101
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
102
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
103
|
Yuan F, Zhou H, Liu C, Wang Y, Quan J, Liu J, Li H, von Itzstein M, Yu X. Heparanase interacting BCLAF1 to promote the development and drug resistance of ICC through the PERK/eIF2α pathway. Cancer Gene Ther 2024; 31:904-916. [PMID: 38467765 DOI: 10.1038/s41417-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous β-glucuronidase in mammals. In addition to its well-established enzymatic roles, HPSE critically exerts non-catalytic function in tumor biology. This study herein aimed to investigate the non-enzymatic roles of HPSE as well as relevant regulatory mechanisms in ICC. Our results demonstrated that HPSE was highly expressed in ICC and promoted the proliferation of ICC cells, with elevated HPSE levels implicating a poor overall survival of ICC patients. Notably, HPSE interacted with Bcl-2-associated factor 1 (BCLAF1) to upregulate the expression of Bcl-2, which subsequently activated the PERK/eIF2α-mediated endoplasmic reticulum (ER) stress pathway to promote anti-apoptotic effect of ICC. Moreover, our in vivo experiments revealed that concomitant administration of gemcitabine and the Bcl-2 inhibitor navitoclax enhanced the sensitivity of ICC cells with highly expressed HPSE to chemotherapy. In summary, our findings revealed that HPSE promoted the development and drug resistance of ICC via its non-enzymatic function. Bcl-2 may be considered as an effective target with therapeutic potential to overcome ICC chemotherapy resistance induced by HPSE, presenting valuable insights into the development of novel therapeutic strategies against ICC.
Collapse
Affiliation(s)
- Fengyan Yuan
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.
- Hunan Research Center of Biliary Disease, the First Affiliated Hospital of Hunan Normal University, Changsha, China.
- Key Laboratory of Biliary Disease Prevention and treatment, the First Affiliated Hospital of Hunan Normal University,, Changsha, China.
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China.
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
| |
Collapse
|
104
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
105
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
106
|
Hinaga S, Kandeel M, Oh-Hashi K. Molecular characterization of the ER stress-inducible factor CRELD2. Cell Biochem Biophys 2024; 82:1463-1475. [PMID: 38753249 DOI: 10.1007/s12013-024-01300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 08/25/2024]
Abstract
Previously, we found by constructing various luciferase reporters that a well-conserved ATF6-binding element in the CRELD2 promoter is activated by transient ATF6 overexpression. In this study, we established ATF6-deficient and ATF4-deficient cell lines to analyze CRELD2 mRNA and protein expression together with that of other ER stress-inducible factors. Our results showed that ATF6 deficiency markedly suppressed tunicamycin (Tm)-induced expression of unglycosylated CRELD2. This reduction reflected a decrease in the CRELD2 transcription level. On the other hand, a putative ATF4-binding site in the mouse CRELD2 promoter did not respond to Tm stimulation, but ATF4 loss resulted in reductions in CRELD2 mRNA and protein expression, accompanied by a decrease in Tm-induced ATF6 expression. In contrast, transient suppression of GADD34, an ATF4 downstream factor, suppressed Tm-induced CRELD2 protein expression without a decrease in ATF6 protein expression. Furthermore, we investigated the association of CRELD2 with a well-known ERAD substrate, namely, an α1-antitripsin truncation mutant, NHK, by generating various CRELD2 and NHK constructs. Coimmunoprecipitation of these proteins was observed only when the cysteine in the CXXC motif on the N-terminal side of CRELD2 was replaced with alanine, and the interaction between the two was found to be disulfide bond-independent. Taken together, these findings indicate that CRELD2 expression is regulated by multiple factors via transcriptional and posttranscriptional mechanisms. In addition, the N-terminal structure of CRELD2, including the CXXC motif, was suggested to play a role in the association of the target proteins. In the future, the identification and characterization of factors interacting with CRELD2 will be useful for understanding protein homeostasis under various ER stress conditions.
Collapse
Affiliation(s)
- Shohei Hinaga
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Kentaro Oh-Hashi
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
107
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
108
|
Arnold FJ, Putka AF, Raychaudhuri U, Hsu S, Bedlack RS, Bennett CL, La Spada AR. Revisiting Glutamate Excitotoxicity in Amyotrophic Lateral Sclerosis and Age-Related Neurodegeneration. Int J Mol Sci 2024; 25:5587. [PMID: 38891774 PMCID: PMC11171854 DOI: 10.3390/ijms25115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.
Collapse
Affiliation(s)
- Frederick J. Arnold
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Alexandra F. Putka
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Urmimala Raychaudhuri
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Solomon Hsu
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Richard S. Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Craig L. Bennett
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
| | - Albert R. La Spada
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
109
|
Liu W, He C, Li C, Ye S, Zhao J, Zhu C, Wang X, Ma Q, Li B. Natural compound Alternol actives multiple endoplasmic reticulum stress-responding pathways contributing to cell death. Front Pharmacol 2024; 15:1397116. [PMID: 38831880 PMCID: PMC11144888 DOI: 10.3389/fphar.2024.1397116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Background: Alternol is a small molecular compound isolated from the fermentation of a mutant fungus obtained from Taxus brevifolia bark. Our previous studies showed that Alternol treatment induced reactive oxygen species (ROS)-dependent immunogenic cell death. This study conducted a comprehensive investigation to explore the mechanisms involved in Alternol-induced immunogenic cell death. Methods: Prostate cancer PC-3, C4-2, and 22RV1 were used in this study. Alternol interaction with heat shock proteins (HSP) was determined using CETSA assay. Alternol-regulated ER stress proteins were assessed with Western blot assay. Extracellular adenosine triphosphate (ATP) was measured using ATPlite Luminescence Assay System. Results: Our results showed that Alternol interacted with multiple cellular chaperone proteins and increased their expression levels, including endoplasmic reticulum (ER) chaperone hypoxia up-regulated 1 (HYOU1) and heat shock protein 90 alpha family class B member 1 (HSP90AB1), as well as cytosolic chaperone heat shock protein family A member 8 (HSPA8). These data represented a potential cause of unfolded protein response (UPR) after Alternol treatment. Further investigation revealed that Alternol treatment triggered ROS-dependent (ER) stress responses via R-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α). The double-stranded RNA-dependent protein kinase (PKR) but not activating transcription factor 6 (ATF6) cascades, leading to ATF-3/ATF-4 activation, C/EBP-homologous protein (CHOP) overexpression, and X-box binding protein XBP1 splicing induction. In addition, inhibition of these ER stress responses cascades blunted Alternol-induced extracellular adenosine triphosphate (ATP) release, one of the classical hallmarks of immunogenic cell death. Conclusion: Taken together, our data demonstrate that Alternol treatment triggered multiple ER stress cascades, leading to immunogenic cell death.
Collapse
Affiliation(s)
- Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Changlin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shazhou Ye
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cunle Zhu
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi Ma
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
110
|
Nam KH, Ordureau A. How does the neuronal proteostasis network react to cellular cues? Biochem Soc Trans 2024; 52:581-592. [PMID: 38488108 PMCID: PMC11613130 DOI: 10.1042/bst20230316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
Even though neurons are post-mitotic cells, they still engage in protein synthesis to uphold their cellular content balance, including for organelles, such as the endoplasmic reticulum or mitochondria. Additionally, they expend significant energy on tasks like neurotransmitter production and maintaining redox homeostasis. This cellular homeostasis is upheld through a delicate interplay between mRNA transcription-translation and protein degradative pathways, such as autophagy and proteasome degradation. When faced with cues such as nutrient stress, neurons must adapt by altering their proteome to survive. However, in many neurodegenerative disorders, such as Parkinson's disease, the pathway and processes for coping with cellular stress are impaired. This review explores neuronal proteome adaptation in response to cellular stress, such as nutrient stress, with a focus on proteins associated with autophagy, stress response pathways, and neurotransmitters.
Collapse
Affiliation(s)
- Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| |
Collapse
|
111
|
Ong G, Ragetli R, Mnich K, Doble BW, Kammouni W, Logue SE. IRE1 signaling increases PERK expression during chronic ER stress. Cell Death Dis 2024; 15:276. [PMID: 38637497 PMCID: PMC11026449 DOI: 10.1038/s41419-024-06663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The Unfolded Protein Response (UPR) is an essential cellular process activated by the accumulation of unfolded proteins within the Endoplasmic Reticulum (ER), a condition referred to as ER stress. Three ER anchored receptors, IRE1, PERK and ATF6 act as ER stress sensors monitoring the health of the ER. Upon detection of ER stress, IRE1, PERK and ATF6 initiate downstream signaling pathways collectively referred to as the UPR. The overarching aim of the UPR is to restore ER homeostasis by reducing ER stress, however if that is not possible, the UPR transitions from a pro-survival to a pro-death response. While our understanding of the key signaling pathways central to the UPR is well defined, the same is not true of the subtle signaling events that help fine tune the UPR, supporting its ability to adapt to varying amplitudes or durations of ER stress. In this study, we demonstrate cross talk between the IRE1 and PERK branches of the UPR, wherein IRE1 via XBP1s signaling helps to sustain PERK expression during prolonged ER stress. Our findings suggest cross talk between UPR branches aids adaptiveness thereby helping to support the plasticity of UPR signaling responses.
Collapse
Affiliation(s)
- Gideon Ong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rosemund Ragetli
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Bradley W Doble
- Department of Paediatrics, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, MB, Canada
| | - Wafa Kammouni
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
112
|
Casey AK, Stewart NM, Zaidi N, Gray HF, Cox A, Fields HA, Orth K. FicD regulates adaptation to the unfolded protein response in the murine liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589620. [PMID: 38659954 PMCID: PMC11042336 DOI: 10.1101/2024.04.15.589620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The unfolded protein response (UPR) is a cellular stress response that is activated when misfolded proteins accumulate in the endoplasmic reticulum (ER). The UPR elicits a signaling cascade that results in an upregulation of protein folding machinery and cell survival signals. However, prolonged UPR responses can result in elevated cellular inflammation, damage, and even cell death. Thus, regulation of the UPR response must be tuned to the needs of the cell, sensitive enough to respond to the stress but pliable enough to be stopped after the crisis has passed. Previously, we discovered that the bi-functional enzyme FicD can modulate the UPR response via post-translational modification of BiP. FicD AMPylates BiP during homeostasis and deAMPylates BiP during stress. We found this activity is important for the physiological regulation of the exocrine pancreas. Here, we explore the role of FicD in the murine liver. Like our previous studies, livers lacking FicD exhibit enhanced UPR signaling in response to short term physiologic fasting and feeding stress. However, the livers of FicD -/- did not show marked changes in UPR signaling or damage after either chronic high fat diet (HFD) feeding or acute pathological UPR induction. Intriguingly, FicD -/- mice showed changes in UPR induction and weight loss patterns following repeated pathological UPR induction. These findings show that FicD regulates UPR responses during mild physiological stress and may play a role in maintaining resiliency of tissue through adaptation to repeated ER stress.
Collapse
|
113
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
114
|
Sonsalla G, Malpartida AB, Riedemann T, Gusic M, Rusha E, Bulli G, Najas S, Janjic A, Hersbach BA, Smialowski P, Drukker M, Enard W, Prehn JHM, Prokisch H, Götz M, Masserdotti G. Direct neuronal reprogramming of NDUFS4 patient cells identifies the unfolded protein response as a novel general reprogramming hurdle. Neuron 2024; 112:1117-1132.e9. [PMID: 38266647 PMCID: PMC10994141 DOI: 10.1016/j.neuron.2023.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.
Collapse
Affiliation(s)
- Giovanna Sonsalla
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Ana Belen Malpartida
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried 82152, Germany
| | - Therese Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Giorgia Bulli
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Sonia Najas
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Aleks Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bob A Hersbach
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, 2333 CC RA, Leiden, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - Giacomo Masserdotti
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
115
|
Dey N, Koumenis C, Ruggero D, Fuchs SY, Diehl JA. miR-217 Regulates Normal and Tumor Cell Fate Following Induction of Endoplasmic Reticulum Stress. Mol Cancer Res 2024; 22:360-372. [PMID: 38236939 PMCID: PMC10987263 DOI: 10.1158/1541-7786.mcr-23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.
Collapse
Affiliation(s)
- Neekkan Dey
- Department of Biochemistry, Case Comprehensive Cancer Center; Case Western Reserve University, Cleveland, OH 44106, USA
| | - Costas Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davide Ruggero
- Departments of Urology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Serge Y. Fuchs
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Alan Diehl
- Department of Biochemistry, Case Comprehensive Cancer Center; Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
116
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
117
|
Hofmann C, Aghajani M, Alcock CD, Blackwood EA, Sandmann C, Herzog N, Groß J, Plate L, Wiseman RL, Kaufman RJ, Katus HA, Jakobi T, Völkers M, Glembotski CC, Doroudgar S. ATF6 protects against protein misfolding during cardiac hypertrophy. J Mol Cell Cardiol 2024; 189:12-24. [PMID: 38401179 DOI: 10.1016/j.yjmcc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
Cardiomyocytes activate the unfolded protein response (UPR) transcription factor ATF6 during pressure overload-induced hypertrophic growth. The UPR is thought to increase ER protein folding capacity and maintain proteostasis. ATF6 deficiency during pressure overload leads to heart failure, suggesting that ATF6 protects against myocardial dysfunction by preventing protein misfolding. However, conclusive evidence that ATF6 prevents toxic protein misfolding during cardiac hypertrophy is still pending. Here, we found that activation of the UPR, including ATF6, is a common response to pathological cardiac hypertrophy in mice. ATF6 KO mice failed to induce sufficient levels of UPR target genes in response to chronic isoproterenol infusion or transverse aortic constriction (TAC), resulting in impaired cardiac growth. To investigate the effects of ATF6 on protein folding, the accumulation of poly-ubiquitinated proteins as well as soluble amyloid oligomers were directly quantified in hypertrophied hearts of WT and ATF6 KO mice. Whereas only low levels of protein misfolding was observed in WT hearts after TAC, ATF6 KO mice accumulated increased quantities of misfolded protein, which was associated with impaired myocardial function. Collectively, the data suggest that ATF6 plays a critical adaptive role during cardiac hypertrophy by protecting against protein misfolding.
Collapse
Affiliation(s)
- Christoph Hofmann
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, CA, USA
| | - Marjan Aghajani
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Cecily D Alcock
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Erik A Blackwood
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Clara Sandmann
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nicole Herzog
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia Groß
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hugo A Katus
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Tobias Jakobi
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Mirko Völkers
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christopher C Glembotski
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Shirin Doroudgar
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, USA.
| |
Collapse
|
118
|
Lin H, Guo X, Liu J, Tang Y, Chen L, Chen H, Zhao Y, Wang L, Li H, Yu J, Yao P. Ethanol-Induced Hepatic Ferroptosis Is Mediated by PERK-Dependent MAMs Formation: Preventive Role of Quercetin. Mol Nutr Food Res 2024; 68:e2300343. [PMID: 38501770 DOI: 10.1002/mnfr.202300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/05/2023] [Indexed: 03/20/2024]
Abstract
SCOPE Iron deposition is frequently observed in alcoholic liver disease (ALD), which indicates a potential role of ferroptosis in its development. This study aims to explore the effects of quercetin on ferroptosis in ALD and elucidates the underlying mechanism involving the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs) mediated by protein kinase RNA-like endoplasmic reticulum kinase (PERK). METHODS AND RESULTS C57BL/6J mice are fed either a regular or an ethanol-containing liquid diet (with 28% energy form ethanol) with or without quercetin supplementation (100 mg kg-1 BW) for 12 weeks. Ethanol feeding or treatment induced ferroptosis in mice and AML12 cells, which is associated with increased MAMs formation and PERK expression within MAMs. Quercetin attenuates these changes and protects against ethanol-induced liver injury. The antiferroptotic effect of quercetin is abolished by ferroptosis inducers, but mimicked by ferroptosis inhibitors and PERK knockdown. The study demonstrates that PERK structure, rather than its kinase activity (transfected with the K618A site mutation that inhibits kinase activity-ΔK plasmid or protein C terminal knockout-ΔC plasmid of PERK), mediates the enhanced MAMs formation and ferroptosis during the ethanol exposure. CONCLUSION Quercetin ameliorates ethanol-induced liver injury by inhibiting ferroptosis via modulating PERK-dependent MAMs formation.
Collapse
Affiliation(s)
- Hongkun Lin
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
- Department of Nutrition, School of Public Health, Wuhan University, Wuhan, 430071, P. R. China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Jingjing Liu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, 450016, P. R. China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Li Chen
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| | - Jiasheng Yu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health,Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
- Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, P. R. China
| |
Collapse
|
119
|
Gao P, Song S, Wang Y, Liu H, Wang X, Shu Q, Yang P, Zheng P. Semaphorin 3 a restores the ability of type 1 regulatory T cells to suppress food allergy. Immunol Res 2024; 72:320-330. [PMID: 37999823 DOI: 10.1007/s12026-023-09437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Food allergy (FA) is a common immune disorder that involves dysfunctional immune regulation. More remedies for restoring immune regulation are necessary. Semaphorin 3 A (Sema3a) is a secreted protein of the semaphorin family, which plays a role in immune responses at all stages. The objective of this study is to gain an understanding of how Sema3a can restore the immune regulatory abilities of type 1 regulatory T cells (Tr1 cells). In this study, blood samples were taken from patients with FA. Tr1 cells were purified from blood samples using flow cytometry cell sorting, using LAG3 and CD49b as surface markers. RNA sequencing was employed to examine the characteristics of Tr1 cells. We observed an exaggerated increase in ER stress in peripheral Tr1 cells of FA patients. Enforced expression of spliced X-box protein-1 (XBP1s, one of the key molecules in ER stress) resulted in suppression of interleukin (IL)-10 expression in CD4+ T cells. Eukaryotic initiation factor 2a (eIF2a) mediated the effects of XBP1 on suppressing IL-10 expression in Tr1 cells. The use of Sema3a resulted in a decrease in ER stress, and an increase in IL-10 expression in Tr1 cells of FA patients. Sema3a administration reduced experimental FA by increasing the number of Tr1 cells. In conclusion, IL-10 expression in Tr1 cells is disturbed by ER stress. Sema3a treatment restores the expression of IL-10 and the immunosuppressive capability of Tr1 cells.
Collapse
Affiliation(s)
- Panpan Gao
- Department of Clinical Nutrition, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shuo Song
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Allergy & Immunology, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen University School of Medicine, Shenzhen, China
| | - Yanan Wang
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huazhen Liu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Allergy & Immunology, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qing Shu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pingchang Yang
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.
- Institute of Allergy & Immunology, State Key Laboratory of Respiratory Disease Shenzhen University Division, Shenzhen University School of Medicine, Shenzhen, China.
| | - Pengyuan Zheng
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
120
|
Wang L, Zhang D, Jiang B, Ding H, Feng S, Zhao C, Wang X, Wu J. 4-Phenylbutyric Acid Attenuates Soybean Glycinin/β-Conglycinin-Induced IPEC-J2 Cells Apoptosis by Regulating the Mitochondria-Associated Endoplasmic Reticulum Membrane and NLRP-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5926-5934. [PMID: 38457471 DOI: 10.1021/acs.jafc.3c09630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Glycinin (11S) and β-conglycinin (7S) from soybean (glycine max) cause diarrhea and intestinal barrier damage in young animals. Understanding the mechanisms underlying the damage caused by 7S and 11S, it is vital to develop strategies to eliminate allergenicity. Consequently, we investigated 7S/11S-mediated apoptosis in porcine intestinal epithelial (IPEC-J2) cells. IPEC-J2 cells suffered endoplasmic reticulum stress (ERS) in response to 7S and 11S, activating protein kinase RNA-like ER kinase, activating transcription factor 6, C/EBP homologous protein, and inositol-requiring enzyme 1 alpha. 4-Phenylbutyric acid (4-PBA) treatment alleviated ERS; reduced the NLR family pyrin domain containing 3, interleukin-1β, and interleukin-18 levels; inhibited apoptosis; increased mitofusin 2 expression; and mitigated Ca2+ overload and mitochondria-associated ER membrane (MAM) dysfunction, thereby ameliorating IPEC-J2 injury. We demonstrated the pivotal role of ERS in MAM dysfunction and 7S- and 11S-mediated apoptosis, providing insights into 7S- and 11S-mediated intestinal barrier injury prevention and treatment.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Daoliang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Benzheng Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| |
Collapse
|
121
|
Abdelmoaty MM, Kadry R, Mosley RL, Gendelman HE. Neuroprotective Mushrooms. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:129-137. [PMID: 40370689 PMCID: PMC12077610 DOI: 10.1515/nipt-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Alternative medicines commonly supplement or, at times, replace standard medical treatment. One area of increasing attention is disease-modifying medicines for neurodegenerative diseases. However, few such alternatives have been investigated thoroughly with an eye toward understanding mechanisms of action for clinical use. Medicinal mushrooms have important health benefits and pharmacological activities with anti-inflammatory, antioxidant, antibacterial, antiviral, immunomodulatory, digestive, cytoprotective, homeostatic, and neuroprotective activities. Edible mushrooms are known to play roles in preventing age-related diseases. Several studies have revealed that polysaccharides, terpenes, and phenolic compounds are chemical components derived from mushrooms with pharmacological activities. Due to limited effective protocols for mushroom protein extraction for proteomic studies, information about these medicinally related proteins and their biological functions remains enigmatic. Herein, we have performed proteomic studies of two mushroom species Laricifomes officinalis (agarikon) and Grifola frondosa (maitake). These studies serve to uncover a foundation for putative proteome-associated neuroprotective processes. The recovered proteins from both species show multiple cell-specific signaling pathways including unfolded protein response, and mitochondrial protein import as well as those linked to BAG2, ubiquitination, apoptosis, microautophagy, glycolysis, SNARE, and immunogenic cell signaling pathways. This study uncovered mushroom proteome-associated proteins which serve to better understand the structural and functional properties of mushrooms used as alternative medicines for broad potential health benefits.
Collapse
Affiliation(s)
- Mai M. Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Rana Kadry
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, NE 68198, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
122
|
Park G, Galdamez A, Song KH, Le M, Kim K, Lin JH. Ethnic variation and structure-function analysis of tauopathy-associated PERK alleles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.03.24303689. [PMID: 38496636 PMCID: PMC10942523 DOI: 10.1101/2024.03.03.24303689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
EIF2AK3, also known as PERK, plays a pivotal role in cellular proteostasis, orchestrating the Unfolded Protein Response (UPR) and Integrated Stress Response (ISR) pathways. In addition to its central position in intracellular stress regulation, human GWAS identify EIF2AK3 as a risk factor in tauopathies, neurodegenerative diseases caused by aberrant tau protein accumulation. Guided by these genomic indicators, our investigation systematically analyzed human PERK variants, focusing on those with potential tauopathy linkages. We assembled a comprehensive data set of human PERK variants associated with Wolcott Rallison Syndrome (WRS), tauopathies, and bioinformatically predicted loss-of-function, referencing the gnomAD, Ensembl, and NCBI databases. We found extensive racial/ethnic variation in the prevalence of common PERK polymorphisms linked to tauopathies. Using SWISS-MODEL, we identified structural perturbations in the ER stress-sensing luminal domain dimers/oligomers of tauopathy-associated PERK variants, Haplotypes A and B, in combination with another tauopathy-linked R240H mutation. Recombinant expression of disease-associated variants in vitro revealed altered PERK signal transduction kinetics in response to ER stress compared to the predominant non-disease variant. In summary, our data further substantiates that human PERK variants identified in tauopathy genetic studies negatively impact PERK structure, function, and downstream signaling with significant variations in prevalence among different racial and ethnic groups.
Collapse
|
123
|
Volloch V, Rits-Volloch S. On the Inadequacy of the Current Transgenic Animal Models of Alzheimer's Disease: The Path Forward. Int J Mol Sci 2024; 25:2981. [PMID: 38474228 PMCID: PMC10932000 DOI: 10.3390/ijms25052981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
124
|
Wang SK, Zhang XT, Jiang XY, Geng BJ, Qing TL, Li L, Chen Y, Li JF, Zhang XF, Xu SG, Zhu JB, Zhu YP, Wang MT, Chen JK. Activation of Piezo1 increases the sensitivity of breast cancer to hyperthermia therapy. Open Med (Wars) 2024; 19:20240898. [PMID: 38463518 PMCID: PMC10921451 DOI: 10.1515/med-2024-0898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 03/12/2024] Open
Abstract
Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Shao-Kang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Ting Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xuan-Yao Jiang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bi-Jiang Geng
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Emergency, The Second Naval Hospital of Southern Theater Command of PLA, Hainan, China
- Heatstroke Treatment and Research Center of PLA, Hainan, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Shuo-Gui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yu-Ping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, No 800, Xiangyin Road, Shanghai, 200433, China
| | - Mei-Tang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
125
|
Jin B, Wang M, Sun Y, Lee PAH, Zhang X, Lu Y, Zhao B. CHIP suppresses the proliferation and migration of A549 cells by mediating the ubiquitination of eIF2α and upregulation of tumor suppressor RBM5. J Biol Chem 2024; 300:105673. [PMID: 38272235 PMCID: PMC10877634 DOI: 10.1016/j.jbc.2024.105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.
Collapse
Affiliation(s)
- Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Mengran Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yiheng Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Priscilla Ann Hweek Lee
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangqi Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
126
|
Shacham T, Offen D, Lederkremer GZ. Efficacy of therapy by MK-28 PERK activation in the Huntington's disease R6/2 mouse model. Neurotherapeutics 2024; 21:e00335. [PMID: 38368172 PMCID: PMC10937961 DOI: 10.1016/j.neurot.2024.e00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
There is currently no disease-modifying therapy for Huntington's disease (HD). We recently described a small molecule, MK-28, which restored homeostasis in HD models by specifically activating PKR-like ER kinase (PERK). This activation boosts the unfolded protein response (UPR), thereby reducing endoplasmic reticulum (ER) stress, a central cytotoxic mechanism in HD and other neurodegenerative diseases. Here, we have tested the long-term effects of MK-28 in HD model mice. R6/2 CAG (160) mice were treated by lifetime intraperitoneal injections 3 times a week. CatWalk measurements of motor function showed strong improvement compared to untreated mice after only two weeks of MK-28 treatment and continued with time, most significantly at 1 mg/kg MK-28, approaching WT values. Seven weeks treatment significantly improved paw grip strength. Body weight recovered and glucose levels, which are elevated in HD mice, were significantly reduced. Treatment with another PERK activator, CCT020312 at 1 mg/kg, also caused amelioration, consistent with PERK activation. Lifespan, measured in more resilient R6/2 CAG (120) mice with daily IP injection, was much extended by 16 days (20%) with 0.3 mg/kg MK-28, and by 38 days (46%) with 1 mg/kg MK-28. No toxicity, measured by weight, blood glucose levels and blood liver function markers, was detectable in WT mice treated for 6 weeks with 6 mg/kg MK-28. Boosting of PERK activity by long-term treatment with MK-28 could be a safe and promising therapeutic approach for HD.
Collapse
Affiliation(s)
- Talya Shacham
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Offen
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
127
|
Bertolotti A. Keeping goblet cells unstressed: new insights into a general principle. EMBO J 2024; 43:663-665. [PMID: 38308018 PMCID: PMC10907747 DOI: 10.1038/s44318-024-00041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Two new studies reveal how the unfolded protein response is regulated in mucin-secreting gut epithelial cells.
Collapse
Affiliation(s)
- Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
128
|
Yan G, Han Z, Kwon Y, Jousma J, Nukala SB, Prosser BL, Du X, Pinho S, Ong SB, Lee WH, Ong SG. Integrated Stress Response Potentiates Ponatinib-Induced Cardiotoxicity. Circ Res 2024; 134:482-501. [PMID: 38323474 PMCID: PMC10940206 DOI: 10.1161/circresaha.123.323683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.
Collapse
Affiliation(s)
- Gege Yan
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Youjeong Kwon
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaoping Du
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, CUHK, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong SAR, China
- Kunming Institute of Zoology – The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Neural, Vascular, and Metabolic Biology Thematic Research Program, School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, USA
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, USA
| |
Collapse
|
129
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
130
|
Li ST, Hirayama H, Huang C, Matsuda T, Oka R, Yamasaki T, Kohda D, Suzuki T. Hydrolytic activity of yeast oligosaccharyltransferase is enhanced when misfolded proteins accumulate in the endoplasmic reticulum. FEBS J 2024; 291:884-896. [PMID: 37997624 DOI: 10.1111/febs.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
It is known that oligosaccharyltransferase (OST) has hydrolytic activity toward dolichol-linked oligosaccharides (DLO), which results in the formation of free N-glycans (FNGs), i.e. unconjugated oligosaccharides with structural features similar to N-glycans. The functional importance of this hydrolytic reaction, however, remains unknown. In this study, the hydrolytic activity of OST was characterized in yeast. It was shown that the hydrolytic activity of OST is enhanced in ubiquitin ligase mutants that are involved in endoplasmic reticulum-associated degradation. Interestingly, this enhanced hydrolysis activity is completely suppressed in asparagine-linked glycosylation (alg) mutants, bearing mutations related to the biosynthesis of DLO, indicating that the effect of ubiquitin ligase on OST-mediated hydrolysis is context-dependent. The enhanced hydrolysis activity in ubiquitin ligase mutants was also found to be canceled upon treatment of the cells with dithiothreitol, a reagent that potently induces protein unfolding in the endoplasmic reticulum (ER). Our results clearly suggest that the hydrolytic activity of OST is enhanced under conditions in which the formation of unfolded proteins is promoted in the ER in yeast. The possible role of FNGs on protein folding is discussed.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Takahiro Yamasaki
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
131
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
132
|
Clarke CJ, Snider AJ. Perspective: Therapeutic Implications for Sphingolipids in Health and Disease. Mol Pharmacol 2024; 105:118-120. [PMID: 38360837 DOI: 10.1124/molpharm.124.000866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Long thought to be structural components of cell membranes, sphingolipids (SLs) have emerged as bioactive molecules whose metabolism is tightly regulated. These bioactive lipids and their metabolic enzymes have been implicated in numerous disease states, including lysosomal storage disorders, multiple sclerosis, inflammation, and cancer as well as metabolic syndrome and obesity. In addition, the indications for many of these lipids to potentially serve as biomarkers for disease continue to emerge with increasing metabolomic and lipidomic studies. The implications of these studies have, in turn, led to the examination of SL enzymes and their bioactive lipids as potential therapeutic targets and as markers for therapeutic efficacy. SIGNIFICANCE STATEMENT: Many sphingolipids (SLs) and their metabolizing enzymes have been implicated in disease. This perspective highlights the potential for SLs to serve as therapeutic targets and diagnostic markers and discusses the implications for the studies and reviews highlighted in this Special Section on Therapeutic Implications for Sphingolipids in Health and Disease.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, New York (C.J.C.) and Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (A.J.S.)
| | - Ashley J Snider
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, New York (C.J.C.) and Nutritional Sciences and Wellness, College of Agriculture, Life and Environmental Sciences, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (A.J.S.)
| |
Collapse
|
133
|
Xue M, Irshad Z, Rabbani N, Thornalley PJ. Increased cellular protein modification by methylglyoxal activates endoplasmic reticulum-based sensors of the unfolded protein response. Redox Biol 2024; 69:103025. [PMID: 38199038 PMCID: PMC10821617 DOI: 10.1016/j.redox.2024.103025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The unfolded protein response (UPR) detects increased misfolded proteins and activates protein refolding, protein degradation and inflammatory responses. UPR sensors in the endoplasmic reticulum, IRE1α and PERK, bind and are activated by proteins with unexpected surface hydrophobicity, whereas sensor ATF6 is activated by proteolytic cleavage when released from complexation with protein disulfide isomerases (PDIs). Metabolic dysfunction leading to the formation of misfolded proteins with surface hydrophobicity and disruption of ATF6-PDI complexes leading to activation of UPR sensors remains unclear. The cellular concentration of reactive dicarbonyl metabolite, methylglyoxal (MG), is increased in impaired metabolic health, producing increased MG-modified cellular proteins. Herein we assessed the effect of high glucose concentration and related increased cellular MG on activation status of IRE1α, PERK and ATF6. Human aortal endothelial cells and HMEC-1 microvascular endothelial cells were incubated in low and high glucose concentration to model blood glucose control, with increase or decrease of MG by silencing or increasing expression of glyoxalase 1 (Glo1), which metabolizes MG. Increased MG induced by high glucose concentration activated IRE1α, PERK and ATF6 and related downstream signalling leading to increased chaperone, apoptotic and inflammatory gene expression. Correction of increased MG by increasing Glo1 expression prevented UPR activation. MG modification of proteins produces surface hydrophobicity through arginine-derived hydroimidazolone MG-H1 formation, with related protein unfolding and preferentially targets PDIs and chaperone pathways for modification. It thereby poses a major challenge to proteostasis and activates UPR sensors. Pharmacological decrease of MG with Glo1 inducer, trans-resveratrol and hesperetin in combination, offers a novel treatment strategy to counter UPR-related cell dysfunction, particularly in hyperglycemia associated with diabetes.
Collapse
Affiliation(s)
- Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Zehra Irshad
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar; Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK; College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
134
|
Paul PK, Umarvaish S, Bajaj S, S. RF, Mohan H, Annaert W, Chaudhary V. Maintenance of proteostasis by Drosophila Rer1 is essential for competitive cell survival and Myc-driven overgrowth. PLoS Genet 2024; 20:e1011171. [PMID: 38408084 PMCID: PMC10919865 DOI: 10.1371/journal.pgen.1011171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/07/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Defects in protein homeostasis can induce proteotoxic stress, affecting cellular fitness and, consequently, overall tissue health. In various growing tissues, cell competition based mechanisms facilitate detection and elimination of these compromised, often referred to as 'loser', cells by the healthier neighbors. The precise connection between proteotoxic stress and competitive cell survival remains largely elusive. Here, we reveal the function of an endoplasmic reticulum (ER) and Golgi localized protein Rer1 in the regulation of protein homeostasis in the developing Drosophila wing epithelium. Our results show that loss of Rer1 leads to proteotoxic stress and PERK-mediated phosphorylation of eukaryotic initiation factor 2α. Clonal analysis showed that rer1 mutant cells are identified as losers and eliminated through cell competition. Interestingly, we find that Rer1 levels are upregulated upon Myc-overexpression that causes overgrowth, albeit under high proteotoxic stress. Our results suggest that increased levels of Rer1 provide cytoprotection to Myc-overexpressing cells by alleviating the proteotoxic stress and thereby supporting Myc-driven overgrowth. In summary, these observations demonstrate that Rer1 acts as a novel regulator of proteostasis in Drosophila and reveal its role in competitive cell survival.
Collapse
Affiliation(s)
- Pranab Kumar Paul
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Shruti Umarvaish
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Shivani Bajaj
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Rishana Farin S.
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Hrudya Mohan
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium, and Department of Neurosciences, KU Leuven, Gasthuisberg, Leuven, Belgium
| | - Varun Chaudhary
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
135
|
Wang W, Zhang Y, Geng X, Li H, Wang X, Zhang Y, Zhao H. Zinc attenuates arsenic overdose-induced brain damage via PERK/ATF6 and TLR/MyD88/NF-κB pathways. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109806. [PMID: 38042229 DOI: 10.1016/j.cbpc.2023.109806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exposure to arsenic (As), a widespread non-metallic toxicant in nature, often results in neurotoxicity, although the exact mechanism is unknown. Zinc (Zn) is a powerful nutrient often thought to be beneficial for growth, development and immunity. Whether Zn can rescue brain damage caused by As contamination remains to be demonstrated. Therefore, in this study, a 30-day model of As poisoning (2.83 mg/L) in carp was established and treated with Zn (1 mg/L) to investigate the detoxification mechanism involved. Histological observations showed that As induced the loosening of the molecular layer structure of the cerebellum and the dissolution or even disappearance of nuclei, accompanied by the occurrence of microthrombi in the granular layer, and the addition of Zn attenuated such As-induced damage. Further mechanistic studies indicated that Zn ameliorated As exposure-induced abnormalities in antioxidant capacity (decreased CAT and Cu/Zn-SOD), activation of the Nrf2/keap1 pathway and endoplasmic reticulum stress (ERs), which is a key factor in As-induced brain damage. ERs (high expression of PERK, ATF6, CHOP, eiF2α and GRP78) and inflammation (overexpression of TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β and IL-6 and low expression of IκBα and IL-10). We suggest that Zn can alleviate excessive As-induced brain damage by attenuating As-induced oxidative stress, PERK/ATF6 and TLR/MyD88/NF-κB pathways. The present study fills in the preventive mechanism of As injury in fish and provides the possibility of prevention and control of As pollution-induced brain tissue injury by Zn rescue.
Collapse
Affiliation(s)
- Weijun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hong Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xuehuan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yingzi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
136
|
Akai R, Hamashima H, Saito M, Kohno K, Iwawaki T. Partial limitation of cellular functions and compensatory modulation of unfolded protein response pathways caused by double-knockout of ATF6α and ATF6β. Cell Stress Chaperones 2024; 29:34-48. [PMID: 38320450 PMCID: PMC10939067 DOI: 10.1016/j.cstres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 02/08/2024] Open
Abstract
Mammalian cells have three types of endoplasmic reticulum (ER) stress-sensing molecules: ATF6, IRE1, and PERK. Among these, ATF6 is unique in that it is processed in an ER-stress-specific manner and functions as a transcription factor for the activation of anti-ER stress genes (such as BiP). ATF6 is known to have two homologues, ATF6α and ATF6β, and a greater understanding of their functions has been achieved through analyses using cultured cells. Physiological functions are also gradually being investigated in mice lacking ATF6α or ATF6β. However, little is known about the effects on mouse organisms of the deletion of both the ATF6α and ATF6β genes, since such double-knockout (DKO) mice suffer embryonic lethality at an early developmental stage. In this study, we generated and analyzed ATF6 DKO mice in which embryonic lethality was evaded by using Cre/loxP technology. Pancreatic β cell-specific ATF6 DKO mice were born normally and lived without dysregulation of blood-glucose levels but had a reduced tolerance to glucose. Islets isolated from ATF6 DKO mice also showed low production and secretion of insulin and mild enhancement of IRE1 and PERK activity. We further examined the developmental abnormalities of systemic ATF6 DKO mice. The phenotypes of ATF6α-/-; ATF6β-/- mice were similar to those previously reported, but ATF6α+/-; ATF6β-/- and ATF6α-/-; ATF6β+/- mice showed embryonic lethality at middle developmental stages, unlike those reported. Analysis of embryonic fibroblasts derived from these mice revealed that ATF6α and ATF6β have a gene-dose-dependent functional redundancy and display distinct differences in their ability to induce BiP expression. (250 words).
Collapse
Affiliation(s)
- Ryoko Akai
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Hisayo Hamashima
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Michiko Saito
- Bio-science Research Center, Kyoto Pharmaceutical University, 1, Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenji Kohno
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan; Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| |
Collapse
|
137
|
Liu X, Wang B, Chang M, Zhang X, Zou H, Zhang Z, Han G. USP12 regulates ER stress-associated osteogenesis in human periodontal ligament cells under tension stress. Cell Signal 2024; 114:111015. [PMID: 38113977 DOI: 10.1016/j.cellsig.2023.111015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The bone formation (osteogenesis) of human periodontal ligament cells (hPDLCs) under tension stress is essential for alveolar bone remodeling during orthodontic tooth movement (OTM). Deubiquitinating enzymes (DUBs) remove ubiquitin from target proteins, affecting their function and mediating cell survival and differentiation. However, whether and how DUBs regulate hPDLC function under tension force is poorly understood. In this study, we first investigated the expression of DUBs in hPDLCs under cyclic tension stimulation (CTS). Up-regulation of USP12 was observed in hPDLCs and at the tension side of molar teeth in OTM C57BL6 mice models. Knockdown (KD) of USP12 led to enhanced osteogenesis of hPDLCs under CTS. RNA-seq analysis suggested that the unfolded protein response (UPR) was the prevailing biological process in hPDLCs with USP12 KD, indicating that USP12 depletion triggered endoplasmic reticulum (ER) stress. The three major UPR-related signaling branches, namely PERK/eIF2α/ATF4, IRE1α/XBP1s, and ATF6 axis, were activated in hPDLCs with USP12 KD. By utilizing specific inhibitors, we proved that the PERK/eIF2α/ATF4 axis predominantly mediated the enhanced osteogenesis in hPDLCs with USP12 KD under CTS. In summary, our study demonstrates that USP12 serves as a key regulator for CTS-induced osteogenesis in hPDLCs, suggesting that USP12 upregulation serves as an adaptive mechanism for hPDLCs to alleviate ER stress during OTM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Beike Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Maolin Chang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocen Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Hao Zou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Zhen Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
138
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
139
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
140
|
Gjervan SC, Ozgoren OK, Gow A, Stockler-Ipsiroglu S, Pouladi MA. Claudin-11 in health and disease: implications for myelin disorders, hearing, and fertility. Front Cell Neurosci 2024; 17:1344090. [PMID: 38298375 PMCID: PMC10827939 DOI: 10.3389/fncel.2023.1344090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Claudin-11 plays a critical role in multiple physiological processes, including myelination, auditory function, and spermatogenesis. Recently, stop-loss mutations in CLDN11 have been identified as a novel cause of hypomyelinating leukodystrophy (HLD22). Understanding the multifaceted roles of claudin-11 and the potential pathogenic mechanisms in HLD22 is crucial for devising targeted therapeutic strategies. This review outlines the biological roles of claudin-11 and the implications of claudin-11 loss in the context of the Cldn11 null mouse model. Additionally, HLD22 and proposed pathogenic mechanisms, such as endoplasmic reticulum stress, will be discussed.
Collapse
Affiliation(s)
- Sophia C. Gjervan
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Oguz K. Ozgoren
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sylvia Stockler-Ipsiroglu
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
- Division of Biochemical Genetics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
141
|
Zhaliazka K, Ali A, Kurouski D. Phospholipids and Cholesterol Determine Molecular Mechanisms of Cytotoxicity of α-Synuclein Oligomers and Fibrils. ACS Chem Neurosci 2024; 15:371-381. [PMID: 38166409 DOI: 10.1021/acschemneuro.3c00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, hypothalamus, and thalamus is a hallmark of Parkinson's disease. Neuronal death is linked to the abrupt aggregation of α-synuclein (α-Syn), a small membrane protein that regulates cell vesicle trafficking. α-Syn aggregation rate, as well as the secondary structure and toxicity of α-Syn fibrils, could be uniquely altered by lipids. However, molecular mechanisms that determine such a remarkable difference in the toxicity of α-Syn fibrils formed in the presence of lipids remain unclear. In this study, we used a set of molecular assays to determine the molecular mechanism by which α-Syn fibrils formed in the presence of phosphatidylcholine (PC), cardiolipin (CL), and cholesterol (Cho) exert cell toxicity. We found that rat dopaminergic cells exposed to α-Syn fibrils formed in the presence of different lipids exert drastically different magnitudes and dynamics of unfolded protein response (UPR) in the endoplasmic reticulum (ER) and mitochondria (MT). Specifically, α-Syn:CL were found to cause the strongest, whereas α-Syn fibrils formed in the absence of lipids had the lowest magnitude of the UPR cell response. We also found the opposite dynamics of the ER- and MT-UPR responses in rat dopaminergic cells exposed to protein aggregates. These results could suggest that facing severe ER stress, dopaminergic cells suppress MT-UPR response, enabling the maximal ATP production to restore their normal physiological function. These findings help to better understand complex mechanisms of cell toxicity of amyloid aggregates and ultimately find neuroprotective drug candidates that will be able to suppress the spread of Parkinson's disease.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
142
|
Zhang S, Tian W, Duan X, Zhang Q, Cao L, Liu C, Li G, Wang Z, Zhang J, Li J, Yang L, Gao Y, Xu Y, Liu J, Yan J, Cui J, Feng L, Liu C, Shen Y, Qi Z. Melatonin attenuates diabetic cardiomyopathy by increasing autophagy of cardiomyocytes via regulation of VEGF-B/GRP78/PERK signaling pathway. Cardiovasc Diabetol 2024; 23:19. [PMID: 38195474 PMCID: PMC10777497 DOI: 10.1186/s12933-023-02078-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is a major cause of mortality in patients with diabetes, and the potential strategies for treating DCM are insufficient. Melatonin (Mel) has been shown to attenuate DCM, however, the underlying mechanism remains unclear. The role of vascular endothelial growth factor-B (VEGF-B) in DCM is little known. In present study, we aimed to investigate whether Mel alleviated DCM via regulation of VEGF-B and explored its underlying mechanisms. METHODS AND RESULTS We found that Mel significantly alleviated cardiac dysfunction and improved autophagy of cardiomyocytes in type 1 diabetes mellitus (T1DM) induced cardiomyopathy mice. VEGF-B was highly expressed in DCM mice in comparison with normal mice, and its expression was markedly reduced after Mel treatment. Mel treatment diminished the interaction of VEGF-B and Glucose-regulated protein 78 (GRP78) and reduced the interaction of GRP78 and protein kinase RNA -like ER kinase (PERK). Furthermore, Mel increased phosphorylation of PERK and eIF2α, then up-regulated the expression of ATF4. VEGF-B-/- mice imitated the effect of Mel on wild type diabetic mice. Interestingly, injection with Recombinant adeno-associated virus serotype 9 (AAV9)-VEGF-B or administration of GSK2656157 (GSK), an inhibitor of phosphorylated PERK abolished the protective effect of Mel on DCM. Furthermore, rapamycin, an autophagy agonist displayed similar effect with Mel treatment; while 3-Methyladenine (3-MA), an autophagy inhibitor neutralized the effect of Mel on high glucose-treated neonatal rat ventricular myocytes. CONCLUSIONS These results demonstrated that Mel attenuated DCM via increasing autophagy of cardiomyocytes, and this cardio-protective effect of Mel was dependent on VEGF-B/GRP78/PERK signaling pathway.
Collapse
Affiliation(s)
- Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wencong Tian
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Xianxian Duan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qian Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Chunlei Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ziwei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Junwei Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China.
- Xinjiang Production and Construction Corps Hospital, Xinjiang, 830092, China.
| |
Collapse
|
143
|
Lee DK, Jo SH, Lee ES, Ha KB, Park NW, Kong DH, Park SI, Park JS, Chung CH. DWN12088, A Prolyl-tRNA Synthetase Inhibitor, Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis. Diabetes Metab J 2024; 48:97-111. [PMID: 38173372 PMCID: PMC10850270 DOI: 10.4093/dmj.2022.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Nonalcoholic steatohepatitis (NASH) is a liver disease caused by obesity that leads to hepatic lipoapoptosis, resulting in fibrosis and cirrhosis. However, the mechanism underlying NASH is largely unknown, and there is currently no effective therapeutic agent against it. DWN12088, an agent used for treating idiopathic pulmonary fibrosis, is a selective prolyl-tRNA synthetase (PRS) inhibitor that suppresses the synthesis of collagen. However, the mechanism underlying the hepatoprotective effect of DWN12088 is not clear. Therefore, we investigated the role of DWN12088 in NASH progression. METHODS Mice were fed a chow diet or methionine-choline deficient (MCD)-diet, which was administered with DWN12088 or saline by oral gavage for 6 weeks. The effects of DWN12088 on NASH were evaluated by pathophysiological examinations, such as real-time quantitative reverse transcription polymerase chain reaction, immunoblotting, biochemical analysis, and immunohistochemistry. Molecular and cellular mechanisms of hepatic injury were assessed by in vitro cell culture. RESULTS DWN12088 attenuated palmitic acid (PA)-induced lipid accumulation and lipoapoptosis by downregulating the Rho-kinase (ROCK)/AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein-1c (SREBP-1c) and protein kinase R-like endoplasmic reticulum kinase (PERK)/α subunit of eukaryotic initiation factor 2 (eIF2α)/activating transcription factor 4 (ATF4)/C/EBP-homologous protein (CHOP) signaling cascades. PA increased but DWN12088 inhibited the phosphorylation of nuclear factor-κB (NF-κB) p65 (Ser536, Ser276) and the expression of proinflammatory genes. Moreover, the DWN12088 inhibited transforming growth factor β (TGFβ)-induced pro-fibrotic gene expression by suppressing TGFβ receptor 1 (TGFβR1)/Smad2/3 and TGFβR1/glutamyl-prolyl-tRNA synthetase (EPRS)/signal transducer and activator of transcription 6 (STAT6) axis signaling. In the case of MCD-diet-induced NASH, DWN12088 reduced hepatic steatosis, inflammation, and lipoapoptosis and prevented the progression of fibrosis. CONCLUSION Our findings provide new insights about DWN12088, namely that it plays an important role in the overall improvement of NASH. Hence, DWN12088 shows great potential to be developed as a new integrated therapeutic agent for NASH.
Collapse
Affiliation(s)
- Dong-Keon Lee
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Su Ho Jo
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eun Soo Lee
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyung Bong Ha
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Na Won Park
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Deok-Hoon Kong
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Sang-In Park
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Seoul, Korea
| | - Choon Hee Chung
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
144
|
Yilmaz E. Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:373-390. [PMID: 39287859 DOI: 10.1007/978-3-031-63657-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent years, the world has seen an alarming increase in obesity and is closely associated with insulin resistance, which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) plays in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably many causes for obesity-related insulin resistance and inflammation. One of the faulty mechanisms is protein homeostasis, protein quality control system included protein folding, chaperone activity, and ER-associated degradation leading to endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens, or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Biotechnology Institute, Ankara University, Kecioren, Ankara, Turkey.
| |
Collapse
|
145
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
146
|
Duan Z, Chen K, Yang T, You R, Chen B, Li J, Liu L. Mechanisms of Endoplasmic Reticulum Protein Homeostasis in Plants. Int J Mol Sci 2023; 24:17599. [PMID: 38139432 PMCID: PMC10743519 DOI: 10.3390/ijms242417599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of proteome integrity is essential for cell function and survival in changing cellular and environmental conditions. The endoplasmic reticulum (ER) is the major site for the synthesis of secretory and membrane proteins. However, the accumulation of unfolded or misfolded proteins can perturb ER protein homeostasis, leading to ER stress and compromising cellular function. Eukaryotic organisms have evolved sophisticated and conserved protein quality control systems to ensure protein folding fidelity via the unfolded protein response (UPR) and to eliminate potentially harmful proteins via ER-associated degradation (ERAD) and ER-phagy. In this review, we summarize recent advances in our understanding of the mechanisms of ER protein homeostasis in plants and discuss the crosstalk between different quality control systems. Finally, we will address unanswered questions in this field.
Collapse
Affiliation(s)
- Zhihao Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Kai Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ronghui You
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Binzhao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
147
|
Volloch V, Rits-Volloch S. Next Generation Therapeutic Strategy for Treatment and Prevention of Alzheimer's Disease and Aging-Associated Cognitive Decline: Transient, Once-in-a-Lifetime-Only Depletion of Intraneuronal Aβ ( iAβ) by Its Targeted Degradation via Augmentation of Intra- iAβ-Cleaving Activities of BACE1 and/or BACE2. Int J Mol Sci 2023; 24:17586. [PMID: 38139415 PMCID: PMC10744314 DOI: 10.3390/ijms242417586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aβ) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aβ. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aβ (iAβ) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aβ protein precursor (AβPP)-derived iAβ to the critical threshold. This triggers the activation of the self-sustaining AβPP-independent iAβ production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aβ produced independently of AβPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAβ-stimulated propagation of its own AβPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AβPP-derived iAβ accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aβ, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AβPP-derived iAβ. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAβ via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAβ-cleaving capabilities of BACE1 and/or BACE2.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
148
|
Lee HC, Chao HT, Lee SYH, Lin CY, Tsai HJ. The Upstream 1350~1250 Nucleotide Sequences of the Human ENDOU-1 Gene Contain Critical Cis-Elements Responsible for Upregulating Its Transcription during ER Stress. Int J Mol Sci 2023; 24:17393. [PMID: 38139221 PMCID: PMC10744159 DOI: 10.3390/ijms242417393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
ENDOU-1 encodes an endoribonuclease that overcomes the inhibitory upstream open reading frame (uORF)-trap at 5'-untranslated region (UTR) of the CHOP transcript, allowing the downstream coding sequence of CHOP be translated during endoplasmic reticulum (ER) stress. However, transcriptional control of ENDOU-1 remains enigmatic. To address this, we cloned an upstream 2.1 kb (-2055~+77 bp) of human ENDOU-1 (pE2.1p) fused with reporter luciferase (luc) cDNA. The promoter strength driven by pE2.1p was significantly upregulated in both pE2.1p-transfected cells and pE2.1p-injected zebrafish embryos treated with stress inducers. Comparing the luc activities driven by pE2.1p and -1125~+77 (pE1.2p) segments, we revealed that cis-elements located at the -2055~-1125 segment might play a critical role in ENDOU-1 upregulation during ER stress. Since bioinformatics analysis predicted many cis-elements clustered at the -1850~-1250, we further deconstructed this segment to generate pE2.1p-based derivatives lacking -1850~-1750, -1749~-1650, -1649~-1486, -1485~-1350 or -1350~-1250 segments. Quantification of promoter activities driven by these five internal deletion plasmids suggested a repressor binding element within the -1649~-1486 and an activator binding element within the -1350~-1250. Since luc activities driven by the -1649~-1486 were not significantly different between normal and stress conditions, we herein propose that the stress-inducible activator bound at the -1350~-1250 segment makes a major contribution to the increased expression of human ENDOU-1 upon ER stresses.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hsuan-Te Chao
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Selina Yi-Hsuan Lee
- Faculty of Sciences and Engineering, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
149
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
150
|
Guo W, Wang M, Yang Z, Liu D, Ma B, Zhao Y, Chen Y, Hu Y. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy. Eur J Med Chem 2023; 261:115792. [PMID: 37690265 DOI: 10.1016/j.ejmech.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is one of key endoplasmic reticulum (ER) chaperone proteins that regulates the unfolded protein response (UPR) to maintain ER homeostasis. As a core factor in the regulation of the UPR, GRP78 takes a critical part in the cellular processes required for tumorigenesis, such as proliferation, metastasis, anti-apoptosis, immune escape and chemoresistance. Overexpression of GRP78 is closely correlated with tumorigenesis and poor prognosis in various malignant tumors. Targeting GRP78 is regarded as a potentially promising therapeutic strategy for cancer therapy. Although none of the GRP78 inhibitors have been approved to date, there have been several studies of GRP78 inhibitors. Herein, we comprehensively review the structure, physiological functions of GRP78 and the recent progress of GRP78 inhibitors, and discuss the structures, in vitro and in vivo efficacies, and merits and demerits of these inhibitors to inspire further research. Additionally, the feasibility of GRP78-targeting proteolysis-targeting chimeras (PROTACs), disrupting GRP78 cochaperone interactions, or covalent inhibition are also discussed as novel strategies for drugs discovery targeting GRP78, with the hope that these strategies can provide new opportunities for targeted GRP78 antitumor therapy.
Collapse
Affiliation(s)
- Weikai Guo
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Manjie Wang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhengfan Yang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Danyang Liu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Borui Ma
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yanqun Zhao
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yanzhong Hu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China.
| |
Collapse
|