101
|
George CM, Birindwa A, Li S, Williams C, Kuhl J, Thomas E, François R, Presence AS, Claude BRJ, Mirindi P, Bisimwa L, Perin J, Stine OC. Akkermansia muciniphila Associated with Improved Linear Growth among Young Children, Democratic Republic of the Congo. Emerg Infect Dis 2023; 29:81-88. [PMID: 36573546 PMCID: PMC9796213 DOI: 10.3201/eid2901.212118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To investigate the association between enteric pathogens, fecal microbes, and child growth, we conducted a prospective cohort study of 236 children <5 years of age in rural eastern Democratic Republic of the Congo. We analyzed baseline fecal specimens by quantitative PCR and measured child height and weight at baseline and growth at a 6-month follow-up. At baseline, 66% (156/236) of children had >3 pathogens in their feces. We observed larger increases in height-for-age-z-scores from baseline to the 6-month follow-up among children with Akkermansia muciniphila in their feces (coefficient 0.02 [95% CI 0.0001-0.04]; p = 0.04). Children with Cryptosporidium in their feces had larger declines in weight-for-height/length z-scores from baseline to the 6-month follow-up (coefficient -0.03 [95% CI -0.05 to -0.005]; p = 0.02). Our study showed high prevalence of enteric pathogens among this pediatric cohort and suggests A. muciniphila can potentially serve as a probiotic to improve child growth.
Collapse
|
102
|
Ahmed SM, Brintz BJ, Pavlinac PB, Shahrin L, Huq S, Levine AC, Nelson EJ, Platts-Mills JA, Kotloff KL, Leung DT. Derivation and external validation of clinical prediction rules identifying children at risk of linear growth faltering. eLife 2023; 12:78491. [PMID: 36607225 PMCID: PMC9833824 DOI: 10.7554/elife.78491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Background Nearly 150 million children under-5 years of age were stunted in 2020. We aimed to develop a clinical prediction rule (CPR) to identify children likely to experience additional stunting following acute diarrhea, to enable targeted approaches to prevent this irreversible outcome. Methods We used clinical and demographic data from the Global Enteric Multicenter Study (GEMS) to build predictive models of linear growth faltering (decrease of ≥0.5 or ≥1.0 in height-for-age z-score [HAZ] at 60-day follow-up) in children ≤59 months presenting with moderate-to-severe diarrhea, and community controls, in Africa and Asia. We screened variables using random forests, and assessed predictive performance with random forest regression and logistic regression using fivefold cross-validation. We used the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) study to (1) re-derive, and (2) externally validate our GEMS-derived CPR. Results Of 7639 children in GEMS, 1744 (22.8%) experienced severe growth faltering (≥0.5 decrease in HAZ). In MAL-ED, we analyzed 5683 diarrhea episodes from 1322 children, of which 961 (16.9%) episodes experienced severe growth faltering. Top predictors of growth faltering in GEMS were: age, HAZ at enrollment, respiratory rate, temperature, and number of people living in the household. The maximum area under the curve (AUC) was 0.75 (95% confidence interval [CI]: 0.75, 0.75) with 20 predictors, while 2 predictors yielded an AUC of 0.71 (95% CI: 0.71, 0.72). Results were similar in the MAL-ED re-derivation. A 2-variable CPR derived from children 0-23 months in GEMS had an AUC = 0.63 (95% CI: 0.62, 0.65), and AUC = 0.68 (95% CI: 0.63, 0.74) when externally validated in MAL-ED. Conclusions Our findings indicate that use of prediction rules could help identify children at risk of poor outcomes after an episode of diarrheal illness. They may also be generalizable to all children, regardless of diarrhea status. Funding This work was supported by the National Institutes of Health under Ruth L. Kirschstein National Research Service Award NIH T32AI055434 and by the National Institute of Allergy and Infectious Diseases (R01AI135114).
Collapse
Affiliation(s)
- Sharia M Ahmed
- Division of Infectious Diseases, University of Utah School of MedicineSalt lake CityUnited States
| | - Ben J Brintz
- Division of Epidemiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Patricia B Pavlinac
- Department of Global Health, Global Center for Integrated Health of Women, Adolescents and Children (Global WACh), University of WashingtonSeattleUnited States
| | - Lubaba Shahrin
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | - Sayeeda Huq
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | - Adam C Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown UniversityProvidenceUnited States
| | - Eric J Nelson
- Department of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of FloridaGainesvilleUnited States
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of VirginiaCharlottesvilleUnited States
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of MedicineBaltimoreUnited States
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah School of MedicineSalt lake CityUnited States,Division of Microbiology & Immunology, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
103
|
Bao S, Wang H, Li W, Wu H, Lu C, Yong L, Zhang Q, Lu X, Zhao M, Lu J, Liu J, Ikechukwu CK, Xu J, Ni P, Xiong Y, Zhang W, Zhou C. Viral metagenomics of the gut virome of diarrheal children with Rotavirus A infection. Gut Microbes 2023; 15:2234653. [PMID: 37448101 PMCID: PMC10351451 DOI: 10.1080/19490976.2023.2234653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Diarrhea is a leading cause of morbidity and mortality in children worldwide and represents a major dysbiosis event. Rotavirus has been recognized as a global leading pathogen of diarrhea. This study is aimed at investigating differences in the gut virome between diarrheal children and healthy controls. In 2018, 76 diarrheal fecal samples and 27 healthy fecal samples in Shanghai and 40 diarrheal fecal samples and 19 healthy fecal samples in Taizhou were collected to investigate the composition of the gut virome. Viral metagenomic analyses revealed that the alpha diversity of the diarrheal virome was not significantly different from that of the healthy virome, and the beta diversity had a significant difference between diarrheal and healthy children. The diarrheal virome was mainly dominated by the families Adenoviridae, Astroviridae, Caliciviridae, and Picornaviridae. Meanwhile, the healthy virome also contains phages, including Microviridae and Caudovirales. The high prevalence of diverse enteric viruses in all samples and the little abundance of Microviridae and Caudovirales in diarrheal groups were identified. The study introduced a general overview of the gut virome in diarrheal children, revealed the compositional differences in the gut viral community compared to healthy controls, and provided a reference for efficient treatments and prevention of virus-infectious diarrhea in children.
Collapse
Affiliation(s)
- Siwen Bao
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Chunying Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Liang Yong
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Qing Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | | | - Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Ying Xiong
- Department of Pharmacy, Yancheng Third People’s Hospital, Yancheng, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
104
|
Luoma J, Adubra L, Ashorn P, Ashorn U, Bendabenda J, Dewey KG, Hallamaa L, Coghlan R, Horton WA, Hyöty H, Kortekangas E, Lehto KM, Maleta K, Matchado A, Nkhoma M, Oikarinen S, Parkkila S, Purmonen S, Fan YM. Association between asymptomatic infections and linear growth in 18-24-month-old Malawian children. MATERNAL & CHILD NUTRITION 2023; 19:e13417. [PMID: 36111423 DOI: 10.1111/mcn.13417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Inadequate diet and frequent symptomatic infections are considered major causes of growth stunting in low-income countries, but interventions targeting these risk factors have achieved limited success. Asymptomatic infections can restrict growth, but little is known about their role in global stunting prevalence. We investigated factors related to length-for-age Z-score (LAZ) at 24 months by constructing an interconnected network of various infections, biomarkers of inflammation (as assessed by alpha-1-acid glycoprotein [AGP]), and growth (insulin-like growth factor 1 [IGF-1] and collagen X biomarker [CXM]) at 18 months, as well as other children, maternal, and household level factors. Among 604 children, there was a continuous decline in mean LAZ and increased mean length deficit from birth to 24 months. At 18 months of age, the percentage of asymptomatic children who carried each pathogen was: 84.5% enterovirus, 15.5% parechovirus, 7.7% norovirus, 4.6% rhinovirus, 0.6% rotavirus, 69.6% Campylobacter, 53.8% Giardia lamblia, 11.9% malaria parasites, 10.2% Shigella, and 2.7% Cryptosporidium. The mean plasma IGF-1 concentration was 12.5 ng/ml and 68% of the children had systemic inflammation (plasma AGP concentration >1 g/L). Shigella infection was associated with lower LAZ at 24 months through both direct and indirect pathways, whereas enterovirus, norovirus, Campylobacter, Cryptosporidium, and malaria infections were associated with lower LAZ at 24 months indirectly, predominantly through increased systemic inflammation and reduced plasma IGF-1 and CXM concentration at 18 months.
Collapse
Affiliation(s)
- Juho Luoma
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Adubra
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Per Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jaden Bendabenda
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kathryn G Dewey
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, California, USA
| | - Lotta Hallamaa
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ryan Coghlan
- Research Center, Shriners Hospitals for Children, Portland, Oregon, USA.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - William A Horton
- Research Center, Shriners Hospitals for Children, Portland, Oregon, USA.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Emma Kortekangas
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi-Maarit Lehto
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kenneth Maleta
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Andrew Matchado
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Minyanga Nkhoma
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Seppo Parkkila
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland.,Clinical Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Clinical Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Yue-Mei Fan
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
105
|
In Vitro Susceptibility of Cryptosporidium parvum to Plant Antiparasitic Compounds. Pathogens 2022; 12:pathogens12010061. [PMID: 36678409 PMCID: PMC9863366 DOI: 10.3390/pathogens12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidium parvum is a significant cause of watery diarrhoea in humans and other animals worldwide. Although hundreds of novel drugs have been evaluated, no effective specific chemotherapeutic intervention for C. parvum has been reported. There has been much recent interest in evaluating plant-derived products in the fight against gastrointestinal parasites, including C. parvum. This study aimed to identify extracts from 13 different plant species that provide evidence for inhibiting the growth of C. parvum in vitro. Efficacy against C. parvum was detected and quantified using quantitative PCR and immunofluorescence assays. All plant extracts tested against C. parvum showed varying inhibition activities in vitro, and none of them produced a cytotoxic effect on HCT-8 cells at concentrations up to 500 µg/mL. Four plant species with the strongest evidence of activity against C. parvum were Curcuma longa, Piper nigrum, Embelia ribes, and Nigella sativa, all with dose-dependent efficacy. To the authors' knowledge, this is the first time that these plant extracts have proven to be experimentally efficacious against C. parvum. These results support further exploration of these plants and their compounds as possible treatments for Cryptosporidium infections.
Collapse
|
106
|
Cohn IS, Henrickson SE, Striepen B, Hunter CA. Immunity to Cryptosporidium: Lessons from Acquired and Primary Immunodeficiencies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2261-2268. [PMID: 36469846 PMCID: PMC9731348 DOI: 10.4049/jimmunol.2200512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Cryptosporidium is a ubiquitous protozoan parasite that infects gut epithelial cells and causes self-limited diarrhea in immunocompetent individuals. However, in immunocompromised hosts with global defects in T cell function, this infection can result in chronic, life-threatening disease. In addition, there is a subset of individuals with primary immunodeficiencies associated with increased risk for life-threatening cryptosporidiosis. These patients highlight MHC class II expression, CD40-CD40L interactions, NF-κB signaling, and IL-21 as key host factors required for resistance to this enteric pathogen. Understanding which immune deficiencies do (or do not) lead to increased risk for severe Cryptosporidium may reveal mechanisms of parasite restriction and aid in the identification of novel strategies to manage this common pathogen in immunocompetent and deficient hosts.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy Immunology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
107
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
108
|
Chisala M, Nyangulu W, Nyirenda J, Iroh Tam PY. Respiratory and diarrhoeal pathogens in Malawian children hospitalised with diarrhoea and association with short-term growth: A prospective cohort study. Gates Open Res 2022. [DOI: 10.12688/gatesopenres.14061.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Pneumonia and diarrhoea are the leading causes of childhood mortality and morbidity worldwide. The gut-lung axis is associated with disease, and these common infections, especially the parasite Cryptosporidium, are associated with malnutrition. We sought to evaluate the association of respiratory and gastrointestinal (GI) pathogens with short-term growth among children hospitalised with diarrhoeal disease. Methods: In this sub-study, we followed 27 children (two-24 months) who tested positive for Cryptosporidium spp. for eight weeks with two weekly sampling of the respiratory and GI tract. Respiratory and stool pathogens were detected using quantitative molecular methods. Nutritional outcomes were assessed as length-for-age (LAZ), weight-for-length (WLZ) and weight-for-age (WAZ) z-scores. Changes over the study period were compared using repeated analysis of variance and mixed effects model analysis. Results: In this period,104 sputum and stool samples were collected. All stool samples had at least one pathogen detected, with an average of 5.1 (SD 2.1) stool pathogens, compared to 84% of the sputum samples with an average 3.5 (SD 1.8). Diarrhoeagenic E. coli were the most common stool pathogens (89%), followed by Cryptosporidium (57.6%) and Adenovirus pan (41%). In sputum, Streptococcus pneumoniae was the most prevalent pathogen (84%), followed by hinovirus (56%) and Moraxella catarrhalis (50%). There was a significant change in WAZ over the follow-up period. Children who had ≥3 GI pathogens had significantly a lower LAZ mean score at enrolment (-1.8 [SD 1.4]) and across the follow-up period. No relationship between respiratory pathogens and short-term growth was observed. Out of 49 sputum samples that had ≥3 pathogens, 42 (85%) concurrent stool samples had ≥3 GI pathogens. Conclusions: Among young children hospitalised with diarrhoea, multiple GI and respiratory pathogens were prevalent over an eight-week follow-up period. The presence of more GI, but not respiratory, pathogens was significantly associated with reduced short-term growth.
Collapse
|
109
|
George CM, Birindwa A, Li S, Williams C, Kuhl J, Thomas E, François R, Presence AS, Claude BRJ, Mirindi P, Bisimwa L, Perin J, Stine OC. Akkermansia muciniphila Associated with Improved Linear Growth among Young Children, Democratic Republic of the Congo. Emerg Infect Dis 2022. [DOI: 10.3201/eid2811.212118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
110
|
Baker KK, Mumma JAO, Simiyu S, Sewell D, Tsai K, Anderson JD, MacDougall A, Dreibelbis R, Cumming O. Environmental and behavioural exposure pathways associated with diarrhoea and enteric pathogen detection in 5-month-old, periurban Kenyan infants: a cross-sectional study. BMJ Open 2022; 12:e059878. [PMID: 36316067 PMCID: PMC9628658 DOI: 10.1136/bmjopen-2021-059878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to test whether household environmental hygiene and behavioural conditions moderated associations between diarrhoea and enteric pathogen detection in infants 5 months of age in Kenya and pathogen sources, including latrine access, domestic animal co-habitation and public food sources. DESIGN Cross-sectional study utilising enrolment survey data of households participating in the Safe Start cluster-randomised controlled trial . SETTING Kisumu, Kenya. PARTICIPANTS A total of 898 caregivers with 5-month (22 week ± 1 week) aged infants were enrolled in the study and completed the enrolment survey. PRIMARY AND SECONDARY OUTCOME MEASURES Outcomes were (1) caregiver-reported 7-day diarrhoea prevalence and (2) count of types of enteric viruses, bacteria and parasites in infant stool. Exposures and effect modifiers included water access and treatment, cohabitation with domestic animals, sanitation access, handwashing practices, supplemental feeding, access to refrigeration and flooring. RESULTS Reported handwashing after handling animals (adjusted odds ratio (aOR)=0.20; 95% CI=0.06 to 0.50) and before eating (aOR=0.44; 95% CI=0.26 to 0.73) were strongly associated with lower risk of caregiver-reported diarrhoea, while cohabitation with animals (aOR=1.54; 95% CI=1.01 to 2.34) living in a household with vinyl-covered dirt floors (aOR=0.60; 95% CI=0.45 to 0.87) were strongly associated with pathogen codetection in infants. Caregiver handwashing after child (p=0.02) or self-defecation (p=0.03) moderated the relationship between shared sanitation access and infant exposure to pathogens, specifically private latrine access was protective against pathogen exposure of infants in households, where caregivers washed hands after defecation. In the absence of handwashing, access to private sanitation posed no benefits over shared latrines for protecting infants from exposure. CONCLUSION Our evidence highlights eliminating animal cohabitation and improving flooring, postdefecation and food-related handwashing, and safety and use of cow milk sources as interventions to prevent enteric pathogen exposure of young infants in Kenya. TRIAL REGISTRATION NUMBER NCT03468114.
Collapse
Affiliation(s)
- Kelly K Baker
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
| | | | - Sheillah Simiyu
- African Population and Health Research Center, Nairobi, Kenya
| | - Daniel Sewell
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA
| | - Kevin Tsai
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
| | | | - Amy MacDougall
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert Dreibelbis
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Oliver Cumming
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
111
|
Ndungo E, Holm JB, Gama S, Buchwald AG, Tennant SM, Laufer MK, Pasetti MF, Rasko DA. Dynamics of the Gut Microbiome in Shigella-Infected Children during the First Two Years of Life. mSystems 2022; 7:e0044222. [PMID: 36121169 PMCID: PMC9600951 DOI: 10.1128/msystems.00442-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
Shigella continues to be a major contributor to diarrheal illness and dysentery in children younger than 5 years of age in low- and middle-income countries. Strategies for the prevention of shigellosis have focused on enhancing adaptive immunity. The interaction between Shigella and intrinsic host factors, such as the microbiome, remains unknown. We hypothesized that Shigella infection would impact the developing microbial community in infancy and, conversely, that changes in the gastrointestinal microbiome may predispose infections. To test this hypothesis, we characterized the gastrointestinal microbiota in a longitudinal birth cohort from Malawi that was monitored for Shigella infection using 16S rRNA amplicon sequencing. Children with at least one Shigella quantitative polymerase chain reaction (qPCR) positive sample during the first 2 years of life (cases) were compared to uninfected controls that were matched for sex and age. Overall, the microbial species diversity, as measured by the Shannon diversity index, increased over time, regardless of case status. At early time points, the microbial community was dominated by Bifidobacterium longum and Escherichia/Shigella. A greater abundance of Prevotella 9 and Bifidobacterium kashiwanohense was observed at 2 years of age. While no single species was associated with susceptibility to Shigella infection, significant increases in Lachnospiraceae NK4A136 and Fusicatenibacter saccharivorans were observed following Shigella infection. Both taxa are in the family Lachnospiraceae, which are known short-chain fatty acid producers that may improve gut health. Our findings identified temporal changes in the gastrointestinal microbiota associated with Shigella infection in Malawian children and highlight the need to further elucidate the microbial communities associated with disease susceptibility and resolution. IMPORTANCE Shigella causes more than 180 million cases of diarrhea globally, mostly in children living in poor regions. Infection can lead to severe health impairments that reduce quality of life. There is increasing evidence that disruptions in the gut microbiome early in life can influence susceptibility to illnesses. A delayed or impaired reconstitution of the microbiota following infection can further impact overall health. Aiming to improve our understanding of the interaction between Shigella and the developing infant microbiome, we investigated changes in the gut microbiome of Shigella-infected and uninfected children over the course of their first 2 years of life. We identified species that may be involved in recovery from Shigella infection and in driving the microbiota back to homeostasis. These findings support future studies into the elucidation of the interaction between the microbiota and enteric pathogens in young children and into the identification of potential targets for prevention or treatment.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Syze Gama
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
112
|
Vielot NA, François R, Huseynova E, González F, Reyes Y, Gutierrez L, Nordgren J, Toval-Ruiz C, Vilchez S, Vinjé J, Becker-Dreps S, Bucardo F. Association between breastfeeding, host genetic factors, and calicivirus gastroenteritis in a Nicaraguan birth cohort. PLoS One 2022; 17:e0267689. [PMID: 36240197 PMCID: PMC9565698 DOI: 10.1371/journal.pone.0267689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Norovirus and sapovirus are important causes of childhood acute gastroenteritis (AGE). Breastfeeding prevents AGE generally; however, it is unknown if breastfeeding prevents AGE caused specifically by norovirus and sapovirus. METHODS We investigated the association between breastfeeding and norovirus or sapovirus AGE episodes in a birth cohort. Weekly data on breastfeeding and AGE episodes were captured during the first year of life. Stools were collected from children with AGE and tested by RT-qPCR for norovirus and sapovirus. Time-dependent Cox models estimated associations between weekly breastfeeding and time to first norovirus or sapovirus AGE. FINDINGS From June 2017 to July 2018, 444 newborns were enrolled in the study. In the first year of life, 69 and 34 children experienced a norovirus and a sapovirus episode, respectively. Exclusive breastfeeding lasted a median of 2 weeks, and any breastfeeding lasted a median of 43 weeks. Breastfeeding in the last week did not prevent norovirus (HR: 1.09, 95% CI: 0.62, 1.92) or sapovirus (HR: 1.00, 95% CI: 0.82, 1.21) AGE in a given week, adjusting for household sanitation, consumption of high-risk foods, and mother's and child's histo-blood group phenotypes. Maternal secretor-positive phenotype was protective against norovirus AGE, whereas child's secretor-positive phenotype was a risk factor for norovirus AGE. INTERPRETATION Exclusive breastfeeding in this population was short-lived, and no conclusions could be drawn about its potential to prevent norovirus or sapovirus AGE. Non-exclusive breastfeeding did not prevent norovirus or sapovirus AGE in the first year of life. However, maternal secretor-positive phenotype was associated with a reduced hazard of norovirus AGE.
Collapse
Affiliation(s)
- Nadja Alexandra Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ruthly François
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Emilya Huseynova
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fredman González
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Yaoska Reyes
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Lester Gutierrez
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Johan Nordgren
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christian Toval-Ruiz
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Samuel Vilchez
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| | - Filemon Bucardo
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, León, Nicaragua
| |
Collapse
|
113
|
Rouhani S, Peñataro Yori P, Paredes Olortegui M, Lima AA, Ahmed T, Mduma ER, George A, Samie A, Svensen E, Lima I, Mondal D, Mason CJ, Kalam A, Guerrant RL, Lang D, Zaidi A, Kang G, Houpt E, Kosek MN. The Epidemiology of Sapovirus in the Etiology, Risk Factors, and Interactions of Enteric Infection and Malnutrition and the Consequences for Child Health and Development Study: Evidence of Protection Following Natural Infection. Clin Infect Dis 2022; 75:1334-1341. [PMID: 36094137 PMCID: PMC9555839 DOI: 10.1093/cid/ciac165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sapovirus is one of the principal agents of acute viral enteritis in children. Because it has not been routinely included in diagnostic evaluations, the epidemiology and natural history remain poorly described. METHODS A birth cohort of 1715 children from 8 countries contributed surveillance samples (n = 35 620) and diarrheal specimens (n = 6868) from 0 to 24 months of age. Sapovirus was detected by quantitative polymerase chain reaction concurrently to other enteropathogens using multiarray cards. Logistic regression was used to identify risk factors, and longitudinal models were employed to estimate incidence rates and evaluate evidence of protective immunity. RESULTS Sapovirus was detected in 24.7% (n = 1665) of diarrheal stools and 12.8% (n = 4429) of monthly surveillance samples. More than 90% of children were infected and 60% experienced sapovirus diarrhea in the first 2 years of life. Breastfeeding and higher socioeconomic status were associated with reduced incidence of infection and illness. Specimens with sapovirus detected had an increased odds of coinfection with rotavirus (odds ratio [OR], 1.6 [95% confidence interval {CI}, 1.3-2.0]), astrovirus (OR, 1.5 [95% CI, 1.3-1.7]), adenovirus (OR, 1.3 [95% CI, 1.1-1.5]), and Shigella (OR, 1.4 [95% CI, 1.3-1.6]). Prior infection with sapovirus conferred a risk reduction of 22% for subsequent infection (hazard ratio [HR], 0.78 [95% CI, .74-.85]) and 24% for subsequent diarrhea (95% CI, 11.0%-35.0%; HR, 0.76). CONCLUSIONS Sapovirus is a common cause of early childhood diarrhea. Further research on coinfections is warranted. Evidence of acquired immunity was observed even in the absence of genotype-specific analysis for this pathogen of known genetic diversity.
Collapse
Affiliation(s)
- Saba Rouhani
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | | | - Aldo A Lima
- Federal University of Ceará, Fortaleza, Brazil
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | - Ila Lima
- Federal University of Ceará, Fortaleza, Brazil
| | - Dinesh Mondal
- Nutrition Infection Interaction Research Group, Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Carl J Mason
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis Lang
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Zaidi
- Enteric and Diarrheal Diseases Programme, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | - Eric Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
114
|
Delahoy MJ, Hubbard S, Mattioli M, Culquichicón C, Knee J, Brown J, Cabrera L, Barr DB, Ryan PB, Lescano AG, Gilman RH, Levy K. High Prevalence of Chemical and Microbiological Drinking Water Contaminants in Households with Infants Enrolled in a Birth Cohort-Piura, Peru, 2016. Am J Trop Med Hyg 2022; 107:881-892. [PMID: 35970283 PMCID: PMC9651523 DOI: 10.4269/ajtmh.22-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/06/2022] [Indexed: 11/07/2022] Open
Abstract
Chemical and microbiological drinking water contaminants pose risks to child health but are not often evaluated concurrently. At two consecutive visits to 96 households in Piura, Peru, we collected drinking water samples, administered health and exposure questionnaires, and collected infant stool samples. Standard methods were used to quantify heavy metals/metalloids, pesticides, and Escherichia coli concentrations in water samples. Stool samples were assayed for bacterial, viral, and parasitic enteropathogens. The primary drinking water source was indoor piped water for 70 of 96 households (73%); 36 households (38%) stored drinking water from the primary source in containers in the home. We found high prevalence of chemical and microbiological contaminants in household drinking water samples: arsenic was detected in 50% of 96 samples, ≥ 1 pesticide was detected in 65% of 92 samples, and E. coli was detected in 37% of 319 samples. Drinking water samples that had been stored in containers had higher odds of E. coli detection (adjusted odds ratio [aOR]: 4.50; 95% CI: 2.04-9.95) and pesticide detection (OR: 6.55; 95% CI: 2.05-21.0) compared with samples collected directly from a tap. Most infants (68%) had ≥ 1 enteropathogen detected in their stool. Higher odds of enteropathogen infection at the second visit were observed among infants from households where pesticides were detected in drinking water at the first visit (aOR: 2.93; 95% CI: 1.13-7.61). Results show concurrent risks of exposure to microbiological and chemical contaminants in drinking water in a low-income setting, despite high access to piped drinking water.
Collapse
Affiliation(s)
- Miranda J. Delahoy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Sydney Hubbard
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Mia Mattioli
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Carlos Culquichicón
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- School of Health Sciences, Universidad Nacional de Piura, Piura, Peru
| | - Jackie Knee
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Andres G. Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H. Gilman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Karen Levy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States
| |
Collapse
|
115
|
Angnunavuri PN, Attiogbe F, Mensah B. Microbial contamination and quantitative microbial risk assessment of high-density polyethylene (HDPE) film sachet drinking water in Ghana. JOURNAL OF WATER AND HEALTH 2022; 20:1587-1603. [PMID: 36308501 DOI: 10.2166/wh.2022.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present research estimated the impact of storage on the microbial quality of high-density polyethylene drinking water. Samples were taken from two popular companies in Greater Accra using a two-sided exact test in SAS JMP to estimate the sample size. The samples were stored across three temperature profiles at 8 °C, 30 °C (average room temperature), and 40 °C (average outdoor temperature) for 28 days. The samples were examined using standard microbiological methods for heterotrophic plate counts (HPCs), faecal coliforms, and Escherichia coli. The data were described and regressed with Microsoft Excel, Argo 4.3.1, and SAS JMP software. The results demonstrated increasing deterioration of the water samples for all microbial indices at all temperatures with increasing storage duration. The highest HPC, faecal coliforms, and E. coli were 1,312; 622; and 252 cfu/100 mL, respectively, all at 40 °C. The daily risk of infection due to E. coli O157:H7 was 5.22 × 10-5 infections per child per day for children under 5 years, and 1.6 × 10-4 attacks per adult per day, compared to the upper limit of 1.0 × 10-6. These results are higher than recommended exposures, and interventions along the sachet drinking water value chain are needed to protect public health.
Collapse
Affiliation(s)
- Prosper Naah Angnunavuri
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana E-mail:
| | - Francis Attiogbe
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana E-mail:
| | - Bismark Mensah
- School of Engineering, University of Ghana, Legon, Ghana
| |
Collapse
|
116
|
Dougherty M, Bartelt LA. Giardia and growth impairment in children in high-prevalence settings: consequence or co-incidence? Curr Opin Infect Dis 2022; 35:417-423. [PMID: 35980005 PMCID: PMC10373467 DOI: 10.1097/qco.0000000000000877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear, and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is most often not associated with or is perhaps even protective against acute diarrhea. Nonetheless, recent longitudinal studies in high-prevalence settings increasingly identify an association with long-term outcomes that has been difficult to discern. RECENT FINDINGS Recent studies have made progress in disentangling this apparent paradox. First, prospective, well characterized cohort studies have repeatedly identified associations between Giardia infection, gut function, and child growth. Second, experimental animal and in-vitro models have further characterized the biological plausibility that Giardia could impair intestinal function and subsequently child development through different pathways, depending upon biological and environmental factors. Finally, new work has shed light on the potential for Giardia conspiring with specific other gut microbes, which may explain discrepant findings in the literature, help guide future higher resolution analyses of this pathogen, and inform new opportunities for intervention. SUMMARY Recent prospective studies have confirmed a high, if not universal, prevalence of persistent Giardia infections in low-and-middle income countries associated with child-growth shortfalls and altered gut permeability. However, the predominance of subclinical infections limits understanding of the true clinical impact of endemic pediatric giardiasis, and global disease burdens remain uncalculated. Integrating the role of Giardia in multipathogen enteropathies and how nutritional, microbial, metabolic, and pathogen-strain variables influence Giardia infection outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
Affiliation(s)
- Michael Dougherty
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill
- Rex Digestive Healthcare, UNC REX Healthcare, Raleigh
| | - Luther A. Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
117
|
Wang L, Wang Y, Cui Z, Li D, Li X, Zhang S, Zhang L. Enrichment and proteomic identification of Cryptosporidium parvum oocyst wall. Parasit Vectors 2022; 15:335. [PMID: 36151578 PMCID: PMC9508764 DOI: 10.1186/s13071-022-05448-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Background Cryptosporidium parvum is a zoonotic parasitic protozoan that can infect a variety of animals and humans and is transmitted between hosts via oocysts. The oocyst wall provides strong protection against hostile environmental factors; however, research is limited concerning the oocyst wall at the proteomic level. Methods A comprehensive analysis of the proteome of oocyst wall of C. parvum was performed using label-free qualitative high-performance liquid chromatography (HPLC) fractionation and mass spectrometry-based qualitative proteomics technologies. Among the identified proteins, a surface protein (CpSP1) encoded by the C. parvum cgd7_5140 (Cpcgd7_5140) gene was predicted to be located on the surface of the oocyst wall. We preliminarily characterized the sequence and subcellular localization of CpSP1. Results A total of 798 proteins were identified, accounting for about 20% of the CryptoDB proteome. By using bioinformatic analysis, functional annotation and subcellular localization of the identified proteins were examined for better understanding of the characteristics of the oocyst wall. To verify the localization of CpSP1, an indirect immunofluorescent antibody assay demonstrated that the protein was localized on the surface of the oocyst wall, illustrating the potential usage as a marker for C. parvum detection in vitro. Conclusion The results provide a global framework about the proteomic composition of the Cryptosporidium oocyst wall, thereby providing a theoretical basis for further study of Cryptosporidium oocyst wall formation as well as the selection of targets for Cryptosporidium detection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05448-8.
Collapse
Affiliation(s)
- Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Yuexin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Dongfang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China. .,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China. .,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China.
| |
Collapse
|
118
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
119
|
Doménech E, Martorell S, Kombo-Mpindou GOM, Macián-Cervera J, Escuder-Bueno I. Risk assessment of Cryptosporidium intake in drinking water treatment plant by a combination of predictive models and event-tree and fault-tree techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156500. [PMID: 35675884 DOI: 10.1016/j.scitotenv.2022.156500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Risk-informed decision making permits a more effective water safety management. In this framework, this article introduces the rationale and proposes a new approach to carry out a quantitative risk assessment along the water chain, from river source to tap water, by integrating predictive modelling combined with event-tree and fault-tree techniques. The model developed by this approach could not only account for normal but also for abnormal process conditions in the water treatment plant, as well as assess the real impact of the applied safety controls, such as turbidity control. A sensitivity study was conducted to determine the effect of considering a typical drinking water treatment plant (DWTP), i.e. coagulation, sedimentation and filtration with two turbidity controls (on intake and after filtration) on the risk of infection due to exposure to Cryptosporidium in tap water. The results showed that, with the current effectiveness of turbidity reduction in the DWTP, the first control did not minimise the annual risk of Cryptosporidium infection (3.6E-04) and only limiting turbidity after filtration to below 0.01NTU provided a clear reduction in risk (7.7E-05) at the cost of rejecting 60 % of the water after the control. The lowest risk was found when turbidity reduction was set at 4 logs (8.48E-06), although this means that the effectiveness of turbidity reduction should be greatly improved. It was therefore concluded that supplementing the current treatment with alternative barriers such as UV or ozone disinfection and/or implementing direct control of Cryptosporidium concentration should be considered.
Collapse
Affiliation(s)
- E Doménech
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Department of Food Technology (DTA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - S Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - G O M Kombo-Mpindou
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - J Macián-Cervera
- Global Omnium, Gran Vïa Marqués del Turia, 19, 46005 València, Spain.
| | - I Escuder-Bueno
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
120
|
Kapulu MC, Nakakana U, Sciré AS, Sarakinou E, Conti V, Rossi O, Acquaviva A, Necchi F, Obiero CW, Martin LB, Bejon P, Njuguna P, Micoli F, Podda A. Complement-mediated serum bactericidal activity of antibodies elicited by the Shigella sonnei GMMA vaccine in adults from a shigellosis-endemic country: Exploratory analysis of a Phase 2a randomized study. Front Immunol 2022; 13:971866. [PMID: 36203568 PMCID: PMC9531247 DOI: 10.3389/fimmu.2022.971866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Shigella is associated with a significant burden of disease worldwide among individuals of all ages and is the major cause of moderate and severe diarrhea in children under five years of age in low- and middle-income countries. Several candidate vaccines against Shigella species are currently under clinical development. The investigational 1790GAHB vaccine against Shigella sonnei is based on GMMA (Generalized Modules for Membrane Antigens) technology. The vaccine was well tolerated and induced high antibody levels in early-phase clinical trials in both Shigella-endemic and non-endemic settings. The present analysis assessed the bactericidal activity of antibodies induced by 1790GAHB in healthy Kenyan adults during a phase 2a, controlled, randomized study (NCT02676895). Participants received two doses of 1790GAHB 4 weeks apart containing either 1.5/25 µg or 6/100 µg O antigen/protein, or active comparator vaccines (Control). Serum bactericidal activity (SBA) against S. sonnei was assessed at pre-vaccination (D1), 28 days post-first dose (D29) and 28 days post-second dose (D57), using a luminescence-based assay. Most participants had SBA titers above the lower limit of quantification of the assay at D1. SBA geometric mean titers increased 3.4-fold in the 1.5/25 µg group and 6.3-fold in the 6/100 µg group by D29 and were maintained at D57. There was no increase in SBA geometric mean titers in the Control group. A strong correlation was observed between SBA titers and anti-S. sonnei lipopolysaccharide serum immunoglobulin G antibody concentrations (Pearson correlation coefficient = 0.918), indicating that SBA can effectively complement enzyme-linked immunosorbent assay data by indicating the functionality of 1790GAHB-induced antibodies.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Nakakana
- GSK Vaccines Institute for Global Health, Siena, Italy
- *Correspondence: Usman Nakakana,
| | | | | | | | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | | | | - Philip Bejon
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Patricia Njuguna
- Clinical Research Department, KEMRI-Wellcome Trust Programme, Kilifi, Kenya
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
121
|
Wang T, Wei Z, Zhang Y, Zhang Q, Zhang L, Yu F, Qi M, Zhao W. Molecular detection and genetic characterization of Cryptosporidium in kindergarten children in Southern Xinjiang, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105339. [PMID: 35840104 DOI: 10.1016/j.meegid.2022.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Cryptosporidium is a common cause of diarrhea in children globally. However, there is limited information on the prevalence and genetic characteristics of Cryptosporidium in children in Xinjiang, China. This study aimed to assess the genetic characteristics and epidemiological status of Cryptosporidium in kindergarten children in Southern Xinjiang, China. A total of 609 fecal samples were collected from kindergartners aged 2-6 years from 11 counties in Southern Xinjiang, China. We used nested PCR amplification of the partial SSU rDNA gene to screen samples for Cryptosporidium spp. Isolates containing Cryptosporidium parvum and C. hominis were further subtyped for a gene encoding a 60-kDa glycoprotein (gp60). We used MEGA7 to construct a phylogenetic tree to study the genetic relationship between the gp60 subtypes of these two species via the Maximum Likelihood method based on the Tamura-Nei model. Only 1.3% (8/609) of asymptomatic children were confirmed to be infected with Cryptosporidium, with a 2.0% (6/299) infection rate in boys and 0.6% (2/310) infection rate in girls. Three Cryptosporidium species were identified including C. felis (37.5%; 3/8), C. hominis (37.5%; 3/8), and C. parvum (25.0%; 2/8). Three C. hominis subtypes (IbA9G3, IdA14, and IfA12G1) and two C. parvum subtypes (IIdA14G1 and IIdA15G1) were also found. This study is the first to identify the presence of Cryptosporidium in kindergarten children in Southern Xinjiang, China. The presence of zoonotic C. parvum subtypes IIdA14G1 and IIdA15G1 indicates the possible cross-species transmission of Cryptosporidium between children and animals.
Collapse
Affiliation(s)
- Tian Wang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, PR China
| | - Zilin Wei
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, PR China
| | - Ying Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, PR China
| | - Qiyuan Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, PR China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, PR China.
| | - Wei Zhao
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
122
|
Upadhyay I, Lauder KL, Li S, Ptacek G, Zhang W. Intramuscularly Administered Enterotoxigenic Escherichia coli (ETEC) Vaccine Candidate MecVax Prevented H10407 Intestinal Colonization in an Adult Rabbit Colonization Model. Microbiol Spectr 2022; 10:e0147322. [PMID: 35762781 PMCID: PMC9431210 DOI: 10.1128/spectrum.01473-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Currently, there are no vaccines licensed for enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea in developing countries and the most common cause of travelers' diarrhea. A vaccine preventing ETEC bacteria from colonization at small intestines and neutralizing enterotoxin toxicity is expected to be effective against ETEC diarrhea. Protein-based multivalent vaccine candidate MecVax was demonstrated recently to induce antibodies neutralizing heat-labile toxin (LT) and heat-stable toxin (STa) enterotoxicity and inhibiting adherence of seven ETEC adhesins (CFA/I, CS1 to CS6) but also to protect against ETEC toxin-mediated clinical diarrhea in a pig challenge model. To further evaluate MecVax preclinical efficacy against ETEC colonization at small intestines, in this study, we intramuscularly immunized adult rabbits with MecVax, challenged rabbits with ETEC strain H10407 (CFA/I, LT, STa), and examined prevention of bacteria intestinal colonization. Data showed that rabbits immunized with MecVax developed antibodies to both ETEC toxins (LT, STa) and seven adhesins (CFA/I, CS1 to CS6) and had over 99.9% reduction of H10407 intestinal colonization, indicating that the broadly immunogenic ETEC vaccine candidate MecVax is protective against ETEC H10407 intestinal colonization. This study also confirmed that parenteral administration of a protein-based vaccine can prevent bacteria intestinal colonization. Protection against ETEC intestinal colonization demonstrated by this rabbit study, in conjugation with protection against ETEC enterotoxin-mediated clinical diarrhea from a previous pig challenge study, suggested that MecVax can potentially be an effective ETEC vaccine and a combined pig and rabbit challenge model can evaluate ETEC vaccine preclinical efficacy. IMPORTANCE An effective ETEC vaccine would prevent hundreds of millions of diarrhea clinical cases and save nearly 100,000 lives annually. MecVax, a protein-based injectable multivalent ETEC vaccine candidate, has been shown for the first time to induce functional antibodies against both ETEC enterotoxins (STa, LT) produced by all ETEC strains and seven ETEC adhesins (CFA/I, CS1 to CS6) expressed by ETEC strains causing a majority of ETEC diarrhea clinical cases and the moderate-to-severe cases. Moreover, MecVax was demonstrated to protect against ETEC STa or LT toxin-mediated diarrhea in a pig model. If it also protects against ETEC intestinal colonization, MecVax can be validated as an effective ETEC vaccine candidate. This adult rabbit colonization model study showed that intramuscular administration of MecVax effectively prevented intestinal colonization by H10407, perhaps the most virulent ETEC strain, affirming MecVax vaccine candidacy and accelerating vaccine development against ETEC children's diarrhea and travelers' diarrhea.
Collapse
Affiliation(s)
- Ipshita Upadhyay
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Kathryn L. Lauder
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Siqi Li
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Galen Ptacek
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
123
|
Bernshtein B, Ndungo E, Cizmeci D, Xu P, Kováč P, Kelly M, Islam D, Ryan ET, Kotloff KL, Pasetti MF, Alter G. Systems approach to define humoral correlates of immunity to Shigella. Cell Rep 2022; 40:111216. [PMID: 35977496 PMCID: PMC9396529 DOI: 10.1016/j.celrep.2022.111216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Shigella infection is the second leading cause of death due to diarrheal disease in young children worldwide. With the rise of antibiotic resistance, initiatives to design and deploy a safe and effective Shigella vaccine are urgently needed. However, efforts to date have been hindered by the limited understanding of immunological correlates of protection against shigellosis. We applied systems serology to perform a comprehensive analysis of Shigella-specific antibody responses in sera obtained from volunteers before and after experimental infection with S. flexneri 2a in a series of controlled human challenge studies. Polysaccharide-specific antibody responses are infrequent prior to infection and evolve concomitantly with disease severity. In contrast, pre-existing antibody responses to type 3 secretion system proteins, particularly IpaB, consistently associate with clinical protection from disease. Linked to particular Fc-receptor binding patterns, IpaB-specific antibodies leverage neutrophils and monocytes, and complement and strongly associate with protective immunity. IpaB antibody-mediated functions improve with a subsequent rechallenge resulting in complete clinical protection. Collectively, our systems serological analyses indicate protein-specific functional correlates of immunity against Shigella in humans. Serological profiling of Shigella human challenge studies indicates protective markers Pre-existing IpaB-specific functional antibodies associate with less severe disease OPS immune responses post challenge are linked to less severe disease Shigella rechallenge boosts IpaB but not OPS functional antibody responses
Collapse
Affiliation(s)
| | - Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dilara Islam
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Galit Alter
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
124
|
Yang L, Shi S, Na C, Li B, Zhao Z, Yang T, Yao Y. Rotavirus and Norovirus Infections in Children Under 5 Years Old with Acute Gastroenteritis in Southwestern China, 2018-2020. J Epidemiol Glob Health 2022; 12:292-303. [PMID: 35857268 PMCID: PMC9297278 DOI: 10.1007/s44197-022-00050-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Rotaviruses and noroviruses are important causes of acute gastroenteritis in children. While previous studies in China have mainly focused on rotavirus, we investigated the incidence of norovirus in addition to rotavirus in Southwestern China. METHODS From January 2018 to December 2020, cases of rotavirus or norovirus infections among children under five ages with acute gastroenteritis were evaluated retrospectively. RESULTS The detection rate of rotavirus was 24.5% (27,237/111,070) and norovirus was 26.1% (4649/17,797). Among 17,113 cases submitted for dual testing of both rotavirus and norovirus, mixed rotavirus/norovirus infections were detected in 5.0% (859/17,113) of cases. While there was no difference in norovirus incidence in outpatient compared to hospitalized cases, rotavirus was detected two times more in outpatients compared to hospitalized cases (26.6% vs.13.6%; P < 0.001). Both rotavirus and norovirus infections peaked in children aged 12-18 months seeking medical care with acute gastroenteritis (35.6% rotavirus cases; 8439/23,728 and 32.5% norovirus cases; 1660/5107). Rotavirus infections were frequent between December and March of each year while norovirus was detected earlier from October to December. Our results showed significant correlation between virus detection and environmental factors such as average monthly temperature but not relative humidity. In addition, we observed a reduction in the detection rates of rotavirus and norovirus at the beginning of the SARS-CoV-2 pandemic in 2020. CONCLUSION Our results indicate that rotavirus and norovirus are still important viral agents in pediatric acute gastroenteritis in Southwestern China.
Collapse
Affiliation(s)
- Longyu Yang
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China
| | - Shulan Shi
- Institute of Pediatrics, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650228, People's Republic of China
| | - Chen Na
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, People's Republic of China
| | - Bai Li
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhimei Zhao
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China
| | - Tao Yang
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, People's Republic of China.
| | - Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research & Development On Severe Infectious Disease, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, People's Republic of China.
| |
Collapse
|
125
|
Lambrecht NJ, Bridges D, Wilson ML, Adu B, Eisenberg JNS, Folson G, Baylin A, Jones AD. Associations of bacterial enteropathogens with systemic inflammation, iron deficiency, and anemia in preschool-age children in southern Ghana. PLoS One 2022; 17:e0271099. [PMID: 35802561 PMCID: PMC9269377 DOI: 10.1371/journal.pone.0271099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Anemia remains a pervasive public health problem among preschool-age children in Ghana. Recent analyses have found that anemia in Ghanaian children, particularly in Southern regions, is largely attributable to infectious causes, rather than nutritional factors. Infections with enteropathogens can reduce iron absorption and increase systemic inflammation, but few studies have examined direct links between enteropathogens and anemia. This study investigated associations between detection of individual bacterial enteropathogens and systemic inflammation, iron deficiency, and anemia among 6- to 59-month-old children in Greater Accra, Ghana. Serum samples were analyzed from a cross-sectional sample of 262 children for concentrations of hemoglobin (Hb), biomarkers of systemic inflammation [C-reactive protein (CRP) and α-1-acid glycoprotein (AGP)], and biomarkers of iron status [serum ferritin (SF) and serum transferrin receptor (sTfR)]. Stool samples were analyzed for ten bacterial enteropathogens using qPCR. We estimated associations between presence of each enteropathogen and elevated systemic inflammation (CRP > 5 mg/L and AGP > 1 g/L), iron deficiency (SF < 12 μg/L and sTfR > 8.3 mg/L) and anemia (Hb < 110 g/L). Enteropathogens were detected in 87% of children’s stool despite a low prevalence of diarrhea (6.5%). Almost half (46%) of children had anemia while one-quarter (24%) had iron deficiency (low SF). Despite finding no associations with illness symptoms, Campylobacter jejuni/coli detection was strongly associated with elevated CRP [Odds Ratio (95% CI): 3.49 (1.45, 8.41)] and elevated AGP [4.27 (1.85, 9.84)]. Of the pathogens examined, only enteroinvasive Escherichia coli/Shigella spp. (EIEC/Shigella) was associated with iron deficiency, and enteroaggregative Escherichia coli (EAEC) [1.69 (1.01, 2.84)] and EIEC/Shigella [2.34 (1.15, 4.76)] were associated with anemia. These results suggest that certain enteroinvasive pathogenic bacteria may contribute to child anemia. Reducing exposure to enteropathogens through improved water, sanitation, and hygiene practices may help reduce the burden of anemia in young Ghanaian children.
Collapse
Affiliation(s)
- Nathalie J. Lambrecht
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Public Health, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- * E-mail:
| | - Dave Bridges
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mark L. Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gloria Folson
- Department of Nutrition, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ana Baylin
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew D. Jones
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
126
|
Hartman RM, Cohen AL, Antoni S, Mwenda J, Weldegebriel G, Biey J, Shaba K, de Oliveira L, Rey G, Ortiz C, Tereza M, Fahmy K, Ghoniem A, Ashmony H, Videbaek D, Singh S, Tondo E, Sharifuzzaman M, Liyanage J, Batmunkh N, Grabovac V, Logronio J, Serhan F, Nakamura T. Risk Factors for Mortality Among Children Younger Than Age 5 Years With Severe Diarrhea in Low- and Middle-income Countries: Findings From the World Health Organization-coordinated Global Rotavirus and Pediatric Diarrhea Surveillance Networks. Clin Infect Dis 2022; 76:e1047-e1053. [PMID: 35797157 PMCID: PMC9907489 DOI: 10.1093/cid/ciac561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diarrhea is the second leading cause of death in children younger than 5 years of age globally. The burden of diarrheal mortality is concentrated in low-resource settings. Little is known about the risk factors for childhood death from diarrheal disease in low- and middle-income countries. METHODS Data from the World Health Organization (WHO)-coordinated Global Rotavirus and Pediatric Diarrhea Surveillance Networks, which are composed of active, sentinel, hospital-based surveillance sites, were analyzed to assess mortality in children <5 years of age who were hospitalized with diarrhea between 2008 and 2018. Case fatality risks were calculated, and multivariable logistic regression was performed to identify risk factors for mortality. RESULTS This analysis comprises 234 781 cases, including 1219 deaths, across 57 countries. The overall case fatality risk was found to be 0.5%. Risk factors for death in the multivariable analysis included younger age (for <6 months compared with older ages, odds ratio [OR] = 3.54; 95% confidence interval [CI], 2.81-4.50), female sex (OR = 1.18; 95% CI, 1.06-1.81), presenting with persistent diarrhea (OR = 1.91; 95% CI, 1.01-3.25), no vomiting (OR = 1.13; 95% CI, .98-1.30), severe dehydration (OR = 3.79; 95% CI, 3.01-4.83), and being negative for rotavirus on an enzyme-linked immunosorbent assay test (OR = 2.29; 95% CI, 1.92-2.74). Cases from the African Region had the highest odds of death compared with other WHO regions (OR = 130.62 comparing the African Region with the European Region; 95% CI, 55.72-422.73), whereas cases from the European Region had the lowest odds of death. CONCLUSIONS Our findings support known risk factors for childhood diarrheal mortality and highlight the need for interventions to address dehydration and rotavirus-negative diarrheal infections.
Collapse
Affiliation(s)
- Rachel M Hartman
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Adam L Cohen
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Sebastien Antoni
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Jason Mwenda
- Department of Vaccine Preventable Diseases Program, World Health Organization Regional Office for Africa, Brazzaville, Congo Republic
| | - Goitom Weldegebriel
- Department of Immunization, Vaccines and Biologicals, World Health Organization Regional Office for Africa, Inter-Support Team for East and South Africa, Harare, Zimbabwe
| | - Joseph Biey
- Department of Vaccine Preventable Diseases, World Health Organization Regional Office for Africa, Inter-Support Team for West Africa, Ouagadougou, Burkina Faso
| | - Keith Shaba
- Department of Vaccine Preventable Diseases Program, World Health Organization Regional Office for Africa, Brazzaville, Congo Republic
| | - Lucia de Oliveira
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Gloria Rey
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Claudia Ortiz
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Maria Tereza
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Kamal Fahmy
- Department of Communicable Diseases, Immunization, Vaccines and Biologicals Unit, World Health Organization Eastern Mediterranean Office, Cairo, Egypt
| | - Amany Ghoniem
- Department of Communicable Diseases, Immunization, Vaccines and Biologicals Unit, World Health Organization Eastern Mediterranean Office, Cairo, Egypt
| | - Hossam Ashmony
- Department of Communicable Diseases, Immunization, Vaccines and Biologicals Unit, World Health Organization Eastern Mediterranean Office, Cairo, Egypt
| | - Dovile Videbaek
- Division of Country Health Programmes, Vaccine-Preventable Diseases and Immunization Unit, World Health Organization European Regional Office, Copenhagen, Denmark
| | - Simarjit Singh
- Division of Country Health Programmes, Vaccine-Preventable Diseases and Immunization Unit, World Health Organization European Regional Office, Copenhagen, Denmark
| | - Emmanuel Tondo
- Department of Immunization and Vaccine Development, World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Mohammed Sharifuzzaman
- Department of Immunization and Vaccine Development, World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Jayantha Liyanage
- Department of Immunization and Vaccine Development, World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Nyambat Batmunkh
- Division of Programmes for Diseases Control, Vaccine Preventable Diseases and Immunization, World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - Varja Grabovac
- Division of Programmes for Diseases Control, Vaccine Preventable Diseases and Immunization, World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - Josephine Logronio
- Division of Programmes for Diseases Control, Vaccine Preventable Diseases and Immunization, World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - Fatima Serhan
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Tomoka Nakamura
- Correspondence: T. Nakamura, Department of Immunization, Vaccines and Biologicals, World Health Organization, WHO Headquarters, Avenue Appia 20, 1211, Geneva, Switzerland ()
| |
Collapse
|
127
|
Lindmark M, Cherukumilli K, Crider YS, Marcenac P, Lozier M, Voth-Gaeddert L, Lantagne DS, Mihelcic JR, Zhang QM, Just C, Pickering AJ. Passive In-Line Chlorination for Drinking Water Disinfection: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9164-9181. [PMID: 35700262 PMCID: PMC9261193 DOI: 10.1021/acs.est.1c08580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The world is not on track to meet Sustainable Development Goal 6.1 to provide universal access to safely managed drinking water by 2030. Removal of priority microbial contaminants by disinfection is one aspect of ensuring water is safely managed. Passive chlorination (also called in-line chlorination) represents one approach to disinfecting drinking water before or at the point of collection (POC), without requiring daily user input or electricity. In contrast to manual household chlorination methods typically implemented at the point of use (POU), passive chlorinators can reduce the user burden for chlorine dosing and enable treatment at scales ranging from communities to small municipalities. In this review, we synthesized evidence from 27 evaluations of passive chlorinators (in 19 articles, 3 NGO reports, and 5 theses) conducted across 16 countries in communities, schools, health care facilities, and refugee camps. Of the 27 passive chlorinators we identified, the majority (22/27) were solid tablet or granular chlorine dosers, and the remaining devices were liquid chlorine dosers. We identified the following research priorities to address existing barriers to scaled deployment of passive chlorinators: (i) strengthening local chlorine supply chains through decentralized liquid chlorine production, (ii) validating context-specific business models and financial sustainability, (iii) leveraging remote monitoring and sensing tools to monitor real-time chlorine levels and potential system failures, and (iv) designing handpump-compatible passive chlorinators to serve the many communities reliant on handpumps as a primary drinking water source. We also propose a set of reporting indicators for future studies to facilitate standardized evaluations of the technical performance and financial sustainability of passive chlorinators. In addition, we discuss the limitations of chlorine-based disinfection and recognize the importance of addressing chemical contamination in drinking water supplies. Passive chlorinators deployed and managed at-scale have the potential to elevate the quality of existing accessible and available water services to meet "safely managed" requirements.
Collapse
Affiliation(s)
- Megan Lindmark
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242-1396, United States
| | - Katya Cherukumilli
- Department
of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720-2284, United States
| | - Yoshika S. Crider
- Energy
& Resources Group, University of California
Berkeley, Berkeley, California 94720-2284, United States
- Division
of Epidemiology & Biostatistics, University
of California Berkeley, Berkeley, California 94720-2284, United States
- King
Center on Global Development, Stanford University, Stanford, California 94305-2004, United States
| | - Perrine Marcenac
- National
Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Matthew Lozier
- National
Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Lee Voth-Gaeddert
- National
Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
- SAMRC/WITS
Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Daniele S. Lantagne
- Tufts
University School of Engineering, Medford, Massachusetts 02155-1012, United States
| | - James R. Mihelcic
- Department
of Civil and Environmental Engineering, University of South Florida, Tampa, Florida 33620-5350, United States
| | - Qianjin Marina Zhang
- Lichtenberger
Engineering Library, University of Iowa, Iowa City, Iowa 52242-1396, United States
| | - Craig Just
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242-1396, United States
| | - Amy J. Pickering
- Department
of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720-2284, United States
- Blum
Center for Developing Economies, University
of California Berkeley, Berkeley, California 94720-2284, United States
| |
Collapse
|
128
|
Human enteric adenovirus F40/41 as a major cause of acute gastroenteritis in children in Brazil, 2018 to 2020. Sci Rep 2022; 12:11220. [PMID: 35780169 PMCID: PMC9250496 DOI: 10.1038/s41598-022-15413-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Human adenovirus (HAdV) types F40/41 have long been recognized as major viral agents of acute gastroenteritis (AGE) in children. Despite this, studies on HAdV molecular epidemiology are sparse, and their real impact is likely under-estimated. Thus, our goal was to investigate HAdV incidence, enteric and non-enteric types circulation, co-detections with rotavirus and norovirus and DNA shedding in stool samples from inpatients and outpatients from eleven Brazilian states. During the three-year study, 1012 AGE stool samples were analysed by TaqMan-based qPCR, to detect and quantify HAdV. Positive samples were genotyped by partial sequencing of the hexon gene followed by phylogenetic analysis. Co-detections were accessed by screening for rotavirus and norovirus. Overall, we detected HAdV in 24.5% of single-detected samples (n = 248), with a prevalence of type F41 (35.8%). We observed a higher incidence in children between 6 to 24 months, without marked seasonality. Additionally, we observed a statistically higher median viral load among single-detections between enteric and non-enteric types and a significantly lower HAdV viral load compared to rotavirus and norovirus in co-detections (p < 0.0001). Our study contributes to the knowledge of HAdV epidemiology and reinforces the need for the inclusion of enteric types F40/41 in molecular surveillance programs.
Collapse
|
129
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
130
|
Wandera EA, Muriithi B, Kathiiko C, Mutunga F, Wachira M, Mumo M, Mwangi A, Tinkoi J, Meiguran M, Akumu P, Ndege V, Kasiku F, Ang'awa J, Mozichuki R, Kaneko S, Morita K, Ouma C, Ichinose Y. Impact of integrated water, sanitation, hygiene, health and nutritional interventions on diarrhoea disease epidemiology and microbial quality of water in a resource-constrained setting in Kenya: A controlled intervention study. Trop Med Int Health 2022; 27:669-677. [PMID: 35700209 PMCID: PMC9541685 DOI: 10.1111/tmi.13793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives We assessed the impact of water, hygiene and sanitation (WASH), maternal, new‐born and child health (MNCH), nutrition and early childhood development (ECD) on diarrhoea and microbial quality of water in a resource‐constrained rural setting in Kenya. Methods Through a controlled intervention study, we tested faecal and water samples collected from both the intervention and control sites before and after the interventions using microbiological, immunological and molecular assays to determine the prevalence of diarrhoeagenic agents and microbial quality of water. Data from the hospital registers were used to estimate all‐cause diarrhoea prevalence. Results After the interventions, we observed a 58.2% (95% CI: 39.4–75.3) decline in all‐cause diarrhoea in the intervention site versus a 22.2% (95% CI: 5.9–49.4) reduction of the same in the control site. Besides rotavirus and pathogenic Escherichia coli, the rate of isolation of other diarrhoea‐causing bacteria declined substantially in the intervention site. The microbial quality of community and household water improved considerably in both the intervention (81.9%; 95% CI: 74.5%–87.8%) and control (72.5%; 95% CI: 64.2%–80.5%) sites with the relative improvements in the intervention site being slightly larger. Conclusions The integrated WASH, MNCH, nutrition and ECD interventions resulted in notable decline in all‐cause diarrhoea and improvements in water quality in the rural resource‐limited population in Kenya. This indicates a direct public health impact of the interventions and provides early evidence for public health policy makers to support the sustained implementation of these interventions.
Collapse
Affiliation(s)
- Ernest Apondi Wandera
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Betty Muriithi
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| | - Cyrus Kathiiko
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| | - Felix Mutunga
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| | - Mary Wachira
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| | - Maurine Mumo
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| | - Anne Mwangi
- Department of Health and Nutrition, World Vision Kenya, Nairobi, Kenya
| | - Joseph Tinkoi
- Department of Health and Nutrition, World Vision Kenya, Nairobi, Kenya
| | - Mirasine Meiguran
- Department of Health and Nutrition, World Vision Kenya, Nairobi, Kenya
| | - Pius Akumu
- Department of Health and Nutrition, World Vision Kenya, Nairobi, Kenya
| | - Valeria Ndege
- Department of Health and Nutrition, World Vision Kenya, Nairobi, Kenya
| | - Fredrick Kasiku
- Department of Health and Nutrition, World Vision Kenya, Nairobi, Kenya
| | - James Ang'awa
- Department of Health and Nutrition, World Vision Kenya, Nairobi, Kenya
| | | | - Satoshi Kaneko
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| | - Kouichi Morita
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kenya
| | - Yoshio Ichinose
- Institute of Tropical Medicine, Nagasaki University-Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
131
|
Shaaban FL, Kabatereine NB, Chami GF. Diarrhoeal outcomes in young children depend on diarrhoeal cases of other household members: a cross-sectional study of 16,025 people in rural Uganda. BMC Infect Dis 2022; 22:484. [PMID: 35597899 PMCID: PMC9123767 DOI: 10.1186/s12879-022-07468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND There is a limited understanding of how diarrhoeal cases across other household members influence the likelihood of diarrhoea in young children (aged 1-4 years). METHODS We surveyed 16,025 individuals from 3421 households in 17 villages in Uganda. Using logistic regressions with standard errors clustered by household, diarrhoeal cases within households were used to predict diarrhoeal outcomes in young children. Regressions were adjusted for socio-demographic, water, sanitation, and hygiene (WASH), and ecological covariates. Selection bias for households with (1632/3421) and without (1789/3421) young children was examined. RESULTS Diarrhoeal prevalence was 13.7% (2118/16,025) across all study participants and 18.5% (439/2368) in young children. Young children in households with any other diarrhoeal cases were 5.71 times more likely to have diarrhoea than young children in households without any other diarrhoeal cases (95% CI: 4.48-7.26), increasing to over 29 times more likely when the other diarrhoeal case was in another young child (95% CI: 16.29-54.80). Diarrhoeal cases in older household members (aged ≥ 5 years) and their influence on the likelihood of diarrhoea in young children attenuated with age. School-aged children (5-14 years) had a greater influence on diarrhoeal cases in young children (Odds Ratio 2.70, 95% CI: 2.03-3.56) than adults of reproductive age (15-49 years; Odds Ratio 1.96, 95% CI: 1.47-2.59). Diarrhoeal cases in individuals aged ≥ 50 years were not significantly associated with diarrhoeal outcomes in young children (P > 0.05). These age-related differences in diarrhoeal exposures were not driven by sex. The magnitude and significance of the odds ratios remained similar when odds ratios were compared by sex within each age group. WASH factors did not influence the likelihood of diarrhoea in young children, despite influencing the likelihood of diarrhoea in school-aged children and adults. Households with young children differed from households without young children by diarrhoeal prevalence, household size, and village WASH infrastructure and ecology. CONCLUSIONS Other diarrhoeal cases within households strongly influence the likelihood of diarrhoea in young children, and when controlled, removed the influence of WASH factors. Future research on childhood diarrhoea should consider effects of diarrhoeal cases within households and explore pathogen transmission between household members.
Collapse
Affiliation(s)
- Farina L Shaaban
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Narcis B Kabatereine
- Division of Vector Borne Diseases and Neglected Tropical Diseases, Ministry of Health, Kampala, Uganda
| | - Goylette F Chami
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
132
|
Guga G, Elwood S, Kimathi C, Kang G, Kosek MN, Lima AA, Bessong PO, Samie A, Haque R, Leite JP, Bodhidatta L, Iqbal N, Page N, Kiwelu I, Bhutta ZA, Ahmed T, Liu J, Rogawski McQuade ET, Houpt E, Platts-Mills JA, Mduma ER. Burden, clinical characteristics, risk factors, and seasonality of adenovirus 40/41 diarrhea in children in eight low-resource settings. Open Forum Infect Dis 2022; 9:ofac241. [PMID: 35854993 PMCID: PMC9277636 DOI: 10.1093/ofid/ofac241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The application of molecular diagnostics has identified enteric group adenovirus serotypes 40 and 41 as important causes of diarrhea in children. However, many aspects of the epidemiology of adenovirus 40/41 diarrhea have not been described. Methods We used data from the 8-site Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project birth cohort study to describe site- and age-specific incidence, risk factors, clinical characteristics, and seasonality. Results The incidence of adenovirus 40/41 diarrhea was substantially higher by quantitative polymerase chain reaction than enzyme immunoassay and peaked at ∼30 episodes per 100 child-years in children aged 7–15 months, with substantial variation in incidence between sites. A significant burden was also seen in children 0–6 months of age, higher than other viral etiologies with the exception of rotavirus. Children with adenovirus 40/41 diarrhea were more likely to have a fever than children with norovirus, sapovirus, and astrovirus (adjusted odds ratio [aOR], 1.62; 95% CI, 1.16–2.26) but less likely than children with rotavirus (aOR, 0.66; 95% CI, 0.49–0.91). Exclusive breastfeeding was strongly protective against adenovirus 40/41 diarrhea (hazard ratio, 0.64; 95% CI, 0.48–0.85), but no other risk factors were identified. The seasonality of adenovirus 40/41 diarrhea varied substantially between sites and did not have clear associations with seasonal variations in temperature or rainfall. Conclusions This study supports the situation of adenovirus 40/41 as a pathogen of substantial importance, especially in infants. Fever was a distinguishing characteristic in comparison to other nonrotavirus viral etiologies, and promotion of exclusive breastfeeding may reduce the high observed burden in the first 6 months of life.
Collapse
Affiliation(s)
- Godfrey Guga
- Haydom Global Health Research Centre, Haydom, Tanzania
| | - Sarah Elwood
- Haydom Global Health Research Centre, Haydom, Tanzania
| | | | | | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- Asociación Benéfica PRISMA, Iquitos, Peru
| | | | | | | | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Ladaporn Bodhidatta
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Nicola Page
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Ireen Kiwelu
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- School of Public Health, Qingdao University, Shandong, China
| | | | - Eric Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - James A. Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
133
|
Keddy KH, Saha S, Kariuki S, Kalule JB, Qamar FN, Haq Z, Okeke IN. Using big data and mobile health to manage diarrhoeal disease in children in low-income and middle-income countries: societal barriers and ethical implications. THE LANCET INFECTIOUS DISEASES 2022; 22:e130-e142. [DOI: 10.1016/s1473-3099(21)00585-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022]
|
134
|
Epidemiology of Campylobacter spp. isolated from stool in a tertiary hospital in Cantabria, Northern Spain, from 2016 to 2020. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
135
|
van
der Put RMF, Smitsman C, de Haan A, Hamzink M, Timmermans H, Uittenbogaard J, Westdijk J, Stork M, Ophorst O, Thouron F, Guerreiro C, Sansonetti PJ, Phalipon A, Mulard LA. The First-in-Human Synthetic Glycan-Based Conjugate Vaccine Candidate against Shigella. ACS CENTRAL SCIENCE 2022; 8:449-460. [PMID: 35559427 PMCID: PMC9088300 DOI: 10.1021/acscentsci.1c01479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/12/2023]
Abstract
Shigella, the causative agent of shigellosis, is among the main causes of diarrheal diseases with still a high morbidity in low-income countries. Relying on chemical synthesis, we implemented a multidisciplinary strategy to design SF2a-TT15, an original glycoconjugate vaccine candidate targeting Shigella flexneri 2a (SF2a). Whereas the SF2a O-antigen features nonstoichiometric O-acetylation, SF2a-TT15 is made of a synthetic 15mer oligosaccharide, corresponding to three non-O-acetylated repeats, linked at its reducing end to tetanus toxoid by means of a thiol-maleimide spacer. We report on the scale-up feasibility under GMP conditions of a high yielding bioconjugation process established to ensure a reproducible and controllable glycan/protein ratio. Preclinical and clinical batches complying with specifications from ICH guidelines, WHO recommendations for polysaccharide conjugate vaccines, and (non)compendial tests were produced. The obtained SF2a-TT15 vaccine candidate passed all toxicity-related criteria, was immunogenic in rabbits, and elicited bactericidal antibodies in mice. Remarkably, the induced IgG antibodies recognized a large panel of SF2a circulating strains. These preclinical data have paved the way forward to the first-in-human study for SF2a-TT15, demonstrating safety and immunogenicity. This contribution discloses the yet unreported feasibility of the GMP synthesis of conjugate vaccines featuring a unique homogeneous synthetic glycan hapten fine-tuned to protect against an infectious disease.
Collapse
Affiliation(s)
| | | | - Alex de Haan
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Martin Hamzink
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | | | | | - Janny Westdijk
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michiel Stork
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Olga Ophorst
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Françoise Thouron
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Catherine Guerreiro
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Philippe J. Sansonetti
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
- Chaire
de Microbiologie et Maladies Infectieuses, Collège de France, 11, place Marcelin Berthelot, 75005 Paris, France
| | - Armelle Phalipon
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Laurence A. Mulard
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
136
|
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses 2022; 14:875. [PMID: 35632617 PMCID: PMC9143449 DOI: 10.3390/v14050875] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.
Collapse
Affiliation(s)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
137
|
Brennhofer SA, Platts-Mills JA, Lewnard JA, Liu J, Houpt ER, Rogawski McQuade ET. Antibiotic use attributable to specific aetiologies of diarrhoea in children under 2 years of age in low-resource settings: a secondary analysis of the MAL-ED birth cohort. BMJ Open 2022; 12:e058740. [PMID: 35365541 PMCID: PMC8977746 DOI: 10.1136/bmjopen-2021-058740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To quantify the frequency of antibiotic treatments attributable to specific enteric pathogens due to the treatment of diarrhoea among children in the first 2 years of life in low-resource settings. DESIGN Secondary analysis of a longitudinal birth cohort study, Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED). SETTING This study was conducted at eight sites in Bangladesh, Brazil, India, Nepal, Peru, Pakistan, South Africa and Tanzania. PARTICIPANTS We analysed 9392 reported diarrhoea episodes, including 6677 with molecular diagnostic test results, as well as 31 408 non-diarrhoeal stools from 1715 children aged 0-2 years with 2 years of complete follow-up data. PRIMARY AND SECONDARY OUTCOME MEASURES We estimated incidence rates and the proportions of antibiotic use for diarrhoea and for all indications attributable to the top 10 aetiologies of diarrhoea. We estimated associations between specific aetiologies and antibiotic treatment, and assessed whether clinical characteristics of the diarrhoea episodes mediated these relationships. RESULTS Shigella and rotavirus were the leading causes of antibiotic treatment, responsible for 11.7% and 8.6% of diarrhoea treatments and 14.8 and 10.9 courses per 100 child-years, respectively. Shigella and rotavirus-attributable diarrhoea episodes were 46% (RR: 1.46; 95% CI: 1.33 to 1.60), and 19% (RR: 1.19; 95% CI: 1.09 to 1.31) more likely to be treated with antibiotics, respectively, compared with other aetiologies. Considering antibiotic uses for all indications, these two pathogens accounted for 5.6% of all antibiotic courses, 19.3% of all fluoroquinolone courses and 9.5% of all macrolide courses. Among indicated treatments for dysentery, Shigella and Campylobacter jenjui/Campylobacter coli were responsible for 27.5% and 8.5% of treated episodes, respectively. CONCLUSIONS The evidence that Shigella and rotavirus were disproportionately responsible for antibiotic use due to their high burden and severity further strengthens the value of interventions targeted to these pathogens. Interventions against Campylobacter could further prevent a large burden of indicated antibiotic treatment for dysentery, which could not be averted by antibiotic stewardship interventions.
Collapse
Affiliation(s)
- Stephanie A Brennhofer
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Joseph A Lewnard
- Division of Epidemiology, University of California Berkeley, Berkeley, California, USA
| | - Jie Liu
- School of Public Health, Qingdao University, Qingdao, China
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Elizabeth T Rogawski McQuade
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
138
|
Campylobacter diarrhea in children in South Asia: A systematic review. Indian J Med Microbiol 2022; 40:330-336. [DOI: 10.1016/j.ijmmb.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022]
|
139
|
Development of spirulina for the manufacture and oral delivery of protein therapeutics. Nat Biotechnol 2022; 40:956-964. [PMID: 35314813 PMCID: PMC9200632 DOI: 10.1038/s41587-022-01249-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
The use of the edible photosynthetic cyanobacterium Arthrospira platensis (spirulina) as a biomanufacturing platform has been limited by a lack of genetic tools. Here we report genetic engineering methods for stable, high-level expression of bioactive proteins in spirulina, including large-scale, indoor cultivation and downstream processing methods. Following targeted integration of exogenous genes into the spirulina chromosome (chr), encoded protein biopharmaceuticals can represent as much as 15% of total biomass, require no purification before oral delivery and are stable without refrigeration and protected during gastric transit when encapsulated within dry spirulina. Oral delivery of a spirulina-expressed antibody targeting campylobacter-a major cause of infant mortality in the developing world-prevents disease in mice, and a phase 1 clinical trial demonstrated safety for human administration. Spirulina provides an advantageous system for the manufacture of orally delivered therapeutic proteins by combining the safety of a food-based production host with the accessible genetic manipulation and high productivity of microbial platforms.
Collapse
|
140
|
Palit P, Das R, Haque MA, Hasan MM, Noor Z, Mahfuz M, Faruque ASG, Ahmed T. Risk Factors for Norovirus Infections and Their Association with Childhood Growth: Findings from a Multi-Country Birth Cohort Study. Viruses 2022; 14:v14030647. [PMID: 35337054 PMCID: PMC8954848 DOI: 10.3390/v14030647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
The prevalence of norovirus infections in different geographical locations and their attribution to childhood diarrhea is well established. However, there are no reports showing possible relationships of different norovirus genogroups with subsequent childhood malnutrition. In this study, we attempted to establish a potential association between asymptomatic norovirus infections with childhood growth faltering during. Non-diarrheal stools were collected from 1715 children enrolled in locations in a multi-county birth cohort study across eight different geographical locations and were assessed for norovirus genogroup I (GI) and norovirus genogroup II (GII). Asymptomatic norovirus GI infections were negatively associated with monthly length-for-age Z score/LAZ (β = -0.53, 95% CI: -0.73, -0.50) and weight-for-age Z score/WAZ (β = -0.39, 95% CI: -0.49, -0.28), respectively. The burden of asymptomatic norovirus GI infections was negatively associated with LAZ (β = -0.46, 95% CI: -0.67, -0.41) and WAZ (β = -0.66, 95% CI: -0.86, -0.53) at 2 years of age, whilst the burden of asymptomatic norovirus GII infections was negatively associated with WAZ (β = -0.27, 95% CI: -0.45, -0.25) at 2 years of age. Our findings warrant acceleration in attempts to develop vaccines against norovirus GI and norovirus GII, with the aim of minimizing the long-term sequelae on childhood growth.
Collapse
Affiliation(s)
- Parag Palit
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (R.D.); (M.M.H.); (M.M.); (A.S.G.F.); (T.A.)
| | - Rina Das
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (R.D.); (M.M.H.); (M.M.); (A.S.G.F.); (T.A.)
| | - Md. Ahshanul Haque
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (R.D.); (M.M.H.); (M.M.); (A.S.G.F.); (T.A.)
- Correspondence:
| | - Md. Mehedi Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (R.D.); (M.M.H.); (M.M.); (A.S.G.F.); (T.A.)
| | - Zannatun Noor
- Emerging Infections and Parasitology Laboratory, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (R.D.); (M.M.H.); (M.M.); (A.S.G.F.); (T.A.)
- Faculty of Medicine and Life Sciences, University of Tampere, 33100 Tampere, Finland
| | - Abu Syed Golam Faruque
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (R.D.); (M.M.H.); (M.M.); (A.S.G.F.); (T.A.)
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (R.D.); (M.M.H.); (M.M.); (A.S.G.F.); (T.A.)
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
141
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
142
|
McCormick BJJ, Richard SA, Murray-Kolb LE, Kang G, Lima AAM, Mduma E, Kosek MN, Rogawski McQuade ET, Houpt ER, Bessong P, Shrestha S, Bhutta Z, Ahmed T, Caulfield LE. Full breastfeeding protection against common enteric bacteria and viruses: results from the MAL-ED cohort study. Am J Clin Nutr 2022; 115:759-769. [PMID: 34849524 PMCID: PMC8895209 DOI: 10.1093/ajcn/nqab391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breastfeeding is known to reduce the risk of enteropathogen infections, but protection from specific enteropathogens is not well characterized. OBJECTIVE The aim was to estimate the association between full breastfeeding (days fed breast milk exclusively or with nonnutritive liquids) and enteropathogen detection. METHODS A total of 2145 newborns were enrolled at 8 sites, of whom 1712 had breastfeeding and key enteropathogen data through 6 mo. We focused on 11 enteropathogens: adenovirus 40/41, norovirus, sapovirus, astrovirus, and rotavirus, enterotoxigenic Escherichia coli (ETEC), Campylobacter spp., and typical enteropathogenic E. coli as well as entero-aggregative E. coli, Shigella and Cryptosporidium. Logistic regression was used to estimate the risk of enteropathogen detection in stools and survival analysis was used to estimate the timing of first detection of an enteropathogen. RESULTS Infants with 10% more days of full breastfeeding within the preceding 30 d of a stool sample were less likely to have the 3 E. coli and Campylobacter spp. detected in their stool (mean odds: 0.92-0.99) but equally likely (0.99-1.02) to have the viral pathogens detected in their stool. A 10% longer period of full breastfeeding from birth was associated with later first detection of the 3 E. coli, Campylobacter, adenovirus, astrovirus, and rotavirus (mean HRs of 0.52-0.75). The hazards declined and point estimates were not statistically significant at 3 mo. CONCLUSIONS In this large multicenter cohort study, full breastfeeding was associated with lower likelihood of detecting 4 important enteric pathogens in the first 6 mo of life. These results also show that full breastfeeding is related to delays in the first detection of some bacterial and viral pathogens in the stool. As several of these pathogens are risk factors for poor growth during childhood, this work underscores the importance of exclusive or full breastfeeding during the first 6 mo of life to optimize early health.
Collapse
Affiliation(s)
| | - Stephanie A Richard
- Fogarty International Center/National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Eric R Houpt
- University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | - Laura E Caulfield
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
143
|
Ngobeni R, Gilchrist C, Samie A. Prevalence and Distribution of Cryptosporidium spp. and Giardia lamblia in Rural and Urban Communities of South Africa. TURKIYE PARAZITOLOJII DERGISI 2022; 46:14-19. [PMID: 35232700 DOI: 10.4274/tpd.galenos.2021.37039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Enteric diseases remain a serious health problem globally. High prevalence is evident in regions with poor socioeconomic conditions, poor sanitation, and inadequate clean water supply, such as South Africa. Designing an effective strategy, however, requires local knowledge, which can be particularly challenging to acquire in low-and middle-income countries. As the first step in this process, we investigated the prevalence and distribution of protozoan parasites Cryptosporidium and Giardia in the rural and urban gastrointestinal clinics of South Africa. METHODS A cross-sectional study was conducted to assess the prevalence of enteric parasites Cryptosporidium and G. lamblia in rural and urban communities of South Africa. Stool samples were collected from November 2013 to June 2015 from patients with diarrhea (n=227) and without diarrhea (n=257). DNA was extracted and a diagnostic Taqman qPCR assay was performed to detect these protozoan parasites, which was further confirmed by the Sanger sequencing of a few samples. RESULTS Of the 484 stool specimens collected, 34% (166/484) were positive for either Cryptosporidium spp. or Giardia lamblia parasites, with only 5% containing both parasites (22/484). In both study populations, Cryptosporidium was the most prevalent parasite (overall 25%) followed by Giardia (19%). CONCLUSION This study discovered that both Giardia and Cryptosporidium parasites might contribute to diarrheal disease in South Africa and are more prevalent in rural communities. Future studies are needed to identify the source of the infection and design appropriate interventions to reduce the burden of the disease. AMAÇ Enterik hastalıklar küresel olarak ciddi bir sağlık sorunu olmaya devam etmektedir. Güney Afrika gibi düşük sosyo-ekonomik koşulların, kötü sanitasyonun ve yetersiz temiz su kaynaklarının olduğu bölgelerde yüksek prevalans görülmektedir. Ancak etkili bir strateji tasarlamak için, düşük ve orta gelirli ülkelerde edinilmesi özellikle zor olabilecek yerel bir bilgi gerektirmektedir. Bu süreçte biz ilk adım olarak, Güney Afrika’nın kırsal ve kentsel gastrointestinal kliniklerinde protozoan parazitler Cryptosporidium ve Giardia’nın prevalansını ve dağılımını araştırdık. YÖNTEMLER Güney Afrika’nın kırsal ve kentsel topluluklarında Cryptosporidium ve G. lamblia enterik parazitlerinin sıklığını araştırmak için kesitsel bir çalışma yapıldı. İshali olan (n=227) ve olmayan (n=257) hastaların Kasım 2013-Haziran 2015 tarihleri arasında dışkı örnekleri toplandı. DNA ekstrakte edildi ve bu protozoan parazitleri saptamak için tanısal bir Taqman qPCR tahlili kullanılarak, birkaç örnek Sanger dizilimi ile daha da doğrulandı. BULGULAR Toplanan 484 dışkı örneğinin %34’ü (166/484) Cryptosporidium spp. veya Giardia lamblia parazitleri için pozitifti ve örneklerin sadece %5’i her iki paraziti de içeriyordu (22/484). Her iki çalışma popülasyonunda da Cryptosporidium en yaygın parazitti (toplam %25) ve bunu Giardia (%19) izledi. SONUÇ Bu çalışma, hem Giardia hem de Cryptosporidium parazitlerinin Güney Afrika’daki ishal hastalığına katkıda bulunabileceğini ve kırsal topluluklarda daha yaygın olduğunu göstermiştir. Hem enfeksiyonun kaynağını belirlemek hem de hastalığın yükünü azaltmak için uygun müdahaleleri tasarlamak için gelecekteki çalışmalara ihtiyaç vardır.
Collapse
Affiliation(s)
- Renay Ngobeni
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| | | | - Amidou Samie
- Department of Microbiology, University of Venda, Private Bag, Limpopo, South Africa
| |
Collapse
|
144
|
An in silico hierarchal approach for drug candidate mining and validation of natural product inhibitors against pyrimidine biosynthesis enzyme in the antibiotic-resistant Shigella flexneri. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105233. [PMID: 35104682 DOI: 10.1016/j.meegid.2022.105233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Shigella flexneri is the main causative agent of the communicable diarrheal disease, shigellosis. It is estimated that about 80-165 million cases and > 1 million deaths occur every year due to this disease. S. flexneri causes dysentery mostly in young children, elderly and immunocompromised patients, all over the globe. Recently, due to the emergence of S. flexneri antibiotic resistance strains, it is a dire need to predict novel therapeutic drug targets in the bacterium and screen natural products against it, which could eliminate the curse of antibiotic resistance. Therefore, in current study, available antibiotic-resistant genomes (n = 179) of S. flexneri were downloaded from PATRIC database and a pan-genome and resistome analysis was conducted. Around 5059 genes made up the accessory, 2469 genes made up the core, and 1558 genes made up the unique genome fraction, with 44, 34, and 13 antibiotic-resistant genes in each fraction, respectively. Core genome fraction (27% of the pan-genome), which was common to all strains, was used for subtractive genomics and resulted in 384 non-homologous, and 85 druggable targets. Dihydroorotase was chosen for further analysis and docked with natural product libraries (Ayurvedic and Streptomycin compounds), while the control was orotic acid or vitamin B13 (which is a natural binder of this protein). Dynamics simulation of 50 ns was carried out to validate findings for top-scored inhibitors. The current study proposed dihydroorotase as a significant drug target in S. flexneri and 4-tritriacontanone & patupilone compounds as potent drugs against shigellosis. Further experiments are required to ascertain validity of our findings.
Collapse
|
145
|
High Prevalence and Diversity of Caliciviruses in a Community Setting Determined by a Metagenomic Approach. Microbiol Spectr 2022; 10:e0185321. [PMID: 35196791 PMCID: PMC8865552 DOI: 10.1128/spectrum.01853-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently carried out a metagenomic study to determine the fecal virome of infants during their first year of life in a semirural community in Mexico. A total of 97 stool samples from nine children were collected starting 2 weeks after birth and monthly thereafter until 12 months of age. In this work, we describe the prevalence and incidence of caliciviruses in this birth cohort. We found that 54 (56%) and 24 (25%) of the samples were positive for norovirus and sapovirus sequence reads detected by next-generation sequencing, respectively. Potential infections were arbitrarily considered when at least 20% of the complete virus genome was determined. Considering only these samples, there were 3 cases per child/year for norovirus and 0.33 cases per child/year for sapovirus. All nine children had sequence reads related to norovirus in at least 2 and up to 10 samples, and 8 children excreted sapovirus sequence reads in 1 and up to 5 samples during the study. The virus in 35 samples could be genotyped. The results showed a high diversity of both norovirus (GI.3[P13], GI.5, GII.4, GII.4[P16], GII.7[P7], and GII.17[P17]) and sapovirus (GI.1, GI.7, and GII.4) in the community. Of interest, despite the frequent detection of caliciviruses in the stools, all children remained asymptomatic during the study. Our results clearly show that metagenomic studies in stools may reveal a detailed picture of the prevalence and diversity of gastrointestinal viruses in the human gut during the first year of life. IMPORTANCE Human caliciviruses are important etiological agents of acute gastroenteritis in children under 5 years of age. Several studies have characterized their association with childhood diarrhea and their presence in nondiarrheal stool samples. In this work, we used a next-generation sequencing approach to determine, in a longitudinal study, the fecal virome of infants during their first year of life. Using this method, we found that caliciviruses can be detected significantly more frequently than previously reported, providing a more detailed picture of the prevalence and genetic diversity of these viruses in the human gut during early life.
Collapse
|
146
|
Ogunsakin RE, Ebenezer O, Ginindza TG. A Bibliometric Analysis of the Literature on Norovirus Disease from 1991-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052508. [PMID: 35270203 PMCID: PMC8909411 DOI: 10.3390/ijerph19052508] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
Norovirus (NoV) is one of the oldest recognized diseases and the leading causal pathogen for acute gastroenteritis (AGE) worldwide. Though numerous studies have been reported on NoV disease, limited research has explored the publication trends in this area. As a result, the objective of this work was to fill the void by conducting a bibliometric study in publication trends on NoV studies as well as discovering the hotspots. The Web of Science central assemblage database was hunted for publications from 1991 to 2021 with “norovirus” in the heading. Microsoft Excel 2016, VOSviewer, R Bibliometrix, and Biblioshiny packages were deployed for the statistical analysis of published research articles. A total of 6021 published documents were identified in the Web of Science database for this thirty-year study period (1991–2021). The analyses disclosed that the Journal of Medical Virology was the leading journal in publications on norovirus studies with a total of 215 published articles, the Journal of Virology was the most cited document with 11,185 total citations. The United States of America (USA) has the most significant productivity in norovirus publications and is the leading country with the highest international collaboration. Analysis of top germane authors discovered that X. Jiang (135) and J. Vinje (119) were the two top relevant authors of norovirus publications. The commonly recognized funders were US and EU-based, with the US emerging as a top funder. This study reveals trends in scientific findings and academic collaborations and serves as a leading-edge model to reveal trends in global research in the field of norovirus research. This study points out the progress status and trends on NoV research. It can help researchers in the medical profession obtain a comprehensive understanding of the state of the art of NoV. It also has reference values for the research and application of the NoV visualization methods. Further, the research map on AGE obtained by our analysis is expected to help researchers efficiently and effectively explore the NoV field.
Collapse
Affiliation(s)
- Ropo E. Ogunsakin
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Correspondence:
| | - Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban 4000, South Africa;
| | - Themba G. Ginindza
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Cancer & Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
147
|
Effect of biannual azithromycin distribution on antibody responses to malaria, bacterial, and protozoan pathogens in Niger. Nat Commun 2022; 13:976. [PMID: 35190534 PMCID: PMC8861117 DOI: 10.1038/s41467-022-28565-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
The MORDOR trial in Niger, Malawi, and Tanzania found that biannual mass distribution of azithromycin to children younger than 5 years led to a 13.5% reduction in all-cause mortality (NCT02048007). To help elucidate the mechanism for mortality reduction, we report IgG responses to 11 malaria, bacterial, and protozoan pathogens using a multiplex bead assay in pre-specified substudy of 30 communities in the rural Niger placebo-controlled trial over a three-year period (n = 5642 blood specimens, n = 3814 children ages 1–59 months). Mass azithromycin reduces Campylobacter spp. force of infection by 29% (hazard ratio = 0.71, 95% CI: 0.56, 0.89; P = 0.004) but serological measures show no significant differences between groups for other pathogens against a backdrop of high transmission. Results align with a recent microbiome study in the communities. Given significant sequelae of Campylobacter infection among preschool aged children, our results support an important mechanism through which biannual mass distribution of azithromycin likely reduces mortality in Niger. In a randomized placebo-controlled trial in rural Niger, biannual azithromycin distribution to children 1-59 months reduced all-cause mortality. Based on serology, Arzika et al. here report a reduction of Campylobacter infection, supporting one mechanism for the intervention’s impact on mortality.
Collapse
|
148
|
Menon VK, Okhuysen PC, Chappell CL, Mahmoud M, Mahmoud M, Meng Q, Doddapaneni H, Vee V, Han Y, Salvi S, Bhamidipati S, Kottapalli K, Weissenberger G, Shen H, Ross MC, Hoffman KL, Cregeen SJ, Muzny DM, Metcalf GA, Gibbs RA, Petrosino JF, Sedlazeck FJ. Fully resolved assembly of Cryptosporidium parvum. Gigascience 2022; 11:giac010. [PMID: 35166336 PMCID: PMC8848321 DOI: 10.1093/gigascience/giac010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cryptosporidium parvum is an apicomplexan parasite commonly found across many host species with a global infection prevalence in human populations of 7.6%. Understanding its diversity and genomic makeup can help in fighting established infections and prohibiting further transmission. The basis of every genomic study is a high-quality reference genome that has continuity and completeness, thus enabling comprehensive comparative studies. FINDINGS Here, we provide a highly accurate and complete reference genome of Cryptosporidium parvum. The assembly is based on Oxford Nanopore reads and was improved using Illumina reads for error correction. We also outline how to evaluate and choose from different assembly methods based on 2 main approaches that can be applied to other Cryptosporidium species. The assembly encompasses 8 chromosomes and includes 13 telomeres that were resolved. Overall, the assembly shows a high completion rate with 98.4% single-copy BUSCO genes. CONCLUSIONS This high-quality reference genome of a zoonotic IIaA17G2R1 C. parvum subtype isolate provides the basis for subsequent comparative genomic studies across the Cryptosporidium clade. This will enable improved understanding of diversity, functional, and association studies.
Collapse
Affiliation(s)
- Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cynthia L Chappell
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, TX 77030, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vanesa Vee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sejal Salvi
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sravya Bhamidipati
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kavya Kottapalli
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Weissenberger
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Shen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Ross
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sara Javornik Cregeen
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
149
|
Jones RM, Seo H, Zhang W, Sack DA. A multi-epitope fusion antigen candidate vaccine for Enterotoxigenic Escherichia coli is protective against strain B7A colonization in a rabbit model. PLoS Negl Trop Dis 2022; 16:e0010177. [PMID: 35139116 PMCID: PMC8863229 DOI: 10.1371/journal.pntd.0010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of children's and travelers' diarrhea. Developing effective vaccines against this heterologous group has proven difficult due to the varied nature of toxins and adhesins that determine their pathology. A multivalent candidate vaccine was developed using a multi-epitope fusion antigen (MEFA) vaccinology platform and shown to effectively elicit broad protective antibody responses in mice and pigs. However, direct protection against ETEC colonization of the small intestine was not measured in these systems. Colonization of ETEC strains is known to be a determining factor in disease outcomes and is adhesin-dependent. In this study, we developed a non-surgical rabbit colonization model to study immune protection against ETEC colonization in rabbits. We tested the ability for the MEFA-based vaccine adhesin antigen, in combination with dmLT adjuvant, to induce broad immune responses and to protect from ETEC colonization of the rabbit small intestine. Our results indicate that the candidate vaccine MEFA antigen elicits antibodies in rabbits that react to seven adhesins included in its construction and protects against colonization of a challenge strain that consistently colonized naïve rabbits.
Collapse
Affiliation(s)
- Richard M. Jones
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, Maryland, United States of America
- University of Washington, Department of Microbiology, Seattle, Washington, United States of America
- * E-mail:
| | - Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
| | - David A. Sack
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, Maryland, United States of America
| |
Collapse
|
150
|
Gullicksrud JA, Sateriale A, Engiles JB, Gibson AR, Shaw S, Hutchins ZA, Martin L, Christian DA, Taylor GA, Yamamoto M, Beiting DP, Striepen B, Hunter CA. Enterocyte-innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Mucosal Immunol 2022; 15:362-372. [PMID: 34750455 PMCID: PMC8881313 DOI: 10.1038/s41385-021-00468-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal parasite, Cryptosporidium, is a major contributor to global child mortality and causes opportunistic infection in immune deficient individuals. Innate resistance to Cryptosporidium, which specifically invades enterocytes, is dependent on the production of IFN-γ, yet whether enterocytes contribute to parasite control is poorly understood. In this study, utilizing a mouse-adapted strain of C. parvum, we show that epithelial-derived IL-18 synergized with IL-12 to stimulate innate lymphoid cell (ILC) production of IFN-γ required for early parasite control. The loss of IFN-γ-mediated STAT1 signaling in enterocytes, but not dendritic cells or macrophages, antagonized early parasite control. Transcriptional profiling of enterocytes from infected mice identified an IFN-γ signature and enrichment of the anti-microbial effectors IDO, GBP, and IRG. Deletion experiments identified a role for Irgm1/m3 in parasite control. Thus, enterocytes promote ILC production of IFN-γ that acts on enterocytes to restrict the growth of Cryptosporidium.
Collapse
Affiliation(s)
- Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Francis Crick Institute, London, UK
| | - Julie B Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Alexis R Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary A Hutchins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Jill Robests Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Lindsay Martin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory A Taylor
- Departments of Medicine, Molecular Genetics and Microbiology and Immunology and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, NC, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|