 179 urine differential metabolites were identified. The pathway enrichment results showed that glutamine and glutamate metabolism, alanine, aspartate, and glutamate metabolism, glycerol phospholipid metabolism, TCA cycle, and arginine biosynthesis in the hippocampus of DCD animals were changed. Seven metabolites (AUC > 0.9) in urine appeared as key differential metabolites that might reflect metabolic changes in the target tissue of DCD rats. This study showed that FBMN facilitated the comprehensive identification of differential metabolites in DCD rats. The differential metabolites may suggest an underlying DCD and be considered as potential biomarkers for DCD. Large samples and clinical experiments are needed for the subsequent elucidation of the possible mechanisms leading to these alterations and the verification of potential biomarkers.
Collapse
Affiliation(s)
- Ke Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Hongchuan Gang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| |
Collapse
|
113
|
Ohta T, Sasai H, Osuka Y, Kojima N, Abe T, Yamashita M, Obuchi SP, Ishizaki T, Fujiwara Y, Awata S, Toba K. Age- and sex-specific associations between sarcopenia severity and poor cognitive function among community-dwelling older adults in Japan: The IRIDE Cohort Study. Front Public Health 2023; 11:1148404. [PMID: 37081953 PMCID: PMC10110951 DOI: 10.3389/fpubh.2023.1148404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionThis study examined whether the association between sarcopenia severity and cognitive function differed according to sex and age in community-dwelling older adults in Japan.MethodsThis is a cross-sectional study of older adults (age ≥ 65 years) consisting of five regional cohorts integrated as the Integrated Research Initiative for Living Well with Dementia (IRIDE) Cohort Study. Sarcopenia severity was determined based on the Asian Working Group for Sarcopenia 2019, which assessed grip strength, walking speed, and skeletal muscle mass index. Poor cognitive function was defined as a Mini-Mental State Examination score of ≤ 23. Odds ratios (ORs) and 95% confidence intervals (CIs) for poor cognitive function were calculated by sex and age group (65–74 and ≥75 years) using binomial logistic regression models, which were adjusted for age, educational attainment, history of non-communicable diseases, smoking and drinking habits, living alone, frequency of going outdoors, exercise habits, and depressive symptom.ResultsOf the 8,180 participants, 6,426 (1,157 men aged 65–74 and 1,063 men aged 75 or older; 2,281 women aged 65–74 and 1,925 women aged 75 or older) were analyzed. The prevalence ratio of sarcopenia and severe sarcopenia were 309 (13.9%) and 92 (4.1%) among men and 559 (13.3%) and 166 (3.7%) among women, respectively. A total of 127 (5.8%) men and 161 (3.9%) women had a poor cognitive function. Setting non-sarcopenia as a reference, the adjusted ORs (95% CI) of poor cognitive function were 2.20 (1.54, 3.15) for sarcopenia and 3.56 (2.20, 5.71) for severe sarcopenia. A similar trend was observed in analyses stratified by sex and age, with linear associations (P for trend <0.05) in both categories. Furthermore, there was a significant interaction (P < 0.05) between sex and sarcopenia severity, indicating a stronger linear association of sarcopenia severity with poor cognitive function in women compared with men.Discussion and conclusionSarcopenia severity was linearly associated with poor cognitive function in adults aged ≥ 65 years, with a stronger association in women compared with men.
Collapse
Affiliation(s)
- Takahisa Ohta
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- *Correspondence: Takahisa Ohta
| | - Hiroyuki Sasai
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yosuke Osuka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Frailty Research, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Narumi Kojima
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Takumi Abe
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mari Yamashita
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shuichi P. Obuchi
- Human Care Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tatsuro Ishizaki
- Human Care Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshinori Fujiwara
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shuichi Awata
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kenji Toba
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | | |
Collapse
|
114
|
Molecular and neural roles of sodium-glucose cotransporter 2 inhibitors in alleviating neurocognitive impairment in diabetic mice. Psychopharmacology (Berl) 2023; 240:983-1000. [PMID: 36869919 PMCID: PMC10006050 DOI: 10.1007/s00213-023-06341-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
Diabetes causes a variety of molecular changes in the brain, making it a real risk factor for the development of cognitive dysfunction. Complex pathogenesis and clinical heterogeneity of cognitive impairment makes the efficacy of current drugs limited. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) gained our attention as drugs with potential beneficial effects on the CNS. In the present study, these drugs ameliorated the cognitive impairment associated with diabetes. Moreover, we verified whether SGLT2i can mediate the degradation of amyloid precursor protein (APP) and modulation of gene expression (Bdnf, Snca, App) involved in the control of neuronal proliferation and memory. The results of our research proved the participation of SGLT2i in the multifactorial process of neuroprotection. SGLT2i attenuate the neurocognitive impairment through the restoration of neurotrophin levels, modulation of neuroinflammatory signaling, and gene expression of Snca, Bdnf, and App in the brain of diabetic mice. The targeting of the above-mentioned genes is currently seen as one of the most promising and developed therapeutic strategies for diseases associated with cognitive dysfunction. The results of this work could form the basis of a future administration of SGLT2i in diabetics with neurocognitive impairment.
Collapse
|
115
|
Chen L, He X, Wang H, Fang J, Zhang Z, Zhu X, Qi Z, Guo Y, Liu R, Li D. Dendrobium officinale polysaccharide prevents neuronal apoptosis via TET2-dependent DNA demethylation in high-fat diet-induced diabetic mice. Int J Biol Macromol 2023; 233:123288. [PMID: 36657536 DOI: 10.1016/j.ijbiomac.2023.123288] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Dendrobium officinale polysaccharide (DP) has the potential function to prevent diabetes-induced neuronal apoptosis, whereas the mechanism is not completely clear. Ten eleven translocation dioxygenase 2 (TET2) is one of the most important therapeutic target for repairing neuronal damage in diabetic mice. The aim of the present study was to investigate whether DP could prevent neuronal apoptosis by regulating TET2 in the brain of HFD-induced diabetic mice. C57BL/6J mice were randomly divided into four groups (n = 12), control group (CON), high-fat diet group (HFD, negative control), metformin group (MET, positive control), and DP group (DP). Compared with HFD group, the neuronal apoptosis of brain was significantly lower in the DP group. The levels of TET2 protein, 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were significantly lower in the HFD group than in both the DP and CON groups in the cerebral cortex of mice. The ratio of p-AMPK/AMPK and α-KG/(fumaric acid + succinic acid) were significantly lower in the HFD group than in the other groups. The present study suggests that DP has a preventive effect on diabetes-induced neuronal apoptosis by regulating TET2 function through improving phosphorylate AMPK and mitochondrial function, thus remodeling DNA epigenetics profile of mice brain.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | | | - Jiacheng Fang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Zhizhao Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhongshi Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| |
Collapse
|
116
|
Zhang W, Chen S, Zhuang X. Research Progress on Lipocalin-2 in Diabetic Encephalopathy. Neuroscience 2023; 515:74-82. [PMID: 36805002 DOI: 10.1016/j.neuroscience.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Diabetic encephalopathy is a central nervous complication of diabetes mellitus which is characterized by cognitive impairment and structural and neurochemical abnormalities, which is easily neglected. Lipocalin-2 (LCN2) is a 25 kDa transporter in the lipocalin family that can transport small molecules, including fatty acids, iron, steroids, and lipopolysaccharides in the circulation. Recently, LCN2 has been found to be a significant regulator of insulin resistance and glucose homeostasis. Numerous studies have shown that LCN2 is connected to central nervous system abnormalities, including neuroinflammation and neurodegeneration, while the latest researches have found that LCN2 is closely related to the development of diabetic encephalopathy. Nevertheless, its precise role in the pathogenesis of diabetic encephalopathy remains to be determined. In this paper, we review recent evidence on the role of LCN2 in diabetic encephalopathy from multiple perspectives in order to decipher the impact of LCN2 in both the aetiology and treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Wenjie Zhang
- Cheeloo College of Medicine, Shangdong University, Jinan 250000, China
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan 250000, China.
| | - Xianghua Zhuang
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan 250000, China.
| |
Collapse
|
117
|
Detecting type 2 diabetes mellitus cognitive impairment using whole-brain functional connectivity. Sci Rep 2023; 13:3940. [PMID: 36894561 PMCID: PMC9998866 DOI: 10.1038/s41598-023-28163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/13/2023] [Indexed: 03/11/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is closely linked to cognitive decline and alterations in brain structure and function. Resting-state functional magnetic resonance imaging (rs-fMRI) is used to diagnose neurodegenerative diseases, such as cognitive impairment (CI), Alzheimer's disease (AD), and vascular dementia (VaD). However, whether the functional connectivity (FC) of patients with T2DM and mild cognitive impairment (T2DM-MCI) is conducive to early diagnosis remains unclear. To answer this question, we analyzed the rs-fMRI data of 37 patients with T2DM and mild cognitive impairment (T2DM-MCI), 93 patients with T2DM but no cognitive impairment (T2DM-NCI), and 69 normal controls (NC). We achieved an accuracy of 87.91% in T2DM-MCI versus T2DM-NCI classification and 80% in T2DM-NCI versus NC classification using the XGBoost model. The thalamus, angular, caudate nucleus, and paracentral lobule contributed most to the classification outcome. Our findings provide valuable knowledge to classify and predict T2DM-related CI, can help with early clinical diagnosis of T2DM-MCI, and provide a basis for future studies.
Collapse
|
118
|
Scheen AJ, Bonnet F. Efficacy and safety profile of SGLT2 inhibitors in the elderly: How is the benefit/risk balance? DIABETES & METABOLISM 2023; 49:101419. [PMID: 36640828 DOI: 10.1016/j.diabet.2023.101419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a highly prevalent health condition in the aging population. Older adults with T2DM have higher risks of cardiovascular disease, heart failure (long underestimated) and premature death than those without diabetes. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have proven their ability to improve cardiovascular prognosis and reduce the risk of hospitalization for heart failure (hHF). However, several adverse events have been reported, whose incidence and severity might be increased in the elderly population. The aims of this comprehensive review were to analyze the benefit-risk ratio of SGLT2i therapy in older patients with T2DM by collecting data from (i) large prospective placebo-controlled cardiovascular outcome trials (including those dedicated to heart failure), using both original publications and dedicated post-hoc analyses across different age groups and (ii) observational cohort studies, describing the effects of SGLT2is versus other glucose-lowering agents on cardiovascular outcomes and hHF in elderly patients or these effects in different age groups. Overall, consistent results showed a similar relative risk reduction in cardiovascular mortality and hHF with SGLT2is independently of age. The absolute risk reduction may be greater in elderly because of a higher background risk in older versus younger patients. Similarly, the safety profile of SGLT2is appeared comparable in older versus younger patients. In conclusion, the benefit/risk balance favors the use of SGLT2is in older patients at risk of cardiovascular disease and/or heart failure. Caution may be required in very old frail patients, especially those exposed to an increased risk of volume depletion.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU, Liege, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liege, Belgium.
| | - Fabrice Bonnet
- Centre Hospitalier Universitaire de Rennes, Université ́ Rennes 1, Rennes, France; INSERM U1018, Villejuif, France
| |
Collapse
|
119
|
Zhou C, Dong C, Xie Z, Hao W, Fu C, Sun H, Zhu D. Sex-specific associations between diabetes and dementia: the role of age at onset of disease, insulin use and complications. Biol Sex Differ 2023; 14:9. [PMID: 36804018 PMCID: PMC9940390 DOI: 10.1186/s13293-023-00491-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Whether the association of type 2 diabetes (T2DM) with dementia was differed by sex remains unclear, and the roles of age at onset of disease, insulin use and diabetes' complications in their association are unknown. METHODS This study analyzed data of 447 931 participants from the UK Biobank. We used Cox proportional hazards models to estimate sex-specific hazard ratios (HRs) and 95% confidence intervals (CI), and women-to-men ratio of HRs (RHR) for the association between T2DM and incident dementia [all-cause dementia, Alzheimer's disease (AD), and vascular dementia (VD)]. The roles of age at onset of disease, insulin use and diabetes' complications in their association were also analyzed. RESULTS Compared to people with no diabetes at all, people with T2DM had increased risk of all-cause dementia (HR 2.85, 95% CI 2.56-3.17). The HRs between T2DM and AD were higher in women than men, with an RHR (95%CI) of 1.56 (1.20, 2.02). There was a trend that people who experienced T2DM before age 55 had higher risk of VD than those who had T2DM after age 55. In addition, there was a trend that T2DM had higher effect on VD that occurred before age 75 years than events that occurred after age 75. Patients with T2DM using insulin had higher risk of all-cause dementia than those without insulin, with an RHR (95%CI) of 1.54 (1.00-2.37). People with complications had doubled risk of all-cause dementia, AD and VD. CONCLUSIONS Adopting a sex-sensitive strategy to address the risk of dementia in patients with T2DM is instrumental for a precision medicine approach. Meanwhile, it is warranted to consider patients' age at onset of T2DM, insulin use status and complications conditions.
Collapse
Affiliation(s)
- Chunmiao Zhou
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Caiyun Dong
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Ziwei Xie
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Wenting Hao
- grid.27255.370000 0004 1761 1174Centre for Health Management and Policy Research, School of Public Health, , Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174NHC Key Lab of Health Economics and Policy Research (Shandong University), Jinan, 250012 China
| | - Chunying Fu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Huizi Sun
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Dongshan Zhu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
120
|
Chen JF, Zhang YP, Han JX, Wang YD, Fu GF. Systematic evaluation of the prevalence of cognitive impairment in elderly patients with diabetes in China. Clin Neurol Neurosurg 2023; 225:107557. [PMID: 36603334 DOI: 10.1016/j.clineuro.2022.107557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To systematically evaluate the prevalence of cognitive impairment in elderly patients with diabetes in China. METHODS Computerized searches of the Chinese Biomedical, WanFang, Vip, Chinese National Knowledge Infrastructure, PubMed, Embase, and the Cochrane Library databases were used to collect research literature on cognitive impairment in older Chinese patients with diabetes from the time of database creation to May 5, 2021. A meta-analysis was performed using the Stata v14.0 software after two investigators independently screened the literature, extracted the information, and evaluated the bias risk of the included studies. RESULTS A total of 17 studies containing the records of 4380 elderly patients with diabetes were included. The meta-analysis results showed that the incidence of cognitive impairment in elderly patients with diabetes was 48% (95% confidence interval [0.40-0.55]). The results of the subgroup analysis showed that the incidence of cognitive impairment was higher in the elderly population with diabetes who were female, older, with a lower education level, no spouse, living alone, and with a monthly income of less than 2000 yuan. CONCLUSION Current evidence showed that the incidence of cognitive impairment in elderly patients with diabetes in China was 48%, with a higher incidence in the elderly population who were female, older, with a lower education level, a low income, no spouse, and living alone.
Collapse
Affiliation(s)
- Jing-Feng Chen
- School of Nursing, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Yan-Ping Zhang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Jia-Xia Han
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Yu-Dong Wang
- School of Nursing, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Gui-Fen Fu
- Department of Nursing, Guangxi Academy ofMedical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China.
| |
Collapse
|
121
|
Dao L, Choi S, Freeby M. Type 2 diabetes mellitus and cognitive function: understanding the connections. Curr Opin Endocrinol Diabetes Obes 2023; 30:7-13. [PMID: 36385094 DOI: 10.1097/med.0000000000000783] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW To review the connection between type 2 diabetes and cognitive dysfunction, including its epidemiology, potential mechanisms of pathophysiology, risk factors, possible prevention, and treatment considerations. RECENT FINDINGS Diabetes is a risk factor for mild cognitive decline, in addition to Alzheimer's disease and vascular dementia. Duration of diabetes, concomitant vascular or associated co-morbidities, hyper- and hypoglycemia may lead to worsening cognitive dysfunction. Unfortunately, there is a lack of evidence-based guidance on the prevention of cognitive dysfunction in the diabetes population. Studies of diabetes medications, including metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, and sodium-glucose cotransporter-2 inhibitors (SGLT2) have shown some benefit with cardiovascular morbidity and may affect cognition. In the absence of clearly defined preventive tools, diabetes practice guidelines recommend annual cognitive screening as standard of care in adults with diabetes aged 65 years or older. SUMMARY People living with diabetes are at risk for significant decline in cognitive function. Epidemiology and risk factors are well defined. Prevention and treatment strategies are limited and require further study.
Collapse
Affiliation(s)
- Lisa Dao
- Division of Endocrinology, Diabetes and Metabolism, David Geffen School of Medicine UCLA
| | - Sarah Choi
- UCLA School of Nursing, Los Angeles, California, USA
| | - Matthew Freeby
- Division of Endocrinology, Diabetes and Metabolism, David Geffen School of Medicine UCLA
| |
Collapse
|
122
|
Li W, Abdul Y, Chandran R, Jamil S, Ward RA, Abdelsaid M, Dong G, Fagan SC, Ergul A. Deferoxamine prevents poststroke memory impairment in female diabetic rats: potential links to hemorrhagic transformation and ferroptosis. Am J Physiol Heart Circ Physiol 2023; 324:H212-H225. [PMID: 36563009 PMCID: PMC9870589 DOI: 10.1152/ajpheart.00490.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Diabetes increases the risk of poststroke cognitive impairment (PSCI). Greater hemorrhagic transformation (HT) after stroke is associated with vasoregression and cognitive decline in male diabetic rats. Iron chelator deferoxamine (DFX) prevents vasoregression and improves outcomes. Although diabetic female rats develop greater HT, its impact on poststroke cerebrovascularization and cognitive outcomes remained unknown. We hypothesized that diabetes mediates pathological neovascularization, and DFX attenuates poststroke cerebrovascular remodeling and improves neurological outcomes in female diabetic rats. Female control and diabetic animals were treated with DFX or vehicle for 7 days after stroke. Vascular indices, microglial activation, and blood-brain barrier (BBB) integrity were evaluated on day 14. Results from diabetic female rats were partially compared with our previously published findings in male counterparts. Hemin-induced programmed cell death was studied in male and female brain microvascular endothelial cell lines (BMVEC). There was no vasoregression after stroke in either control or diabetic female animals. DFX prevented diabetes-mediated gliovascular remodeling and compromised BBB integrity while improving memory function in diabetes. Comparisons of female and male rats indicated sex differences in cognitive and vascular outcomes. Hemin mediated ferroptosis in both male and female BMVECs. DFX improved survival but had differential effects on ferroptosis signaling in female and male cells. These results suggest that stroke and associated HT do not affect cerebrovascularization in diabetic female rats, but iron chelation may provide a novel therapeutic strategy in the prevention of poststroke memory impairment in females with diabetes via the preservation of gliovascular integrity and improvement of endothelial cell survival.NEW & NOTEWORTHY The current study shows for the first time that diabetes does not promote aberrant cerebrovascularization in female rats. This contrasts with what we reported in male animals in various diabetes models. Deferoxamine preserved recognition memory function in diabetic female animals after stroke. The effect(s) of stroke and deferoxamine on cerebrovascular density and microglial activation also appear(s) to be different in female diabetic rats. Lastly, deferoxamine exerts detrimental effects on animals and BMVECs under control conditions.
Collapse
Affiliation(s)
- Weiguo Li
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Yasir Abdul
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Raghavendar Chandran
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sarah Jamil
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca A Ward
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Adviye Ergul
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
123
|
Bozanic A, Toro P, Bello-Lepe S, Hurtado-Oliva J, Beyle C, Valdés C, Formiga F. Cognitive impairment with Type 2 Diabetes Mellitus among community-dwelling older adults in Chile: Prevalence, risk factors and cognitive characteristics. Front Hum Neurosci 2023; 16:1070611. [PMID: 36741779 PMCID: PMC9892451 DOI: 10.3389/fnhum.2022.1070611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The aim of this study is to determine prevalence and risk factors of Cognitive Impairment (CI) and its association with Type 2 Diabetes Mellitus (T2DM) in subjects aged 65 years and above. Additionally, we attempt to provide a cognitive profile for T2DM group. Methodology A cross-sectional analytical study to assess CI was carried out. We evaluated a sample of community-dwelling residents from Chile. All participants underwent a general interview, lifestyle questionnaires and a comprehensive neuropsychological battery. Regression analyses were performed to evaluate risk of CI with T2DM and influencing factors. Results between groups in the different domains of the neuropsychological assessment were compared by Student's t-tests and MANOVA. Results Among all 358 subjects, overall T2DM prevalence were 17.3%. The prevalence of CI was higher in T2DM group compared to the healthy participants (30.7%, p < 0.001). The risk of CI was 2.8 times higher in older people with T2DM compared to older people without the diagnosis. Multiple regression analysis, adjusted for age and gender, demonstrated that age, education, presence of dyslipidemia, and T2DM duration were the predictor variables significantly associated with CI. T2DM group performed worse on global cognitive performance, attention, language, verbal memory, visual memory, visual constructional ability, and executive function. After adjusting for significant covariates from multiple regression analysis, a relationship between "cognition" and T2DM is still observed. Amnesic multi-domain impairment was the specific cognitive identified pattern for T2DM group. Conclusion The present study confirms the high prevalence of CI with T2DM among Chilean older adults in a community-based population. T2DM is significantly associated with a higher risk of CI, and age, education, presence of dyslipidemia, and duration of T2DM are risk factors. T2DM patients with CI are impaired in multiple cognitive domains, even after adjusting covariables, resulting in an amnesic multi-domain cognitive profile.
Collapse
Affiliation(s)
- Agnieszka Bozanic
- Facultad de Educación y Ciencias Sociales, Universidad Andres Bello, Viña del Mar, Chile,*Correspondence: Agnieszka Bozanic,
| | - Pablo Toro
- Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile,Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Javier Hurtado-Oliva
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Christian Beyle
- Psychology Department, Universidad Católica de Temuco, Temuco, Chile
| | - Catalina Valdés
- Department of Health, Universidad de Los Lagos, Osorno, Chile
| | - Francesc Formiga
- Geriatric Unit, Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
124
|
The ABA/LANCL Hormone/Receptor System in the Control of Glycemia, of Cardiomyocyte Energy Metabolism, and in Neuroprotection: A New Ally in the Treatment of Diabetes Mellitus? Int J Mol Sci 2023; 24:ijms24021199. [PMID: 36674711 PMCID: PMC9863406 DOI: 10.3390/ijms24021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.
Collapse
|
125
|
Toppala S, Ekblad LL, Viitanen M, Rinne JO, Jula A. Impaired Early Insulin Response to Glucose Load Predicts Episodic Memory Decline: A 10-Year Population-Based Cohort Follow-Up of 45-74-Year-Old Men and Women. J Alzheimers Dis 2023; 92:349-359. [PMID: 36744339 PMCID: PMC10041429 DOI: 10.3233/jad-220894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes increases the risk for cognitive decline, but the mechanisms behind this association remain unknown. Impaired early insulin secretion in elderly men and insulin resistance, both of which are pathophysiological features of type 2 diabetes, have previously been linked to Alzheimer's disease. OBJECTIVE To examine if the early insulin response to oral glucose load predicts cognitive performance after 10 years in men and women aged 45-74 years. METHODS This study was based on a subpopulation of the Health 2000 Survey, a Finnish nationwide, population-based health examination study, and its follow-up, the Health 2011 Study. In total, 961 45-74-year-old individuals (mean age at baseline 55.6 years, 55.8% women) were examined. An oral glucose tolerance test was performed in 2001-2002, and early insulin response was defined as the ratio of the 30-min increment in insulin concentration to that of glucose concentration. Cognitive function was evaluated at baseline and follow-up with categorical verbal fluency, word-list learning, and word-list delayed recall. Statistical analyses were performed using multivariable linear models adjusted for age, sex, education, APOE&z.epsi;4 genotype, vascular risk factors including diabetes, and depressive symptoms. RESULTS A lower early insulin response to glucose load predicted lower performance (β: 0.21, p = 0.03) and greater decline (β: 0.19, p = 0.03) in the word-list delayed recall test. Baseline early insulin response did not predict verbal fluency or word-list learning (all p-values≥0.13). CONCLUSION Our results suggest that decreased early insulin secretion predicts episodic memory decline in middle-aged to elderly men and women.
Collapse
Affiliation(s)
- Sini Toppala
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Kuopio City Home Care, Rehabilitation and Medical Services for Elderly, Kuopio, Finland
| | - Laura L Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Viitanen
- City of Turku, Welfare Division, Department of Geriatrics, Turku City Hospital and University of Turku, Turku, Finland.,Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Antti Jula
- National Institute for Health and Welfare, Turku, Finland
| |
Collapse
|
126
|
Xie Z, Wang X, Luo X, Yan J, Zhang J, Sun R, Luo A, Li S. Activated AMPK mitigates diabetes-related cognitive dysfunction by inhibiting hippocampal ferroptosis. Biochem Pharmacol 2023; 207:115374. [PMID: 36502872 DOI: 10.1016/j.bcp.2022.115374] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical interest in Type 2 diabetes (T2D)-associated cognitive dysfunction (TDACD) has grown in recent years. However, the precise mechanisms underlying TDACD need to be further elucidated. Ferroptosis was reportedly involved in neurodegenerative diseases and diabetes-related organ injuries; however, its role in TDACD remains elusive. In this study, mice fed with a high-fat-diet combined with streptozotocin (HFD-STZ) were used as a T2D model to assess the role of ferroptosis in cognitive dysfunction. We found that ferroptosis was mainly activated in hippocampal neurons but not in microglia or astrocytes. Accordingly, increased levels of transferrin receptor and decreased levels of ferritin, GPX4, and SLC7A11 were observed in hippocampal neurons. In addition, pre-treatment with liproxstatin-1, a ferroptosis inhibitor, attenuated iron accumulation and oxidative stress response, which resulted in improved cognitive function in the HFD-STZ group. Furthermore, we found that p-AMP-activated protein kinase (AMPK) was decreased in the HFD-STZ group. Pre-treatment with AMPK agonist increased the expression of AMPK and GPX4, but decreased lipocalin 2 (LCN2) in the hippocampus that resulted in improved spatial learning ability in the HFD-STZ group. Taken together, we found that activation of neuronal ferroptosis in the hippocampus contributed to cognitive impairment of HFD-STZ mice. Furthermore, AMPK activation may reduce hippocampal ferroptosis, and consequently improve cognitive performance in diabetic mice.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
127
|
Zhang H, Zhang Y, Sheng S, Xing Y, Mou Z, Zhang Y, Shi Z, Yu Z, Gao Q, Cai W, Jing Q. Relationship Between Physical Exercise and Cognitive Impairment Among Older Adults with Type 2 Diabetes: Chain Mediating Roles of Sleep Quality and Depression. Psychol Res Behav Manag 2023; 16:817-828. [PMID: 36960417 PMCID: PMC10030003 DOI: 10.2147/prbm.s403788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Objective Although physical exercise has been shown to boost physical, psychological, and psychiatric conditions in older adults, there is a relative lack of research on the mechanisms involved in this process for older adults with type 2 diabetes mellitus (T2DM). We thus evaluated whether sleep quality and depression mediated the relationship between physical exercise and cognitive impairment in older adults with T2DM by focusing on the exercise-physiology-psychology and psychiatry connection. Methods Self-reported data were collected from 2646 older adults with T2DM in Weifang, Shandong, China. Regression and bootstrap analyses were conducted to explore the chain mediator model including physical exercise, cognitive impairment, sleep quality, and depression. Results Engaging in physical exercise (coefficient = -0.6858, p < 0.001), high levels of sleep quality (coefficient = -0.3397, p = 0.015), and low levels of depression (coefficient = 0.3866, p < 0.001) were significantly associated with a low level of cognitive impairment. Sleep quality and depression mediated the chain effect between physical exercise and cognitive impairment (total effect = -1.0732, 95% CI [-1.3652, -0.7862]; direct effect = -0.6858, 95% CI [-0.9702, -0.3974]; indirect effect = -0.3875, 95% CI [-0.5369, -0.2521]). Conclusion Physical exercise may improve sleep quality in older adults with T2DM, alleviating depression and delaying the development of cognitive impairment. Physical exercise can enhance patients' ability to resist depression and cognitive impairment, and creating comfortable sleep environments can also reinforce the effects of this process. These findings have important implications for promoting healthy aging in older adults with T2DM.
Collapse
Affiliation(s)
- Han Zhang
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Yefan Zhang
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Sen Sheng
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
| | - Yang Xing
- Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Zhongchen Mou
- School of Psychology, Weifang Medical University, Weifang, People’s Republic of China
| | - Yanqiu Zhang
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhixue Shi
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhenjie Yu
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
| | - Qianqian Gao
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Weiqin Cai
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
- Correspondence: Weiqin Cai; Qi Jing, School of Management, Weifang Medical University, No. 7166 Baotongxi Street, Weifang, 261053, People’s Republic of China, Tel +8618106369128, Email ;
| | - Qi Jing
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
128
|
Wang M, Guan X, Yan J, Michael N, Liu X, Tan R, Lv X, Yan F, Cao Y. Perceptions and responses to cognitive decline in people with diabetes: A systematic review of qualitative studies. Front Public Health 2023; 11:1076030. [PMID: 36875353 PMCID: PMC9981946 DOI: 10.3389/fpubh.2023.1076030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Objective We aimed at summarizing the perceptions and responses to cognitive decline, assessing the disease management, identifying deficiencies and proposing new strategies for improvement in people with diabetes (PWDs). Methods A comprehensive search was performed in the following nine databases: PubMed, EMBASE, Web of Science, The Cochrane Library, PsycINFO, CINAHL, WanFang, CNKI, and VIP. The Joanna Briggs Institute (JBI) Critical Appraisal Tool for qualitative research was utilized to evaluate the quality of included studies. Descriptive texts and quotations relating to patient experience were extracted from the included studies and thematically analyzed. Results Eight qualitative studies met the inclusion criteria and 2 overarching themes were identified: (1) self-perception of cognitive decline referred to perceived cognitive symptoms, lack of knowledge and, impaired self-management and coping in multiple methods; (2) reported benefits of cognitive interventions referred to how cognitive interventions improved disease management, attitudes and needs of PWDs. Conclusion PWDs described misconceptions about their cognitive decline and suffered from them during disease management. This study provides a patient-specific reference for cognitive screening and intervention in PWDs, supporting disease management with cognitive decline in clinical practice.
Collapse
Affiliation(s)
- Meijuan Wang
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Xiangyun Guan
- Department of International Medical Department, Qilu Hospital of Shandong University, Jinan, China
| | - Jingzheng Yan
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Nyagwaswa Michael
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Xueyan Liu
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Ran Tan
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyan Lv
- Department of International Medical Department, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Yingjuan Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China.,Department of Nursing, Qilu Hospital of Shandong University, Jinan, China.,Nursing Theory and Practice Innovation Research Center, Shandong University, Jinan, China
| |
Collapse
|
129
|
Liu Y, Cai J, Wang Y, Zhao X, Qiao Y, Liu CJ. YQBS Improves Cognitive Dysfunction in Diabetic Rats: Possible Association with Tyrosine and Tryptophan Metabolism. Diabetes Metab Syndr Obes 2023; 16:901-912. [PMID: 37021127 PMCID: PMC10069430 DOI: 10.2147/dmso.s401863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE This study is aimed to determine the metabolomic effects of the hybrid medicine formula Yi-Qi-Bu-Shen (YQBS) on the neurotransmitter aspects of cognitive impairment in diabetic rats. METHODS In the current study, streptozotocin (STZ) was used to induce diabetic animal model in male Sprague Dawley (SD) rats. After successful establishment of diabetic SD rats' model, age-matched healthy SD rats and diabetic SD rats were treated with low and high doses of YQBS, and then tested for learning memory ability and analyzed for pathological changes. In addition, neurotransmitter metabolic changes in hippocampal subdivisions of rats from different treated groups were analyzed using liquid chromatography-mass spectrometry (LC-MS) technique. RESULTS YQBS could significantly improve memory-cognitive impairment in diabetic rats as evidenced by the shortening of latency to target and the reduction of latency first entrance to target. Moreover, YQBS also improved the pathological alterations in the hippocampal region in the brains of diabetic rats. Metabolomic analysis showed that the expression of noradrenaline hydrochloride was down-regulated and the expressions of levodopa and 5-hydroxytryptophan were up-regulated in the hippocampal tissues of diabetic rats treated with YQBS. CONCLUSION These findings demonstrate that YQBS has protective effects against diabetic cognitive dysfunction, which might act through alteration in tyrosine and tryptophan metabolism.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jingru Cai
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yangang Wang
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Yun Qiao; Chuan-Ju Liu, Email ;
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
130
|
Abstract
Executive function is frequently impaired among people who have sustained stroke. This review provides an overview of definitions, concepts, and measures. The review also summarizes current best evidence examining executive function impairment and recovery trajectories after stroke, correlates of change over time, and emerging intervention research. Finally, this review provides recommendations for research and clinical practices, as well as priorities for future executive function research.
Collapse
Affiliation(s)
- Elizabeth R Skidmore
- Department of Occupational Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA (E.R.S.)
| | - Gail Eskes
- Departments of Psychiatry and Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada (G.E.)
| | - Amy Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, Australia (A.B.)
| |
Collapse
|
131
|
Wang Y, Hu H, Liu X, Guo X. Hypoglycemic medicines in the treatment of Alzheimer's disease: Pathophysiological links between AD and glucose metabolism. Front Pharmacol 2023; 14:1138499. [PMID: 36909158 PMCID: PMC9995522 DOI: 10.3389/fphar.2023.1138499] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's Disease (AD) is a global chronic disease in adults with beta-amyloid (Aβ) deposits and hyperphosphorylated tau protein as the pathologic characteristics. Although the exact etiology of AD is still not fully elucidated, aberrant metabolism including insulin signaling and mitochondria dysfunction plays an important role in the development of AD. Binding to insulin receptor substrates, insulin can transport through the blood-brain barrier (BBB), thus mediating insulin signaling pathways to regulate physiological functions. Impaired insulin signaling pathways, including PI3K/Akt/GSK3β and MAPK pathways, could cause damage to the brain in the pathogenesis of AD. Mitochondrial dysfunction and overexpression of TXNIP could also be causative links between AD and DM. Some antidiabetic medicines may have benefits in the treatment of AD. Metformin can be beneficial for cognition improvement in AD patients, although results from clinical trials were inconsistent. Exendin-4 may affect AD in animal models but there is a lack of clinical trials. Liraglutide and dulaglutide could also benefit AD patients in adequate clinical studies but not semaglutide. Dipeptidyl peptidase IV inhibitors (DPP4is) such as saxagliptin, vildagliptin, linagliptin, and sitagliptin could boost cognitive function in animal models. And SGLT2 inhibitors such as empagliflozin and dapagliflozin were also considerably protective against new-onset dementia in T2DM patients. Insulin therapy is a promising therapy but some studies indicated that it may increase the risk of AD. Herbal medicines are helpful for cognitive function and neuroprotection in the brain. For example, polyphenols, alkaloids, glycosides, and flavonoids have protective benefits in cognition function and glucose metabolism. Focusing on glucose metabolism, we summarized the pharmacological mechanism of hypoglycemic drugs and herbal medicines. New treatment approaches including antidiabetic synthesized drugs and herbal medicines would be provided to patients with AD. More clinical trials are needed to produce definite evidence for the effectiveness of hypoglycemic medications.
Collapse
Affiliation(s)
- Yixuan Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hao Hu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyu Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
132
|
Dove A, Guo J, Marseglia A, Fastbom J, Vetrano DL, Fratiglioni L, Pedersen NL, Xu W. Cardiometabolic multimorbidity and incident dementia: the Swedish twin registry. Eur Heart J 2022; 44:573-582. [PMID: 36577740 PMCID: PMC9925275 DOI: 10.1093/eurheartj/ehac744] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Cardiometabolic diseases (CMDs), including diabetes, heart disease, and stroke, are established risk factors for dementia, but their combined impact has been investigated only recently. This study aimed to examine the association between mid- and late-life cardiometabolic multimorbidity and dementia and explore the role of genetic background in this association. METHODS AND RESULTS Within the Swedish Twin Registry, 17 913 dementia-free individuals aged ≥60 were followed for 18 years. CMDs [including age of onset in mid (60) or late (≥60) life] and dementia were ascertained from medical records. Cardiometabolic multimorbidity was defined as having ≥2 CMDs. Cox regression was used to estimate the CMD-dementia association in (i) a classical cohort study design and (ii) a co-twin study design involving 356 monozygotic and dizygotic pairs. By comparing the strength of the association in the two designs, the contribution of genetic background was estimated. At baseline, 3,312 (18.5%) participants had 1 CMD and 839 (4.7%) had ≥2 CMDs. Over the follow-up period, 3,020 participants developed dementia. In the classic cohort design, the hazard ratio (95% confidence interval) of dementia was 1.42 (1.27-1.58) for 1 CMD and 2.10 (1.73-2.57) for ≥2 CMDs. Dementia risk was stronger with mid-life as opposed to late-life CMDs. In the co-twin design, the CMD-dementia association was attenuated among monozygotic [0.99 (0.50-1.98)] but not dizygotic [1.55 (1.15-2.09)] twins, suggesting that the association was in part due to genetic factors common to both CMDs and dementia. CONCLUSION Cardiometabolic multimorbidity, particularly in mid-life, is associated with an increased risk of dementia. Genetic background may underpin this association.
Collapse
Affiliation(s)
- Abigail Dove
- Corresponding author. Tel: +46 085 248 5837, Fax: +46 0831 1101,
| | - Jie Guo
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Blickagången 16, Huddinge SE-14183, Sweden
| | - Johan Fastbom
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden
| | - Davide Liborio Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden,Stockholm Gerontology Research Center, Sveavägen 115, Stockholm SE-11346, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden,Stockholm Gerontology Research Center, Sveavägen 115, Stockholm SE-11346, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobel väg 12A, Solna SE-17165, Sweden
| | | |
Collapse
|
133
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
134
|
Yan Z, Zong Y, Zhang C, Han Z, Wu L, Qin L, Liu T. Exploring the role of Tibetan medicinal formula Qishiwei Zhenzhu Pills (Ranasampel) against diabetes mellitus-linked cognitive impairment of db/db mice through serum pharmacochemistry and microarray data analysis. Front Aging Neurosci 2022; 14:1033128. [PMID: 36620773 PMCID: PMC9814129 DOI: 10.3389/fnagi.2022.1033128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diabetes cognitive impairment (DCI) is a common diabetic central nervous system disorder that severely affects the quality of life of patients. Qishiwei Zhenzhu Pills (Ranasampel) is a valuable Tibetan medicine formula with the ability to improve cerebral blood vessels, protect nerves and improve learning and memory, which has also been widely verified in clinical and basic research. Currently, the prevention and treatment of DCI are still in the exploratory research stage, and the use of Ranasampel will provide new ideas and insights for its treatment. Objective This study is to explore the absorbed components in serum derived from Ranasampel using serum pharmacochemistry, then identify the potential mechanism of Ranasampel for the treatment of DCI through bioinformatics and microarray data validation. Methods The UPLC-Q-Exactive MS/MS-based serum pharmacochemistry method was conducted to identify the main active components in serum containing Ranasampel. Then, these components were used to predict the possible biological targets of Ranasampel and explore the potential targets in treating DCI by overlapping with differentially expressed genes (DEGs) screened from Gene Expression Omnibus datasets. Afterward, the protein-protein interaction network, enrichment analyses, hub gene identification, and co-expression analysis were used to study the potential mechanism of Ranasampel. Particularly, the hub genes and co-expression transcription factors were further validated using hippocampal expression profiles of db/db mice treated with Ranasampel, while the Morris water-maze test and H&E staining were used to assess the spatial learning and memory behaviors and histopathological changes. Results Totally, 40 compounds derived from Ranasampel had been identified by serum sample analysis, and 477 genes related to these identified compounds in Ranasampel, 110 overlapping genes were collected by the intersection of Ranasampel target genes and DEGs. Further comprehensive analysis and verification emphasized that the mechanism of Ranasampel treatment of DCI may be related to the improvement of learning and memory function as well as insulin resistance, hyperglycemia-induced neuronal damage, and neuroinflammation. Conclusion This study provided useful strategies to explore the potential material basis for compound prescriptions such as Ranasampel. These hub genes and common pathways also provided new ideas for further study of therapeutic targets of DCI and the pharmacological mechanism of Ranasampel.
Collapse
Affiliation(s)
- Zhiyi Yan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghua Zong
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Chengfei Zhang
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Zekun Han
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Tonghua Liu,
| |
Collapse
|
135
|
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P, Tankova T, Tsapas A, Buse JB. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022; 65:1925-1966. [PMID: 36151309 PMCID: PMC9510507 DOI: 10.1007/s00125-022-05787-2] [Citation(s) in RCA: 336] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the previous consensus statements on the management of hyperglycaemia in type 2 diabetes in adults, published since 2006 and last updated in 2019. The target audience is the full spectrum of the professional healthcare team providing diabetes care in the USA and Europe. A systematic examination of publications since 2018 informed new recommendations. These include additional focus on social determinants of health, the healthcare system and physical activity behaviours including sleep. There is a greater emphasis on weight management as part of the holistic approach to diabetes management. The results of cardiovascular and kidney outcomes trials involving sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, including assessment of subgroups, inform broader recommendations for cardiorenal protection in people with diabetes at high risk of cardiorenal disease. After a summary listing of consensus recommendations, practical tips for implementation are provided.
Collapse
Affiliation(s)
- Melanie J Davies
- Leicester Diabetes Research Centre, University of Leicester, Leicester, UK.
- Leicester National Institute for Health Research (NIHR) Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | - Vanita R Aroda
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Billy S Collins
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | - Jennifer Green
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nisa M Maruthur
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tsvetalina Tankova
- Department of Endocrinology, Medical University - Sofia, Sofia, Bulgaria
| | - Apostolos Tsapas
- Diabetes Centre, Clinical Research and Evidence-based Medicine Unit, Aristotle University Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| | - John B Buse
- University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
136
|
Chandran R, He L, Nie X, Voltin J, Jamil S, Doueiry C, Falangola MF, Ergul A, Li W. Magnetic resonance imaging reveals microemboli-mediated pathological changes in brain microstructure in diabetic rats: relevance to vascular cognitive impairment/dementia. Clin Sci (Lond) 2022; 136:1555-1570. [PMID: 36314470 PMCID: PMC10066787 DOI: 10.1042/cs20220465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Diabetes doubles the risk of vascular cognitive impairment, but the underlying reasons remain unclear. In the present study, we determined the temporal and spatial changes in the brain structure after microemboli (ME) injection using diffusion MRI (dMRI). Control and diabetic rats received cholesterol crystal ME (40-70 µm) injections. Cognitive tests were followed up to 16 weeks, while dMRI scans were performed at baseline and 12 weeks post-ME. The novel object recognition test had a lower d2 recognition index along with a decrease in spontaneous alternations in the Y maze test in diabetic rats with ME. dMRI showed that ME injection caused infarction in two diabetic animals (n=5) but none in controls (n=6). In diabetes, radial diffusivity (DR) was increased while fractional anisotropy (FA) was decreased in the cortex, indicating loss of tissue integrity and edema. In the dorsal hippocampus, mean diffusivity (MD), axial diffusivity (DA), and DR were significantly increased, indicating loss of axons and myelin damage. Histological analyses confirmed more tissue damage and microglial activation in diabetic rats with ME. These results suggest that ME injury and associated cerebrovascular dysfunction are greater in diabetes, which may cause cognitive deficits. Strategies to improve vascular function can be a preventive and therapeutic approach for vascular cognitive impairment.
Collapse
Affiliation(s)
- Raghavendar Chandran
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Lianying He
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Xingju Nie
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC
| | - Joshua Voltin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC
| | - Sarah Jamil
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Caren Doueiry
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Weiguo Li
- Ralph H. Johnson VA Medical Center, Charleston, SC
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
137
|
Kang S, Chen Y, Wu J, Liang Y, Rao Y, Yue X, Lyu W, Li Y, Tan X, Huang H, Qiu S. Altered cortical thickness, degree centrality, and functional connectivity in middle-age type 2 diabetes mellitus. Front Neurol 2022; 13:939318. [PMID: 36408505 PMCID: PMC9672081 DOI: 10.3389/fneur.2022.939318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/12/2022] [Indexed: 05/01/2024] Open
Abstract
PURPOSE This study aimed to investigate the changes in brain structure and function in middle-aged patients with type 2 diabetes mellitus (T2DM) using morphometry and blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). METHODS A total of 44 middle-aged patients with T2DM and 45 matched healthy controls (HCs) were recruited. Surface-based morphometry (SBM) was used to evaluate the changes in brain morphology. Degree centrality (DC) and functional connectivity (FC) were used to evaluate the changes in brain function. RESULTS Compared with HCs, middle-aged patients with T2DM exhibited cortical thickness reductions in the left pars opercularis, left transverse temporal, and right superior temporal gyri. Decreased DC values were observed in the cuneus and precuneus in T2DM. Hub-based FC analysis of these regions revealed lower connectivity in the bilateral hippocampus and parahippocampal gyrus, left precuneus, as well as left frontal sup. CONCLUSION Cortical thickness, degree centrality, as well as functional connectivity were found to have significant changes in middle-aged patients with T2DM. Our observations provide potential evidence from neuroimaging for analysis to examine diabetes-related brain damage.
Collapse
Affiliation(s)
- Shangyu Kang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjian Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yawen Rao
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomei Yue
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiao Lyu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
138
|
Baruth JM, Lapid MI, Clarke B, Shin AY, Atkinson EJ, Eberhard J, Zavatta G, Åstrand J. Distal radius fractures and risk of incident neurocognitive disorders in older adults: a retrospective cohort study. Osteoporos Int 2022; 33:2307-2314. [PMID: 35835861 DOI: 10.1007/s00198-022-06497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Distal radius fractures (DRF) are associated with increased risk of subsequent fractures and physical decline in older adults. This study aims to evaluate the risk cognitive decline following DRF and potential for timely screening and intervention. METHODS A cohort of 1046 individuals 50-75 years of age with DRF were identified between 1995 and 2015 (81.5% female; mean age 62.5 [± 7.1] years). A control group (N = 1044) without history of DRF was matched by age, sex, and fracture date (i.e., index). The incidence of neurocognitive disorders (NCD) in relation to DRF/index was determined. Group comparisons were adjusted by age and comorbidity measured by the Elixhauser index. RESULTS The DRF group had a greater incidence of NCD compared to the control group (11.3% vs. 8.2%) with a 56% greater relative risk (HR = 1.56, 95% Cl: 1.18, 2.07; p = 0.002) after adjusting for age and comorbidity. For every 10-year age increase, the DRF group was over three times more likely to develop a NCD (HR = 3.23, 95% Cl: 2.57, 4.04; p < 0.001). CONCLUSION DRF in adults ages 50 to 75 are associated with increased risk of developing neurocognitive disorders. DRF may represent a sentinel opportunity for cognitive screening and early intervention. Distal radius fractures (DRF) have been associated with greater risk of future fractures and physical decline. This study reports that DRF are also associated with greater risk of developing neurocognitive disorders in older adults. Timely intervention may improve early recognition and long-term outcomes for older adults at risk of cognitive decline.
Collapse
Affiliation(s)
- Joshua M Baruth
- Dept. of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Maria I Lapid
- Dept. of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Bart Clarke
- Dept. of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jonas Eberhard
- Dept. of Clinical Sciences, Lund University, Lund, Sweden
| | - Guido Zavatta
- Dept. of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
139
|
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P, Tankova T, Tsapas A, Buse JB. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022; 45:2753-2786. [PMID: 36148880 PMCID: PMC10008140 DOI: 10.2337/dci22-0034] [Citation(s) in RCA: 551] [Impact Index Per Article: 275.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 02/07/2023]
Abstract
The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the previous consensus statements on the management of hyperglycemia in type 2 diabetes in adults, published since 2006 and last updated in 2019. The target audience is the full spectrum of the professional health care team providing diabetes care in the U.S. and Europe. A systematic examination of publications since 2018 informed new recommendations. These include additional focus on social determinants of health, the health care system, and physical activity behaviors, including sleep. There is a greater emphasis on weight management as part of the holistic approach to diabetes management. The results of cardiovascular and kidney outcomes trials involving sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists, including assessment of subgroups, inform broader recommendations for cardiorenal protection in people with diabetes at high risk of cardiorenal disease. After a summary listing of consensus recommendations, practical tips for implementation are provided.
Collapse
Affiliation(s)
- Melanie J. Davies
- Leicester Diabetes Research Centre, University of Leicester, Leicester, U.K
- Leicester National Institute for Health Research Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, U.K
| | - Vanita R. Aroda
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | | | - Jennifer Green
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Nisa M. Maruthur
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sylvia E. Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, U.K
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Apostolos Tsapas
- Diabetes Centre, Clinical Research and Evidence-Based Medicine Unit, Aristotle University Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, U.K
| | - John B. Buse
- University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
140
|
Ni MH, Li ZY, Sun Q, Yu Y, Yang Y, Hu B, Ma T, Xie H, Li SN, Tao LQ, Yuan DX, Zhu JL, Yan LF, Cui GB. Neurovascular decoupling measured with quantitative susceptibility mapping is associated with cognitive decline in patients with type 2 diabetes. Cereb Cortex 2022; 33:5336-5346. [PMID: 36310091 DOI: 10.1093/cercor/bhac422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/10/2023] Open
Abstract
Abstract
Disturbance of neurovascular coupling (NVC) is suggested to be one potential mechanism in type 2 diabetes mellitus (T2DM) associated mild cognitive impairment (MCI). However, NVC evidence derived from functional magnetic resonance imaging ignores the relationship of neuronal activity with vascular injury. Twenty-seven T2DM patients without MCI and thirty healthy controls were prospectively enrolled. Brain regions with changed susceptibility detected by quantitative susceptibility mapping (QSM) were used as seeds for functional connectivity (FC) analysis. NVC coefficients were estimated using combined degree centrality (DC) with susceptibility or cerebral blood flow (CBF). Partial correlations between neuroimaging indicators and cognitive decline were investigated. In T2DM group, higher susceptibility values in right hippocampal gyrus (R.PHG) were found and were negatively correlated with Naming Ability of Montreal Cognitive Assessment. FC increased remarkably between R.PHG and right middle temporal gyrus (R.MTG), right calcarine gyrus (R.CAL). Both NVC coefficients (DC-QSM and DC-CBF) reduced in R.PHG and increased in R.MTG and R.CAL. Both NVC coefficients in R.PHG and R.MTG increased with the improvement of cognitive ability, especially for executive function. These demonstrated that QSM and DC-QSM coefficients can be promising biomarkers for early evaluation of cognitive decline in T2DM patients and help to better understand the mechanism of NVC.
Collapse
Affiliation(s)
- Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine , 1 Middle Section of Shiji Road, Xian yang, Shaanxi 712046 , China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Bo Hu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Teng Ma
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Xi’an Medical University , 1 Xinwang Road, Xi'an, Shaanxi 710016 , China
| | - Lan-Qiu Tao
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Ding-Xin Yuan
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Jun-Ling Zhu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| |
Collapse
|
141
|
Chinese expert consensus on the risk assessment and management of panvascular disease inpatients with type 2 diabetes mellitus (2022 edition). CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
142
|
Edgerton-Fulton M, Ergul A. Vascular contributions to cognitive impairment/dementia in diabetes: role of endothelial cells and pericytes. Am J Physiol Cell Physiol 2022; 323:C1177-C1189. [PMID: 36036445 PMCID: PMC9576164 DOI: 10.1152/ajpcell.00072.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Vascular contributions to cognitive impairment/dementia (VCID) are a leading cause of dementia, a known neurodegenerative disorder characterized by progressive cognitive decline. Although diabetes increases the risks of stroke and the development of cerebrovascular disease, the cellular and vascular mechanisms that lead to VCID in diabetes are yet to be determined. A growing body of research has identified that cerebrovascular cells within the neurovascular complex display an array of cellular responses that impact their survival and reparative properties, which plays a significant role in VCID development. Specifically, endothelial cells and pericytes are the primary cell types that have gained much attention in dementia-related studies due to their molecular and phenotypic heterogeneity. In this review, we will discuss the various morphological subclasses of endothelial cells and pericytes as well as their relative distribution throughout the cerebrovasculature. Furthermore, the use of diabetic and stroke animal models in preclinical studies has provided more insight into the impact of sex differences on cerebral vascularization in progressive VCID. Understanding how cellular responses and sex differences contribute to endothelial cell and pericyte survival and function will set the stage for the development of potential preventive therapies for dementia-related disorders in diabetes.
Collapse
Affiliation(s)
- Mia Edgerton-Fulton
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
143
|
Zhang Y, Yuan Y, Zhang J, Zhao Y, Zhang Y, Fu J. Astragaloside IV supplementation attenuates cognitive impairment by inhibiting neuroinflammation and oxidative stress in type 2 diabetic mice. Front Aging Neurosci 2022; 14:1004557. [PMID: 36247985 PMCID: PMC9557080 DOI: 10.3389/fnagi.2022.1004557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Although diabetic cognitive impairment is one of the most common complications of type 2 diabetes mellitus (T2DM), optimized therapeutic strategies are not available yet. Astragalosides IV (AS-IV) is a traditional Chinese medicine possessing diverse pharmacological properties including anti-inflammatory and antioxidant effects. However, the effects of AS-IV on diabetes-related cognitive impairment and its precise mechanisms remain largely unknown. T2DM mice, induced by a high-fat diet (HFD) and an intraperitoneal injection of low-dose streptozotocin (STZ) were administrated with AS-IV every other day for eight consecutive weeks. Learning and memory abilities were assessed subsequently using the Ymaze test and the anxious behavior was evaluated using an open field test. Then, the morphology and number of neurons and microglia were observed by HE staining or immunohistochemistry. Oxidative stress biomarkers and pro-inflammatory cytokines were determined using relevant kits. In addition, the expression levels of Nrf2, Keap1, HO-1, and NQO1 were determined by Western blot analyses. The results indicated that AS-IV administration significantly improved neuronal damage and cognitive deficit in T2DM mice. Meanwhile, oxidative stress and neuroinflammation were also ameliorated in T2DM mice, which might be attributed to the regulation of Nrf2/Keap1/HO-1/NQO1 pathway in T2DM mice. Taken together, these data suggested that AS-IV ameliorates cognitive impairment in T2DM mice by attenuating oxidative stress and neuroinflammation, possibly through modulating the Nrf2/Keap1/HO1/NQO1 pathway.
Collapse
|
144
|
Wang J, Li L, Zhang Z, Zhang X, Zhu Y, Zhang C, Bi Y. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab 2022; 34:1264-1279.e8. [PMID: 36070680 DOI: 10.1016/j.cmet.2022.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes with obesity-related insulin resistance as the main manifestation is associated with an increased risk of cognitive impairment. Adipose tissue plays an important role in this process. Here, we demonstrated that adipose tissue-derived extracellular vesicles (EVs) and their cargo microRNAs (miRNAs) mediate inter-organ communication between adipose tissue and the brain, which can be transferred into the brain in a membrane protein-dependent manner and enriched in neurons, especially in the hippocampus. Further investigation suggests that adipose tissue-derived EVs from high-fat diet (HFD)-fed mice or patients with diabetes induce remarkable synaptic loss and cognitive impairment. Depletion of miRNA cargo in these EVs significantly alleviates their detrimental effects on cognitive function. Collectively, these data suggest that targeting adipose tissue-derived EVs or their cargo miRNAs may provide a promising strategy for pharmaceutical interventions for cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Jin Wang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Xuhong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ye Zhu
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China.
| |
Collapse
|
145
|
Zhang T, Shaw M, Cherbuin N. Association between Type 2 Diabetes Mellitus and Brain Atrophy: A Meta-Analysis. Diabetes Metab J 2022; 46:781-802. [PMID: 35255549 PMCID: PMC9532183 DOI: 10.4093/dmj.2021.0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is known to be associated with cognitive decline and brain structural changes. This study systematically reviews and estimates human brain volumetric differences and atrophy associated with T2DM. METHODS PubMed, PsycInfo and Cochrane Library were searched for brain imaging studies reporting on brain volume differences between individuals with T2DM and healthy controls. Data were examined using meta-analysis, and association between age, sex, diabetes characteristics and brain volumes were tested using meta-regression. RESULTS A total of 14,605 entries were identified; after title, abstract and full-text screening applying inclusion and exclusion criteria, 64 studies were included and 42 studies with compatible data contributed to the meta-analysis (n=31,630; mean age 71.0 years; 44.4% male; 26,942 control; 4,688 diabetes). Individuals with T2DM had significantly smaller total brain volume, total grey matter volume, total white matter volume and hippocampal volume (approximately 1% to 4%); meta-analyses of smaller samples focusing on other brain regions and brain atrophy rate in longitudinal investigations also indicated smaller brain volumes and greater brain atrophy associated with T2DM. Meta-regression suggests that diabetes-related brain volume differences start occurring in early adulthood, decreases with age and increases with diabetes duration. CONCLUSION T2DM is associated with smaller total and regional brain volume and greater atrophy over time. These effects are substantial and highlight an urgent need to develop interventions to reduce the risk of T2DM for brain health.
Collapse
Affiliation(s)
- Tianqi Zhang
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Marnie Shaw
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| |
Collapse
|
146
|
Gray and white matter abnormality in patients with T2DM-related cognitive dysfunction: a systemic review and meta-analysis. Nutr Diabetes 2022; 12:39. [PMID: 35970833 PMCID: PMC9378704 DOI: 10.1038/s41387-022-00214-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Aims/hypothesis Brain structure abnormality in patients with type 2 diabetes mellitus (T2DM)-related cognitive dysfunction (T2DM-CD) has been reported for decades in magnetic resonance imaging (MRI) studies. However, the reliable results were still unclear. This study aimed to make a systemic review and meta-analysis to find the significant and consistent gray matter (GM) and white matter (WM) alterations in patients with T2DM-CD by comparing with the healthy controls (HCs). Methods Published studies were systemically searched from PubMed, MEDLINE, Cochrane Library and Web of Science databases updated to November 14, 2021. Studies reporting abnormal GM or WM between patients with T2DM-CD and HCs were selected, and their significant peak coordinates (x, y, z) and effect sizes (z-score or t-value) were extracted to perform a voxel-based meta-analysis by anisotropic effect size-signed differential mapping (AES-SDM) 5.15 software. Results Total 15 studies and 16 datasets (1550 participants) from 7531 results were involved in this study. Compared to HCs, patients with T2DM-CD showed significant and consistent decreased GM in right superior frontal gyrus, medial orbital (PFCventmed. R, BA 11), left superior temporal gyrus (STG. L, BA 48), and right calcarine fissure / surrounding cortex (CAL. R, BA 17), as well as decreased fractional anisotropy (FA) in right inferior network, inferior fronto-occipital fasciculus (IFOF. R), right inferior network, longitudinal fasciculus (ILF. R), and undefined area (32, −60, −42) of cerebellum. Meta-regression showed the positive relationship between decreased GM in PFCventmed.R and MoCA score, the positive relationship between decreased GM in STG.L and BMI, as well as the positive relationship between the decreased FA in IFOF.R and age or BMI. Conclusions/interpretation T2DM impairs the cognitive function by affecting the specific brain structures. GM atrophy in PFCventmed. R (BA 11), STG. L (BA 48), and CAL. R (BA 17), as well as WM injury in IFOF. R, ILF. R, and undefined area (32, −60, −42) of cerebellum. And those brain regions may be valuable targets for future researches. Age, BMI, and MoCA score have a potential influence on the altered GM or WM in T2DM-CD.
Collapse
|
147
|
Dutta BJ, Singh S, Seksaria S, Das Gupta G, Singh A. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res 2022; 182:106358. [PMID: 35863719 DOI: 10.1016/j.phrs.2022.106358] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) the most prevalent metabolic disease that has evolved into a major public health issue. Concerning about its secondary complications, a growing body of evidence links T2DM to cognitive impairment and neurodegenerative disorders. The underlying pathology behind this secondary complication disease is yet to be fully known. Nonetheless, they are likely to be associated with poor insulin signaling as a result of insulin resistance. We have combed through a rising body of literature on insulin signaling in the normal and diabetic brains along with various factors like insulin resistance, hyperglycemia, obesity, oxidative stress, neuroinflammation and Aβ plaques which can act independently or synergistically to link T2DM with cognitive impairments. Finally, we explored several pharmacological and non-pharmacological methods in the hopes of accelerating the rational development of medications for cognitive impairment in T2DM by better understanding these shared pathways.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
148
|
Du Y, Li X, An Y, Song Y, Lu Y. Association of gut microbiota with sort-chain fatty acids and inflammatory cytokines in diabetic patients with cognitive impairment: A cross-sectional, non-controlled study. Front Nutr 2022; 9:930626. [PMID: 35938126 PMCID: PMC9355148 DOI: 10.3389/fnut.2022.930626] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that gut microbiota, short-chain fatty acids (SCFAs), and inflammatory cytokines play important roles in the pathogenesis of diabetic cognitive impairment (DCI). However, little is known about alterations of gut microbiota and SCFA levels as well as the relationships between inflammatory cytokines and cognitive function in Chinese DCI patients. Herein, the differences in the gut microbiota, plasma SCFAs, and inflammatory cytokines in DCI patients and type 2 diabetes mellitus (T2DM) patients were explored. A cross-sectional study of 30 DCI patients and 30 T2DM patients without mild cognitive impairment (MCI) was conducted in Tianjin city, China. The gut microbiota, plasma SCFAs, and inflammatory cytokines were determined using 16S ribosomal RNA (rRNA) gene sequencing, gas chromatography-mass spectrometry (GC-MS), and Luminex immunofluorescence assays, respectively. In addition, the correlation between gut microbiota and DCI clinical characteristics, SCFAs, and inflammatory cytokines was investigated. According to the results, at the genus level, DCI patients presented a greater abundance of Gemmiger, Bacteroides, Roseburia, Prevotella, and Bifidobacterium and a poorer abundance of Escherichia and Akkermansia than T2DM patients. The plasma concentrations of acetic acid, propionic acid, isobutyric acid, and butyric acid plummeted in DCI patients compared to those in T2DM patients. TNF-α and IL-8 concentrations in plasma were significantly higher in DCI patients than in T2DM patients. Moreover, the concentrations of acetic acid, propionic acid, butyric acid, and isovaleric acid in plasma were negatively correlated with TNF-α, while those of acetic acid and butyric acid were negatively correlated with IL-8. Furthermore, the abundance of the genus Alloprevotella was negatively correlated with butyric acid, while that of Holdemanella was negatively correlated with propanoic acid and isobutyric acid. Fusobacterium abundance was negatively correlated with propanoic acid. Clostridium XlVb abundance was negatively correlated with TNF-α, while Shuttleworthia abundance was positively correlated with TNF-α. It was demonstrated that the gut microbiota alterations were accompanied by a change in SCFAs and inflammatory cytokines in DCI in Chinese patients, potentially causing DCI development. These findings might help to identify more effective microbiota-based therapies for DCI in the future.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing, China
| | - Xiaoying Li
- Geriatrics Department, Beijing Jishuitan Hospital, Beijing, China
| | - Yu An
- Endocrinology Department, Beijing Chaoyang Hospital, Beijing, China
| | - Ying Song
- School of Nursing, Peking University, Beijing, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing, China
- *Correspondence: Yanhui Lu
| |
Collapse
|
149
|
Tan X, Wu J, Ma X, Kang S, Yue X, Rao Y, Li Y, Huang H, Chen Y, Lyu W, Qin C, Li M, Feng Y, Liang Y, Qiu S. Convolutional Neural Networks for Classification of T2DM Cognitive Impairment Based on Whole Brain Structural Features. Front Neurosci 2022; 16:926486. [PMID: 35928014 PMCID: PMC9344913 DOI: 10.3389/fnins.2022.926486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Cognitive impairment is generally found in individuals with type 2 diabetes mellitus (T2DM). Although they may not have visible symptoms of cognitive impairment in the early stages of the disorder, they are considered to be at high risk. Therefore, the classification of these patients is important for preventing the progression of cognitive impairment. Methods In this study, a convolutional neural network was used to construct a model for classifying 107 T2DM patients with and without cognitive impairment based on T1-weighted structural MRI. The Montreal cognitive assessment score served as an index of the cognitive status of the patients. Results The classifier could identify T2DM-related cognitive decline with a classification accuracy of 84.85% and achieved an area under the curve of 92.65%. Conclusions The model can help clinicians analyze and predict cognitive impairment in patients and enable early treatment.
Collapse
Affiliation(s)
- Xin Tan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical Imaging Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjian Wu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyu Kang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomei Yue
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yawen Rao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- Medical Imaging Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- Medical Imaging Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiao Lyu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Medical Imaging Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingrui Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- Medical Imaging Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Yi Liang
| | - Shijun Qiu
- Medical Imaging Center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shijun Qiu
| |
Collapse
|
150
|
Magnon V, Dutheil F, Tauveron I, Mille J, Baker JS, Brusseau V, Silvert L, Izaute M, Vallet GT. Does an increase in physiological indexes predict better cognitive performance: the PhyCog randomised cross-over protocol in type 2 diabetes. BMJ Open 2022; 12:e060057. [PMID: 35777867 PMCID: PMC9252197 DOI: 10.1136/bmjopen-2021-060057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION There has been a growing interest towards cognitive-training programmes to improve cognition and prevent cognitive impairment despite discrepant findings. Physical activity has been recognised in maintaining or improving cognitive ability. Based on a psychoneurophysiological approach, physiological indexes should partly determine neuronal dynamics and influence cognition as any effects of cognitive training. This study's primary aim was to examine if improved physiological indexes predict improved cognitive variables in the context of a clinical intervention programme for type 2 diabetes (T2D). METHOD AND ANALYSIS PhyCog will be a 22-week randomised controlled trial comparing cognitive performance between three arms: (1) physical activity (1 month), a 15-day wash-out, then cognitive training (1 month), (2) cognitive training (1 month), a 15-day wash-out and physical activity (1 month), and (3) an active breathing condition (psychoeducation and resonance frequency breathing for 1 month), then a 15-day wash-out, and combined physical activity and cognitive training (1 month), allowing to determine the most effective intervention to prevent cognitive impairment associated with T2D. All participants will be observed for 3 months following the intervention. The study will include a total of 81 patients with T2D.Cognitive performance and physiological variables will be assessed at baseline (week 0-W0), during the washout (W5, 72-96 hours after week 4), at the end of the intervention (W10), and at the end of the follow-up (W22). The main variables of interest will be executive function, memory and attention. Physiological testing will involve allostatic load such as heart rate variability, microcirculation, cortisol and dehydroepiandrosterone sulfate levels. Sociodemographic and body composition will also be a consideration. Assessors will all be blinded to outcomes. To test the primary hypothesis, the relationship between improvement in physiological variables and improvement in cognitive variables (executive, memory and attention) will be collected. ETHICS AND DISSEMINATION This protocol was approved by the Est III French Ethics Committee (2020-A03228-31). Results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04915339.
Collapse
Affiliation(s)
- Valentin Magnon
- Psychology, University Clermont Auvergne, CNRS, LAPSCO, F-63000, Clermont-Ferrand, France
| | - Frederic Dutheil
- Occupational and Environmental Medicine, University Hospital Centre, F-63000, Clermont-Ferrand, France
| | - Igor Tauveron
- Endocrinology Diabetology and Metabolic Diseases, University Hospital Center, F-63000, Clermont-Ferrand, France
| | - Jordan Mille
- Psychology, University Clermont Auvergne, CNRS, LAPSCO, F-63000, Clermont-Ferrand, France
| | | | - Valentin Brusseau
- Endocrinology Diabetology and Metabolic Diseases, University Hospital Center, F-63000, Clermont-Ferrand, France
| | - Laetitia Silvert
- Psychology, University Clermont Auvergne, CNRS, LAPSCO, F-63000, Clermont-Ferrand, France
| | - Marie Izaute
- Psychology, University Clermont Auvergne, CNRS, LAPSCO, F-63000, Clermont-Ferrand, France
| | - Guillaume T Vallet
- Psychology, University Clermont Auvergne, CNRS, LAPSCO, F-63000, Clermont-Ferrand, France
| |
Collapse
|