101
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
102
|
Insight into the Potential Factors That Promote Tobacco Use in Vulnerable Populations. CURRENT ADDICTION REPORTS 2016. [DOI: 10.1007/s40429-016-0091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
103
|
O'Dell LE, Nazarian A. Enhanced vulnerability to tobacco use in persons with diabetes: A behavioral and neurobiological framework. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:288-96. [PMID: 26092247 DOI: 10.1016/j.pnpbp.2015.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/15/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
Tobacco use significantly magnifies the negative health complications associated with diabetes. Although tobacco use is strongly discouraged in persons with diabetes, clinical evidence suggests that they often continue to smoke and have more difficulty quitting despite serious contraindications. Here, we suggest that a potential reason for enhanced vulnerability to tobacco use in persons with diabetes is greater rewarding effects of nicotine. This review summarizes pre-clinical evidence indicating that the rewarding effects of nicotine are enhanced in rodent models of type 1 and type 2 diabetes. We also provide a framework of neurobiological mechanisms that are posited to promote tobacco use in persons with diabetes. This framework suggests that diabetes induces a disruption in insulin signaling that leads to a suppression of dopamine systems in the mesolimbic reward pathway. Lastly, we consider the clinical implications of enhanced rewarding effects of nicotine that may promote tobacco use in persons with diabetes. The clinical efficacy of smoking cessation medications that enhance dopamine are important to consider, given that persons with diabetes may display disrupted dopaminergic mechanisms. Future work is needed to better understand the complex interaction of dopamine and insulin in order to develop better smoking cessation medications for persons with diabetes.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
104
|
Frisbee JC, Butcher JT, Frisbee SJ, Olfert IM, Chantler PD, Tabone LE, d'Audiffret AC, Shrader CD, Goodwill AG, Stapleton PA, Brooks SD, Brock RW, Lombard JH. Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation. Am J Physiol Heart Circ Physiol 2015; 310:H488-504. [PMID: 26702145 DOI: 10.1152/ajpheart.00790.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
Abstract
To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning "healthy" to "high PVD risk" and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Joshua T Butcher
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Stephanie J Frisbee
- Department of Health Policy, Management and Leadership, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Lawrence E Tabone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Alexandre C d'Audiffret
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Carl D Shrader
- Department of Family Medicine, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Phoebe A Stapleton
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Robert W Brock
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia; and
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
105
|
KUNEŠ J, VANĚČKOVÁ I, MIKULÁŠKOVÁ B, BEHULIAK M, MALETÍNSKÁ L, ZICHA J. Epigenetics and a New Look on Metabolic Syndrome. Physiol Res 2015; 64:611-20. [DOI: 10.33549/physiolres.933174] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of metabolic syndrome increases in the developed countries, therefore biomedical research is focused on the understanding of its etiology. The study of exact mechanisms is very complicated because both genetic and environmental factors contribute to this complex disease. The ability of environmental factors to promote phenotype changes by epigenetic DNA modifications (i.e. DNA methylation, histone modifications) was demonstrated to play an important role in the development and predisposition to particular symptoms of metabolic syndrome. There is no doubt that the early life, such as the fetal and perinatal periods, is critical for metabolic syndrome development and therefore critical for prevention of this disease. Moreover, these changes are visible not only in individuals exposed to environmental factors but also in the subsequent progeny for multiple generations and this phenomenon is called transgenerational inheritance. The knowledge of molecular mechanisms, by which early minor environmental stimuli modify the expression of genetic information, might be the desired key for the understanding of mechanisms leading to the change of phenotype in adulthood. This review provides a short overview of metabolic syndrome epigenetics.
Collapse
Affiliation(s)
- J. KUNEŠ
- Institute of Physiology CAS, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
106
|
Brooks SD, DeVallance E, d'Audiffret AC, Frisbee SJ, Tabone LE, Shrader CD, Frisbee JC, Chantler PD. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 2015; 309:H1846-59. [PMID: 26475592 DOI: 10.1152/ajpheart.00691.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022]
Abstract
The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Evan DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Alexandre C d'Audiffret
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Stephanie J Frisbee
- Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Lawrence E Tabone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Carl D Shrader
- Department of Family Medicine, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
107
|
Chantler PD, Shrader CD, Tabone LE, d’Audiffret AC, Huseynova K, Brooks SD, Branyan KW, Grogg KA, Frisbee JC. Cerebral Cortical Microvascular Rarefaction in Metabolic Syndrome is Dependent on Insulin Resistance and Loss of Nitric Oxide Bioavailability. Microcirculation 2015; 22:435-45. [PMID: 26014499 PMCID: PMC4551443 DOI: 10.1111/micc.12209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chronic presentation of the MS is associated with an increased likelihood for stroke and poor stroke outcomes following occlusive cerebrovascular events. However, the physiological mechanisms contributing to compromised outcomes remain unclear, and the degree of cerebral cortical MVD may represent a central determinant of stroke outcomes. METHODS This study used the OZR model of MS and clinically relevant, chronic interventions to determine the impact on cerebral cortical microvascular rarefaction via immunohistochemistry with a parallel determination of cerebrovascular function to identify putative mechanistic contributors. RESULTS OZR exhibited a progressive rarefaction (to ~80% control MVD) of the cortical microvascular networks vs. lean Zucker rats. Chronic treatment with antihypertensive agents (captopril/hydralazine) had limited effectiveness in blunting rarefaction, although treatments improving glycemic control (metformin/rosiglitazone) were superior, maintaining ~94% control MVD. Chronic treatment with the antioxidant TEMPOL severely blunted rarefaction in OZR, although this ameliorative effect was prevented by concurrent NOS inhibition. CONCLUSIONS Further analyses revealed that the maintenance of glycemic control and vascular NO bioavailability were stronger predictors of cerebral cortical MVD in OZR than was prevention of hypertension, and this may have implications for chronic treatment of CVD risk under stroke-prone conditions.
Collapse
Affiliation(s)
- Paul D. Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Carl D. Shrader
- Department of Family Medicine, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Lawrence E. Tabone
- Division of Bariatric Surgery, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Alexandre C. d’Audiffret
- Division of Vascular Surgery, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Khumara Huseynova
- Division of Vascular Surgery, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Steven D. Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Kayla W. Branyan
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Kristin A. Grogg
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| | - Jefferson C. Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV
- Clinical and Translational Sciences Institute, West Virginia University Health Sciences Center, Morgantown, WV
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV
| |
Collapse
|
108
|
Butcher JT, Stanley SC, Brooks SD, Chantler PD, Wu F, Frisbee JC. Impact of increased intramuscular perfusion heterogeneity on skeletal muscle microvascular hematocrit in the metabolic syndrome. Microcirculation 2015; 21:677-87. [PMID: 24828956 DOI: 10.1111/micc.12146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine HMV and PS in skeletal muscle of OZR and evaluate the impact of increased microvascular perfusion heterogeneity on mass transport/exchange. METHODS The in situ gastrocnemius muscle from OZR and LZR was examined under control conditions and following pretreatment with TEMPOL (antioxidant)/SQ-29548 (PGH2 /TxA2 receptor antagonist), phentolamine (adrenergic antagonist), or all agents combined. A spike input of a labeled blood tracer cocktail was injected into the perfusing artery. Tracer washout was analyzed using models for HMV and PS. HT was determined in in situ cremaster muscle of OZR and LZR using videomicroscopy. RESULTS HMV was decreased in OZR versus LZR. While TEMPOL/SQ-29548 or phentolamine had minor effects, treatment with all three agents improved HMV in OZR. HT was not different between strains, although variability was increased in OZR, and normalized following treatment with all three agents. PS was reduced in OZR and was not impacted by intervention. CONCLUSIONS Increased microvascular perfusion heterogeneity in OZR reduces HMV in muscle vascular networks and increases its variability, potentially contributing to premature muscle fatigue. While targeted interventions can ameliorate this, the reduced microvascular surface area is not acutely reversible.
Collapse
Affiliation(s)
- Joshua T Butcher
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA; Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
109
|
Effects of habitual exercise and dietary restriction on intrahepatic and periepididymal fat accumulation in Zucker fatty rats. BMC Res Notes 2015; 8:121. [PMID: 25885415 PMCID: PMC4392877 DOI: 10.1186/s13104-015-1063-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
Background Habitual exercise and dietary restriction are commonly recommended to prevent or ameliorate obesity and lifestyle-related diseases, including fatty liver. This study investigated the effects of habitual exercise and dietary restriction on hepatic triglyceride (TG) levels, serum leptin levels, and histological adipocyte size in periepididymal adipose tissue from Zucker fatty (ZF) rats. Methods Six-week-old male ZF rats were randomly assigned to one of three groups: sedentary (Sed), sedentary and dietary restriction (Sed + DR), and training and dietary restriction (Tr + DR). Male Zucker lean (L) rats were used as control animals. All rats had access to water and the allowed quantity of food ad libitum. The rats in the Sed + DR and Tr + DR groups were fed a 30% restricted diet, while those in the Tr + DR group exercised voluntarily on a wheel ergometer. After 12 weeks, the rats were sacrificed for a histological examination of their liver and periepididymal adipose tissue. Hepatic and serum TG, serum total cholesterol, glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, free fatty acid, and leptin levels were also measured. Results The hepatic TG levels were significantly higher in the Sed + DR group than in the L (P < 0.001) and Sed (P < 0.05) groups. By contrast, the hepatic TG levels in the Tr + DR group were significantly lower than those in the Sed (P < 0.05) and Sed + DR (P < 0.001) groups, but not significantly different from the L group values. The periepididymal adipocytes were significantly larger in the Sed, Sed + DR, and Tr + DR groups than in the L group (P < 0.001) and were significantly smaller in the Tr + DR group compared to the Sed and Sed + DR groups (P < 0.001). Conclusions Our results suggest a relationship between lipid metabolism and the size of adipose cells in ZF rats. Exercising plays an important role in decreasing hepatic TG levels, serum leptin levels, and the size of adipose cells.
Collapse
|
110
|
Wang C, Blough E, Arvapalli R, Dai X, Triest WE, Leidy JW, Masannat Y, Wu M. Acetaminophen attenuates glomerulosclerosis in obese Zucker rats via reactive oxygen species/p38MAPK signaling pathways. Free Radic Biol Med 2015; 81:47-57. [PMID: 25614458 DOI: 10.1016/j.freeradbiomed.2015.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/05/2014] [Accepted: 01/11/2015] [Indexed: 01/09/2023]
Abstract
Focal segmental glomerulosclerosis is a critical pathological lesion in metabolic syndrome-associated kidney disease that, if allowed to proceed unchecked, can lead to renal failure. However, the exact mechanisms underlying glomerulosclerosis remain unclear, and effective prevention strategies against glomerulosclerosis are currently limited. Herein, we demonstrate that chronic low-dose ingestion of acetaminophen (30 mg/kg/day for 6 months) attenuates proteinuria, glomerulosclerosis, podocyte injury, and inflammation in the obese Zucker rat model of metabolic syndrome. Moreover, acetaminophen treatment attenuated renal fibrosis and the expression of profibrotic factors (fibronectin, connective tissue growth factor, transforming growth factor β), reduced inflammatory cell infiltration into the glomeruli, and decreased the expression of monocyte chemoattractant protein, glutathione (GSH) reductase, and nuclear factor erythroid 2-related factor 2, but increased the level of GSH synthetase in obese animals. Further in vivo and in vitro studies using human renal mesangial cells exposed to high glucose or hydrogen peroxide suggested that the renoprotective effects of acetaminophen are characterized by diminished renal oxidative stress and p38MAPK hyperphosphorylation.
Collapse
Affiliation(s)
- Cuifen Wang
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Southeast University, Nanjing, Jiangsu, China
| | - Eric Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA.
| | - Ravikumar Arvapalli
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA
| | - Xiaoniu Dai
- Southeast University, Nanjing, Jiangsu, China
| | | | - John W Leidy
- Huntington VA Medical Center, Huntington, WV 25704, USA
| | - Yanal Masannat
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Huntington, WV 25755, USA
| | - Miaozong Wu
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Department of Internal Medicine, Joan C. Edwards School of Medicine, Huntington, WV 25755, USA.
| |
Collapse
|
111
|
Løhr M, Folkmann JK, Sheykhzade M, Jensen LJ, Kermanizadeh A, Loft S, Møller P. Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese Zucker rats. PLoS One 2015; 10:e0118773. [PMID: 25738756 PMCID: PMC4349582 DOI: 10.1371/journal.pone.0118773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1) sensitive sites as measured by the comet assay. There were decreasing levels of oxidatively damaged DNA with age in the liver of lean rats, which occurred concurrently with increased expression of Ogg1. The 37 week old lean rats also had higher expression level of Hmox1 and elevated levels of DNA strand breaks in the liver. Still, both strain of rats had increased protein level of HMOX-1 in the liver at 37 weeks. The external and lumen diameters of mesenteric arteries increased with age in obese Zucker rats with no change in media cross-sectional area, indicating outward re-modelling without hypertrophy of the vascular wall. There was increased maximal response to acetylcholine-mediated endothelium-dependent vasodilatation in both strains of rats. Collectively, the results indicate that obese Zucker rats only displayed a modest mesenteric vascular dysfunction, with no increase in hepatic oxidative stress-generated DNA damage despite substantial hepatic steatosis.
Collapse
Affiliation(s)
- Mille Løhr
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Janne K. Folkmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Lars J. Jensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
| | - Ali Kermanizadeh
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
- * E-mail:
| |
Collapse
|
112
|
Amstislavsky SY, Brusentsev EY, Okotrub KA, Rozhkova IN. Embryo and gamete cryopreservation for genetic resources conservation of laboratory animals. Russ J Dev Biol 2015; 46:47-59. [DOI: 10.1134/s1062360415020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
113
|
Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome. Br J Nutr 2015; 113:878-87. [DOI: 10.1017/s0007114514004437] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The increasing incidence of the metabolic syndrome (MetS), a combination of risk factors before the onset of CVD and type 2 diabetes, encourages studies on the role of functional food components such as long-chain n-3 PUFA as preventive agents. In the present study, we explore the effect of EPA and DHA supplementation in different proportions on spontaneously hypertensive obese (SHROB) rats, a model for the MetS in a prediabetic state with mild oxidative stress. SHROB rats were randomised into four groups (n 7), each supplemented with EPA/DHA at ratios of 1:1, 2:1 and 1:2, or soyabean oil as the control for 13 weeks. The results showed that in all the proportions tested, EPA/DHA supplementation significantly lowered total and LDL-cholesterol concentrations, compared with those of the control group. EPA/DHA supplementation at the ratios of 1:1 and 2:1 significantly decreased inflammation (C-reactive protein levels) and lowered oxidative stress (decreased excretion of urinary isoprostanes), mainly at the ratio of 1:2. The activity of antioxidant enzymes increased in erythrocytes, abdominal fat and kidneys, with magnitudes depending on the EPA:DHA ratio. PUFA mixtures from fish affected different MetS markers of CVD risk factors in SHROB rats, depending on the ratios of EPA/DHA supplementation. The activation of endogenous defence systems may be related to the reduction of inflammation and oxidative stress.
Collapse
|
114
|
Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Wu F, Chantler PD. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome. J Physiol 2014; 594:2233-43. [PMID: 25384789 DOI: 10.1113/jphysiol.2014.285247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
A major challenge facing public health is the increased incidence and prevalence of the metabolic syndrome, a clinical condition characterized by excess adiposity, impaired glycaemic control, dyslipidaemia and moderate hypertension. The greatest concern for this syndrome is the profound increase in risk for development of peripheral vascular disease (PVD) in afflicted persons. However, ongoing studies suggest that reductions in bulk blood flow to skeletal muscle may not be the primary contributor to the premature muscle fatigue that is a hallmark of PVD. Compelling evidence has been provided suggesting that an increasingly spatially heterogeneous and temporally stable distribution of blood flow at successive arteriolar bifurcations in metabolic syndrome creates an environment where a large number of the pre-capillary arterioles have low perfusion, low haematocrit, and are increasingly confined to this state, with limited ability to adapt perfusion in response to a challenged environment. Single pharmacological interventions are unable to significantly restore function owing to a divergence in their spatial effectiveness, although combined therapeutic approaches to correct adrenergic dysfunction, elevated oxidant stress and increased thromboxane A2 improve perfusion-based outcomes. Integrated, multi-target therapeutic interventions designed to restore healthy network function and flexibility may provide for superior outcomes in subjects with metabolic syndrome-associated PVD.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Stephanie J Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Department of Health Policy, Management and Leadership, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Joshua T Butcher
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Fan Wu
- Novartis Institutes for BioMedical Research, Drug Metabolism and Pharmacokinetics, East Hanover, NJ, USA
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, WV, USA.,Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
115
|
Vaněčková I, Maletínská L, Behuliak M, Nagelová V, Zicha J, Kuneš J. Obesity-related hypertension: possible pathophysiological mechanisms. J Endocrinol 2014; 223:R63-78. [PMID: 25385879 DOI: 10.1530/joe-14-0368] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypertension is one of the major risk factors of cardiovascular diseases, but despite a century of clinical and basic research, the discrete etiology of this disease is still not fully understood. The same is true for obesity, which is recognized as a major global epidemic health problem nowadays. Obesity is associated with an increasing prevalence of the metabolic syndrome, a cluster of risk factors including hypertension, abdominal obesity, dyslipidemia, and hyperglycemia. Epidemiological studies have shown that excess weight gain predicts future development of hypertension, and the relationship between BMI and blood pressure (BP) appears to be almost linear in different populations. There is no doubt that obesity-related hypertension is a multifactorial and polygenic trait, and multiple potential pathogenetic mechanisms probably contribute to the development of higher BP in obese humans. These include hyperinsulinemia, activation of the renin-angiotensin-aldosterone system, sympathetic nervous system stimulation, abnormal levels of certain adipokines such as leptin, or cytokines acting at the vascular endothelial level. Moreover, some genetic and epigenetic mechanisms are also in play. Although the full manifestation of both hypertension and obesity occurs predominantly in adulthood, their roots can be traced back to early ontogeny. The detailed knowledge of alterations occurring in the organism of experimental animals during particular critical periods (developmental windows) could help to solve this phenomenon in humans and might facilitate the age-specific prevention of human obesity-related hypertension. In addition, better understanding of particular pathophysiological mechanisms might be useful in so-called personalized medicine.
Collapse
Affiliation(s)
- Ivana Vaněčková
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Lenka Maletínská
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Michal Behuliak
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Veronika Nagelová
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Josef Zicha
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| |
Collapse
|
116
|
Vendrame S, Zhao A, Merrow T, Klimis-Zacas D. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat. J Med Food 2014; 18:619-24. [PMID: 25383490 DOI: 10.1089/jmf.2014.0065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations.
Collapse
Affiliation(s)
- Stefano Vendrame
- 1Department of Food Science and Human Nutrition, University of Maine, Orono, Maine
| | - Alice Zhao
- 2Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Thomas Merrow
- 1Department of Food Science and Human Nutrition, University of Maine, Orono, Maine
| | - Dorothy Klimis-Zacas
- 1Department of Food Science and Human Nutrition, University of Maine, Orono, Maine
| |
Collapse
|
117
|
A low dietary intake of cod protein is sufficient to increase growth, improve serum and tissue fatty acid compositions, and lower serum postprandial glucose and fasting non-esterified fatty acid concentrations in obese Zucker fa/fa rats. Eur J Nutr 2014; 54:1151-60. [PMID: 25380663 DOI: 10.1007/s00394-014-0793-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Studies in rats suggest that fish proteins may improve lipid and glucose regulation and could thus be a potential tool in the treatment of obesity-related comorbidities. To date, all published rat studies on dietary fish protein have been designed with 50 or 100% of dietary proteins from fish. As it is not common, nor advised, to consume fish as the only protein source in a healthy diet, mechanistic studies on the effects of diets with low dose fish proteins are needed. Here, we investigate whether a low dose of cod protein would affect glucose homeostasis and lipid metabolism in obese Zucker fa/fa rats. METHODS Twelve male obese Zucker fa/fa rats consumed diets where cod proteins accounted for 25% of the total protein intake with the remaining 75% from casein (COD) or 100% of protein as casein (CAS) for 4 weeks. RESULTS Rats fed COD achieved a higher body weight without affecting adiposity and thigh muscle mass after 4 weeks, but liver weight and hepatic cholesterol level were higher than in CAS-fed rats. Fasting serum level of non-esterified fatty acids and 2 h postprandial glucose level were lower in COD than in CAS. The fatty acid metabolism was beneficially affected by the COD diet, with e.g., higher ratio of n-3/n-6 PUFAs in serum, liver and adipose tissue when compared to CAS. CONCLUSIONS A low intake of cod protein (25% of protein intake) was sufficient to beneficially affect lipid metabolism and postprandial glucose regulation in obese fa/fa rats.
Collapse
|
118
|
O'Dell LE, Natividad LA, Pipkin JA, Roman F, Torres I, Jurado J, Torres OV, Friedman TC, Tenayuca JM, Nazarian A. Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes. Addict Biol 2014; 19:1006-19. [PMID: 23834715 DOI: 10.1111/adb.12074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with diabetes display a heightened propensity to use tobacco; however, it is unclear whether they experience enhanced rewarding effects of nicotine. Thus, this study examined the reinforcing effects of nicotine in a rodent model of diabetes involving administration of streptozotocin (STZ), a drug that is toxic to pancreatic insulin-producing cells. The first study compared STZ- and vehicle-treated rats that had 23-hour access to intravenous self-administration (IVSA) of nicotine or saline and concomitant access to food and water. In order to examine the contribution of dopamine to our behavioral effects, dopamine transporter (DAT), D1 and D2 receptor levels were compared in the nucleus accumbens (NAc) following 10 days of nicotine or saline IVSA. Dopamine levels in the NAc were also compared following nicotine administration. Lastly, nicotine metabolism and dose-dependent effects of nicotine IVSA were assessed. The results revealed that STZ-treated rats displayed enhanced nicotine intake and a robust increase in food and water intake relative to controls. Protein analysis revealed an increase in DAT and a decrease in D1 receptor levels in the NAc of STZ- versus vehicle-treated rats regardless of IVSA condition. STZ-treated rats also displayed suppressed NAc dopamine levels during baseline and in response to nicotine. STZ treatment did not alter our assessment of nicotine metabolism. Furthermore, STZ treatment increased nicotine IVSA in a dose-dependent manner. Our findings suggest that STZ-treatment increased the rewarding effects of nicotine. This suggests that strong reinforcing effects of nicotine may contribute to greater tobacco use in patients with diabetes.
Collapse
Affiliation(s)
- Laura E. O'Dell
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Luis A. Natividad
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Joseph A. Pipkin
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Francisco Roman
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Ivan Torres
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Jesus Jurado
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Oscar V. Torres
- Department of Psychology; University of Texas at El Paso; El Paso TX USA
| | - Theodore C. Friedman
- Division of Endocrinology, Molecular Medicine and Metabolism; Department of Internal Medicine; Charles Drew University of Medicine and Sciences-UCLA School of Medicine; Los Angeles CA USA
| | - John M. Tenayuca
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona CA USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona CA USA
| |
Collapse
|
119
|
Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Brock RW, Olfert IM, DeVallance ER, Chantler PD. Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. Am J Physiol Heart Circ Physiol 2014; 307:H1714-28. [PMID: 25305181 DOI: 10.1152/ajpheart.00605.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evolution of metabolic syndrome is associated with a progressive reduction in skeletal muscle microvessel density, known as rarefaction. Although contributing to impairments to mass transport and exchange, the temporal development of rarefaction and the contributing mechanisms that lead to microvessel loss are both unclear and critical areas for investigation. Although previous work suggests that rarefaction severity in obese Zucker rats (OZR) is predicted by the chronic loss of vascular nitric oxide (NO) bioavailability, we have determined that this hides a biphasic development of rarefaction, with both early and late components. Although the total extent of rarefaction was well predicted by the loss in NO bioavailability, the early pulse of rarefaction developed before a loss of NO bioavailability and was associated with altered venular function (increased leukocyte adhesion/rolling), and early elevation in oxidant stress, TNF-α levels, and the vascular production of thromboxane A2 (TxA2). Chronic inhibition of TNF-α blunted the severity of rarefaction and also reduced vascular oxidant stress and TxA2 production. Chronic blockade of the actions of TxA2 also blunted rarefaction, but did not impact oxidant stress or inflammation, suggesting that TxA2 is a downstream outcome of elevated reactive oxygen species and inflammation. If chronic blockade of TxA2 is terminated, microvascular rarefaction in OZR skeletal muscle resumes, but at a reduced rate despite low NO bioavailability. These results suggest that therapeutic interventions against inflammation and TxA2 under conditions where metabolic syndrome severity is moderate or mild may prevent the development of a condition of accelerated microvessel loss with metabolic syndrome.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Stephanie J Frisbee
- Department of Health Policy, Management and Leadership, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Joshua T Butcher
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Robert W Brock
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Evan R DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|
120
|
Ragaeva DS, Brusentsev EY, Amstislavsky SY. Assisted reproductive technologies and arterial hypertension. Russ J Dev Biol 2014; 45:243-256. [DOI: 10.1134/s1062360414050087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
|
121
|
Washington MC, Park KH, Sayegh AI. Obese and lean Zucker rats respond similarly to intraperitoneal administration of gastrin-releasing peptides. Peptides 2014; 58:36-41. [PMID: 24874706 DOI: 10.1016/j.peptides.2014.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/23/2022]
Abstract
The Zucker rat is an animal model used to study obesity and the control of food intake by various satiety peptides. The amphibian peptide bombesin (Bn) reduces cumulative food intake similarly in both obese and lean weanling Zucker rats. Here, we hypothesized that intraperitoneal (i.p) administration of gastrin-releasing peptides-10, -27 and -29 (GRP-10, GRP-27, GRP-29), which are the mammalian forms of Bn, would reduce first meal size (MS, 10% sucrose) and prolong the intermeal interval (IMI, time between first and second meals) similarly in obese and lean adult Zucker rats. To test this hypothesis, we administered GRP-10, GRP-27 and GRP-29 (0, 2.1, 4.1 and 10.3 nmol/kg) i.p. to obese and lean male Zucker rats (who were deprived of overnight food but not water) and then measured the first and second MS, IMI and satiety ratio (SR, IMI/MS). We found that in both obese and lean rats, all forms of GRP reduced the first MS, and in lean rats, they also decreased the second MS. Additionally, GRP-10 and GRP-29 prolonged the IMI in both obese and lean rats, but GRP-27 only prolonged it in lean rats. Finally, we found that all forms of GRP increased the SR in both obese and lean rats. In agreement with our hypothesis, we conclude that all forms of GRP reduce food intake in obese and lean adult Zucker rats similar to Bn in weanling rats.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Karen H Park
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
122
|
Zhang Q, Schmandt R, Celestino J, McCampbell A, Yates MS, Urbauer DL, Broaddus RR, Loose DS, Shipley GL, Lu KH. CGRRF1 as a novel biomarker of tissue response to metformin in the context of obesity. Gynecol Oncol 2014; 133:83-9. [PMID: 24680596 DOI: 10.1016/j.ygyno.2013.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Obesity-associated hyperestrogenism and hyperinsulinemia contribute significantly to the pathogenesis of endometrial cancer. We recently demonstrated that metformin, a drug long used for treatment of type 2 diabetes, attenuates both insulin- and estrogen-mediated proliferative signaling in the obese rat endometrium. In this study, we sought to identify tissue biomarkers that may prove clinically useful to predict tissue response for both prevention and therapeutic studies. We identified CGRRF1 (cell growth regulator with ring finger domain 1) as a novel metformin-responsive gene and characterized its possible role in endometrial cancer prevention. METHODS CGRRF1 mRNA expression was evaluated by RT-qPCR in the endometrium of obese and lean rats, and also in normal and malignant human endometrium. CGRRF1 levels were genetically manipulated in endometrial cancer cells, and its effects on proliferation and apoptosis were evaluated by MTT and Western blot. RESULTS CGRRF1 is significantly induced by metformin treatment in the obese rat endometrium. In vitro studies demonstrate that overexpression of CGRRF1 inhibits endometrial cancer cell proliferation. Analysis of human endometrial tumors reveals that CGRRF1 expression is significantly lower in hyperplasia, Grade 1, Grade 2, Grade 3, MMMT, and UPSC endometrial tumors compared to normal human endometrium (p<0.05), suggesting that loss of CGRRF1 is associated with the presence of disease. CONCLUSION CGRRF1 represents a novel, reproducible tissue marker of metformin response in the obese endometrium. Furthermore, our preliminary data suggests that up-regulation of CGRRF1 expression may prove clinically useful in the prevention or treatment of endometrial cancer.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosemarie Schmandt
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Adrienne McCampbell
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Melinda S Yates
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Diana L Urbauer
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Russell R Broaddus
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David S Loose
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Gregory L Shipley
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
123
|
Candiracci M, Justo ML, Castaño A, Rodriguez-Rodriguez R, Herrera MD. Rice bran enzymatic extract–supplemented diets modulate adipose tissue inflammation markers in Zucker rats. Nutrition 2014; 30:466-72. [DOI: 10.1016/j.nut.2013.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/23/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
|
124
|
Nishihara M, Hirooka Y, Sunagawa K. Combining irbesartan and trichlormethiazide enhances blood pressure reduction via inhibition of sympathetic activity without adverse effects on metabolism in hypertensive rats with metabolic syndrome. Clin Exp Hypertens 2014; 37:33-8. [PMID: 24678944 DOI: 10.3109/10641963.2014.897719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathoexcitation and oxidative stress in the brain have pivotal roles in hypertension with metabolic syndrome (MetS). Here, we examined whether oral administration of irbesartan (IRB) and trichlormethiazide (TCM) decreases blood pressure (BP) via inhibiting sympathetic activity through anti-oxidant effects in the brain of spontaneously hypertensive rats (SHR-cp). IRB/TCM treatment decreased BP more profoundly than IRB monotherapy. Urinary norepinephrine excretion and oxidative stress in the brain were decreased in both IRB and IRB/TCM groups without any adverse effect on the metabolic profile. These findings suggest that IRB/TCM profoundly decreases BP in SHR-cp by inhibiting sympathetic activity via anti-oxidant effects in the brain.
Collapse
|
125
|
Vázquez-Velasco M, González-Torres L, López-Gasco P, Bastida S, Benedí J, Sánchez-Reus MI, González-Muñoz MJ, Sánchez-Muniz FJ. Liver oxidation and inflammation in Fa/Fa rats fed glucomannan/spirulina-surimi. Food Chem 2014; 159:215-21. [PMID: 24767047 DOI: 10.1016/j.foodchem.2014.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
Abstract
The effect of high-fat squid-surimi diets enriched in glucomannan or glucomannan-spirulina on lipemia, liver glutathione status, antioxidant enzymes and inflammation biomarkers was determined in Zucker Fa/Fa rats. Groups of eight rats each received for 7weeks the squid-surimi control (C), glucomannan-enriched squid-surimi (G) and glucomannan-spirulina enriched squid-surimi (GS). Liver weight, cytochrome P450 7A1 expression and cholesterolemia were decreased in G and GS vs. C, improving glutathione red-ox index (p<0.05). G also showed increased glutathione reductase (GR) levels vs. C, but reduced the endothelial (eNOS) and increased the inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) levels (p<0.05). The GS diet improved superoxide dismutase, catalase, glutathione peroxidase and GR activities and eNOS, iNOS and TNF-α levels (p<0.05). The glucomannan enriched surimi-diet induced hypocholesterolemic, antioxidant and proinflammatory effects, while the addition of 3g/kg spirulina kept those hypocholesterolemic and antioxidant effects but reduced the inflammation observed.
Collapse
Affiliation(s)
- Miguel Vázquez-Velasco
- Departamento de Nutrición y Bromatología I (Nutrición), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura González-Torres
- Departamento de Nutrición y Bromatología I (Nutrición), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Patricia López-Gasco
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Departamento de Nutrición y Bromatología I (Nutrición), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Isabel Sánchez-Reus
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María José González-Muñoz
- Departamento de Nutrición, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Departamento de Nutrición y Bromatología I (Nutrición), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
126
|
Jin J, Machado E, Yu H, Zhang X, Lu Z, Li Y, Lopes-Virella M, Kirkwood K, Huang Y. Simvastatin inhibits LPS-induced alveolar bone loss during metabolic syndrome. J Dent Res 2014; 93:294-9. [PMID: 24352501 PMCID: PMC3929976 DOI: 10.1177/0022034513516980] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 11/15/2022] Open
Abstract
Studies in recent years have shown a positive relationship between metabolic syndrome (MS) and periodontal disease (PD). Given that patients with MS take statins to reduce cholesterol, and statins also have anti-inflammatory effects, it is important to determine if statin intake hinders the progression of MS-associated PD. In this study, PD was induced in Zucker fat rats (ZFRs), an animal model for MS, and in control lean rats by periodontal injection of Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS), while simvastatin was given to some of the rats via gavage. After 4 wk of treatment, alveolar bone loss was determined by micro-computed tomography. To explore the underlying mechanisms, we determined the effect of simvastatin on tissue inflammation and the expression of molecules involved in osteoclastogenesis. Results showed that while bone loss was increased by LPS in both ZFRs and the control lean rats, it was significantly more in the former than the latter. Simvastatin effectively alleviated bone loss in both ZFRs and the control rats. Results also showed that LPS stimulated leukocyte tissue infiltration and expression of molecules for osteoclastogenesis, but simvastatin significantly modulated the stimulation. This study demonstrated that simvastatin inhibited LPS-induced alveolar bone loss and periodontal tissue inflammation in rats with MS.
Collapse
Affiliation(s)
- J. Jin
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People’s Republic of China
| | - E.R. Machado
- Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - H. Yu
- Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - X. Zhang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Z. Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Y. Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - M.F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - K.L. Kirkwood
- Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Y. Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
127
|
Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 2014; 10:131-45. [PMID: 24809394 PMCID: PMC4082168 DOI: 10.2174/1573399810666140508121012] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022]
Abstract
Among the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research. The purpose of this review is to analyze and comprehensively recapitulate the most common leptin/leptin receptor-based animal models with respect to their relevance and translatability to human T2DM. Our analysis revealed that, although these rodents develop obesity due to hyperphagia caused by abnormal leptin/leptin receptor signaling with the subsequent appearance of T2DM-like manifestations, these are in fact secondary to genetic mutations that do not reflect disease etiology in humans, for whom leptin or leptin receptor deficiency is not an important contributor to T2DM. A detailed comparison of the roles of genetic susceptibility, obesity, hyperglycemia, hyperinsulinemia, insulin resistance, and diabetic complications as well as leptin expression, signaling, and other factors that confound translation are presented here. There are substantial differences between these animal models and human T2DM that limit reliable, reproducible, and translatable insight into human T2DM. Therefore, it is imperative that researchers recognize and acknowledge the limitations of the leptin/leptin receptor- based rodent models and invest in research methods that would be directly and reliably applicable to humans in order to advance T2DM management.
Collapse
Affiliation(s)
| | | | - John J Pippin
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue NW, Suite 400, Washington, DC 20016, USA.
| |
Collapse
|
128
|
Fu J, Han Y, Wang H, Wang Z, Liu Y, Chen X, Cai Y, Guan W, Yang D, Asico LD, Zhou L, Jose PA, Zeng C. Impaired dopamine D1 receptor-mediated vasorelaxation of mesenteric arteries in obese Zucker rats. Cardiovasc Diabetol 2014; 13:50. [PMID: 24559270 PMCID: PMC3938077 DOI: 10.1186/1475-2840-13-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Background Obesity plays an important role in the pathogenesis of hypertension. Renal dopamine D1-like receptor-mediated diuresis and natriuresis are impaired in the obese Zucker rat, an obesity-related hypertensive rat model. The role of arterial D1 receptors in the hypertension of obese Zucker rats is not clear. Methods Plasma glucose and insulin concentrations and blood pressure were measured. The vasodilatory response of isolated mesenteric arteries was evaluated using a small vessel myograph. The expression and phosphorylation of D1 receptors were quantified by co-immunoprecipitation and immunoblotting To determine the effect of hyperinsulinemia and hyperglycemia on the function of the arterial D1 receptor, we studied obese Zucker rats (six to eight-weeks old) fed (6 weeks) vehicle or rosiglitazone, an insulin sensitizer (10 mg/kg per day) and lean Zucker rats (eight to ten-weeks old), fed high-fat diet to induce hyperinsulinemia or injected intraperitoneally with streptomycin (STZ) to induce hyperglycemia. Results In obese Zucker rats, the vasorelaxant effect of D1-like receptors was impaired that could be ascribed to decreased arterial D1 receptor expression and increased D1 receptor phosphorylation. In these obese rats, rosiglitazone normalized the arterial D1 receptor expression and phosphorylation and improved the D1-like receptor-mediated vasorelaxation. We also found that D1 receptor-dependent vasorelaxation was decreased in lean Zucker rats with hyperinsulinemia or hyperglycemia but the D1 receptor dysfunction was greater in the former than in the latter group. The ability of insulin and glucose to decrease D1 receptor expression and increase its phosphorylation were confirmed in studies of rat aortic smooth muscle cells. Conclusions Both hyperinsulinemia and hyperglycemia caused D1 receptor dysfunction by decreasing arterial D1 receptor expression and increasing D1 receptor phosphorylation. Impaired D1 receptor-mediated vasorelaxation is involved in the pathogenesis of obesity-related hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P,R, China.
| | | | | |
Collapse
|
129
|
Taltavull N, Muñoz-Cortés M, Lluís L, Jové M, Fortuño A, Molinar-Toribio E, Torres JL, Pazos M, Medina I, Nogués MR. Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome. Lipids Health Dis 2014; 13:31. [PMID: 24512213 PMCID: PMC3927584 DOI: 10.1186/1476-511x-13-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/06/2014] [Indexed: 01/01/2023] Open
Abstract
Background Marine polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with improvement in the Metabolic Syndrome (MS). The aim of this study is to evaluate how three fish-oil diets with different eicosapentaenoic acid/docosahexaenoic acid ratios (EPA/DHA ratio) affect the histology of liver, kidney, adipose tissue and aorta in a preliminary morphological study. This work uses an animal model of metabolic syndrome in comparison with healthy animals in order to provide information about the best EPA:DHA ratio to prevent or to improve metabolic syndrome symptoms. Methods 35 Wistar rats, as a control, and 35 spontaneously hypertensive obese rats (SHROB) were fed for 13 weeks with 3 different suplemmentation of fish oil containing EPA and DHA ratios (1:1, 2:1 and 1:2, respectively). All samples were stained with haematoxylin/eosin stain, except aorta samples, which were stained also with Verhoeff and van Gieson’s stain. A histological study was carried out to evaluate changes. These changes were statistically analyzed using SPSS IBM 19 software. The quantitative data were expressed by mean ± SD and were compared among groups and treatments using ANOVA with post-hoc tests for parametric data and the U-Mann–Whitney for non-parametric data. Qualitative data were expressed in frequencies, and compared with contingency tables using χ2 statistics. Results EPA:DHA 1:1 treatment tended to improve the density and the wrinkling of elastic layers in SHROB rats. Only Wistar rats fed with EPA:DHA 1:1 treatment did not show mast cells in adipose tissue and has less kidney atrophy. In both strains EPA:DHA 1:1 treatment improved inflammation related parameters in liver and kidney. Conclusions EPA:DHA 1:1 treatment was the most beneficial treatment since improved many histological parameters in both groups of rats.
Collapse
Affiliation(s)
- Núria Taltavull
- Unit of Pharmacology, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 2014; 5:69-89. [DOI: 10.1586/ecp.11.66] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
131
|
Ezrokhi M, Luo S, Trubitsyna Y, Cincotta AH. Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats. Diabetol Metab Syndr 2014; 6:104. [PMID: 25937836 PMCID: PMC4416398 DOI: 10.1186/1758-5996-6-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The hypertensive, pro-inflammatory, obese state is strongly coupled to peripheral and hepatic insulin resistance (in composite termed metabolic syndrome [MS]). Hepatic pro-inflammatory pathways have been demonstrated to initiate or exacerbate hepatic insulin resistance and contribute to fatty liver, a correlate of MS. Previous studies in seasonally obese animals have implicated an important role for circadian phase-dependent increases in hypothalamic dopaminergic tone in the maintenance of the lean, insulin sensitive condition. However, mechanisms driving this dopaminergic effect have not been fully delineated and the impact of such dopaminergic function upon the above mentioned parameters of MS, particularly upon key intra-hepatic regulators of liver inflammation and lipid and glucose metabolism have never been investigated. OBJECTIVE This study therefore investigated the effects of timed daily administration of bromocriptine, a potent dopamine D2 receptor agonist, on a) ventromedial hypothalamic catecholamine activity, b) MS and c) hepatic protein levels of key regulators of liver inflammation and glucose and lipid metabolism in a non-seasonal model of MS - the hypertensive, obese SHR rat. METHODS Sixteen week old SHR rats maintained on 14 hour daily photoperiods were treated daily for 16 days with bromocriptine (10 mg/kg, i.p.) or vehicle at 1 hour before light offset and, subsequent to blood pressure recordings on day 14, were then utilized for in vivo microdialysis of ventromedial hypothalamic catecholamine activity or sacrificed for the analyses of MS factors and regulators of hepatic metabolism. Normal Wistar rats served as wild-type controls for hypothalamic activity, body fat levels, and insulin sensitivity. RESULTS Bromocriptine treatment significantly reduced ventromedial hypothalamic norepinephrine and serotonin levels to the normal range and systolic and diastolic blood pressures, retroperitoneal body fat level, plasma insulin and glucose levels and HOMA-IR relative to vehicle treated SHR controls. Such treatment also reduced plasma levels of C-reactive protein, leptin, and norepinephrine and increased that of plasma adiponectin significantly relative to SHR controls. Finally, bromocriptine treatment significantly reduced hepatic levels of several pro-inflammatory pathway proteins and of the master transcriptional activators of lipogenesis, gluconeogenesis, and free fatty acid oxidation versus control SHR rats. CONCLUSION These findings indicate that in SHR rats, timed daily dopamine agonist treatment improves hypothalamic and neuroendocrine pathologies associated with MS and such neuroendocrine events are coupled to a transformation of liver metabolism potentiating a reduction of elevated lipogenic and gluconeogenic capacity. This liver effect may be driven in part by concurrent reductions in hyperinsulinemia and sympathetic tone as well as by reductions in intra-hepatic inflammation.
Collapse
|
132
|
Iuras A, Telles MM, Andrade IS, Santos GMS, Oyama LM, Nascimento CMO, Silveira VLF, Ribeiro EB. L-arginine abolishes the hypothalamic serotonergic activation induced by central interleukin-1β administration to normal rats. J Neuroinflammation 2013; 10:147. [PMID: 24314273 PMCID: PMC3866599 DOI: 10.1186/1742-2094-10-147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/22/2013] [Indexed: 11/10/2022] Open
Abstract
IL-1β-induced anorexia may depend on interactions of the cytokine with neuropeptides and neurotransmitters of the central nervous system control of energy balance and serotonin is likely to be one catabolic mediator targeted by IL-1β. In the complex interplay involved in feeding modulation, nitric oxide has been ascribed a stimulatory action, which could be of significance in counteracting IL-1β effects. The present study aims to explore the participation of the nitric oxide and the serotonin systems on the central mechanisms induced by IL-1β and the relevance of their putative interactions to IL-1β hypophagia in normal rats. Serotonin levels were determined in microdialysates of the ventromedial hypothalamus after a single intracerebroventricular injection of 10 ng of IL-1β , with or without the pre-injection of 20 μg of the nitric oxide precursor L-arginine. IL-1β significantly stimulated hypothalamic serotonin extracellular levels, with a peak variation of 130 ±37% above baseline. IL- 1β also reduced the 4-h and the 24-h food intakes (by 23% and 58%, respectively). The IL-1β-induced serotonergic activation was abolished by the pre-injection of L-arginine while the hypophagic effect was unaffected. The data showed that one central effect of IL-1β is serotonergic stimulation in the ventromedial hypothalamus, an action inhibited by nitric oxide activity. It is suggested that, although serotonin participates in IL-1β anorexia, other mechanisms recruited by IL-1β in normal rats are able to override the absence of the serotonergic hypophagic influence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eliane B Ribeiro
- Department of Physiology, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2º andar - Vila Clementino, São Paulo, SP 04023-060, Brazil.
| |
Collapse
|
133
|
Teo AKK, Wagers AJ, Kulkarni RN. New opportunities: harnessing induced pluripotency for discovery in diabetes and metabolism. Cell Metab 2013; 18:775-91. [PMID: 24035588 PMCID: PMC3858409 DOI: 10.1016/j.cmet.2013.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The landmark discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has transformed regenerative biology. Previously, insights into the pathogenesis of chronic human diseases have been hindered by the inaccessibility of patient samples. However, scientists are now able to convert patient fibroblasts into iPSCs and differentiate them into disease-relevant cell types. This ability opens new avenues for investigating disease pathogenesis and designing novel treatments. In this review, we highlight the uses of human iPSCs to uncover the underlying causes and pathological consequences of diabetes and metabolic syndromes, multifactorial diseases whose etiologies have been difficult to unravel using traditional methodologies.
Collapse
Affiliation(s)
- Adrian Kee Keong Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
134
|
Wang C, Blough ER, Arvapalli R, Dai X, Paturi S, Manne N, Addagarla H, Triest WE, Olajide O, Wu M. Metabolic syndrome-induced tubulointerstitial injury: role of oxidative stress and preventive effects of acetaminophen. Free Radic Biol Med 2013; 65:1417-1426. [PMID: 24140865 DOI: 10.1016/j.freeradbiomed.2013.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/17/2022]
Abstract
The prevalence of metabolic syndrome persistently increases and affects over 30% of U.S. adults. To study how metabolic syndrome may induce tubulointerstitial injury and whether acetaminophen has renal-protective properties, 4-week-old obese Zucker rats were randomly assigned into three groups, control (OC), vehicle dimethyl sulfoxide (OV), and acetaminophen treatment (30 mg/kg/day for 26 weeks), and lean Zucker rats served as healthy controls. Significant tubulointerstitial injuries were observed in both OC and OV animals, evidenced by increased tubular cell death, tubular atrophy/dilation, inflammatory cell infiltration, and fibrosis. These tubulointerstitial alterations were significantly reduced by treatment with a chronic but low dose of acetaminophen, which acted to diminish NADPH oxidase isoforms Nox2 and Nox4 and decrease tubulointerstitial oxidative stress (reduced tissue superoxide and macromolecular oxidation). Decreased oxidative stress by acetaminophen was paralleled by the reduction of tubular proapoptotic signaling (diminished Bax/Bcl-2 ratio and caspase 3 activation) and the alleviation of tubular epithelial-to-mesenchymal transition (decreased transforming growth factor β, connective tissue growth factor, α-smooth muscle actin, and laminin). These data suggest that increased oxidative stress plays a critical role in mediating metabolic syndrome-induced tubulointerstitial injury and provide the first evidence suggesting that acetaminophen may be of therapeutic benefit for the prevention of tubulointerstitial injury.
Collapse
Affiliation(s)
- Cuifen Wang
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Southeast University, Nanjing, Jiangsu, China
| | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA.
| | - Ravikumar Arvapalli
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA
| | - Xiaoniu Dai
- Southeast University, Nanjing, Jiangsu, China
| | - Satyanarayana Paturi
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA
| | - Nandini Manne
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hari Addagarla
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA
| | - William E Triest
- Huntington Veterans Affairs Medical Center, Huntington, WV 25704, USA
| | - Omolola Olajide
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Miaozong Wu
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
135
|
Pagida MA, Konstantinidou AE, Malidelis YI, Ganou V, Tsekoura E, Patsouris E, Panayotacopoulou MT. The human neurosecretory neurones under perinatal hypoxia: a quantitative immunohistochemical study of the supraoptic nucleus in autopsy material. J Neuroendocrinol 2013; 25:1255-1263. [PMID: 24118231 DOI: 10.1111/jne.12111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/17/2013] [Accepted: 09/29/2013] [Indexed: 12/01/2022]
Abstract
In the rat, experimental manipulations that cause activation of the magnocellular neurosecretory neurones result in the synthesis, in addition to vasopressin (AVP) and oxytocin (OXY), of other neurotransmitters or peptides, including tyrosine hydroxylase (TH), the first and rate limiting enzyme for catecholamine biosynthesis. In the human neonate, our previous study showed that TH was selectively increased in AVP neurones of subjects that died from prolonged perinatal hypoxia. The purpose of the present study was to quantitatively investigate the expression of TH, AVP, OXY and neurophysin in magnocellular neurones of the human neonate in relation to the severity/duration of perinatal hypoxia, as estimated by neuropathological criteria. Autopsy was performed after obtaining parental written consent for diagnostic and research purposes. The intensity of the immunohistochemical reactions and the cellular/nuclear size were measured in the dorsolateral supraoptic nucleus using a computerised image analysis system. We showed that prolonged perinatal hypoxia resulted in the activation of the magnocellular neuroendocrine neurones of the human neonate, as indicated by their increased neuronal and nuclear size. OXY neurones appeared larger than the AVP ones at birth, possibly indicating an active role of foetal OXY during labour or even earlier. The gradual increase in the duration of the insult resulted in the reduction of intracellular AVP content, in parallel with a dramatic increase in the expression of TH, indicating a functional interaction of these peptides under neuronal activation. Ιsolated evidence in our series, obtained from an infant of a diabetic mother, raises the probability that in the case of hyperglycaemia the above pathogenetic mechanisms are diversified.
Collapse
Affiliation(s)
- M A Pagida
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| | - A E Konstantinidou
- First Department of Pathology, National Kapodistrian University of Athens, Athens, Greece
| | - Y I Malidelis
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| | - V Ganou
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| | - E Tsekoura
- Third Department of Pediatrics, National Kapodistrian University of Athens, Athens, Greece
| | - E Patsouris
- First Department of Pathology, National Kapodistrian University of Athens, Athens, Greece
| | - M T Panayotacopoulou
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
136
|
Vendrame S, Kristo AS, Schuschke DA, Klimis-Zacas D. Wild blueberry consumption affects aortic vascular function in the obese Zucker rat. Appl Physiol Nutr Metab 2013; 39:255-61. [PMID: 24476483 DOI: 10.1139/apnm-2013-0249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study evaluates the effect of wild blueberry (WB) consumption on the biomechanical properties of the aorta in the obese Zucker rat (OZR), a model of the metabolic syndrome. Thirty-six OZRs and 36 lean controls (lean Zucker rats) were placed either on a WB-enriched or a control (C) diet for 8 weeks. Phenylephrine (Phe)-mediated vasoconstriction and acetylcholine (Ach)-mediated vasorelaxation in the aortic vessel were investigated, as well as the contribution of the nitric oxide synthase and cyclooxygenase (COX) pathways in each of the above responses by using specific inhibitors. Obese Zucker rats exhibited a reduced vasocontstrictor response to Phe and an exaggerated vasorelaxant response to Ach. The WB diet partially restored Phe-induced constrictor responses and attenuated Ach-induced relaxant responses in OZR. Plasma nitric oxide was significantly attenuated (22.1 ± 1.1 μmol·L(-1), WB vs 25.6 ± 1.4 μmol·L(-1), C, p ≤ 0.05) with the WB diet. Thromboxane A2 levels in the aortic effluent were not significantly affected in the WB diet group, while PGI2 concentration significantly increased (766.5 ± 92.2 pg·mg(-1) aorta in the WB vs 571.7 ± 37.8 pg·g(-1) aorta in the C group, p ≤ 0.05). Downregulation of inducible nitric oxide synthase and COX2 expression in the OZR aorta was observed in the WB diet group. In conclusion, WB consumption altered the biomechanical properties of the OZR aorta by partially restoring the impaired Phe-induced constrictor responses and attenuating the exaggerated response to Ach-induced vasorelaxation.
Collapse
Affiliation(s)
- Stefano Vendrame
- a Department of Food Science and Human Nutrition, University of Maine, Orono, ME 04469, USA
| | | | | | | |
Collapse
|
137
|
Mendizábal Y, Llorens S, Nava E. Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats. Life Sci 2013; 93:1023-32. [PMID: 24200844 DOI: 10.1016/j.lfs.2013.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
AIMS We have studied the vasoactive role of prostaglandins derived from perivascular adipose tissue (PVAT) and their effects on endothelial function in healthy rats and rats with metabolic syndrome (SHROB). MAIN METHODS Mesenteric resistance arteries (MRA) from SHROB and control rats (WKY) were mounted on wire myographs: a) together with a sphere of naturally occurring perivascular adipose tissue (with-PVAT group), or b) dissecting all the adventitial tissue (without-PVAT group). KEY FINDINGS Endothelial function, tested by acetylcholine reactivity of SHROB arteries with PVAT, was significantly lower than that of WKY. With-PVAT arteries, especially the SHROB, showed lower responses than those without PVAT. NO synthase inhibition diminished the acetylcholine responses in every group except the with-PVAT SHROB group. Blockade of cyclooxygenase-2, PGI2-IP, TXA2-TP, or TXA2 synthase increased to different extents the arterial responses in the SHROB with-PVAT group. PVAT from both rat strains revealed cyclooxygenase-2 activity and immunoassay confirmed the release of PGE2, PGI2 and TXA2. SIGNIFICANCE Our major finding is that PVAT is a source of vasoactive prostaglandins in WKY and SHROB. We also report that the presence of visceral PVAT causes endothelial dysfunction of resistance arteries in the SHROB. The vascular responses to prostaglandins partly underlie the endothelial dysfunction of SHROB arteries.
Collapse
Affiliation(s)
- Yolanda Mendizábal
- Area of Physiology, Department of Medical Sciences, University of Castilla-La Mancha, School of Medicine and Regional Centre for Biomedical Research (CRIB), Albacete, Spain
| | | | | |
Collapse
|
138
|
Vázquez-Velasco M, González-Torres L, Olivero-David R, Bastida S, Benedí J, Sánchez-Reus MI, González-Muñoz MJ, Sánchez-Muniz FJ. Lipoproteinemia and arylesterase activity in Zucker Fa/Fa rats fed glucomannan/spirulina-enriched squid-surimi. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miguel Vázquez-Velasco
- Departamento de Nutrición y Bromatología I (Nutrición) Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Laura González-Torres
- Departamento de Nutrición y Bromatología I (Nutrición) Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Raúl Olivero-David
- Departamento de Nutrición y Bromatología I (Nutrición) Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
- Departamento de Nutrición, Bromatología y Toxicología, Facultad de Farmacia; Universidad de Alcalá, Alcalá de Henares; Madrid Spain
| | - Sara Bastida
- Departamento de Nutrición y Bromatología I (Nutrición) Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Juana Benedí
- Departamento de Farmacología Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Mª Isabel Sánchez-Reus
- Departamento de Bioquímica y Biología Molecular; Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Mª José González-Muñoz
- Departamento de Nutrición, Bromatología y Toxicología, Facultad de Farmacia; Universidad de Alcalá, Alcalá de Henares; Madrid Spain
| | - Francisco J. Sánchez-Muniz
- Departamento de Nutrición y Bromatología I (Nutrición) Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| |
Collapse
|
139
|
Kalashikam RR, Battula KK, Kirlampalli V, Friedman JM, Nappanveettil G. Obese locus in WNIN/obese rat maps on chromosome 5 upstream of leptin receptor. PLoS One 2013; 8:e77679. [PMID: 24204914 PMCID: PMC3804619 DOI: 10.1371/journal.pone.0077679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
WNIN/Obese (WNIN/Ob) rat a new mutant model of metabolic syndrome was identified in 1996 from an inbred Wistar rat strain, WNIN. So far several papers are published on this model highlighting its physical, biochemical and metabolic traits. WNIN/Ob is leptin resistant with unaltered leptin or its receptor coding sequences - the two well-known candidate genes for obesity. Genotyping analysis of F2 progeny (raised from WNIN/Ob × Fisher - 344) in the present study localized the mutation to a recombinant region of 14.15cM on chromosome 5. This was further corroborated by QTL analysis for body weight, which narrowed this region to 4.43 cM with flanking markers D5Rat256 & D5Wox37. Interval mapping of body weight QTL shows that the LOD score peak maps upstream of leptin receptor and shows an additive effect suggesting this as a novel mutation and signifying the model as a valuable resource for studies on obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Rajender Rao Kalashikam
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Kiran Kumar Battula
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Veerababu Kirlampalli
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Jeffrey M. Friedman
- Molecular Genetics Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, United States of America
- * E-mail: (JMF); (GN)
| | - Giridharan Nappanveettil
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
- * E-mail: (JMF); (GN)
| |
Collapse
|
140
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
141
|
de Castro UGM, dos Santos RAS, Silva ME, de Lima WG, Campagnole-Santos MJ, Alzamora AC. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis 2013; 12:136. [PMID: 24044579 PMCID: PMC3849586 DOI: 10.1186/1476-511x-12-136] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023] Open
Abstract
Background The metabolic syndrome (MS) is characterized by variable coexistence of metabolic and pathophysiological alterations which are important risk factors for developing of type II diabetes and/or cardiovascular diseases. Increased of MS patients in worldwide has stimulated the development of experimental models. However, it is still challenging to find an dietetic model that most closely approximates human MS and, in addition, is not yet fully established the effect of different diets of MS in lipid metabolism in rats of different ages. The aim of this study was to evaluate the effect of different diets of MS in lipid metabolism and ectopic fat deposition and define the most appropriate diet for inducing the characteristic disturbances of the human MS in rats of different ages. Methods Young (4 weeks old) and adult rats (12 weeks old) were given a high-fat (FAT) or high-fructose diet (FRU) for 13 weeks and biochemical, physiological, histological and biometric parameters were evaluated. Results In young rats, the FAT diet induced increased mean blood pressure (MAP) and heart rate (HR), body weight after 6 to 10 weeks, and in the 13th week, increased the liver, mesenteric, retroperitoneal and epididymal fat weights, fasting glucose, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and reduced HDL cholesterol; and also induced non-alcoholic fatty liver disease (NAFLD) and renal inflammatory infiltrates. In adult rats, the FRU diet induced transient elevations of MAP and HR in the 6th week, and, at 13 weeks, increased fasting glucose, triglycerides, total cholesterol, AST and ALT; increased liver, kidneys and retroperitoneal fat weights; and induced macrovesicular and microvesicular NAFLD, the presence of fat cells in the kidney, glomerular sclerosis, and liver and kidney inflammation. Additionally, the FAT and FRU diets induced, respectively, increases in liver glycogen in adults and young rats. Conclusions Our data show that FRU diet in adult rats causes biggest change on metabolism of serum lipids and lipid accumulation in liver and kidney, while the FAT diet in young rats induces elevation of MAP and HR and higher increased visceral lipid stores, constituting the best nutritional interventions to induce MS in rats.
Collapse
Affiliation(s)
- Uberdan Guilherme Mendes de Castro
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, MG 35 400-000, Brazil.
| | | | | | | | | | | |
Collapse
|
142
|
Diez ER, Renna NF, Prado NJ, Lembo C, Ponce Zumino AZ, Vazquez-Prieto M, Miatello RM. Melatonin, given at the time of reperfusion, prevents ventricular arrhythmias in isolated hearts from fructose-fed rats and spontaneously hypertensive rats. J Pineal Res 2013; 55:166-73. [PMID: 23635352 DOI: 10.1111/jpi.12059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/12/2013] [Indexed: 01/04/2023]
Abstract
Melatonin reduces reperfusion arrhythmias when administered before coronary occlusion, but in the clinical context of acute coronary syndromes, most of the therapies are administered at the time of reperfusion. Patients frequently have physiological modifications that can reduce the response to therapeutic interventions. This work determined whether acute melatonin administration starting at the moment of reperfusion protects against ventricular arrhythmias in Langendorff-perfused hearts isolated from fructose-fed rats (FFR), a dietary model of metabolic syndrome, and from spontaneous hypertensive rats (SHR). In both experimental models, we confirmed metabolic alterations, a reduction in myocardial total antioxidant capacity and an increase in arterial pressure and NADPH oxidase activity, and in FFR, we also found a decrease in eNOS activity. Melatonin (50 μm) initiated at reperfusion after 15-min regional ischemia reduced the incidence of ventricular fibrillation from 83% to 33% for the WKY strain, from 92% to 25% in FFR, and from 100% to 33% in SHR (P = 0.0361, P = 0.0028, P = 0.0013, respectively, by Fisher's exact test, n = 12 each). Although, ventricular tachycardia incidence was high at the beginning of reperfusion, the severity of the arrhythmias progressively declined in melatonin-treated hearts. Melatonin induced a shortening of the action potential duration at the beginning of reperfusion and in the SHR group also a faster recovery of action potential amplitude. We conclude that melatonin protects against ventricular fibrillation when administered at reperfusion, and these effects are maintained in hearts from rats exposed to major cardiovascular risk factors. These results further support the ongoing translation to clinical trials of this agent.
Collapse
Affiliation(s)
- Emiliano Raúl Diez
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | | | | | | | | | | |
Collapse
|
143
|
Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats. Br J Nutr 2013; 111:194-200. [DOI: 10.1017/s0007114513002390] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present study investigated the potential of a wild blueberry (WB)-enriched diet to improve blood lipid profile and modulate the expression of genes related to lipid homeostasis in obese Zucker rats (OZR), a model of the metabolic syndrome with severe dyslipidaemia. For this purpose, twenty OZR and twenty lean Zucker rats (LZR; controls) were placed either on a control (C) or an 8 % WB diet for 8 weeks. Plasma total cholesterol (TC), HDL-cholesterol and TAG concentrations were determined. The relative expression of six genes involved in lipid metabolism was also determined in both the liver and the abdominal adipose tissue (AAT). Plasma TAG and TC concentrations were significantly lower in the OZR following WB consumption (4228 (sem 471) and 2287 (sem 125) mg/l, respectively) than in those on the C diet (5475 (sem 315) and 2631 (sem 129) mg/l, P< 0·05), while there was no change in HDL-cholesterol concentration. No significant effects were observed for plasma lipids in the LZR. Following WB consumption, the expression of the transcription factors PPARα and PPARγ in the OZR was increased in the AAT, while that of sterol regulatory element-binding protein 1 (SREBP-1) was decreased in the liver and AAT. The expression of fatty acid synthase was significantly decreased in both the liver and AAT and that of ATP-binding cassette transporter 1 was increased in the AAT following WB consumption. In conclusion, WB consumption appears to improve lipid profiles and modulate the expression of key enzymes and transcription factors of lipid metabolism in severely dyslipidaemic rats.
Collapse
|
144
|
Rodriguez-Rodriguez AE, Triñanes J, Velazquez-Garcia S, Porrini E, Vega Prieto MJ, Diez Fuentes ML, Arevalo M, Salido Ruiz E, Torres A. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. Am J Transplant 2013; 13:1665-75. [PMID: 23651473 DOI: 10.1111/ajt.12236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 01/25/2023]
Abstract
Insulin resistance may interact with calcineurin inhibitors, enhancing the diabetogenic effect of tacrolimus compared with cyclosporine-A. We studied both drugs in insulin-resistant animals: obese Zucker rats (n = 45), and insulin-sensitive animals: lean Zucker rats (n = 21). During 11 days, animals received saline-buffer, cyclosporine-A (2.5 mg/kg/day) or tacrolimus (0.3 mg/kg/day). At Days 0 and 12 animals underwent intraperitoneal glucose tolerance test (0-30-60-120 min). Islet morphometry, beta-cell proliferation, apoptosis and Ins2 gene expression were analyzed. By Day 12, no lean animal had developed diabetes, while all obese animals on tacrolimus and 40% on cyclosporine-A had. In obese animals, tacrolimus reduced beta-cell proliferation and Ins2 gene expression compared with cyclosporine-A. Five days after treatment discontinuation, partial recovery was observed, with only 10% and 60% of the animals on cyclosporine and tacrolimus remaining diabetic respectively. Beta-cell proliferation increased in animals on tacrolimus while Ins2 gene expression remained unaltered. In conclusion, insulin resistance exacerbated the diabetogenic effect of tacrolimus compared with cyclosporine-A. This may be explained by greater inhibition of Ins2 gene and beta-cell proliferation by tacrolimus in the insulin resistant state. Discontinuation of the drugs may allow the recovery of the metabolic alterations.
Collapse
|
145
|
Díaz-Villaseñor A, Granados O, González-Palacios B, Tovar-Palacio C, Torre-Villalvazo I, Olivares-García V, Torres N, Tovar AR. Differential modulation of the functionality of white adipose tissue of obese Zucker (fa/fa) rats by the type of protein and the amount and type of fat. J Nutr Biochem 2013; 24:1798-809. [PMID: 23773624 DOI: 10.1016/j.jnutbio.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/12/2013] [Accepted: 03/26/2013] [Indexed: 01/14/2023]
Abstract
Recent evidence indicates that several metabolic abnormalities developed during obesity are associated with the presence of dysfunctional adipose tissue. Diet is a key factor that modulates several functions of adipose tissue; however, each nutrient in the diet produces specific changes. Thus, the aim of this work was to study the effect of the interaction of the type (coconut or soybean oil) and amount (5% or 10%) of fat with the type of dietary protein (casein or soy protein) on the functionality of white adipose tissue of Zucker (fa/fa) rats. The results showed that soybean oil reduced adipocyte size and decreased esterified saturated fatty acids in white adipose tissue. Excess dietary fat also modified the composition of esterified fatty acids in white adipose tissue, increased the secretion of saturated fatty acids to serum from white adipose tissue and reduced the process of fatty acids re-esterification. On the other hand, soy protein sensitized the activation of the hormone-sensitive lipase by increasing the phosphorylation of this enzyme (Ser 563) despite rats fed soy protein were normoglucagonemic, in contrast with rats fed casein that showed hyperglucagonemia but reduced hormone-sensitive lipase phosphorylation. Finally, in white adipose tissue, the interaction between the tested dietary components modulated the transcription/translation process of lipid and carbohydrate metabolism genes via the activity of the PERK-endoplasmic reticulum stress response. Therefore, our results showed that the type of protein and the type and amount of dietary fat selectively modify the activity of white adipose tissue, even in a genetic model of obesity.
Collapse
|
146
|
Agil A, Reiter RJ, Jiménez-Aranda A, Ibán-Arias R, Navarro-Alarcón M, Marchal JA, Adem A, Fernández-Vázquez G. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. J Pineal Res 2013; 54:381-8. [PMID: 23020082 DOI: 10.1111/jpi.12012] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the effects of melatonin on low-grade inflammation and oxidative stress in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n = 30) and lean littermates (ZL) (n = 30) were used. At 6 wk of age, both lean and fatty animals were subdivided into three groups, each composed of 10 rats: naive (N), vehicle treated (V), and melatonin treated (M) (10 mg/kg/day) for 6 wk. Vehicle and melatonin were added to the drinking water. Pro-inflammatory state was evaluated by plasma levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP). Also, oxidative stress was assessed by plasma lipid peroxidation (LPO), both basal and after Fe(2+)/H2O2 inducement. ZDF rats exhibited higher levels of IL-6 (112.4 ± 1.5 pg/mL), TNF-α (11.0 ± 0.1 pg/mL) and CRP (828 ± 16.0 µg/mL) compared with lean rats (IL-6, 89.9 ± 1.0, P < 0.01; TNF-α, 9.7 ± 0.4, P < 0.01; CRP, 508 ± 21.5, P < 0.001). Melatonin lowered IL-6 (10%, P < 0.05), TNF-α (10%, P < 0.05), and CRP (21%, P < 0.01). Basal and Fe(2+)/H2O2-induced LPO, expressed as malondialdehyde equivalents (µmol/L), were higher in ZDF rats (basal, 3.2 ± 0.1 versus 2.5 ± 0.1 in ZL, P < 0.01; Fe(2+)/H2O2-induced, 8.7 ± 0.2 versus 5.5 ± 0.3 in ZL; P < 0.001). Melatonin improved basal LPO (15%, P < 0.05) in ZDF rats, and Fe(2+)/H2O2- induced LPO in both ZL (15.2%, P < 0.01) and ZDF rats (39%, P < 0.001). These results demonstrated that oral melatonin administration ameliorates the pro-inflammatory state and oxidative stress, which underlie the development of insulin resistance and their consequences, metabolic syndrome, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Tomassoni D, Nwankwo IE, Gabrielli MG, Bhatt S, Muhammad AB, Lokhandwala MF, Tayebati SK, Amenta F. Astrogliosis in the brain of obese Zucker rat: a model of metabolic syndrome. Neurosci Lett 2013; 543:136-41. [PMID: 23545209 DOI: 10.1016/j.neulet.2013.03.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
Abstract
Metabolic syndrome (MetS) is a disorder characterized primarily by the development of insulin resistance. Insulin resistance and subsequent hyperinsulinemia, originating from abdominal obesity, increases the risk of cerebrovascular and cardiovascular disease and all-cause mortality. Obesity is probably a risk factor for Alzheimer's disease and vascular dementia and is associated with impaired cognitive function. The obese Zucker rat (OZR) represents a model of type 2 diabetes exhibiting a moderate degree of arterial hypertension and of increased oxidative stress. To clarify the possible relationships between MetS and brain damage, the present study has investigated brain microanatomy in OZRs compared with their littermate controls lean Zucker rats (LZRs). Male OZRs and LZRs of 12 weeks of age were used. Their brain was processed for immunochemical and immunohistochemical analysis of glial fibrillary acidic protein (GFAP). In frontal and parietal cortex of OZRs a significant increase in the number of GFAP immunoreactive astrocytes was observed. Similar findings were found in the hippocampus, where an increased number of GFAP immunoreactive astrocytes were detected in the CA1 and CA3 subfields and dentate gyrus of OZRs compared to the LZRs. These findings indicating the occurrence of brain injury accompanied by astrogliosis in OZRs suggest that these rats, developed as an animal model of type 2 diabetes, may also represent a model for assessing the influence of MetS on brain. The identification of neurodegenerative changes in OZRs may represent the first step for better characterizing neuronal involvement in this model of MetS and possible treatment for countering it.
Collapse
Affiliation(s)
- Daniele Tomassoni
- School of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Hypertension in metabolic syndrome: vascular pathophysiology. Int J Hypertens 2013; 2013:230868. [PMID: 23573411 PMCID: PMC3615624 DOI: 10.1155/2013/230868] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022] Open
Abstract
METABOLIC SYNDROME IS A CLUSTER OF METABOLIC AND CARDIOVASCULAR SYMPTOMS: insulin resistance (IR), obesity, dyslipemia. Hypertension and vascular disorders are central to this syndrome. After a brief historical review, we discuss the role of sympathetic tone. Subsequently, we examine the link between endothelial dysfunction and IR. NO is involved in the insulin-elicited capillary vasodilatation. The insulin-signaling pathways causing NO release are different to the classical. There is a vasodilatory pathway with activation of NO synthase through Akt, and a vasoconstrictor pathway that involves the release of endothelin-1 via MAPK. IR is associated with an imbalance between both pathways in favour of the vasoconstrictor one. We also consider the link between hypertension and IR: the insulin hypothesis of hypertension. Next we discuss the importance of perivascular adipose tissue and the role of adipokines that possess vasoactive properties. Finally, animal models used in the study of vascular function of metabolic syndrome are reviewed. In particular, the Zucker fatty rat and the spontaneously hypertensive obese rat (SHROB). This one suffers macro- and microvascular malfunction due to a failure in the NO system and an abnormally high release of vasoconstrictor prostaglandins, all this alleviated with glitazones used for metabolic syndrome therapy.
Collapse
|
149
|
de Castro NM, Yaqoob P, de la Fuente M, Baeza I, Claus SP. Premature Impairment of Methylation Pathway and Cardiac Metabolic Dysfunction in fa/fa Obese Zucker Rats. J Proteome Res 2013; 12:1935-45. [DOI: 10.1021/pr400025y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nuria M. de Castro
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Parveen Yaqoob
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| | - Mónica de la Fuente
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Baeza
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandrine P. Claus
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| |
Collapse
|
150
|
Vendrame S, Daugherty A, Kristo AS, Riso P, Klimis-Zacas D. Wild blueberry (Vaccinium angustifolium) consumption improves inflammatory status in the obese Zucker rat model of the metabolic syndrome. J Nutr Biochem 2013; 24:1508-12. [PMID: 23465589 DOI: 10.1016/j.jnutbio.2012.12.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 12/06/2012] [Accepted: 12/17/2012] [Indexed: 01/11/2023]
Abstract
The metabolic syndrome (MetS) is a major public health problem in the United States. Chronic inflammation is a critical component of the MetS, leading to dramatically increased risk of type II diabetes and cardiovascular disease. This study investigates the ability of a wild-blueberry-enriched diet to improve the proinflammatory status associated with MetS in the obese Zucker rat (OZR). Circulating levels of key inflammatory markers and their expression in the liver and abdominal adipose tissue were examined in OZR and its genetic control, the lean Zucker rat (LZR), after feeding a control or an 8% wild blueberry diet (WB) for 8 weeks from age 8 to 16 weeks. In the OZR, WB consumption resulted in decreased plasma concentrations of tumor necrosis factor (TNF)-α (-25.6%, P<.05), interleukin (IL)-6 (-14.9%, P<.05) and C-reactive protein (CRP) (-13.1%, P<.05) and increased adiponectin concentration (+21.8%, P<.05). Furthermore, expression of IL-6, TNF-α and nuclear factor (NF)-kB was down-regulated in both the liver (-65%, -59% and -25%, respectively) and the abdominal adipose tissue (-64%, -52% and -65%), while CRP expression was down-regulated only in the liver (-25%). In the abdominal adipose tissue, similar trends were also observed in LZR following WB treatment, with decreased liver expression of NF-kB, CRP, IL-6 and TNF-α (-24%, -16%, -21% and -50%) and increased adiponectin expression (+25%). Results of this study suggest that wild blueberry consumption exerts an overall anti-inflammatory effect in the OZR, a model of the metabolic syndrome.
Collapse
Affiliation(s)
- Stefano Vendrame
- Department of Food Science and Human Nutrition, University of Maine, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|