101
|
Bai Y, Chen L, Cao YF, Hou XD, Jia SN, Zhou Q, He YQ, Hou J. Beta-Glucuronidase Inhibition by Constituents of Mulberry Bark. PLANTA MEDICA 2021; 87:631-641. [PMID: 33733438 DOI: 10.1055/a-1402-6431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intestinal bacterial β-glucuronidases, the key enzymes responsible for the hydrolysis of various glucuronides into free aglycone, have been recognized as key targets for treating various intestinal diseases. This study aimed to investigate the inhibitory effects and mechanisms of the Mulberry bark constituents on E. coli β-glucuronidase (EcGUS), the most abundant β-glucuronidases produced by intestinal bacteria. The results showed that the flavonoids isolated from Mulberry bark could strongly inhibit E. coli β-glucuronidase, with IC50 values ranging from 1.12 µM to 10.63 µM, which were more potent than D-glucaric acid-1,4-lactone. Furthermore, the mode of inhibition of 5 flavonoids with strong E. coli β-glucuronidase inhibitory activity (IC50 ≤ 5 µM) was carefully investigated by a set of kinetic assays and in silico analyses. The results demonstrated that these flavonoids were noncompetitive inhibitors against E. coli β-glucuronidase-catalyzed 4-nitrophenyl β-D-glucuronide hydrolysis, with Ki values of 0.97 µM, 2.71 µM, 3.74 µM, 3.35 µM, and 4.03 µM for morin (1: ), sanggenon C (2: ), kuwanon G (3: ), sanggenol A (4: ), and kuwanon C (5: ), respectively. Additionally, molecular docking simulations showed that all identified flavonoid-type E. coli β-glucuronidase inhibitors could be well-docked into E. coli β-glucuronidase at nonsubstrate binding sites, which were highly consistent with these agents' noncompetitive inhibition mode. Collectively, our findings demonstrated that the flavonoids in Mulberry bark displayed strong E. coli β-glucuronidase inhibition activity, suggesting that Mulberry bark might be a promising dietary supplement for ameliorating β-glucuronidase-mediated intestinal toxicity.
Collapse
Affiliation(s)
- Yue Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lu Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun-Feng Cao
- Dalian Runsheng Kangtai Medical Laboratory Co. Ltd, Dalian, China
| | - Xu-Dong Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shou-Ning Jia
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Qi Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu-Qi He
- The Key Laboratory of the Basic Pharmacology of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
102
|
Chaiwong S, Chatturong U, Chanasong R, Deetud W, To-on K, Puntheeranurak S, Chulikorn E, Kajsongkram T, Raksanoh V, Chinda K, Limpeanchob N, Trisat K, Somran J, Nuengchamnong N, Prajumwong P, Chootip K. Dried mulberry fruit ameliorates cardiovascular and liver histopathological changes in high-fat diet-induced hyperlipidemic mice. J Tradit Complement Med 2021; 11:356-368. [PMID: 34195030 PMCID: PMC8240167 DOI: 10.1016/j.jtcme.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIM Metabolic disease encompasses most contemporary non-communicable diseases, especially cardiovascular and fatty liver disease. Mulberry fruits of Morus alba L. are a favoured food and a traditional medicine. While they are anti-atherosclerotic and reduce hyperlipidemic risk factors, studies need wider scope that include ameliorating cardiovascular and liver pathologies if they are to become clinically effective treatments. Therefore, the present study sought to show that freshly dried mulberry fruits (dMF) might counteract the metabolic/cardiovascular pathologies in mice made hyperlipidemic by high-fat diet (HF). EXPERIMENTAL PROCEDURE C57BL/6J mice were fed for 3 months with either: i) control diet, ii) HF, iii) HF+100 mg/kg dMF, or iv) HF+300 mg/kg dMF. Body weight gain, food intake, visceral fat accumulation, fasting blood glucose, plasma lipids, and aortic, heart, and liver histopathologies were evaluated. Adipocyte lipid accumulation, autophagy, and bile acid binding were also investigated. RESULTS AND CONCLUSION HF increased food intake, body weight, visceral fat, plasma total cholesterol (TC) and low-density lipoprotein (LDL), TC/HDL ratio, blood glucose, aortic collagen, arterial and cardiac wall thickness, and liver lipid. Both dMF doses prevented hyperphagia, body weight gain, and visceral fat accumulation, lowered blood glucose, plasma TG and unfavourable TC/HDL and elevated plasma HDL beyond baseline. Arterial and cardiac wall hypertrophy, aortic collagen fibre accumulation and liver lipid deposition ameliorated in dMF-fed mice. Clinical trials on dMF are worthwhile but outcomes should be holistic commensurate with the constellation of disease risks. Here, dMF should supplement the switch to nutrient-rich from current energy-dense diets that are progressively crippling national health systems.
Collapse
Affiliation(s)
- Suriya Chaiwong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Usana Chatturong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Rachanee Chanasong
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Watcharakorn Deetud
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kittiwoot To-on
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Supaporn Puntheeranurak
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Ekarin Chulikorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Tanwarat Kajsongkram
- Expert Center of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Veerada Raksanoh
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Kanittaporn Trisat
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Piya Prajumwong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
103
|
You BH, BasavanaGowda MK, Lee JU, Chin YW, Choi WJ, Choi YH. Pharmacokinetic Properties of Moracin C in Mice. PLANTA MEDICA 2021; 87:642-651. [PMID: 33498088 DOI: 10.1055/a-1321-1519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Moracin C from Morus alba fruits, also known as the mulberry, has been proven to exhibit inhibitory activities against lipoxygenase enzymes, TNF-α and interleukin-1β secretion, and proprotein convertase subtilisin/kexin type 9 expression. Despite the various pharmacological activities of moracin C, its pharmacokinetic characteristics have yet to be reported. Here, the pharmacokinetic parameters and tissue distribution of moracin C have been investigated in mice, and the plasma concentration of moracin C with multiple dosage regimens was simulated via pharmacokinetic modeling. Our results showed that moracin C was rapidly and well absorbed in the intestinal tract, and was highly distributed in the gastrointestinal tract, liver, kidneys, and lungs. Moracin C was distributed in the ileum, cecum, colon, and liver at a relatively high concentration compared with its plasma concentration. It was extensively metabolized in the liver and intestine, and its glucuronidated metabolites were proposed. In addition, the simulated plasma concentrations of moracin C upon multiple treatments (i.e., every 12 and 24 h) were suggested. We suggest that the pharmacokinetic characteristics of moracin C would be helpful to select a disease model for in vivo evaluation. The simulated moracin C concentrations under various dosage regimens also provide helpful knowledge to support its pharmacological effect.
Collapse
Affiliation(s)
- Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | | | - Jae Un Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| |
Collapse
|
104
|
Tian W, Heo S, Kim DW, Kim IS, Ahn D, Tae HJ, Kim MK, Park BY. Ethanol Extract of Maclura tricuspidata Fruit Protects SH-SY5Y Neuroblastoma Cells against H 2O 2-Induced Oxidative Damage via Inhibiting MAPK and NF-κB Signaling. Int J Mol Sci 2021; 22:ijms22136946. [PMID: 34203307 PMCID: PMC8268219 DOI: 10.3390/ijms22136946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.
Collapse
Affiliation(s)
- Weishun Tian
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Suyoung Heo
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Dae-Woon Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - In-Shik Kim
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Dongchoon Ahn
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Hyun-Jin Tae
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Myung-Kon Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea;
- Correspondence: (M.-K.K.); (B.-Y.P.); Tel.: +82-63-270-4874 (B.-Y.P.)
| | - Byung-Yong Park
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
- Correspondence: (M.-K.K.); (B.-Y.P.); Tel.: +82-63-270-4874 (B.-Y.P.)
| |
Collapse
|
105
|
Salimi F, Moradi M, Tajik H, Molaei R. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus alba L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3439-3447. [PMID: 33289129 DOI: 10.1002/jsfa.10974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Carbon dots (C-dots) with antimicrobial activity were synthesized from the white mulberry extract with the aim of fabricating anti-listeria nanopaper using bacterial nanocellulose (BNC). Highly dispersed synthesized C-dots with a size smaller than 10 nm (approximately 4.9 nm) were impregnated into BNC by an ex situ coating method and then mechanical, morphological, UV-protectant and antibacterial activity were assessed. Randomized response surface methodology using a central composite design was applied to investigate the optimized concentration of C-dots in the BNC membrane. RESULTS An optimized nanopaper including C-dots at a concentration of 530 g L-1 and an impregnation time of 14 h at 30 °C with significant antimicrobial activity on Listeria monocytogenes was designed. The addition of C-dots into BNC significantly increased ultimate tensile strength and decreased strain with respect to breaking BNC. A BNC sheet with high-efficient UV-blocking property was prepared using C-dots. CONCLUSION Based on the results, the designed nanopaper shows a substantial capacity with respect to the fabrication of antimicrobial/UV-blocking sheets for food active packaging. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
106
|
Li H, Luo Y, Ma B, Hu J, Lv Z, Wei W, Hao H, Yuan J, He N. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. Int J Mol Sci 2021; 22:ijms22115550. [PMID: 34074049 PMCID: PMC8197408 DOI: 10.3390/ijms22115550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ningjia He
- Correspondence: ; Tel.: +86-23-6825-0797; Fax: +86-23-6825-1128
| |
Collapse
|
107
|
Ai J, Bao B, Battino M, Giampieri F, Chen C, You L, Cespedes-Acuña CL, Ognyanov M, Tian L, Bai W. Recent advances on bioactive polysaccharides from mulberry. Food Funct 2021; 12:5219-5235. [PMID: 34019048 DOI: 10.1039/d1fo00682g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry (Moraceae family), commonly considered as a folk remedy, has a long history of usage in many regions of the world. Polysaccharides regarded as one of the major components in mulberry plants, and they possess antioxidant, antidiabetic, hepatoprotective, prebiotic, immunomodulatory and antitumor properties, among others. In recent decades, mulberry polysaccharides have been widely studied for their multiple health benefits and potential economic value. However, there are few reviews providing updated information on polysaccharides from mulberry. In this review, recent advances in the study of isolation, purification, structural characterization, biological activity and the structure-activity relationship of mulberry polysaccharides are summarized and discussed. Furthermore, a thorough analysis of the current trends and perspectives on mulberry polysaccharides is also proposed. Hopefully, these findings can provide a useful reference value for the development and application of natural polysaccharides in the field of functional food and medicine in the future.
Collapse
Affiliation(s)
- Jian Ai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Li M, Li T, Hu X, Ren G, Zhang H, Wang Z, Teng Z, Wu R, Wu J. Structural, rheological properties and antioxidant activities of polysaccharides from mulberry fruits (Murus alba L.) based on different extraction techniques with superfine grinding pretreatment. Int J Biol Macromol 2021; 183:1774-1783. [PMID: 34022314 DOI: 10.1016/j.ijbiomac.2021.05.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
The structural characteristics and biological activity of polysaccharides were influenced by different extraction methods. In this study, polysaccharides from mulberry fruits (Murus alba L., which were pre-treated with superfine grinding process) (MFP) were exacted using hot-water extraction (HWE), enzyme-assisted hot water extraction (EAHE), ultrasonic-assisted hot water extraction (UAHE), and high-speed shear homogenization-assisted hot water extraction (HSEHE). The extraction yield, structure, rheological properties and antioxidant activities of MFPs were investigated. MFP extracted using the HSEHE method have the highest extraction yields than other extraction methods. The smaller particle size of mulberry powder was found to improve the extraction yields. The MFPs were obtained by the combination between different extraction methods and superfine grinding pretreatment (through 100 mesh sieve) (MFP-HWE100, MFP-EAHE100, MFP-UAHE100, MFP-HSEHE100) showed the same levels of monosaccharide compositions and glycosyl linkages, However, these methods can produce MFP with different monosaccharide proportions, branching degree, different molecular weight, particle size and microstructure. MFP-HSEHE100 achieved the lowest molecular weight and particle size, which exhibited better thixotropy and antioxidant activities than other MFPs. This study identified that HSEHE was the most suitable extraction method for MFP.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Guangyu Ren
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zhengrong Teng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China..
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China..
| |
Collapse
|
109
|
Chang Y, Hung CF, Ko HH, Wang SJ. Albanin A, Derived from the Root Bark of Morus alba L., Depresses Glutamate Release in the Rat Cerebrocortical Nerve Terminals via Ca 2+/Calmodulin/Adenylate Cyclase 1 Suppression. J Med Food 2021; 24:209-217. [PMID: 33739887 DOI: 10.1089/jmf.2020.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decreasing synaptic release of glutamate may counteract glutamate excitotoxicity in many neurological diseases. In this study, we investigated the effect of albanin A, a constituent in the root bark of Morus alba L., on the release of glutamate in rat cerebral cortex nerve endings (synaptosomes). We found that albanin A at 5-30μM suppressed 4-aminopyridine (4-AP)-induced release of glutamate. This phenomenon was abolished by extracellular calcium removal or by vesicular transporter inhibition, and was associated with a decrease in intrasynaptosomal Ca2+ levels. However, albanin A had no effect on the synaptosomal membrane potential. The inhibition of N- and P/Q-type Ca2+ channels, calmodulin, adenylate cyclase (AC), and protein kinase A, abolished the effect of albanin A on the glutamate release evoked by 4-AP. Moreover, the albanin A-mediated inhibition of glutamate release was prevented by the Ca2+/calmodulin-stimulated AC1 inhibitor. Western blot showed that AC1, but not AC8, was presented in the synaptosomes, and albanin A reduced 4-AP-induced increases in synaptosomal cyclic adenosine monophosphate content. In addition, albanin A pretreatment substantially attenuated neuronal damage in a rat model of kainic acid-induced glutamate excitotoxicity. Our data reveal that albanin A suppresses glutamate release by decreasing Ca2+/calmodulin/AC1 activation in synaptosomes and exerts neuroprotective effect in vivo.
Collapse
Affiliation(s)
- Yi Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chi Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Horng Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy; Kaohsiung, Taiwan.,Drug Development and Value Creation Center; Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
110
|
Chao N, Wang RF, Hou C, Yu T, Miao K, Cao FY, Fang RJ, Liu L. Functional characterization of two chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:65-73. [PMID: 33578286 DOI: 10.1016/j.plaphy.2021.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Mulberry (Morus sp., Moraceae) is an important economic crop plant and mulberry fruits are rich in anthocyanidins. Chalcone isomerase (CHI) catalyzes the conversion of chalcones to flavanones providing precursors for biosynthesis of anthocyanidins. In this study, bona fide CHIs were cloned and characterized from different Morus species with differently colored fruits (Morus multicaulis, Mm and Morus alba variety LvShenZi, LSZ). Enzymatic assay of MmCHI1 and MmCHI2 showed that they can utilize naringenin chalcone as substrate. The catalytic efficiency of MmCHI2 and LSZCHI2 are approximately 200 and 120-fold greater than that of MmCHI1 respectively. Phylogenetic analysis showed the two mulberry CHIs belonged to different sub-clade of Type I CHI1 named type IA (CHI2) and type IB (CHI1). Type IB CHIs are mulberry specific. MmCHI1 and MmCHI2 had similar expression profiles and showed preferred expression in fruits. In addition, both mulberry CHI1 and CHI2 played roles in the response to excess zinc stress and sclerotiniose pathogen infection. Both MmCHI1 and MmCHI2 expression levels showed positive close relationship with anthocyanins content during fruit ripening process. The co-expression of MmCHI1 and MmCHI2 was observed during fruit ripening process and in transgenic mulberry. VIGS (virus induced gene silence) targeting on MmCHI1 and MmCHI2 showed significant down-regulation of MmCHI2 instead of MmCHI1 would result in significant (about 50%) decrease in anthocyanins content. MmCHI2 is the dominant CHI for anthocyanins accumulation in mulberry. The results presented in this work provided insight on bona fide CHIs in mulberry and reveal their roles in anthocyanins accumulation.
Collapse
Affiliation(s)
- Nan Chao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Ru-Feng Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Chong Hou
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Ting Yu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Ke Miao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Fang-Yuan Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Rong-Jun Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
111
|
Jan B, Parveen R, Zahiruddin S, Khan MU, Mohapatra S, Ahmad S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J Biol Sci 2021; 28:3909-3921. [PMID: 34220247 PMCID: PMC8241616 DOI: 10.1016/j.sjbs.2021.03.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Mulberry is a fast growing deciduous plant found in wide variety of climatic, topographical and soil conditions, and is widely distributed from temperate to subtropical regions. Due to presence of valuable phytochemical constituents, mulberry as a whole plant has been utilized as a functional food since long time. Mulberry fruits are difficult to preserve as they have relatively high water content. Therefore for proper utilization, different value-added products like syrups, squashes, teas, pestil sand köme, pekmez (turkuish by-products), yogurts, jams, jellies, wines, vinegar, breads, biscuits, parathas, and many more are made. In overseas, these value-added products are commercially sold and easily available, though in India, this versatile medicinal plant is still missing its identity at commercial and industrial scale. Leaves of mulberry are economically viable due to their important role in the sericulture industry since ancient times. Mulberries or its extracts exhibit excellent anti-microbial, anti-hyperglycaemic, anti-hyperlipidemic, anti-inflammatory, anti-cancer effects and is used to combat different acute and chronic diseases. Different parts of Morus species like fruits, leaves, twigs, and bark exhibit strong anti-tyrosinase inhibition activity that makes it a suitable candidate in cosmetic industries as a whitening agent. The current review provides a comprehensive discussion concerning the phytochemical constituents, functionality and nutraceutical potential of mulberry and as a common ingredient in various cosmetic products.
Collapse
Affiliation(s)
- Bisma Jan
- Department of Food Technology School of Interdisciplinary Science & Technology, Jamia Hamdard, New Delhi, India.,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Rabea Parveen
- Department of Food Technology School of Interdisciplinary Science & Technology, Jamia Hamdard, New Delhi, India.,Department of Biosciences, Human Genetics and Laboratory, Jamia Milia Islamia, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Umar Khan
- Department of Food Technology School of Interdisciplinary Science & Technology, Jamia Hamdard, New Delhi, India.,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sradhanjali Mohapatra
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India.,Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
112
|
Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity. Carbohydr Polym 2021; 256:117516. [DOI: 10.1016/j.carbpol.2020.117516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022]
|
113
|
Sosa del Castillo D, Quintero Mesa JJ, Rojas Alvear YJ, Rodríguez M, Rea Suárez RA, Miranda Martínez M. Chemical evaluation and anti-radical activity of varieties of Morus alba l. (morera, moraceae) from Venezuela. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mulberry (Morus alba L.), known as white mulberry, is a plant widely used in medicine and food due to its chemical composition. The qualitative study of the primary and secondary metabolites of the methanolic extracts of the four varieties of Morera was developed by chromatographic profile (TLC) against standards. Quantification was performed through colorimetric assays. All results were analyzed through statistical analysis. The results indicated the existence of similarities between varieties for both primary and secondary metabolites. The radical capacity of the varieties analyzed was also evaluated by finding that the Táchira variety had the highest anti-radical capacity with an IC50 of 553.58 ± 3.23 µg / mL followed by the Maracay IC50 varieties of 1054.01 ± 1.76 µg / mL, Boconó IC50 of 1398.93 ± 2.23 µg / mL and Yu-62 IC50 of 3817.89 ± 18.08 µg / mL.
It was found that the use of the thin layer chromatography (CCF) technique was efficient to detect the presence of phenolic compounds, soluble carbohydrates, and amino acids in the four varieties studied. The Yu-62 variety had the highest total phenol contents and proteins; the amino acid content was higher for the Táchira variety, while the soluble carbohydrate content was higher in the Boconó variety. The presence of saponins was not detected in any of the four varieties evaluated
Collapse
Affiliation(s)
- Daynet Sosa del Castillo
- ESPOL. Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863. Guayaquil, Ecuador
| | - José Johnatan Quintero Mesa
- Escuela de Química. Facultad de Ciencias. Universidad Central de Venezuela. Av. Los Ilustres, Ciudad Universitaria. Caracas. Venezuela. +5804129858381. E-mail: . Escuela de Química. Facultad de Ciencias. Universidad Central de Venezuela
| | - Yeifre José Rojas Alvear
- Escuela de Química. Facultad de Ciencias. Universidad Central de Venezuela. Av. Los Ilustres, Ciudad Universitaria. Caracas. Venezuela
| | - María Rodríguez
- Universidad Central de Venezuela. Facultad de Ciencias. Escuela de Química. Av. Los Ilustres, Ciudad Universitaria. Caracas 471022. Venezuela
| | - Ramón Antonio Rea Suárez
- Área de Agricultura y Soberanía Alimentaria. IDEA. Instituto de Estudios Avanzados. Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Edo. Miranda, Caracas 1015-A, Venezuela
| | - Migdalia Miranda Martínez
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Departamento de Ciencias Químicas y Ambientales. Facultad de Ciencias Naturales y Matemáticas, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863. Guayaquil, Ecuador
| |
Collapse
|
114
|
Zhou W, Liang X, Zhang Y, Dai P, Liang B, Li J, Sun C, Lin X. Role of sucrose in modulating the low-nitrogen-induced accumulation of phenolic compounds in lettuce (Lactuca sativa L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5412-5421. [PMID: 32562270 DOI: 10.1002/jsfa.10592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Phenolic compounds are phytochemicals present in vegetables which contribute to human health. Although nitrogen deficiency and sucrose (Suc) are linked to phenolic production in vegetables, the relationship between them in the regulation of phenolic biosynthesis remains unknown. This study investigated the potential role of Suc in regulating phenolic biosynthesis of lettuce under low-nitrogen (LN) conditions. RESULTS Our results showed that LN treatment significantly increased Suc content in lettuce by inducing rapid increases in activities of sucrose synthesis-related enzymes. Exogenous Suc further stimulated LN-induced phenolic accumulation in lettuce by upregulating the expression of genes (PAL, CHS, F3H, DFR, F35H and UFGT) involved in phenolic biosynthesis. The opposite effects were true for exogenous 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) application. No changes were observed in chlorophyll content in LN-treated lettuce, in either the presence or absence of Suc application. Notably, exogenous DCMU resulted in decreases of maximum quantum efficiency of photosystem II (PSII) photochemistry, actual efficiency of PSII and electron transport rate in PSII and increase of quantum yield of non-regulated energy dissipation in PSII in lettuce under LN conditions, whereas these effects were reversed on Suc application. Exogenous Suc also increased glutamine synthetase and glutamate synthase activities in LN-treated lettuce. CONCLUSIONS These results suggest that Suc is involved in LN-induced phenolic production in lettuce by enhancing photosynthetic and nitrogen assimilation efficiency to increase the supply of carbon resources and precursors for phenolic biosynthesis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiwei Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Peibin Dai
- Department of Applied Engineering, Zhejiang Economic and Trade Polytechnic, Hangzhou, China
| | - Bin Liang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, China
| | - Junliang Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
115
|
Hu D, Bao T, Lu Y, Su H, Ke H, Chen W. Polysaccharide from Mulberry Fruit ( Morus alba L.) Protects against Palmitic-Acid-Induced Hepatocyte Lipotoxicity by Activating the Nrf2/ARE Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13016-13024. [PMID: 31537067 DOI: 10.1021/acs.jafc.9b03335] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study was aimed to investigate the protective effects of three different mulberry fruit polysaccharide fractions (MFP-I, MFP-II, and MFP-III) against palmitic acid (PA)-induced hepatocyte lipotoxicity and characterize the functional polysaccharide fraction using gel permeation chromatography, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance analyses. MFP-I, MFP-II, and MFP-III were isolated from mulberry fruit by stepwise precipitation with 30, 60, and 90% ethanol, respectively. MFP-II at 0.1 and 0.2 mg/mL dramatically attenuated PA-induced hepatic lipotoxicity, while MFP-I and MFP-III showed weak protection. It was demonstrated that MFP-II not only increased nuclear factor erythroid-2-related factor 2 (Nrf2) phosphorylation and its nuclear translocation, thereby activating the Nrf2/ARE signaling pathway, but also enhanced heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, and γ-glutamate cysteine ligase gene expressions and promoted catalase and glutathione peroxidase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Further investigation indicated that the molecular weight of MFP-II was 115.0 kDa, and MFP-II mainly consisted of galactose (30.5%), arabinose (26.2%), and rhamnose (23.1%). Overall, our research might provide in-depth insight into mulberry fruit polysaccharide in ameliorating lipid metabolic disorders.
Collapse
Affiliation(s)
- Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, People's Republic of China
| |
Collapse
|
116
|
Isolation, structures and biological activities of polysaccharides from Chlorella: A review. Int J Biol Macromol 2020; 163:2199-2209. [DOI: 10.1016/j.ijbiomac.2020.09.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
|
117
|
BAYRAM HM, ÖZTÜRKCAN A. Antosiyanince Zengin Kiraz Grubu Meyvelerin İnsan Sağlığı Üzerine Etkilerini İnceleyen Klinik Çalışmalara Bir Bakış. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.38079/igusabder.748640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
118
|
Kangtaizhi Granule Alleviated Nonalcoholic Fatty Liver Disease in High-Fat Diet-Fed Rats and HepG2 Cells via AMPK/mTOR Signaling Pathway. J Immunol Res 2020; 2020:3413186. [PMID: 32884949 PMCID: PMC7455821 DOI: 10.1155/2020/3413186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022] Open
Abstract
Kangtaizhi granule (KTZG) is a Chinese medicine compound prescription and has been proven to be effective in nonalcoholic fatty liver disease (NAFLD) treatment clinically. However, the underlying mechanisms under this efficacy are rather elusive. In the present study, network pharmacology and HPLC analysis were performed to identify the chemicals of KTZG and related target pathways for NAFLD treatment. Network pharmacology screened 42 compounds and 79 related targets related to NAFLD; HPLC analysis also confirmed six compounds in KTZG. Further experiments were also performed. In an in vivo study, SD rats were randomly divided into five groups: control (rats fed with normal diet), NAFLD (rats fed with high-fat diet), and KTZG 0.75, 1.5, and 3 groups (NAFLD rats treated with KTZG 0.75, 1.5, and 3 g/kg, respectively). Serum lipids were biochemically determined; hepatic steatosis and lipid accumulation were evaluated with HE and oil red O staining. In an in vitro study, HepG2 cells were incubated with 1 mM FFA to induce lipid accumulation with or without KTZG treatment. MTT assay, intracellular TG level, oil red O staining, and glucose uptake in cells were detected. Western blotting and immunohistochemical and immunofluorescence staining were also performed to determine the expression of lipid-related genes PPAR-γ, SREBP-1, p-AKT, FAS, and SIRT1 and genes in the AMPK/mTOR signaling pathway. In high-fat diet-fed rats, KTZG treatment significantly improved liver organ index and serum lipid contents of TG, TC, LDL-C, HDL-C, ALT, and AST significantly; HE and oil red O staining also showed that KTZG alleviated hepatic steatosis and liver lipid accumulation. In FFA-treated HepG2 cells, KTZG treatment decreased the intracellular TG levels, lipid accumulation, and attenuated glucose uptake significantly. More importantly, lipid-related genes PPAR-γ, SREBP-1, p-AKT, FAS, and SIRT1 expressions were ameliorated with KTZG treatment in high-fat diet-fed rats and FFA-induced HepG2 cells. The p-AMPK and p-mTOR expressions in the AMPK/mTOR signaling pathway were also modified with KTZG treatment in high-fat diet-fed rats and HepG2 cells. These results indicated that KTZG effectively ameliorated lipid accumulation and hepatic steatosis to prevent NAFLD in high-fat diet-fed rats and FFA-induced HepG2 cells, and this effect was associated with the AMPK/mTOR signaling pathway. Our results suggested that KTZG might be a potential therapeutic agent for the prevention of NAFLD.
Collapse
|
119
|
Boccellino M, D’Angelo S. Anti-Obesity Effects of Polyphenol Intake: Current Status and Future Possibilities. Int J Mol Sci 2020; 21:E5642. [PMID: 32781724 PMCID: PMC7460589 DOI: 10.3390/ijms21165642] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of obesity has steadily increased worldwide over the past three decades. The conventional approaches to prevent or treat this syndrome and its associated complications include a balanced diet, an increase energy expenditure, and lifestyle modification. Multiple pharmacological and non-pharmacological interventions have been developed with the aim of improving obesity complications. Recently, the use of functional foods and their bioactive components is considered a new approach in the prevention and management of this disease. Due to their biological properties, polyphenols may be considered as nutraceuticals and food supplement recommended for different syndromes. Polyphenols are a class of naturally-occurring phytochemicals, some of which have been shown to modulate physiological and molecular pathways involved in energy metabolism. Polyphenols could act in the stimulation of β-oxidation, adipocyte differentiation inhibition, counteract oxidative stress, etc. In this narrative review, we considered the association between polyphenols (resveratrol, quercetin, curcumin, and some polyphenolic extracts) and obesity, focusing on human trials. The health effects of polyphenols depend on the amount consumed and their bioavailability. Some results are contrasting, probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), and chemical forms of the dietary polyphenols used. But, in conclusion, the data so far obtained encourage the setting of new trials, necessary to validate benefic role of polyphenols in obese individuals.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Stefania D’Angelo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Movement Sciences and Wellbeing, Parthenope University, 80133 Naples, Italy
| |
Collapse
|
120
|
Palachai N, Wattanathorn J, Muchimapura S, Thukham-mee W. Phytosome Loading the Combined Extract of Mulberry Fruit and Ginger Protects against Cerebral Ischemia in Metabolic Syndrome Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5305437. [PMID: 32774678 PMCID: PMC7397413 DOI: 10.1155/2020/5305437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of ischemic stroke in metabolic syndrome (MetS) is continually increasing and produces a great impact on both qualities of life and annual healthcare budget. Due to the efficiency limitation of the current therapeutic strategy, the poor availability of polyphenol substances induced by the first pass effect and the beneficial effects of mulberry fruit and ginger on brain and MetS-related diseases together with the synergistic concept, the neuroprotective effect against ischemic stroke in MetS condition of phytosome containing the combined extract of mulberry fruit and ginger (PMG) has been considered. To explore the neuroprotective effect and possible underlying mechanism of PMG on brain damage in cerebral ischemic rat with MetS, male Wistar rats were induced MetS by high-carbohydrate high-fat diet (HCHF) for 16 weeks and subjected to the cerebral ischemia/reperfusion injury (CIRI) at the right middle cerebral artery (Rt. MCAO). PMG at doses of 50, 100, and 200 mg/kg were orally fed with for 21 days, and they were assessed brain damage, neurological deficit score, and the changes of oxidative stress markers, inflammatory markers, PPARγ expression, and epigenetic modification via DNMT-1 were performed. All doses of PMG significantly improved brain infarction, brain edema, and neurological deficit score. In addition, the reduction in DNMT-1, MDA level, NF-κB, TNFα, and C-reactive protein together with the increase in SOD, CAT, and GPH-Px activities, and PPARγ expression in the lesion brain were also observed. The current data clearly revealed the neuroprotective effect against cerebral ischemia with MetS condition. The possible underlying mechanism might occur partly via the suppression of DNMT-1 giving rise to the improvement of signal transduction via PPARγ resulting in the decreasing of inflammation and oxidative stress. In conclusion, PMG is the potential neuroprotectant candidate against ischemic stroke in the MetS condition. However, the clinical trial is still essential.
Collapse
Affiliation(s)
- Nut Palachai
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand 40002
| | - Jintanaporn Wattanathorn
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand 40002
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
| | - Supaporn Muchimapura
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand 40002
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
| | - Wipawee Thukham-mee
- Integrative Complementary Alternative Medicine Research and Development Center in Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand 40002
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand 40002
| |
Collapse
|
121
|
Temviriyanukul P, Sritalahareuthai V, Jom KN, Jongruaysup B, Tabtimsri S, Pruesapan K, Thangsiri S, Inthachat W, Siriwan D, Charoenkiatkul S, Suttisansanee U. Comparison of Phytochemicals, Antioxidant, and In Vitro Anti-Alzheimer Properties of Twenty-Seven Morus spp. Cultivated in Thailand. Molecules 2020; 25:molecules25112600. [PMID: 32503261 PMCID: PMC7321130 DOI: 10.3390/molecules25112600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. To fight the disease, natural products, including mulberry, with antioxidant activities and inhibitory activities against key enzymes (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-secretase 1 (BACE-1)) are of interest. However, even in the same cultivars, mulberry trees grown in different populated locations might possess disparate amounts of phytochemical profiles, leading to dissimilar health properties, which cause problems when comparing different cultivars of mulberry. Therefore, this study aimed to comparatively investigate the phytochemicals, antioxidant activities, and inhibitory activities against AChE, BChE, and BACE-1, of twenty-seven Morus spp. cultivated in the same planting area in Thailand. The results suggested that Morus fruit samples were rich in phenolics, especially cyanidin, kuromanin, and keracyanin. Besides, the aqueous Morus fruit extracts exhibited antioxidant activities, both in single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, while strong inhibitory activities against AD key enzymes were observed. Interestingly, among the twenty-seven Morus spp., Morus sp. code SKSM 810191 with high phytochemicals, antioxidant activities and in vitro anti-AD properties is a promising cultivar for further developed as a potential mulberry resource with health benefits against AD.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (S.T.); (W.I.); (S.C.)
| | - Varittha Sritalahareuthai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (S.T.); (W.I.); (S.C.)
| | - Kriskamol Na Jom
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Butsara Jongruaysup
- Office of Sericulture Conservation and Standard Conformity Assessment, The Queen Sirikit Department of Sericulture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Somying Tabtimsri
- The Queen Sirikit Department of Sericulture Center (Kanchanaburi), Nong Ya, Mueang Kanchanaburi District, Kanchanaburi 71000, Thailand;
| | - Kanchana Pruesapan
- Plant Varieties Protection Office, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (S.T.); (W.I.); (S.C.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (S.T.); (W.I.); (S.C.)
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (S.T.); (W.I.); (S.C.)
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (S.T.); (W.I.); (S.C.)
- Correspondence: ; Tel.: +662-800-2380 (ext. 422)
| |
Collapse
|
122
|
Liu D, Du D. Mulberry Fruit Extract Alleviates Cognitive Impairment by Promoting the Clearance of Amyloid-β and Inhibiting Neuroinflammation in Alzheimer’s Disease Mice. Neurochem Res 2020; 45:2009-2019. [DOI: 10.1007/s11064-020-03062-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
123
|
Lee S, Lee MS, Chang E, Lee Y, Lee J, Kim J, Kim CT, Kim IH, Kim Y. Mulberry Fruit Extract Promotes Serum HDL-Cholesterol Levels and Suppresses Hepatic microRNA-33 Expression in Rats Fed High Cholesterol/Cholic Acid Diet. Nutrients 2020; 12:nu12051499. [PMID: 32455724 PMCID: PMC7284868 DOI: 10.3390/nu12051499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Serum high-density lipoprotein cholesterol (HDL-C) levels and cholesterol excretion are closely associated with the risk of cardiovascular complications. The specific aim of the present study was to investigate the cholesterol lowering effect of mulberry fruit in rats fed a high cholesterol/cholic acid diet. Four-week supplementation with mulberry fruit extract significantly decreased serum and hepatic cholesterol (TC), serum low-density lipoprotein cholesterol (LDL-C), and fecal bile acid levels without changes in body weight and food intake (p < 0.05). Mulberry fruit extract significantly inhibited hepatic sterol-regulatory element binding protein (Srebp) 2 gene expression and upregulated hepatic mRNA levels of liver X receptor alpha (Lxr-α), ATP-binding cassette transporter 5 (Abcg5), and cholesterol 7 alpha-hydroxylase (Cyp7a1), which are involved in hepatic bile acid synthesis and cholesterol metabolism (p < 0.05). In addition, hepatic microRNA-33 expression was significantly inhibited by supplementation of mulberry fruit extract (p < 0.05). These results suggest the involvement of miR-33, its associated hepatic bile acid synthesis, HDL formation, and cholesterol metabolism in mulberry fruit-mediated beneficial effects on serum and hepatic lipid abnormalities.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (S.L.); (M.-S.L.); (E.C.); (Y.L.); (J.L.); (J.K.)
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (S.L.); (M.-S.L.); (E.C.); (Y.L.); (J.L.); (J.K.)
| | - Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (S.L.); (M.-S.L.); (E.C.); (Y.L.); (J.L.); (J.K.)
| | - Yoonjin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (S.L.); (M.-S.L.); (E.C.); (Y.L.); (J.L.); (J.K.)
| | - Jaerin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (S.L.); (M.-S.L.); (E.C.); (Y.L.); (J.L.); (J.K.)
| | - Jiyeon Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (S.L.); (M.-S.L.); (E.C.); (Y.L.); (J.L.); (J.K.)
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea;
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea;
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea; (S.L.); (M.-S.L.); (E.C.); (Y.L.); (J.L.); (J.K.)
- Correspondence: ; Tel.: +82-2-3277-3101; Fax: +82-2-3277-4425
| |
Collapse
|
124
|
Enhancement of the Antioxidant, Anti-Tyrosinase, and Anti-Hyaluronidase Activity of Morus alba L. Leaf Extract by Pulsed Electric Field Extraction. Molecules 2020; 25:molecules25092212. [PMID: 32397313 PMCID: PMC7249078 DOI: 10.3390/molecules25092212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
In this study we aimed to compare the chemical composition and biological activity between Morus alba L. leaf extract obtained with 95% v/v ethanol using a pulsed electric field (PEF) and the conventional maceration method. Extracts of M. alba leaves collected from Chiang Mai (CM), Sakon Nakon (SK), and Buriram (BR), Thailand, were investigated for 1-deoxynojirimycin content by high-performance liquid chromatography and for total phenolic content by the Folin–Ciocalteu method. Antioxidant activity was investigated by 2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-3-ethylbenzothiazoline-6-sulphonate (ABTS), and ferric reducing antioxidant power (FRAP) assay. Anti-tyrosinase and anti-hyaluronidase activity was investigated by in vitro spectrophotometry. The results show that this is the first study to indicate PEF as a novel method for enhancing the phenolic content and antioxidant, anti-tyrosinase, and anti-hyaluronidase activity of M. alba leaf extract (P < 0.05). PEF extract of M. alba leaves collected from BR had comparable ABTS•+ scavenging activity to l-ascorbic acid and comparable anti-tyrosinase activity to kojic acid (P > 0.05). On the other hand, PEF extract of M. alba leaves collected from SK exhibited significantly high anti-hyaluronidase activity, comparable to that of oleanolic acid (P > 0.05). Therefore, PEF is suggested for further M. alba leaf extraction in the production of natural whitening and anti-aging cosmetic ingredients.
Collapse
|
125
|
Xu X, Huang Y, Xu J, He X, Wang Y. Anti-neuroinflammatory and antioxidant phenols from mulberry fruit (Morus alba L.). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
126
|
Ren M, Liu S, Li R, You Y, Huang W, Zhan J. Clarifying effect of different fining agents on mulberry wine. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mengmeng Ren
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing 100083 China
| | - Sudian Liu
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing 100083 China
| | - Ruilong Li
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing 100083 China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing 100083 China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing 100083 China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Tsinghua East Road 17, Haidian District Beijing 100083 China
| |
Collapse
|
127
|
Lee MS, Kim Y. Mulberry Fruit Extract Ameliorates Adipogenesis via Increasing AMPK Activity and Downregulating MicroRNA-21/143 in 3T3-L1 Adipocytes. J Med Food 2020; 23:266-272. [PMID: 32191574 DOI: 10.1089/jmf.2019.4654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mulberry (Morus alba L.) fruits have long been used in traditional medicine and as edible berries in many countries. This study investigated the antiadipogenic effect of high hydrostatic pressure mulberry fruit extract (MFE) during 3T3-L1 adipocyte differentiation. MFE decreased lipid and triglyceride accumulation and glycerol-3-phosphate dehydrogenase activity. The mRNA expression levels of genes related to adipogenesis, such as the adipocyte protein 2, proliferator-activated receptor-γ, and CCAAT/enhancer binding protein-α, were suppressed by MFE. They also reduced microRNA (miR)-21 and miR-143 expression, which are involved in adipogenesis. In contrast, adenosine monophosphate-activated protein kinase (AMPK) activity was increased by MFE. These results suggested that MFE may suppress adipogenesis through modulating miR-21/143 expression and AMPK activity in 3T3-L1 adipocytes, which may be useful as antiobesity food agents.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| |
Collapse
|
128
|
Čulenová M, Sychrová A, Hassan STS, Berchová-Bímová K, Svobodová P, Helclová A, Michnová H, Hošek J, Vasilev H, Suchý P, Kuzminová G, Švajdlenka E, Gajdziok J, Čížek A, Suchý V, Šmejkal K. Multiple In vitro biological effects of phenolic compounds from Morus alba root bark. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112296. [PMID: 31610262 DOI: 10.1016/j.jep.2019.112296] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. is used in traditional Chinese medicine for the treatment of various diseases, including bacterial infections and inflammation. As a rich source of phenolic compounds, the plant is an object of many phytochemical and pharmacological studies. AIM OF THE STUDY The aim of the study was to isolate and evaluate possible parallel antiviral, antibacterial, and anti-inflammatory activities of phenolic mulberry compounds. MATERIALS AND METHODS Extensive chromatographic separation of mulberry root bark extract and in vitro biological screening of 26 constituents identified promising candidates for further pharmacological research. Selected compounds were screened for anti-infective and anti-inflammatory activities. Antiviral activity was determined by the plaque number reduction assay and by the titer reduction assay, antibacterial using broth microdilution method, and anti-inflammatory activity using COX Colorimetric inhibitor screening assay kit. One compound was evaluated in vivo in carrageenan-induced paw-edema in mice. RESULTS Five prenylated compounds 1, 2, 8, 9, and 11, together with a simple phenolic ester 13, exhibited inhibitory activity against the replication of herpes simplex virus 1 (HSV-1) or herpes simplex virus 2 (HSV-2), with IC50 values ranging from 0.64 to 1.93 μg/mL, and EC50 values 0.93 and 1.61 μg/mL. Molecular docking studies demonstrated the effects of the active compounds by targeting HSV-1 DNA polymerase and HSV-2 protease. In antibacterial assay, compounds 1, 4, 11, and 17 diminished the growth of all of the Gram-positive strains tested, with MIC values of 1-16 μg/mL. The anti-inflammatory ability of several compounds to inhibit cyclooxygenase 2 (COX-2) was tested in vitro, and compound 16 displayed greater activity than the indomethacin, positive control. Mulberrofuran B (11) showed anti-inflammatory activity in vivo against carrageenan-induced paw-edema in mice. CONCLUSIONS Experimental investigation showed promising antiviral, antibacterial, and/or anti-inflammatory activities of the phenolic mulberry constituents, often with multiple inhibitory effects that might be used as a potential source of new medicine.
Collapse
Affiliation(s)
- Marie Čulenová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic.
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6-Suchdol, Czech Republic
| | - Petra Svobodová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Alexandra Helclová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Hana Michnová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Hristo Vasilev
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav str., BG-1000, Sofia, Bulgaria
| | - Pavel Suchý
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Gabriela Kuzminová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Emil Švajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Alois Čížek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Václav Suchý
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, CZ-612 42, Brno, Czech Republic.
| |
Collapse
|
129
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
130
|
Rohela GK, Jogam P, Yaseen Mir M, Shabnam AA, Shukla P, Abbagani S, Kamili AN. Indirect regeneration and genetic fidelity analysis of acclimated plantlets through SCoT and ISSR markers in Morus alba L. cv. Chinese white. ACTA ACUST UNITED AC 2020; 25:e00417. [PMID: 31956520 PMCID: PMC6961070 DOI: 10.1016/j.btre.2020.e00417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/08/2023]
Abstract
A reliable protocol developed for micropropagation of Morus alba L.cv. Chinese white through indirect regeneration using different explants. Friable callus was induced in maximum amounts from leaf and nodal explants on MS media supplemented with 2,4-D and NAA respectively. Highest frequency of regeneration was obtained from the leaf and node derived callus on MS media with BAP + TDZ and plantlets were rooted on IBA. Genetic homogeneity of in vitro raised plants was confirmed by SCoT and ISSR primers based molecular analysis.
A reliable protocol was developed for in vitro micro propagation of Morus alba L.cv. Chinese white. Initially, friable callus was induced (242.8 and 128.5 mg) from in vivo leaf and nodal explants on Murashige and Skoog’s (MS) medium amended with 4.0 μM/L of 2,4-Dichlorophenoxyacetic acid (2,4-D) and 3.0 μM/L of Naphthalene acetic acid (NAA) respectively within 3 weeks. Shoot regeneration (12.2 and 8.6) was obtained from leaf and node derived callus on 6-benzylaminopurine (BAP) + Thidiazuron (TDZ) at 2.5 + 2.0 and 7.5 + 2.0 μM/L concentrations respectively, after 4 weeks of incubation. In vitro shoots were rooted (90 %) on half strength MS medium with 7.5 μM/L indole-3 butyric acid (IBA) and plantlets were hardened in plastic pots contained farmyard manure, sand and garden soil in 1:1:2 ratio. The genetic stability of plantlets were confirmed by start codon targeted (SCoT) and inter simple sequence repeats (ISSR) primers based molecular analysis.
Collapse
Affiliation(s)
- Gulab Khan Rohela
- Biotechnology Section, Moriculture Division, Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Pampore -192 121, Jammu and Kashmir, India
| | - Phanikanth Jogam
- Department of Biotechnology, Kakatiya University, Warangal, 506 001, Telangana, India
| | - Mohammad Yaseen Mir
- Department of Environmental Sciences, Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, 190 001, Jammu and Kashmir, India
| | - Aftab Ahmad Shabnam
- Biotechnology Section, Moriculture Division, Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Pampore -192 121, Jammu and Kashmir, India
| | - Pawan Shukla
- Biotechnology Section, Moriculture Division, Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Pampore -192 121, Jammu and Kashmir, India
| | - Sadanandam Abbagani
- Department of Biotechnology, Kakatiya University, Warangal, 506 001, Telangana, India
| | - Azra Nahaid Kamili
- Department of Environmental Sciences, Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, 190 001, Jammu and Kashmir, India
| |
Collapse
|
131
|
Xiong QM, Liu J, Liu M, Shen CH, Yu XC, Wu CD, Huang J, Zhou RQ, Jin Y. Fouling analysis and permeate quality evaluation of mulberry wine in microfiltration process. RSC Adv 2020; 10:655-665. [PMID: 35494429 PMCID: PMC9047113 DOI: 10.1039/c9ra09034g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Sterilization and clarification are essential to produce wine of high quality and stability, microfiltration is a serious candidate for both purposes. In this work, microfiltration of fermented mulberry wine was evaluated for the first time. Four different commercial membranes, of two different materials (PES, PVDF) and two different nominal pore sizes (0.22 μm and 0.45 μm) were employed. Pore blocking model was used to identify the fouling mechanism, foulant constituents were revealed by FT-IR spectra. The effect of microfiltration on permeate quality of mulberry wine was also involved. The results indicated that cake formation was the dominant mechanism during steady-state of mulberry wine microfiltration, independently on the membrane property. The fouling layer was mainly composed of protein and polysaccharides, which induced basically reversible overall filtration resistance. Microfiltration delivered a superior clarity, highly polydisperse and light-color mulberry wine with a satisfactory sterilization stability. It preserved the main basic properties and organic acid contents of mulberry wine while resulted in certain loss of volatile compounds, especially esters and alcohols. This work has provided a scientific reference for producing mulberry wine, a modern functional beverage. Microfiltration of mulberry wine.![]()
Collapse
Affiliation(s)
- Qin-Mei Xiong
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China +86-28-85405237 +86-138-8219-7633.,Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University Chengdu 610065 China
| | - Jian Liu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China +86-28-85405237 +86-138-8219-7633.,Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University Chengdu 610065 China
| | - Miao Liu
- Lu Zhou Lao Jiao Co.,Ltd Luzhou 646000 China
| | | | - Xue-Chun Yu
- Luzhou Pinchuang Technology CO.,LTD Luzhou 646000 China
| | - Chong-De Wu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China +86-28-85405237 +86-138-8219-7633.,Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University Chengdu 610065 China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China +86-28-85405237 +86-138-8219-7633.,Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University Chengdu 610065 China
| | - Rong-Qing Zhou
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China +86-28-85405237 +86-138-8219-7633.,Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University Chengdu 610065 China.,National Engineering Research Center of Solid-State Manufacturing Luzhou 646000 China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China +86-28-85405237 +86-138-8219-7633.,Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University Chengdu 610065 China
| |
Collapse
|
132
|
Kim BS, Kim H, Kang SS. In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed mulberry (Morus alba Linnaeus) fruit extract against Salmonella Typhimurium. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
133
|
Liu Y, Li Y, Peng Y, He J, Xiao D, Chen C, Li F, Huang R, Yin Y. Dietary mulberry leaf powder affects growth performance, carcass traits and meat quality in finishing pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:1934-1945. [PMID: 31478262 DOI: 10.1111/jpn.13203] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022]
Abstract
This study was conducted to evaluate the effect of mulberry leaves as an alternative source of protein on growth performance, carcass traits and meat quality in finishing pigs. A total of 180 Xiangcun Black pigs were randomly assigned to five treatment groups with six pens of six pigs per pen. The pigs were provided with a basal diet or a diet contained 3%, 6%, 9% or 12% of mulberry leaf powder during a 50-day experiment period. The results showed that dietary mulberry leaf powder had no negative effect on growth performance in Xiangcun Black pigs, except in the 12% mulberry group, where final body weight and average daily gain decreased (p < .05) and feed to gain ratio of the pigs increased (p < .05). Dietary mulberry inclusion decreased (quadratic, p < .05) the back fat thickness, fibre mean cross-sectional area (CSA) in the longissimus dorsi (LD) muscle and mRNA expression levels of myosin heavy chain (MyHC) IIb in LD and biceps femoris (BF) muscles, while increased (linear or quadratic, p < .05) the plasma concentration of albumin, levels of crude protein (CP), inosine monophosphate (IMP) and several amino acids in muscle tissues. When compared with the other groups, the 9% mulberry diet increased (p < .05) loin-eye area and contents of CP and IMP in muscles, while decreased (p < .05) plasma activity of cholinesterase and concentrations of uric acid and urea. The 6% mulberry diet had the lowest fibre mean CSA and shear force and increased total fibre number of the LD muscle, when compared with the other groups. These results suggest that including mulberry in the diet at <12% is an effective feed crop to improve meat quality and the chemical composition of muscle without negatively affecting growth performance.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yinglin Peng
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chen Chen
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ruilin Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
134
|
Zhou W, Liang X, Dai P, Chen Y, Zhang Y, Zhang M, Lu L, Jin C, Lin X. Alteration of Phenolic Composition in Lettuce ( Lactuca sativa L.) by Reducing Nitrogen Supply Enhances its Anti-Proliferative Effects on Colorectal Cancer Cells. Int J Mol Sci 2019; 20:E4205. [PMID: 31466217 PMCID: PMC6747510 DOI: 10.3390/ijms20174205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
Consumption of vegetables rich in phenolic compounds has become a useful method to reduce the risk of developing several types of cancer. This study investigated the potential relationship between the alteration of phenolic compounds in lettuce induced by reduced nitrogen supply and its anti-proliferative effects on Caco-2 colorectal cancer cells. Our results showed that phenolic extracts from lettuce grown under low nitrogen conditions (LP) exhibited better anti-proliferative effects against Caco-2 cells, in part, by interfering with the cell cycle and inducing apoptosis, compared with those from lettuce supplied with adequate nitrogen. High performance liquid chromatography (HPLC) analysis and correlation analysis indicated that the better anticancer activity of LP may be not only related to the increased phenolic content, but also associated with the increased percentage contribution of quercetin to total phenolics. Taken together, alteration of phenolic composition by reduced nitrogen supply can be an effectively strategy for the development of healthy vegetables as anticancer products.
Collapse
Affiliation(s)
- Weiwei Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peibin Dai
- Department of Applied Engineering, Zhejiang Economic and Trade Polytechnic, Hangzhou 310018, China
| | - Yao Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
135
|
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review. Biomolecules 2019; 9:biom9090389. [PMID: 31438522 PMCID: PMC6770593 DOI: 10.3390/biom9090389] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Collapse
|
136
|
Zhou W, Liang X, Zhang Y, Li K, Jin B, Lu L, Jin C, Lin X. Reduced nitrogen supply enhances the cellular antioxidant potential of phenolic extracts through alteration of the phenolic composition in lettuce (Lactuca sativa L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4761-4771. [PMID: 30932195 DOI: 10.1002/jsfa.9721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nitrogen availability is an important environmental factor that determines the production of phenolic compounds in vegetables, but the relationship between low nitrogen-induced alterations of phenolic compounds in vegetable crops and the cellular antioxidant activities of these compounds remains unclear. This study investigated the effect of reduced nitrogen supply (0.05 mmol L-1 nitrate) on phenolic metabolism in lettuce and the protective role of phenolic extracts against H2 O2 -induced oxidative stress in Caco-2 cells by determining cell damage, reactive oxygen species (ROS) content and antioxidant enzyme activities. RESULTS Reduced nitrogen supply significantly improved the accumulation of phenolic compounds in lettuce, which was partially correlated with the upregulation of genes related to the phenolic synthesis pathway. Phenolic extracts from lettuce cultivated in low-nitrogen medium exhibited a better protective effect against H2 O2 -induced oxidative damage in Caco-2 cells than those from lettuce cultivated with adequate nitrogen. These extracts act by increasing the activities of antioxidant enzymes and, subsequently, by inhibiting ROS overproduction, which leads to a decrease in mitochondrial membrane and DNA damage. The results of HPLC and correlation analyses implied that the improvement in the protective capacity of lettuce extracts after low-nitrogen treatment may be related, not only to the increased content of phenolic compounds, but also to the increased percentage contribution of chlorogenic acid and quercetin derivatives to the total phenolic content. CONCLUSION Reduction in nitrogen supply can be a powerful strategy to modify phenolic metabolism and composition in lettuce and, consequently, to improve their antioxidant capacity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiwei Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yimo Zhang
- Shanghai Pinghe Bilingual School, Shanghai, China
| | - Kejie Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bingjie Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
137
|
Feng S, Ning K, Luan D, Lu S, Sun P. Chemical composition and antioxidant capacities analysis of different parts of
Brasenia schreberi. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simin Feng
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Ke Ning
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Di Luan
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| | - Shengmin Lu
- Institute of Food Science Zhejiang Academy of Agricultural Sciences Hangzhou People's Republic of China
| | - Peilong Sun
- Department of Food Science and Engineering Zhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
138
|
Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Neuroprotective Effects of Methanolic Extract of Avocado Persea americana (var. Colinred) Peel on Paraquat-Induced Locomotor Impairment, Lipid Peroxidation and Shortage of Life Span in Transgenic knockdown Parkin Drosophila melanogaster. Neurochem Res 2019; 44:1986-1998. [PMID: 31309393 DOI: 10.1007/s11064-019-02835-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with oxidative stress. Therefore, finding new antioxidant sources might be beneficial for its treatment. Avocado Persea americana is a fruit widely cultivated in tropical and subtropical climates worldwide. Although avocado by-products in the form of peel, seed coat and seeds are currently of no commercial use, they constitute a natural source of bioactive compounds. Methanolic (80%) extract obtained from lyophilized ground peels, seed coats, and seeds of the avocado Hass, Fuerte, Reed and Colinred varieties were analyzed for their total phenolic content (TPC) and their correlations with antioxidant capacity (AC) were assessed by ABTS, FRAP, and ORAC assays. For all varieties, the var. Colinred peel shows the highest TPC and AC. Further analysis showed that the var. Colinred peel presented major phenolic compounds B-type procyanidins and epicatechin according to HPLC-MS. The antioxidant effect of peel extract was evaluated upon in vivo oxidative stress (OS) model. We show for the first time that the peel extract can protect and/or prevent transgenic parkinDrosophila melanogaster fly against paraquat-induced OS, movement impairment and lipid peroxidation, as model of PD. Our findings offer an exceptional opportunity to test natural disease-modifying substances from avocado's by-products.
Collapse
Affiliation(s)
- Hector Flavio Ortega-Arellano
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| |
Collapse
|
139
|
Encapsulated Mulberry Fruit Extract Alleviates Changes in an Animal Model of Menopause with Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5360560. [PMID: 31182993 PMCID: PMC6512299 DOI: 10.1155/2019/5360560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Currently, the therapeutic strategy against metabolic syndrome and its complications is required due to the increasing prevalence and its impact. Due to the benefits of both mulberry fruit extract and encapsulation technology, we hypothesized that encapsulated mulberry fruit extract (MME) could improve metabolic parameters and its complication risk in postmenopausal metabolic syndrome. To test this hypothesis, female Wistar rats were induced experimental menopause with metabolic syndrome by bilateral ovariectomy (OVX) and high-carbohydrate high-fat (HCHF) diet. Then, they were orally given MME at doses of 10, 50, and 250 mg/kg BW for 8 weeks and the parameters, such as percentage of body weight gain, total cholesterol, triglycerides, HDL-C, LDL-C, atherogenic index, fasting blood glucose, plasma glucose area under the curve, serum angiotensin-converting enzyme (ACE), oxidative stress status, histology, and protein expression of PPAR-γ, TNF-α, and NF-κB in adipose tissues were determined. MME improved body weight gain, adiposity index, glucose intolerance, lipid profiles, atherogenic index, ACE, oxidative stress status, and protein expression of TNF-α and NF-κB. Moreover, MME attenuated adipocyte hypertrophy and enhanced PPAR-γ expression. Taken altogether, MME decreased metabolic syndrome and its complication via the increased PPAR-γ expression. Therefore, MME is the potential candidate for improving metabolic syndrome and its related complications. However, further research in clinical trial is still necessary.
Collapse
|
140
|
Jung S, Lee MS, Choi AJ, Kim CT, Kim Y. Anti-Inflammatory Effects of High Hydrostatic Pressure Extract of Mulberry ( Morus alba) Fruit on LPS-Stimulated RAW264.7 Cells. Molecules 2019; 24:molecules24071425. [PMID: 30978947 PMCID: PMC6480515 DOI: 10.3390/molecules24071425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Mulberry fruit (Morus alba L.) contains abundant bioactive compounds, including anthocyanins and flavonols, and has been reported to possess potent beneficial properties including anticancer, antidiabetic, and anti-oxidant effects. High hydrostatic pressure (HHP) processing, a nonthermal food processing technology, is suitable for the extraction of bioactive compounds from plants. Nevertheless, the anti-inflammatory effects of HHP extract of mulberry fruit (HM) in RAW264.7 cells remain unclear. The present study aimed to investigate the anti-inflammatory effects of HM on lipopolysaccharide (LPS)-induced inflammation in vitro. RAW264.7 cells were treated with various concentrations (0.1-1 μg/mL) of HM in the presence or absence of LPS. HM inhibited the inflammatory mediator, nitric oxide (NO) release, and mRNA expression of nitric oxide synthase 2 (NOS2) in LPS-induced RAW264.7 cells. In addition, HM suppressed both mRNA and protein expressions of prostaglandin-endoperoxide synthase 2 (PTGS2). Moreover, it reduced the LPS-induced secretion of proinflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α. These results revealed that HM exerts anti-inflammatory effects by inhibiting several mediators and cytokines involved in the inflammatory process.
Collapse
Affiliation(s)
- Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Ae-Jin Choi
- Functional Food & Nutrition Division, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA), Wanju 55365, Korea.
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
141
|
Inhibitory effects of Morus nigra L. (Moraceae) against local paw edema and mechanical hypernociception induced by Bothrops jararacussu snake venom in mice. Biomed Pharmacother 2019; 111:1046-1056. [DOI: 10.1016/j.biopha.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/25/2022] Open
|
142
|
Park S, Kim DS, Wu X, J Yi Q. Mulberry and dandelion water extracts prevent alcohol-induced steatosis with alleviating gut microbiome dysbiosis. Exp Biol Med (Maywood) 2019; 243:882-894. [PMID: 30105955 DOI: 10.1177/1535370218789068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol intake causes hepatic steatosis and changes the body composition and glucose metabolism. We examined whether water extracts of mulberry (WMB) and white flower dandelion ( Taraxacum coreanum Nakai, WTC) can prevent and/or delay the symptoms of chronic ethanol-induced hepatic steatosis in male Sprague Dawley rats, and explored the mechanisms. Ethanol degradation was examined by orally administering 3 g ethanol/kg bw after giving them 0.3 g/kg bw WMB or WTC. All rats were continuously provided about 7 g ethanol/kg bw/day for four weeks and were given either of 0.1% dextrin (control), WMB, WTC, or water extracts of Hovenia dulcis Thunb fruit (positive-control) in high-fat diets. Area under the curve of serum ethanol levels was lowered in descending order of control, WTC and positive-control, and WMB in acute ethanol challenge. WMB and WTC prevented alcohol intake-related decrease in bone mineral density and lean body mass compared to the control. After glucose challenge, serum glucose levels increased more in the control group than other groups in the first part and the rate of decrease after 40 min was similar among all groups. These changes were associated with decreasing serum insulin levels. WMB had the greatest efficacy for decreasing triglyceride and increasing glycogen deposits. WMB and WTC prevented the disruption of the hepatic cells and nuclei while reducing malondialdehyde contents in rats fed alcohol, but the prevention was not as much as the normal-control. The ratio of Firmicutes to Bacteroidetes in the gut was much higher in the control than the normal-control, but WTC and WMB decreased the ratio compared to the control. WMB and WTC separated the gut microbiota community from the control. In conclusion, WMB and WTC protected against alcoholic liver steatosis by accelerating ethanol degradation and also improved body composition and glucose metabolism while alleviating the dysbiosis of gut microbiome by chronic alcohol intake. Impact statement Excessive alcohol consumption is associated with serious pathologies and is common in much of the world. Pathologies include liver damage, glucose intolerance, and loss of lean body mass and bone mass. These pathologies are mediated by changes in metabolism as well as toxic metabolic byproducts, and possibly by gut dysbiosis. In this study, we demonstrate that aqueous extracts of mulberry and dandelion protected rats against ethanol-induced losses in lean body and bone masses, improved glucose tolerance and partially normalized gut bacterial populations, with mulberry extract being generally more effective. This research suggests that mulberry and dandelion extracts may have the potential to improve some of the pathologies associated with excess alcohol consumption, and that further clinical research is warranted.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Da S Kim
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Xuangao Wu
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Qiu J Yi
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| |
Collapse
|
143
|
Extraction of polysaccharides from black mulberry fruit and their effect on enhancing antioxidant activity. Int J Biol Macromol 2018; 120:1420-1429. [DOI: 10.1016/j.ijbiomac.2018.09.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/27/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
|
144
|
Small molecules as inhibitors of PCSK9: Current status and future challenges. Eur J Med Chem 2018; 162:212-233. [PMID: 30448414 DOI: 10.1016/j.ejmech.2018.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating lipoprotein metabolism by binding to low-density lipoprotein receptors (LDLRs), leading to their degradation. LDL cholesterol (LDL-C) lowering drugs that operate through the inhibition of PCSK9 are being pursued for the management of hypercholesterolemia and reducing its associated atherosclerotic cardiovascular disease (CVD) risk. Two PCSK9-blocking monoclonal antibodies (mAbs), alirocumab and evolocumab, were approved in 2015. However, the high costs of PCSK9 antibody drugs impede their prior authorization practices and reduce their long-term adherence. Given the potential of small-molecule drugs, the development of small-molecule PCSK9 inhibitors has attracted considerable attention. This article provides an overview of the recent development of small-molecule PCSK9 inhibitors disclosed in the literature and patent applications, and different approaches that have been pursued to modulate the functional activity of PCSK9 using small molecules are described. Challenges and potential strategies in developing small-molecule PCSK9 inhibitors are also discussed.
Collapse
|
145
|
Antiviral Activities of Mulberry ( Morus alba) Juice and Seed against Influenza Viruses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2606583. [PMID: 30515232 PMCID: PMC6236660 DOI: 10.1155/2018/2606583] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
Antiviral activities of Morus alba (MA) juice and seed were examined using time-of-addition plaque assays against influenza viruses, A/Brisbane/59/2007 (H1N1) (BR59), pandemic A/Korea/01/2009(H1N1) (KR01), A/Brisbane/10/2007(H3N2) (BR10), and B/Florida/4/2006 (FL04). MA juice (MAJ) showed much higher antiviral activity than MA seed (MAS). In the pre- and cotreatment of virus, MAJ showed antiviral effects against BR59, KR01, and FL04 in a dose-dependent manner. In particular, MAJ at 4% concentration exhibited 1.3 log inhibition in the pre- and cotreatment of the virus against FL04, a type B virus. However, little or weak inhibition was observed in the posttreatment of MAJ. GSH levels in the virus-infected cells were also examined. The decreased levels by the viral infection were restored significantly by the addition of MAJ. MAJ also exhibited significant DPPH radical scavenging and ferric ion-reducing activities in a dose-dependent manner. Cyanidin-3-rutinoside, the most abundant polyphenol compound of MAJ identified by LC-MS in this study, showed weak inhibitory effects against FL04 in the pretreatment, whereas gallic acid, a minor compound of MAJ, revealed significant antiviral effect. These results suggest that MAJ can be developed as a novel plant-derived antiviral against influenza viruses.
Collapse
|
146
|
Karasawa MMG, Mohan C. Fruits as Prospective Reserves of bioactive Compounds: A Review. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:335-346. [PMID: 30069678 PMCID: PMC6109443 DOI: 10.1007/s13659-018-0186-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/25/2018] [Indexed: 05/09/2023]
Abstract
Bioactive natural products have always played a significant role as novel therapeutical agents irrespective of their source of origin. They have a profound effect on human health by both direct and indirect means and also possess immense medicinal properties. Fruit species are largely appreciated and highly consumed throughout the world. Epidemiologic information supports the association between high intake of fruits and low risk of chronic diseases. There are several biological reasons why the consumption of fruits might reduce or prevent chronic diseases. Fruits are rich sources of nutrients and energy, have vitamins, minerals, fiber and numerous other classes of biologically active compounds. Moreover, parts of the fruit crops like fruit peels, leaves and barks also possess medicinal properties and have been included in this review. The most important activities discussed in this review include antidiabetic, anticancer, antihypertensive, neuroprotective, anti-inflammatory, antioxidant, antimicrobial, antiviral, stimulation of the immune system, cell detoxification, cholesterol synthesis, anticonvulsant and their ability to lower blood pressure. Several phytochemicals involved in this context are described with special emphasis on their structural properties and their relativity with human diseases.
Collapse
Affiliation(s)
| | - Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
147
|
Fiorito S, Epifano F, Preziuso F, Taddeo VA, Genovese S. Selenylated plant polysaccharides: A survey of their chemical and pharmacological properties. PHYTOCHEMISTRY 2018; 153:1-10. [PMID: 29803859 DOI: 10.1016/j.phytochem.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Polysaccharides from plants and fungi are considered nowadays as powerful pharmacological tools with a great therapeutic potential. In the meantime, efforts have been addressed to set up effective chemical modifications of naturally occurring polysaccharides to improve their biological effects as well as to positively modify some key parameters like solubility, bioavailability, pharmacokinetic, and similar. To this concern much attention has been focused during the last decade to the selenylation of natural polysaccharides from plants, algae, and fungi, the use of which is already encoded in ethnomedical traditions. The aim of this review article is to provide a detailed survey of the in so far reported literature data and a deeper knowledge about the state of the art on the chemical and pharmacological properties of selenylated polysaccharides of plant, algal, and fungal origin in terms of anti-oxidant, anti-cancer, anti-diabetic, and immunomodulatory activities. In all cases, literature data revealed that selenylation greatly improved such properties respect to the parent polysaccharides, indicating that selenylation is a valid, alternative, and effective chemical modification of naturally occurring carbohydrates.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 06123, Perugia, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Francesca Preziuso
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Vito Alessandro Taddeo
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
148
|
Abstract
This study was conducted to investigate the effects of ultrasonic treatments on the extraction yield and the quality of mulberry juice. The mulberry mash was treated with ultrasound at different incubation times from 30 to 120 min and different temperatures from 30 to 75 °C. The determination of the juice yield, total phenolic content, total anthocyanin content, antioxidant capacity, l-ascorbic acid content, total soluble solids, and the titratable acidity of the juice were carried out. Overall, applying ultrasound at 45 °C for 60 min resulted in the highest juice yield and antioxidant contents for the mulberry juice. The ultrasonic treatment increased the extraction yield (29.6%), the total soluble solid (8.7%), the titratable acidity (39.3%), the l-ascorbic acid content (94.3%), total phenolic content (174.1%), total anthocyanin content (156.9%) and the antioxidant capacity (40.7%) of the mulberry juice as compared to pressing only. A strong positive correlation between the total phenolic content and the antioxidant capacity indicated that phenolic compounds were the main antioxidants in the beverage.
Collapse
|
149
|
|
150
|
Zhang H, Ma ZF, Luo X, Li X. Effects of Mulberry Fruit ( Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants (Basel) 2018; 7:E69. [PMID: 29883416 PMCID: PMC5981255 DOI: 10.3390/antiox7050069] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022] Open
Abstract
Mulberry (Morus alba L.) belongs to the Moraceae family and is widely planted in Asia. Mulberry fruits are generally consumed as fresh fruits, jams and juices. They contain considerable amounts of biologically active ingredients that might be associated with some potential pharmacological activities that are beneficial for health. Therefore, they have been traditionally used in traditional medicine. Studies have reported that the presence of bioactive components in mulberry fruits, including alkaloids and flavonoid, are associated with bioactivities such as antioxidant. One of the most important compounds in mulberry fruits is anthocyanins which are water-soluble bioactive ingredients of the polyphenol class. Studies have shown that mulberry fruits possess several potential pharmacological health benefits including anti-cholesterol, anti-obesity and hepatoprotective effects which might be associated with the presence of some of these bioactive compounds. However, human intervention studies on the pharmacological activities of mulberry fruits are limited. Therefore, future studies should explore the effect of mulberry fruit consumption on human health and elucidate the detailed compounds. This paper provides an overview of the pharmacological activities of mulberry fruits.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand.
| | - Zheng Feei Ma
- Department of Public Health, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 15200, Malaysia.
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Xinli Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|