101
|
Clapham JC. Central control of thermogenesis. Neuropharmacology 2011; 63:111-23. [PMID: 22063719 DOI: 10.1016/j.neuropharm.2011.10.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023]
Abstract
In mammals and birds, conservation of body heat at around 37 °C is vital to life. Thermogenesis is the production of this heat which can be obligatory, as in basal metabolic rate, or it can be facultative such as the response to cold. A complex regulatory system has evolved which senses environmental or core temperature and integrates this information in hypothalamic regions such as the preoptic area and dorsomedial hypothalamus. These areas then send the appropriate signals to generate and conserve heat (or dissipate it). In this review, the importance of the sympathetic nervous system is discussed in relation to its role in basal metabolic rate and adaptive thermogenesis with a particular emphasis to human obesity. The efferent sympathetic pathway does not uniformly act on all tissues; different tissues can receive different levels of sympathetic drive at the same time. This is an important concept in the discussion of the pharmacotherapy of obesity. Despite decades of work the medicine chest contains only one pill for the long term treatment of obesity, orlistat, a lipase inhibitor that prevents the absorption of lipid from the gut and is itself not systemically absorbed. The central controlling system for thermogenesis has many potential intervention points. Several drugs, previously marketed, awaiting approval or in the earlier stages of development may have a thermogenic effect via activation of the sympathetic nervous system at some point in the thermoregulatory circuit and are discussed in this review. If the balance is weighted to the "wrong" side there is the burden of increased cardiovascular risk while a shift to the "right" side, if possible, will afford a thermogenic benefit that is conducive to weight loss maintenance. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- John C Clapham
- AstraZeneca R&D, Alderley Park, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
102
|
Egawa T, Hanaoka K, Koide Y, Ujita S, Takahashi N, Ikegaya Y, Matsuki N, Terai T, Ueno T, Komatsu T, Nagano T. Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging. J Am Chem Soc 2011; 133:14157-9. [DOI: 10.1021/ja205809h] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
103
|
Kasai S, Kamaura M, Kamata M, Aso K, Ogino H, Nakano Y, Watanabe K, Kaisho T, Tawada M, Nagisa Y, Takekawa S, Kato K, Suzuki N, Ishihara Y. Melanin-concentrating hormone receptor 1 antagonists: synthesis, structure-activity relationship, docking studies, and biological evaluation of 2,3,4,5-tetrahydro-1H-3-benzazepine derivatives. Bioorg Med Chem 2011; 19:6261-73. [PMID: 21975069 DOI: 10.1016/j.bmc.2011.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 11/20/2022]
Abstract
Melanin-concentrating hormone receptor 1 (MCHR1) antagonists have been studied as potential agents for the treatment of obesity. Initial structure-activity relationship studies of in-house hit compound 1a and subsequent optimization studies resulted in the identification of tetrahydroisoquinoline derivative 23, 1-(2-acetyl-1,2,3,4-tetrahydroisoquinolin-7-yl)-4-[4-(4-chlorophenyl)piperidin-1-yl]butan-1-one, as a potent hMCHR1 antagonist. A homology model of hMCHR1 suggests that these compounds interact with Asn 294 and Asp 123 in the binding site of hMCHR1 to enhance binding affinity. Oral administration of compound 23 dose-dependently reduced food intake in diet-induced obesity (DIO)-F344 rats.
Collapse
Affiliation(s)
- Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Kamata M, Yamashita T, Imaeda T, Tanaka T, Terauchi J, Miyamoto M, Ora T, Tawada M, Endo S, Takekawa S, Asami A, Suzuki N, Nagisa Y, Nakano Y, Watanabe K, Ogino H, Kato K, Kato K, Ishihara Y. Discovery, synthesis, and structure-activity relationship of 6-aminomethyl-7,8-dihydronaphthalenes as human melanin-concentrating hormone receptor 1 antagonists. Bioorg Med Chem 2011; 19:5539-52. [PMID: 21856163 DOI: 10.1016/j.bmc.2011.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
Human melanin-concentrating hormone receptor 1 (hMCHR1) antagonists are promising targets for obesity treatment. We identified the tetrahydronaphthalene derivative 1a with modest binding affinity for hMCHR1 by screening an in-house G protein-coupled receptor (GPCR) ligand library. We synthesized a series of 6-aminomethyl-5,6,7,8-tetrahydronaphthalenes and evaluated their activity as hMCHR1 antagonists. Modification of the biphenylcarbonylamino group revealed that the biphenyl moiety played a crucial role in the interaction of the antagonist with the receptor. The stereoselective effect of the chiral center on binding affinity generated the novel 6-aminomethyl-7,8-dihydronaphthalene scaffold without a chiral center. Optimization of the amino group led to the identification of a potent antagonist 2s (4'-fluoro-N-[6-(1-pyrrolidinylmethyl)-7,8-dihydro-2-naphthalenyl][1,1'-biphenyl]-4-carboxamide), which significantly inhibited the nocturnal food intake in rats after oral administration. Pharmacokinetic analysis confirmed that 2s had good oral bioavailability and brain penetrance. This antagonist appears to be a viable lead compound that can be used to develop a promising therapy for obesity.
Collapse
Affiliation(s)
- Makoto Kamata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi, 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Chung S, Verheij MMM, Hesseling P, van Vugt RWM, Buell M, Belluzzi JD, Geyer MA, Martens GJM, Civelli O. The melanin-concentrating hormone (MCH) system modulates behaviors associated with psychiatric disorders. PLoS One 2011; 6:e19286. [PMID: 21818251 PMCID: PMC3139593 DOI: 10.1371/journal.pone.0019286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/25/2011] [Indexed: 12/02/2022] Open
Abstract
Deficits in sensorimotor gating measured by prepulse inhibition (PPI) of the startle have been known as characteristics of patients with schizophrenia and related neuropsychiatric disorders. PPI disruption is thought to rely on the activity of the mesocorticolimbic dopaminergic system and is inhibited by most antipsychotic drugs. These drugs however act also at the nigrostriatal dopaminergic pathway and exert adverse locomotor responses. Finding a way to inhibit the mesocorticolimbic- without affecting the nigrostriatal-dopaminergic pathway may thus be beneficial to antipsychotic therapies. The melanin-concentrating hormone (MCH) system has been shown to modulate dopamine-related responses. Its receptor (MCH1R) is expressed at high levels in the mesocorticolimbic and not in the nigrostriatal dopaminergic pathways. Interestingly a genomic linkage study revealed significant associations between schizophrenia and markers located in the MCH1R gene locus. We hypothesize that the MCH system can selectively modulate the behavior associated with the mesocorticolimbic dopamine pathway. Using mice, we found that central administration of MCH potentiates apomorphine-induced PPI deficits. Using congenic rat lines that differ in their responses to PPI, we found that the rats that are susceptible to apomorphine (APO-SUS rats) and exhibit PPI deficits display higher MCH mRNA expression in the lateral hypothalamic region and that blocking the MCH system reverses their PPI deficits. On the other hand, in mice and rats, activation or inactivation of the MCH system does not affect stereotyped behaviors, dopamine-related responses that depend on the activity of the nigrostriatal pathway. Furthermore MCH does not affect dizocilpine-induced PPI deficit, a glutamate related response. Thus, our data present the MCH system as a regulator of sensorimotor gating, and provide a new rationale to understand the etiologies of schizophrenia and related psychiatric disorders.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Michel M. M. Verheij
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Peter Hesseling
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Ruben W. M. van Vugt
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Mahalah Buell
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - James D. Belluzzi
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
106
|
Mul JD, la Fleur SE, Toonen PW, Afrasiab-Middelman A, Binnekade R, Schetters D, Verheij MMM, Sears RM, Homberg JR, Schoffelmeer ANM, Adan RAH, DiLeone RJ, De Vries TJ, Cuppen E. Chronic loss of melanin-concentrating hormone affects motivational aspects of feeding in the rat. PLoS One 2011; 6:e19600. [PMID: 21573180 PMCID: PMC3088702 DOI: 10.1371/journal.pone.0019600] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/11/2011] [Indexed: 12/20/2022] Open
Abstract
Current epidemic obesity levels apply great medical and financial pressure to the strenuous economy of obesity-prone cultures, and neuropeptides involved in body weight regulation are regarded as attractive targets for a possible treatment of obesity in humans. The lateral hypothalamus and the nucleus accumbens shell (AcbSh) form a hypothalamic-limbic neuropeptide feeding circuit mediated by Melanin-Concentrating Hormone (MCH). MCH promotes feeding behavior via MCH receptor-1 (MCH1R) in the AcbSh, although this relationship has not been fully characterized. Given the AcbSh mediates reinforcing properties of food, we hypothesized that MCH modulates motivational aspects of feeding. Here we show that chronic loss of the rat MCH-precursor Pmch decreased food intake predominantly via a reduction in meal size during rat development and reduced high-fat food-reinforced operant responding in adult rats. Moreover, acute AcbSh administration of Neuropeptide-GE and Neuropeptide-EI (NEI), both additional neuropeptides derived from Pmch, or chronic intracerebroventricular infusion of NEI, did not affect feeding behavior in adult pmch+/+ or pmch−/− rats. However, acute administration of MCH to the AcbSh of adult pmch−/− rats elevated feeding behavior towards wild type levels. Finally, adult pmch−/− rats showed increased ex vivo electrically evoked dopamine release and increased limbic dopamine transporter levels, indicating that chronic loss of Pmch in the rat affects the limbic dopamine system. Our findings support the MCH-MCH1R system as an amplifier of consummatory behavior, confirming this system as a possible target for the treatment of obesity. We propose that MCH-mediated signaling in the AcbSh positively mediates motivational aspects of feeding behavior. Thereby it provides a crucial signal by which hypothalamic neural circuits control energy balance and guide limbic brain areas to enhance motivational or incentive-related aspects of food consumption.
Collapse
Affiliation(s)
- Joram D. Mul
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susanne E. la Fleur
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim W. Toonen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonieke Afrasiab-Middelman
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Rob Binnekade
- Department of Anatomy and Neurosciences, Center for Neurogenomics and Cognitive Research, Free University Medical Center, Amsterdam, The Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences, Center for Neurogenomics and Cognitive Research, Free University Medical Center, Amsterdam, The Netherlands
| | - Michel M. M. Verheij
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Robert M. Sears
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Anton N. M. Schoffelmeer
- Department of Anatomy and Neurosciences, Center for Neurogenomics and Cognitive Research, Free University Medical Center, Amsterdam, The Netherlands
| | - Roger A. H. Adan
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ralph J. DiLeone
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Taco J. De Vries
- Department of Anatomy and Neurosciences, Center for Neurogenomics and Cognitive Research, Free University Medical Center, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
107
|
Hamamoto A, Mizusawa K, Takahashi A, Saito Y. Signalling pathway of goldfish melanin-concentrating hormone receptors 1 and 2. ACTA ACUST UNITED AC 2011; 169:6-12. [PMID: 21539863 DOI: 10.1016/j.regpep.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Melanin-concentrating hormone (MCH) is the natural ligand for the MCH-1 receptor (MCHR1) and MCH-2 receptor (MCHR2). The MCH-MCHR1 system plays a central role in energy metabolism in rodents. Recently, we identified MCHR1 and MCHR2 orthologues in goldfish, designated gfMCHR1 and gfMCHR2. In a mammalian cell-based assay, calcium mobilization was evoked by gfMCHR2 via both Gαi/o and Gαq, while the gfMCHR1-mediated response was exclusively dependent on Gαq. This coupling capacity to G proteins is in contrast to human MCHR1 and MCHR2. Here, we extended our previous characterization of the two gfMCHRs by examining their different signalling pathway. We found that MCH caused activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) via both gfMCHR1 and gfMCHR2 in dose-dependent manners. Unlike the case for gfMCHR2, gfMCHR1 signalling was not sensitive to pertussis toxin, suggesting Gαq coupling of gfMCHR1 in the ERK1/2 pathway as well as a calcium mobilization system. Cyclic AMP assays revealed that gfMCHR2 was efficiently coupled to Gαi/o, while gfMCHR1 was weakly coupled to Gαs. Finally, we investigated the transduction features stimulated by two mammalian MCH analogues. As expected, Compound 15, which is a full agonist of human MCHR1, was a potent gfMCHR1 agonist in multiple signalling pathways. On the other hand, Compound 30, which is a human MCHR1-selective antagonist with negligible agonist potency, unexpectedly acted as a selective agonist of gfMCHR1. These results are the first to demonstrate that gfMCHR1 and gfMCHR2 have quite different signalling properties from human MCHRs.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | | | | | | |
Collapse
|
108
|
Johansson A. Recent progress in the discovery of melanin-concentrating hormone 1-receptor antagonists. Expert Opin Ther Pat 2011; 21:905-25. [PMID: 21492020 DOI: 10.1517/13543776.2011.575063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The appetite stimulating effects of melanin-concentrating hormone (MCH) continues to be of high interest, and there is substantial support to investigate the use of MCH 1-receptor antagonists for the treatment of obesity. Other areas of potential use for MCH 1-receptor antagonists include depression and anxiety. There are, to date, no clinical proof of concept data, and efforts are ongoing for the discovery of novel MCH 1-receptor antagonists, as evidenced by the number of patent applications published over the last 5 years. AREAS COVERED This review covers the patent literature on MCH 1-receptor antagonists from January 2006 to November 2010. The emphasis is on disclosed biological data, especially in vivo data, of exemplified compounds. Wherever possible, selectivity towards undesired pharmacology is analysed. EXPERT OPINION Over the years, different approaches have been taken to overcome the undesired effects of MCH 1-receptor antagonists, such as interactions with the hERG channel. Many programmes have faced difficulties and, to date, only a few compounds have progressed into humans. From this point of view, the MCH 1-receptor is regarded as a difficult target, and whether newer programmes will be successful depends, to a large extent, on their selectivity.
Collapse
|
109
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
110
|
Lim CJ, Kim N, Lee EK, Lee BH, Oh KS, Yoo SE, Yi KY. Synthesis and SAR investigations of novel 2-arylbenzimidazole derivatives as melanin-concentrating hormone receptor 1 (MCH-R1) antagonists. Bioorg Med Chem Lett 2011; 21:2309-12. [DOI: 10.1016/j.bmcl.2011.02.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/15/2022]
|
111
|
Fox BM, Natero R, Richard K, Connors R, Roveto PM, Beckmann H, Haller K, Golde J, Xiao SH, Kayser F. Novel pyrrolidine melanin-concentrating hormone receptor 1 antagonists with reduced hERG inhibition. Bioorg Med Chem Lett 2011; 21:2460-7. [DOI: 10.1016/j.bmcl.2011.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/05/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
112
|
Helal MA, Chittiboyina AG, Avery MA. New insights into the binding mode of melanin concentrating hormone receptor-1 antagonists: homology modeling and explicit membrane molecular dynamics simulation study. J Chem Inf Model 2011; 51:635-46. [PMID: 21370821 PMCID: PMC3090266 DOI: 10.1021/ci100355c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Melanin concentrating hormone (MCH) is a cyclic 19-amino-acid peptide expressed mainly in the hypothalamus. It is involved in the control of feeding behavior, energy homeostasis, and body weight. Administration of MCH-R1 antagonists has been proved to reduce food intake and cause weight loss in animal models. In the present study, a homology model of the human MCH-R1 was constructed using the crystal structure of bovine rhodopsin (PDB: 1u19) as a template. Based on the observation that MCH-R1 can bind ligands of high chemical diversity, the initial model was subjected to an extensive ligand-supported refinement using antagonists of different chemotypes. The refinement process involved stepwise energy minimizations and molecular dynamics simulations. The refined model was inserted into a pre-equilibrated DPPC/TIP3P membrane system and then simulated for 20 ns in complex with structurally diverse antagonists. This protocol was able to explain the SAR of MCH-R1 antagonists with diverse chemical structures. Moreover, it reveals new insights into the critical recognition sites within the receptor. This work represents the first detailed study of molecular dynamics of MCH-R1 inserted into a membrane-aqueous environment.
Collapse
Affiliation(s)
- Mohamed A. Helal
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677
| | - Amar G. Chittiboyina
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677
- National Center for Natural Products Research; University of Mississippi, University, MS, 38677
| | - Mitchell A. Avery
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677
- National Center for Natural Products Research; University of Mississippi, University, MS, 38677
- Department of Chemistry & Biochemistry, University of Mississippi, University, MS, 38677
| |
Collapse
|
113
|
Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol 2011; 2:14. [PMID: 21516258 PMCID: PMC3080035 DOI: 10.3389/fneur.2011.00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/02/2011] [Indexed: 12/18/2022] Open
Abstract
Neurons containing the neuropeptide melanin-concentrating hormone (MCH) are mainly located in the lateral hypothalamus and the incerto-hypothalamic area, and have widespread projections throughout the brain. While the biological functions of this neuropeptide are exerted in humans through two metabotropic receptors, the MCHR1 and MCHR2, only the MCHR1 is present in rodents. Recently, it has been shown that the MCHergic system is involved in the control of sleep. We can summarize the experimental findings as follows: (1) The areas related to the control of sleep and wakefulness have a high density of MCHergic fibers and receptors. (2) MCHergic neurons are active during sleep, especially during rapid eye movement (REM) sleep. (3) MCH knockout mice have less REM sleep, notably under conditions of negative energy balance. Animals with genetically inactivated MCHR1 also exhibit altered vigilance state architecture and sleep homeostasis. (4) Systemically administered MCHR1 antagonists reduce sleep. (5) Intraventricular microinjection of MCH increases both slow wave sleep (SWS) and REM sleep; however, the increment in REM sleep is more pronounced. (6) Microinjection of MCH into the dorsal raphe nucleus increases REM sleep time. REM seep is inhibited by immunoneutralization of MCH within this nucleus. (7) Microinjection of MCH in the nucleus pontis oralis of the cat enhances REM sleep time and reduces REM sleep latency. All these data strongly suggest that MCH has a potent role in the promotion of sleep. Although both SWS and REM sleep are facilitated by MCH, REM sleep seems to be more sensitive to MCH modulation.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, University of the Republic Montevideo, Uruguay
| | | | | |
Collapse
|
114
|
Mizusawa K, Kobayashi Y, Sunuma T, Asahida T, Saito Y, Takahashi A. Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in barfin flounder, Verasper moseri. Gen Comp Endocrinol 2011; 171:75-81. [PMID: 21185295 DOI: 10.1016/j.ygcen.2010.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/21/2010] [Accepted: 12/16/2010] [Indexed: 01/24/2023]
Abstract
Barfin flounders change their surface color pattern to match their background. We have reported evidence of the association between hormones and body color changes in this fish. First, bolus intraperitoneal injection with melanin-concentrating hormone (MCH) immediately turned the skin color pale, while injection with melanocyte-stimulating hormone (MSH) did not change the skin color. Second, gene expression levels of MCH change in response to background color, while those of MSH do not. We also reported the expression of an MCH receptor gene (Mch-r2) in the skin of this fish. In this study, we aimed to further evaluate the roles of MCH in skin color change. First, long-term adaptation of adult barfin flounder to black or white background colors induced significantly different pigment migration patterns in both melanophores and xanthophores (P<0.05). However, continuous intraperitoneal injection with MCH did not influence chromatophore proliferation. Then, using in vitro experiments, we found that MCH aggregates both melanophores and xanthophores, and inhibits the pigment-dispersing activity of MSH in a similar manner. Finally, we identified transcripts of Mch-r2 in cells isolated from both melanophores and xanthophores. Taken together, the evidence suggests that MCH aggregates pigments via MCH-R2 in concert with the nervous system by overcoming the melanin-dispersing activities of MSH in barfin flounder.
Collapse
Affiliation(s)
- Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | |
Collapse
|
115
|
Zhang Y, Wang Z, Parks GS, Civelli O. Novel neuropeptides as ligands of orphan G protein-coupled receptors. Curr Pharm Des 2011; 17:2626-31. [PMID: 21728976 PMCID: PMC5828022 DOI: 10.2174/138161211797416110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 12/13/2010] [Indexed: 12/18/2022]
Abstract
Neuropeptides control a wide spectrum of physiological functions. They are central to our understanding of brain functions. They exert their actions by interacting with specific G protein-coupled receptors. We however have not found all the neuropeptides that exist in organisms. The search for novel neuropeptides is thus of great interest as it will lead to a better understanding of brain function and disorders. In this review, we will discuss the historical as well as the current approaches to neuropeptide discovery, with a particular emphasis on the orphan GPCR-based strategies. We will also discuss two novel peptides, neuropeptide S and neuromedin S, as examples of the impact of neuropeptide discovery on our understanding of brain functions. Finally, the challenges facing neuropeptide discovery will be discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Zhiwei Wang
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Gregory Scott Parks
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
116
|
Beets I, Lindemans M, Janssen T, Verleyen P. Deorphanizing g protein-coupled receptors by a calcium mobilization assay. Methods Mol Biol 2011; 789:377-391. [PMID: 21922422 DOI: 10.1007/978-1-61779-310-3_25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
G protein-coupled receptors (GPCRs) comprise one of the largest families of transmembrane proteins involved in signal transduction of diverse external stimuli and represent the most successful target class in drug discovery. The availability of genome sequences in the postgenomic era has paved the way for in silico identification of novel GPCR family members based upon sequence similarity. Consequently, newly discovered receptors are by definition orphan GPCRs with no known ligand, and their functional characterization now poses a major challenge. Over the years, advances in understanding of GPCR biology have led to the development of cell-based assay systems that link orphan GPCRs to their activating ligand(s) in high-throughput format (reverse pharmacology). Many of these technologies monitor important steps in the GPCR activation cycle such as the accumulation of secondary messenger molecules (e.g., cAMP, calcium). In this chapter, we present a calcium mobilization assay in mammalian cells to detect changes in intracellular calcium concentration upon receptor activation by the use of a fluorescent probe. This is currently one of the most frequently used assay systems for GPCR deorphanization.
Collapse
Affiliation(s)
- Isabel Beets
- Research Group of Functional Genomics and Proteomics, K.U. Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
117
|
Eberle AN, Mild G, Zumsteg U. Cellular models for the study of the pharmacology and signaling of melanin-concentrating hormone receptors. J Recept Signal Transduct Res 2010; 30:385-402. [PMID: 21083507 DOI: 10.3109/10799893.2010.524223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R(1) is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R(1) or MCH-R(2) genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R(1) expression/signaling in IRM23 cells transfected with the G(q) protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca(2+) and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children's Hospital, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
118
|
Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WHIM. Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (-/-) mice. Behav Brain Res 2010; 218:42-50. [PMID: 21074567 DOI: 10.1016/j.bbr.2010.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Recent studies have explored the implication of melanin-concentrating hormone (MCH) in the process of vigilance states. The current experiments were carried out in mice lacking the MCH(1) receptor (-/-) and wild-type (WT) littermates, to assess the role of MCH(1) receptor in the regulation of sleep architecture, body temperature (BT) and locomotor activity (LMA) under normal condition and following a 1h restraint stress at lights onset. Under baseline conditions, MCH(1) (-/-) mice exhibited consistent changes in waking and sleeping time across the 24-h recording period. We found an increase in the amount of wakefulness (MCH(1) (-/-) 680.1 ± 15.3 min vs. WT, 601.9 ± 18.1, p<0.05) at the expense of total duration of non rapid eye movement (NREM) sleep (MCH(1) (-/-) 664.1 ± 13.9 min vs. WT 750.1 ± 18.5, p<0.05). Additionally, MCH(1) (-/-) mice had a higher mean basal body temperature (MCH(1) (-/-), 36.6 ± 0.1°C vs. WT, 36.0 ± 0.1°C, p<0.05), particularly during the light-resting period. Restraint stress resulted in an immediate increase in wakefulness with a concomitant reduction in NREM sleep and REM sleep in both genotypes, followed by a homeostatic rebound sleep. A concomitant long lasting increase in BT, independently of the behavioural state accompanied those changes in both genotypes. The elevated basal body temperature and reduction in NREM sleep time resulting from shorter NREM episode durations observed in MCH(1) (-/-) suggests that central MCH(1) receptor has a role in thermoregulation and presumably stabilization of NREM sleep.
Collapse
Affiliation(s)
- A Ahnaou
- Janssen Pharmaceutical Companies of Johnson & Johnson, Dept. of Neurosciences, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | | | | | |
Collapse
|
119
|
Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav 2010; 101:428-37. [PMID: 20670637 PMCID: PMC2949500 DOI: 10.1016/j.physbeh.2010.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/27/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
Abstract
The peptide melanin-concentrating hormone (MCH), produced mainly by cells in the lateral hypothalamus (LH), perifornical area (PF) and zona incerta (ZI), is suggested to have a role in the consumption of rewarding substances, such as ethanol, sucrose and palatable food. However, there is limited information on the specific brain sites where MCH acts to stimulate intake of these rewarding substances and on the feedback effects that their consumption has on the expression of endogenous MCH. The current study investigated MCH in relation to ethanol consumption, in Sprague-Dawley rats. In Experiment 1, chronic consumption of ethanol (from 0.70 to 2.7 g/kg/day) dose-dependently reduced MCH gene expression in the LH. In Experiments 2-4, the opposite effect was observed with acute oral ethanol, which stimulated MCH expression specifically in the LH but not the ZI. In Experiment 5, the effect of MCH injection in brain-cannulated rats on ethanol consumption was examined. Compared to saline, MCH injected in the paraventricular nucleus (PVN) and nucleus accumbens (NAc) selectively stimulated ethanol consumption without affecting food or water intake. In contrast, it reduced ethanol intake when administered into the LH, while having no effect in the ZI. These results demonstrate that voluntary, chronic consumption of ethanol leads to local negative feedback control of MCH expression in the LH. However, with a brief exposure, ethanol stimulates MCH-expressing neurons in this region, which through projections to the feeding-related PVN and reward-related NAc can promote further drinking behavior.
Collapse
Affiliation(s)
- I Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Lee C, Parks GS, Civelli O. Anxiolytic effects of the MCH1R antagonist TPI 1361-17. J Mol Neurosci 2010; 43:132-7. [PMID: 20635163 PMCID: PMC3026772 DOI: 10.1007/s12031-010-9425-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/01/2010] [Indexed: 12/31/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts on the MCH1 receptor. MCH1R is expressed widely throughout the brain, particularly in regions thought to be involved in the regulation of stress and emotional response. The role of MCH in anxiety has been controversial, however. Central administration of MCH has been reported to promote or reduce anxiety-like behaviors. The anxiolytic activity of several MCH1R antagonists has also been debated. To address this issue, we have tested whether TPI 1361-17, a highly specific and high affinity MCH1R antagonist, exerts anxiolytic effects in two commonly used models of anxiety, the elevated plus maze and the light-dark transition test. We show that this MCH1R antagonist exerts potent anxiolytic effects in both assays. Our study therefore supports previous studies indicating that MCH1R antagonists may be useful in the treatment of anxiety.
Collapse
Affiliation(s)
- Cheol Lee
- Department of Pharmacology, University of California Irvine, 369 Med Surge II, Irvine, CA 92697 USA
- Department of Anesthesiology and Pain Medicine, College of Medicine, Wonkwang University, Iksan, Korea
| | - Gregory S. Parks
- Department of Pharmacology, University of California Irvine, 369 Med Surge II, Irvine, CA 92697 USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA USA
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, 369 Med Surge II, Irvine, CA 92697 USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA USA
| |
Collapse
|
121
|
Miyamoto-Matsubara M, Chung S, Saito Y. Functional interaction of regulator of G protein signaling-2 with melanin-concentrating hormone receptor 1. Ann N Y Acad Sci 2010; 1200:112-9. [DOI: 10.1111/j.1749-6632.2010.05507.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
122
|
Chung S, Parks GS, Lee C, Civelli O. Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci 2010; 43:115-21. [PMID: 20582487 PMCID: PMC3018593 DOI: 10.1007/s12031-010-9411-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/11/2010] [Indexed: 12/01/2022]
Abstract
Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic peptide which was originally found to lighten skin color in fish that is highly conserved among many species. MCH interacts with two G-protein-coupled receptors, MCH1R and MCH2R, but only MCH1R is expressed in rodents. MCH is mainly synthesized in the lateral hypothalamus and zona incerta, while MCH1R is widely expressed throughout the brain. Thus, MCH signaling is implicated in the regulation of many physiological functions. The identification of MCH1R has led to the development of small-molecule MCH1R antagonists that can block MCH signaling. MCH1R antagonists are useful not only for their potential therapeutic value, but also for understanding the physiological functions of the endogenous MCH system. Here, we review the physiological functions of the MCH system which have been investigated using MCH1R antagonists such as food intake, anxiety, depression, reward, and sleep. This will help us understand the physiological functions of the MCH system and suggest some of the potential applications of MCH1R antagonists in human disorders.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, University of California, 369 Med Surge II, Irvine, CA 92612, USA
| | | | | | | |
Collapse
|
123
|
Lee SH. Aequorin Based Functional Assessment of the Melanin Concentrating Hormone Receptor by Intracellular Calcium Mobilization. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.2.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
124
|
Acute homeostatic responses to increased fat consumption in MCH1R knockout mice. J Mol Neurosci 2010; 42:459-63. [PMID: 20411353 PMCID: PMC2955453 DOI: 10.1007/s12031-010-9358-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/19/2010] [Indexed: 11/05/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide which has been shown to regulate energy homeostasis. Using genetic knockout mice lacking the MCH1 receptor (MCH1R), we investigated how these mice adapt to metabolic changes caused by excessive caloric consumption. We show that the MCH system is one of the players mediating behavioral and metabolic responses upon increased caloric consumption. MCH1R knockout mice showed decreased tendency of food intake upon exposure to a high-fat diet. They also are resistant to gain weight upon high-fat diet by increasing fat metabolism. Therefore, the MCH system is important in regulating metabolic responses upon various environmental stimuli such as high-fat diet.
Collapse
|
125
|
Mul JD, Yi CX, van den Berg SAA, Ruiter M, Toonen PW, van der Elst MCJ, Voshol PJ, Ellenbroek BA, Kalsbeek A, la Fleur SE, Cuppen E. Pmch expression during early development is critical for normal energy homeostasis. Am J Physiol Endocrinol Metab 2010; 298:E477-88. [PMID: 19934402 DOI: 10.1152/ajpendo.00154.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal development and puberty are times of strong physical maturation and require large quantities of energy. The hypothalamic neuropeptide melanin-concentrating hormone (MCH) regulates nutrient intake and energy homeostasis, but the underlying mechanisms are not completely understood. Here we use a novel rat knockout model in which the MCH precursor Pmch has been inactivated to study the effects of loss of MCH on energy regulation in more detail. Pmch(-/-) rats are lean, hypophagic, osteoporotic, and although endocrine parameters were changed in pmch(-/-) rats, endocrine dynamics were normal, indicating an adaptation to new homeostatic levels rather than disturbed metabolic mechanisms. Detailed body weight growth and feeding behavior analysis revealed that Pmch expression is particularly important during early rat development and puberty, i.e., the first 8 postnatal weeks. Loss of Pmch resulted in a 20% lower set point for body weight that was determined solely during this period and remained unchanged during adulthood. Although the final body weight is diet dependent, the Pmch-deficiency effect was similar for all diets tested in this study. Loss of Pmch affected energy expenditure in both young and adult rats, although these effects seem secondary to the observed hypophagia. Our findings show an important role for Pmch in energy homeostasis determination during early development and indicate that the MCH receptor 1 system is a plausible target for childhood obesity treatment, currently a major health issue in first world countries.
Collapse
Affiliation(s)
- Joram D Mul
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010; 1314:15-28. [PMID: 19631614 PMCID: PMC2819550 DOI: 10.1016/j.brainres.2009.07.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/03/2009] [Accepted: 07/11/2009] [Indexed: 11/17/2022]
Abstract
A central problem in the treatment of drug addiction is high rates of relapse to drug use after periods of forced or self-imposed abstinence. This relapse is often provoked by exposure to stress. Stress-induced relapse to drug seeking can be modeled in laboratory animals using a reinstatement procedure. In this procedure, drug-taking behaviors are extinguished and then reinstated by acute exposure to stressors like intermittent unpredictable footshock, restraint, food deprivation, and systemic injections of yohimbine, an alpha-2 adrenoceptor antagonist that induces stress-like responses in humans and nonhumans. For this special issue entitled "The role of neuropeptides in stress and addiction", we review results from studies on the role of corticotropin-releasing factor (CRF) and several other peptides in stress-induced reinstatement of drug seeking in laboratory animals. The results of the studies reviewed indicate that extrahypothalamic CRF plays a critical role in stress-induced reinstatement of drug seeking; this role is largely independent of drug class, experimental procedure, and type of stressor. There is also limited evidence for the role of dynorphins, hypocretins (orexins), nociceptin (orphanin FQ), and leptin in stress-induced reinstatement of drug seeking.
Collapse
Affiliation(s)
- Uri Shalev
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
| | - Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Yavin Shaham
- Behavioral Neuroscience Branch, NIDA/IRP, NIH, Baltimore, MD, USA
| |
Collapse
|
127
|
Banerjee P, Franz B, Bhunia AK. Mammalian cell-based sensor system. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 117:21-55. [PMID: 20091291 DOI: 10.1007/10_2009_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.
Collapse
Affiliation(s)
- Pratik Banerjee
- Laboratory of Food Microbiology & Immunochemistry, Department of Food & Animal Sciences, Alabama A&M University, Normal, AL, 35762, USA
| | | | | |
Collapse
|
128
|
Pissios P. Animals models of MCH function and what they can tell us about its role in energy balance. Peptides 2009; 30:2040-4. [PMID: 19447150 PMCID: PMC2977959 DOI: 10.1016/j.peptides.2009.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/16/2022]
Abstract
Melanin-concentrating hormone (MCH) has attracted considerable attention because of its effects on food intake and body weight and the MCH receptor (MCHR1) remains one of the viable targets for obesity therapy. This review summarizes the literature examining the effects of MCH on body weight, food intake and energy expenditure in rodent models, and the central sites where MCH acts in regulating energy homeostasis. Emphasis is given on the discrepancies between the genetic and pharmacologic models of MCHR1 inactivation. We propose some solutions to resolve these discrepancies and discuss some future directions in MCH research.
Collapse
Affiliation(s)
- Pavlos Pissios
- Beth Israel Deaconess Medical Center, Boston, MA 02446, United States.
| |
Collapse
|
129
|
Chung S, Saito Y, Civelli O. MCH receptors/gene structure-in vivo expression. Peptides 2009; 30:1985-9. [PMID: 19647772 PMCID: PMC2764003 DOI: 10.1016/j.peptides.2009.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 11/17/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide which was originally discovered in fish to lighten skin color by affecting melanosomes aggregation. This peptide is highly conserved and also found in rodents whose gene is overexpressed upon fasting. However, the site of MCH action remained obscure until its receptor was discovered in 1999 as a G protein-coupled receptor. After this receptor structure was identified, the functional domains important for MCH-MCHR interaction were revealed. Moreover, the cloning of the MCH receptor led us to identify the in vivo sites of MCH action which suggested potential physiological functions of the MCH system. Furthermore, the MCH receptor identification allow for designing surrogate molecules which can block MCH activity. Studies using these molecules revealed various physiological functions of the MCH system not only in feeding but also in other physiological responses such as stress and emotion. This review will discuss how the MCH receptor was discovered and its impact on many studies investigating the MCH receptor's structure, signaling pathways, and expression pattern.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Yumiko Saito
- Laboratory for Behavioral Neuroscience, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
130
|
Gao XB. Electrophysiological effects of MCH on neurons in the hypothalamus. Peptides 2009; 30:2025-30. [PMID: 19463877 PMCID: PMC2782585 DOI: 10.1016/j.peptides.2009.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 11/21/2022]
Abstract
Melanin concentrating hormone (MCH) has been implicated in many brain functions and behaviors essential to the survival of animals. The hypothalamus is one of the primary targets where MCH-containing nerve fibers and MCH receptors are extensively expressed and its actions in the brain are exerted. Since the identification of MCH receptors as orphan G protein coupled receptors, the cellular effects of MCH have been revealed in many non-neuronal expression systems (including Xenopus oocytes and cell lines), however, the mechanism by which MCH modulates the activity in the neuronal circuitry of the brain is still under investigation. This review summarizes our current knowledge of electrophysiological effects of MCH on neurons in the hypothalamus, particularly in the lateral hypothalamus. Generally, MCH exerts inhibitory effects on neurons in this structure and may serve as a homeostatic regulator in the lateral hypothalamic area. Given the contrast between the limited data on cellular functions of MCH in the hypothalamus versus a fast growing body of evidence on the vital role of MCH in animal behavior, further investigations of the former are warranted.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of OB/GYN and Reproductive Science, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
131
|
Cotta-Grand N, Rovère C, Guyon A, Cervantes A, Brau F, Nahon JL. Melanin-concentrating hormone induces neurite outgrowth in human neuroblastoma SH-SY5Y cells through p53 and MAPKinase signaling pathways. Peptides 2009; 30:2014-24. [PMID: 19540893 DOI: 10.1016/j.peptides.2009.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 01/08/2023]
Abstract
Melanin-concentrating hormone (MCH) peptide plays a major role in energy homeostasis regulation. Little is known about cellular functions engaged by endogenous MCH receptor (MCH-R1). Here, MCH-R1 mRNA and cognate protein were found expressed in human neuroblastoma SH-SY5Y cells. Electrophysiological experiments demonstrated that MCH modulated K(+) currents, an effect depending upon the time of cellular growth. MCH treatments induced a transient phosphorylation of MAPKinases, abolished by PD98059, and partially blocked by PTX, suggesting a Galphai/Galphao protein contribution. MCH stimulated expression and likely nuclear localization of phosphorylated p53 proteins, an effect fully dependent upon MAPKinase activities. MCH treatment also increased phosphorylation of Elk-1 and up-regulated Egr-1, two transcriptional factors targeted by the MAPKinase pathway. Finally, MCH provoked neurite outgrowth after 24h-treatment of neuroblastoma cells. This effect and transcriptional factors activation were partly prevented by PD98059. Collectively, our results provide the first evidence for a role of MCH in neuronal differentiation of endogenously MCH-R1-expressing cells via non-exclusive MAPKinase and p53 signaling pathways.
Collapse
Affiliation(s)
- Natacha Cotta-Grand
- The Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique and Université Nice-Sophia Antipolis, Valbonne, France
| | | | | | | | | | | |
Collapse
|
132
|
MacNeil DJ, Bednarek MA. MCH receptor peptide agonists and antagonists. Peptides 2009; 30:2008-13. [PMID: 19397944 DOI: 10.1016/j.peptides.2009.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/14/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Melanin-concentrating hormone (MCH) is an important neuropeptide hormone involved in multiple physiological processes. Peptide derivatives of MCH have been developed as tools to aid research including potent radioligands, receptor selective agonists, and potent antagonists. These tools have been used to further understand the role of MCH in physiology, primarily in rodents. However, the tools could also help elucidate the role for MCHR1 and MCHR2 in mediating MCH signaling in higher species.
Collapse
Affiliation(s)
- Douglas J MacNeil
- Department of Metabolic Disorders, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | |
Collapse
|
133
|
Mizusawa K, Saito Y, Wang Z, Kobayashi Y, Matsuda K, Takahashi A. Molecular cloning and expression of two melanin-concentrating hormone receptors in goldfish. Peptides 2009; 30:1990-6. [PMID: 19397943 DOI: 10.1016/j.peptides.2009.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 02/04/2023]
Abstract
Melanin-concentrating hormone (MCH) is a neurohypophysial hormone and induces melanin aggregation in the skin in teleosts. MCH also has multiple roles in the central regulation of food intake in teleosts and mammals. MCH receptors (MCH-R) are among type I G-protein-coupled receptors. Here, we cloned two MCH receptors from goldfish, Carassius auratus. The amino acid sequence of goldfish MCH-R1 had 57-88% homology with fish MCH-R1 and 49-50% homology with mammalian MCH-R1, while the amino acid sequence of goldfish MCH-R2 had 72-92% homology with fish MCH-R2 and 32% homology with human MCH-R2. Phylogenetic analysis showed that these two MCH-Rs are orthologous to the respective mammalian MCH-Rs. The common amino acid residues for ligand binding, signal transduction, and receptor conformation were well conserved in these receptors, although some intracellular basic-amino-acid-rich domains, which have been shown to exist in human MCH-R1 and MCH-R2, were absent in goldfish MCH-R2. When stably expressed in HEK293 cells, both goldfish MCH-R1 and MCH-R2 displayed a strong, dose-dependent, transient elevation of intracellular calcium in response to salmon MCH (EC(50)=0.8nM and 31.8nM, respectively). In contrast to goldfish MCH-R2, goldfish MCH-R1 signaling is not sensitive to pertussis toxin, suggesting an exclusive Galphaq coupling of goldfish MCH-R1 in the mammalian cell-based assay. Reverse transcriptase PCR revealed that both MCH-R1 and MCH-R2 mRNA are distributed in various tissues in goldfish. The various tissues including the brain and skin express both MCH-R1 and MCH-R2. These results suggest that these functional receptors mediate multiple effects of MCH in goldfish.
Collapse
|
134
|
Lakaye B, Coumans B, Harray S, Grisar T. Melanin-concentrating hormone and immune function. Peptides 2009; 30:2076-80. [PMID: 19450627 DOI: 10.1016/j.peptides.2009.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
To date, melanin-concentrating hormone (MCH) has been generally considered as peptide acting almost exclusively in the central nervous system. In the present paper, we revise the experimental evidence, demonstrating that MCH and its receptors are expressed by cells of the immune system and directly influence the response of these cells in some circumstances. This therefore supports the idea that, as with other peptides, MCH could be considered as a modulator of the immune system. Moreover, we suggest that this could have important implications in several immune-mediated disorders and affirm that there is a clear need for further investigation.
Collapse
|
135
|
Adamantidis A, de Lecea L. A role for Melanin-Concentrating Hormone in learning and memory. Peptides 2009; 30:2066-70. [PMID: 19576257 PMCID: PMC4287368 DOI: 10.1016/j.peptides.2009.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/26/2022]
Abstract
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304-5742, USA.
| | | |
Collapse
|
136
|
Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A 2009; 106:17217-22. [PMID: 19805188 DOI: 10.1073/pnas.0908200106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.
Collapse
|
137
|
Nair SG, Adams-Deutsch T, Epstein DH, Shaham Y. The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking. Prog Neurobiol 2009; 89:18-45. [PMID: 19497349 PMCID: PMC2745723 DOI: 10.1016/j.pneurobio.2009.05.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 04/09/2009] [Accepted: 05/26/2009] [Indexed: 12/15/2022]
Abstract
Relapse to old, unhealthy eating habits is a major problem in human dietary treatments. The mechanisms underlying this relapse are unknown. Surprisingly, until recently this clinical problem has not been systematically studied in animal models. Here, we review results from recent studies in which a reinstatement model (commonly used to study relapse to abused drugs) was employed to characterize the effect of pharmacological agents on relapse to food seeking induced by either food priming (non-contingent exposure to small amounts of food), cues previously associated with food, or injections of the pharmacological stressor yohimbine. We also address methodological issues related to the use of the reinstatement model to study relapse to food seeking, similarities and differences in mechanisms underlying reinstatement of food seeking versus drug seeking, and the degree to which the reinstatement procedure provides a suitable model for studying relapse in humans. We conclude by discussing implications for medication development and future research. We offer three tentative conclusions: (1)The neuronal mechanisms of food-priming- and cue-induced reinstatement are likely different from those of reinstatement induced by the pharmacological stressor yohimbine. (2)The neuronal mechanisms of reinstatement of food seeking are possibly different from those of ongoing food-reinforced operant responding. (3)The neuronal mechanisms underlying reinstatement of food seeking overlap to some degree with those of reinstatement of drug seeking.
Collapse
Affiliation(s)
- Sunila G. Nair
- Behavioral Neuroscience Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| | - Tristan Adams-Deutsch
- Behavioral Neuroscience Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| | - David H. Epstein
- Clinical Pharmacology and Therapeutics Research Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| |
Collapse
|
138
|
Suzuki T, Kameda M, Ando M, Miyazoe H, Sekino E, Ito S, Masutani K, Kamijo K, Takezawa A, Moriya M, Ito M, Ito J, Nakase K, Matsushita H, Ishihara A, Takenaga N, Tokita S, Kanatani A, Sato N, Fukami T. Discovery of novel diarylketoxime derivatives as selective and orally active melanin-concentrating hormone 1 receptor antagonists. Bioorg Med Chem Lett 2009; 19:5339-45. [PMID: 19683441 DOI: 10.1016/j.bmcl.2009.07.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 12/11/2022]
Abstract
Optimization of the lead 2a led to the identification of a novel diarylketoxime class of melanin-concentrating hormone 1 receptor (MCH-1R) antagonists. Our focus was directed toward improvement of hERG activity and metabolic stability. The representative derivative 4b showed potent and dose-dependent body weight reduction in diet-induced obese (DIO) C57BL/6J mice after oral administration. The synthesis and structure-activity relationships of the novel diarylketoxime MCH-1R antagonists are described.
Collapse
Affiliation(s)
- Takao Suzuki
- Department of Medicinal Chemistry, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Able SL, Ivarsson M, Fish RL, Clarke TL, McCourt C, Duckworth JM, Napier C, Katugampola SD. Localisation of melanin-concentrating hormone receptor 1 in rat brain and evidence that sleep parameters are not altered despite high central receptor occupancy. Eur J Pharmacol 2009; 616:101-6. [DOI: 10.1016/j.ejphar.2009.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/26/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
|
140
|
Ando M, Sekino E, Haga Y, Moriya M, Ito M, Ito J, Iwaasa H, Ishihara A, Kanatani A, Ohtake N. Discovery of novel phenethylpyridone derivatives as potent melanin-concentrating hormone 1 receptor antagonists. Bioorg Med Chem Lett 2009; 19:5186-90. [PMID: 19632840 DOI: 10.1016/j.bmcl.2009.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 11/16/2022]
Abstract
Novel phenethylpyridone derivatives were identified as potent human melanin-concentrating hormone 1 receptor (MCH-1R) antagonists. A search for surrogates for the 4-(2-aminoethoxy)phenyl moiety of 1 resulted in discovery of 2-[4-(aminomethyl)phenyl]ethyl substructure as in 6a. Successive optimization of the right-hand moiety led to the identification of a number of potent derivatives.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Medicinal Chemistry, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co. Ltd, Okubo-3, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Nair SG, Adams-Deutsch T, Pickens CL, Smith DG, Shaham Y. Effects of the MCH1 receptor antagonist SNAP 94847 on high-fat food-reinforced operant responding and reinstatement of food seeking in rats. Psychopharmacology (Berl) 2009; 205:129-40. [PMID: 19340414 PMCID: PMC3143407 DOI: 10.1007/s00213-009-1523-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE AND OBJECTIVES The melanin-concentrating hormone 1 (MCH1) receptors play an important role in home-cage food consumption in rodents, but their role in operant high-fat food-reinforced responding or reinstatement of food seeking in animal models is unknown. Here, we used the MCH1 receptor antagonist SNAP 94847 to explore these questions. MATERIALS AND METHODS In experiment 1, we trained food-restricted rats (16 g/day of nutritionally balanced rodent diet) to lever press for high-fat (35%) pellets (3-h/day, every other day) for 14 sessions. We then tested the effect of SNAP 94847 (3-30 mg/kg, intraperitoneal (i.p.)) on food-reinforced operant responding. In experiments 2 and 3, we trained rats to lever press for the food pellets (9 to 14 3-h sessions) and subsequently extinguished the food-reinforced lever responding by removing the food (10 to 17 sessions). We then tested the effect of SNAP 94847 on reinstatement of food seeking induced by MCH (20 microg, intracerebroventricular), noncontingent delivery of three pellets during the first minute of the test session (pellet-priming), contingent tone-light cues previously associated with pellet delivery (cue), or the pharmacological stressor yohimbine (2 mg/kg, i.p.). RESULTS Systemic injections of SNAP 94847 decreased food-reinforced operant responding and MCH-induced reinstatement of food seeking. SNAP 94847 had no effect on pellet-priming-, cue-, or yohimbine-induced reinstatement. CONCLUSIONS Results indicate that MCH1 receptors are involved in food-reinforced operant responding but not in reinstatement induced by acute exposure to high-fat food, food cues, or the stress-like state induced by yohimbine. These results suggest that different mechanisms mediate food-reinforced operant responding and reinstatement of food seeking.
Collapse
Affiliation(s)
- Sunila G Nair
- Behavioral Neuroscience Branch, NIDA/IRP/NIH/DHHS, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
142
|
Moriya M, Kishino H, Sakuraba S, Sakamoto T, Suga T, Takahashi H, Suzuki T, Ito M, Ito J, Moriya R, Takenaga N, Iwaasa H, Ishihara A, Kanatani A, Fukami T. Identification of 2-aminobenzimidazoles as potent melanin-concentrating hormone 1-receptor (MCH1R) antagonists. Bioorg Med Chem Lett 2009; 19:3568-72. [DOI: 10.1016/j.bmcl.2009.04.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/27/2009] [Accepted: 04/29/2009] [Indexed: 11/30/2022]
|
143
|
Suzuki T, Moriya M, Sakamoto T, Suga T, Kishino H, Takahashi H, Ishikawa M, Nagai K, Imai Y, Sekino E, Ito M, Iwaasa H, Ishihara A, Tokita S, Kanatani A, Sato N, Fukami T. Discovery of novel spiro-piperidine derivatives as highly potent and selective melanin-concentrating hormone 1 receptor antagonists. Bioorg Med Chem Lett 2009; 19:3072-7. [DOI: 10.1016/j.bmcl.2009.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 11/25/2022]
|
144
|
Aizaki Y, Maruyama K, Nakano-Tetsuka M, Saito Y. Distinct roles of the DRY motif in rat melanin-concentrating hormone receptor 1 in signaling control. Peptides 2009; 30:974-81. [PMID: 19428776 DOI: 10.1016/j.peptides.2009.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 01/17/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Rhodopsin family (class A) G protein-coupled receptors possess common key residues or motifs that appear to be important for receptor function. To clarify the roles of the highly conserved amino acid triplet Asp(3.49)-Arg(3.50)-Tyr(3.51) (DRY motif), we examined how single-substitution mutations of the amino acids in the motif influenced specific features of rat melanin-concentrating hormone receptor 1 (MCH1R) activity. Substitution of either Asp140(3.49) or Tyr142(3.51) to Ala resulted in nonfunctional receptors, despite the retention of apparent potencies for agonist binding. These loss-of-function phenotypes may be caused by the lack of stimulation for GDP-GTP exchange observed in GTPgammaS-binding assays. On the other hand, substitution of Arg141(3.50) to Ala caused a 4-fold reduction in the agonist binding affinity and, concomitantly, a rightward shift of the dose-dependency curve for calcium mobilization and inhibition of cyclic AMP production. Although many experimental studies have suggested that the DRY motif is involved in maintaining the receptor in its ground state, none of the DRY motif substitutions to Ala in MCH1R led to constitutive activation, in terms of the basal signaling level for ERK1/2 activation or GTPgammaS binding. These data suggest that the major contribution of the DRY motif in MCH1R is to govern receptor conformation and G protein coupling/recognition.
Collapse
Affiliation(s)
- Yoshimi Aizaki
- Department of Pharmacology, Saitama Medical School of Medicine, Iruma-gun, Saitama, Japan
| | | | | | | |
Collapse
|
145
|
Identification and characterization of a selective radioligand for melanin-concentrating hormone 1-receptor (MCH1R). Bioorg Med Chem Lett 2009; 19:2835-9. [DOI: 10.1016/j.bmcl.2009.03.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/18/2009] [Accepted: 03/21/2009] [Indexed: 11/17/2022]
|
146
|
Abstract
Drug addiction is mediated by complex neuronal processes that converge on the shell of the nucleus accumbens (NAcSh). The NAcSh receives inputs from the lateral hypothalamus (LH), where self-stimulation can be induced. Melanin-concentrating hormone (MCH) is produced mainly in the LH, and its receptor (MCH1R) is highly expressed in the NAcSh. We found that, in the NAcSh, MCH1R is coexpressed with dopamine receptors (D1R and D2R), and that MCH increases spike firing when both D1R and D2R are activated. Also, injecting MCH potentiates cocaine-induced hyperactivity in mice. Mice lacking MCH1R exhibit decreased cocaine-induced conditioned place preference, as well as cocaine sensitization. Using a specific MCH1R antagonist, we further show that acute blockade of the MCH system not only reduces cocaine self-administration, but also attenuates cue- and cocaine-induced reinstatement. Thus, the MCH system has an important modulatory role in cocaine reward and reinforcement by potentiating the dopaminergic system in the NAcSh, which may provide a new rationale for treating cocaine addiction.
Collapse
|
147
|
Oyarzabal J, Howe T, Alcazar J, Andrés JI, Alvarez RM, Dautzenberg F, Iturrino L, Martínez S, Van der Linden I. Novel Approach for Chemotype Hopping Based on Annotated Databases of Chemically Feasible Fragments and a Prospective Case Study: New Melanin Concentrating Hormone Antagonists. J Med Chem 2009; 52:2076-89. [DOI: 10.1021/jm8016199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julen Oyarzabal
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Trevor Howe
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jesús Alcazar
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jose Ignacio Andrés
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Rosa M. Alvarez
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frank Dautzenberg
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Laura Iturrino
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sonia Martínez
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ilse Van der Linden
- Departments of Molecular Informatics and Medicinal Chemistry, Johnson & Johnson Pharmaceutical R&D, Jarama 75, 45007 Toledo, Spain, and Department of Molecular Informatics and CNS Biology Department, Johnson & Johnson Pharmaceutical R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
148
|
Smith DG, Hegde LG, Wolinsky TD, Miller S, Papp M, Ping X, Edwards T, Gerald CP, Craig DA. The effects of stressful stimuli and hypothalamic–pituitary–adrenal axis activation are reversed by the melanin-concentrating hormone 1 receptor antagonist SNAP 94847 in rodents. Behav Brain Res 2009; 197:284-91. [DOI: 10.1016/j.bbr.2008.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
|
149
|
The melanin-concentrating hormone1 receptor antagonists, SNAP-7941 and GW3430, enhance social recognition and dialysate levels of acetylcholine in the frontal cortex of rats. Int J Neuropsychopharmacol 2008; 11:1105-22. [PMID: 18466669 DOI: 10.1017/s1461145708008894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Melanin-concentrating hormone (MCH)1 receptors are widely expressed in limbic structures and cortex. Their inactivation is associated with anxiolytic and antidepressive properties but little information is available concerning cognition. This issue was addressed using the selective antagonists, SNAP-7941 and GW3430, in a social recognition paradigm in rats. The muscarinic blocker, scopolamine (1.25 mg/kg s.c.), reduced social recognition, an action dose-dependently blocked by SNAP-7941 and GW3430 (0.63-10.0 and 20.0-80.0 mg/kg i.p., respectively) which did not themselves display amnesic properties. Further, in a protocol where a spontaneous deficit was induced by a prolonged inter-session delay, SNAP-7941 and GW3430 dose-dependently enhanced social recognition. In dialysis studies, SNAP-7941 (0.63-40.0 mg/kg i.p.) and GW3430 (10.0-40.0 mg/kg i.p.) elevated extracellular levels of acetylcholine (ACh) in the frontal cortex (FCX) of freely moving rats. The SNAP-7941 effect was specific, as it did not increase levels of ACh in ventral and dorsal hippocampus: moreover, it did not modify levels of noradrenaline, dopamine, serotonin and glutamate in FCX. Active doses of SNAP-7941 and GW3430 corresponded to doses (2.5-40.0 and 10.0-80.0 mg/kg i.p., respectively) exerting anxiolytic properties in Vogel conflict and ultrasonic vocalization tests, and antidepressant actions in forced swim, isolation-induced aggression and marble-burying procedures. In contrast to SNAP-7941 and GW3430, the benzodiazepine, diazepam, decreased social recognition and dialysate levels of ACh, while the tricyclic, imipramine, reduced social recognition and failed to enhance cholinergic transmission. In conclusion, at anxiolytic and antidepressant doses, SNAP-7941 and GW3430 improve social recognition and elevate extracellular ACh levels in FCX. This profile differentiates MCH1 receptor antagonists from conventional anxiolytic and antidepressant agents.
Collapse
|
150
|
Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods 2008; 46:143-51. [PMID: 18929663 PMCID: PMC2666335 DOI: 10.1016/j.ymeth.2008.09.025] [Citation(s) in RCA: 418] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/12/2008] [Indexed: 11/24/2022] Open
Abstract
Our understanding of the underlying mechanisms of Ca2+ signaling as well as our appreciation for its ubiquitous role in cellular processes has been rapidly advanced, in large part, due to the development of fluorescent Ca2+ indicators. In this chapter, we discuss some of the most common chemical Ca2+ indicators that are widely used for the investigation of intracellular Ca2+ signaling. Advantages, limitations and relevant procedures will be presented for each dye including their spectral qualities, dissociation constants, chemical forms, loading methods and equipment for optimal imaging. Chemical indicators now available allow for intracellular Ca2+ detection over a very large range (<50 nM to >50 microM). High affinity indicators can be used to quantify Ca2+ levels in the cytosol while lower affinity indicators can be optimized for measuring Ca2+ in subcellular compartments with higher concentrations. Indicators can be classified into either single wavelength or ratiometric dyes. Both classes require specific lasers, filters, and/or detection methods that are dependent upon their spectral properties and both classes have advantages and limitations. Single wavelength indicators are generally very bright and optimal for Ca2+ detection when more than one fluorophore is being imaged. Ratiometric indicators can be calibrated very precisely and they minimize the most common problems associated with chemical Ca2+ indicators including uneven dye loading, leakage, photobleaching, and changes in cell volume. Recent technical advances that permit in vivo Ca2+ measurements will also be discussed.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|