101
|
Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol 2018; 175:3859-3875. [PMID: 30097997 PMCID: PMC6151331 DOI: 10.1111/bph.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
While cytokines such as TNF have long been recognized as essential to normal cerebral physiology, the implications of their chronic excessive production within the brain are now also increasingly appreciated. Syndromes as diverse as malaria and lead poisoning, as well as non‐infectious neurodegenerative diseases, illustrate this. These cytokines also orchestrate changes in tau, α‐synuclein, amyloid‐β levels and degree of insulin resistance in most neurodegenerative states. New data on the effects of salbutamol, an indirect anti‐TNF agent, on α‐synuclein and Parkinson's disease, APOE4 and tau add considerably to the rationale of the anti‐TNF approach to understanding, and treating, these diseases. Therapeutic advances being tested, and arguably useful for a number of the neurodegenerative diseases, include a reduction of excess cerebral TNF, whether directly, with a specific anti‐TNF biological agent such as etanercept via Batson's plexus, or indirectly via surgically implanting stem cells. Inhaled salbutamol also warrants investigating further across the neurodegenerative disease spectrum. It is now timely to integrate this range of new information across the neurodegenerative disease spectrum, rather than keep seeing it through the lens of individual disease states.
Collapse
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
102
|
Chakrabarty P, Li A, Ladd TB, Strickland MR, Koller EJ, Burgess JD, Funk CC, Cruz PE, Allen M, Yaroshenko M, Wang X, Younkin C, Reddy J, Lohrer B, Mehrke L, Moore BD, Liu X, Ceballos-Diaz C, Rosario AM, Medway C, Janus C, Li HD, Dickson DW, Giasson BI, Price ND, Younkin SG, Ertekin-Taner N, Golde TE. TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer's disease. J Exp Med 2018; 215:2247-2264. [PMID: 30158114 PMCID: PMC6122970 DOI: 10.1084/jem.20180484] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
There is considerable interest in harnessing innate immunity to treat Alzheimer's disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid β (Aβ) accumulation in a mouse model of Alzheimer-type Aβ pathology. sTLR5Fc binds to oligomeric and fibrillar Aβ with high affinity, forms complexes with Aβ, and blocks Aβ toxicity. Oligomeric and fibrillar Aβ modulates flagellin-mediated activation of human TLR5 but does not, by itself, activate TLR5 signaling. Genetic analysis shows that rare protein coding variants in human TLR5 may be associated with a reduced risk of AD. Further, transcriptome analysis shows altered TLR gene expression in human AD. Collectively, our data suggest that TLR5 decoy receptor-based biologics represent a novel and safe Aβ-selective class of biotherapy in AD.
Collapse
Affiliation(s)
- Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Andrew Li
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Thomas B Ladd
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Michael R Strickland
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Emily J Koller
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | | | | | - Pedro E Cruz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Mariya Yaroshenko
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Curtis Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Joseph Reddy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Leonie Mehrke
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Brenda D Moore
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Xuefei Liu
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Awilda M Rosario
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | | | - Christopher Janus
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | | | | | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | | | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
- Department of Neurology, Mayo Clinic, Jacksonville, FL
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| |
Collapse
|
103
|
Reduction of amyloid beta by Aβ3-10-KLH vaccine also decreases tau pathology in 3×Tg-AD mice. Brain Res Bull 2018; 142:233-240. [DOI: 10.1016/j.brainresbull.2018.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
|
104
|
Feng G, Zheng C, Hui J. Early Aβ-HBc virus-like particles immunization had better effects on preventing the deficit of learning and memory abilities and reducing cerebral Aβ load in PDAPP mice. Vaccine 2018; 36:5258-5264. [PMID: 30055971 DOI: 10.1016/j.vaccine.2018.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 01/04/2023]
Abstract
For nearly two decades, immunization against the β-amyloid peptide (Aβ) has been investigated as a potential treatment for Alzheimer's disease (AD). Despite some disappointing results in clinic trials, greater significance has been attached by some researchers to exploring the immune effects on pathological and cognitive changes in AD or producing new vaccines of AD. In the previous study, we have made a virus-like particles (Aβ-HBc VLPs) as Aβ vaccine candidate. Aβ-HBc VLPs could ameliorate the learning and memory abilities and reduce cerebral Aβ deposit in the old PDAPP mice. In the present study, to observe the preventive effect and the proper time of immunization, 3, 6 and 9-month old PDAPP mice were immunized with Aβ-HBc VLPs for 3 months. All mice generated high titer of anti-Aβ antibody after Aβ-HBc VLPs immunizations. When the mice were 15-month old, Morris Water Maze was used to test their learning and memory abilities. The escape latencies of Aβ-HBc VLPs immunized mice were shorter than that of control mice. These immunized mice entered platform region frequently and spent more time on the platform region and quadrant. 3 m and 6 m Aβ-HBc VLPs immunized groups performed better than the 9 m group. In immunohistochemistry tests, all the Aβ-HBc VLPs immunized mice had less amyloid deposit in cortex and hippocampus. ELISA results showed that soluble Aβ was reduced in the brain homogenates of the Aβ-HBc VLPs immunized mice, and 3- and 6-month groups had less soluble Aβ than the 9-month group. In conclusion, our study showed that Aβ-HBc VLPs immunization could elicit a strong immune response in adult APP mice, and early immunization had better effects on preventing learning and memory deficits, lowering Aβ burden in PDAPP mice.
Collapse
Affiliation(s)
- Gaifeng Feng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76# West Yanta Road, Xi'an, Shaanxi 710061, China.
| | - Caifeng Zheng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Emergency Surgery, Ankang City Central Hospital, 85# Jinzhou Street, Ankang, Shaanxi 725000, China
| | - Jianjun Hui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Emergency Surgery, Ankang City Central Hospital, 85# Jinzhou Street, Ankang, Shaanxi 725000, China
| |
Collapse
|
105
|
Ameen-Ali KE, Wharton SB, Simpson JE, Heath PR, Sharp P, Berwick J. Review: Neuropathology and behavioural features of transgenic murine models of Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 43:553-570. [PMID: 28880417 DOI: 10.1111/nan.12440] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
Our understanding of the underlying biology of Alzheimer's disease (AD) has been steadily progressing; however, this is yet to translate into a successful treatment in humans. The use of transgenic mouse models has helped to develop our understanding of AD, not only in terms of disease pathology, but also with the associated cognitive impairments typical of AD. Plaques and neurofibrillary tangles are often among the last pathological changes in AD mouse models, after neuronal loss and gliosis. There is a general consensus that successful treatments need to be applied before the onset of these pathologies and associated cognitive symptoms. This review discusses the different types of AD mouse models in terms of the temporal progression of the disease, how well they replicate the pathological changes seen in human AD and their cognitive defects. We provide a critical assessment of the behavioural tests used with AD mice to assess cognitive changes and decline, and discuss how successfully they correlate with cognitive impairments in humans with AD. This information is an important tool for AD researchers when deciding on appropriate mouse models, and when selecting measures to assess behavioural and cognitive change.
Collapse
Affiliation(s)
- K E Ameen-Ali
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - S B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P Sharp
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - J Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
106
|
Watts JC, Prusiner SB. β-Amyloid Prions and the Pathobiology of Alzheimer's Disease. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a023507. [PMID: 28193770 DOI: 10.1101/cshperspect.a023507] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in humans and will pose a considerable challenge to healthcare systems in the coming years. Aggregation of the β-amyloid (Aβ) peptide within the brain is thought to be an initiating event in AD pathogenesis. Many recent studies in transgenic mice have provided evidence that Aβ aggregates become self-propagating during disease, leading to a cascade of protein aggregation in the brain, which may underlie the progressive nature of AD. The ability to self-propagate and the existence of distinct "strains" reveals that Aβ aggregates exhibit many properties indistinguishable from those of prions composed of PrPSc proteins. Here, we review the evidence that Aβ can become a prion during disease and discuss how Aβ prions may be important for understanding the pathobiology of AD.
Collapse
Affiliation(s)
- Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Departments of Neurology and of Biochemistry and Biophysics, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
107
|
Yoshikawa M, Soeda Y, Michikawa M, Almeida OFX, Takashima A. Tau Depletion in APP Transgenic Mice Attenuates Task-Related Hyperactivation of the Hippocampus and Differentially Influences Locomotor Activity and Spatial Memory. Front Neurosci 2018; 12:124. [PMID: 29545742 PMCID: PMC5838015 DOI: 10.3389/fnins.2018.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/13/2023] Open
Abstract
Hippocampal hyperactivity, ascribed to amyloid β (Aβ)-induced imbalances in neural excitation and inhibition, is found in patients with mild cognitive impairment, a prodromal stage of Alzheimer's disease (AD). To better understand the relationship between hippocampal hyperactivity and the molecular triggers of behavioral impairments in AD, we used Mn-enhanced MRI (MEMRI) to assess neuronal activity after subjecting mice to a task requiring spatial learning and memory. Depletion of endogenous tau in an amyloid precursor protein (APP) transgenic (J20) mouse line was shown to ameliorate hippocampal hyperactivity in J20 animals, tau depletion failed to reverse memory deficits associated with APP/Aβ overproduction. On the other hand, deletion of tau alleviated the hyperlocomotion displayed by APP transgenics, suggesting that the functional effects of Aβ-tau interactions reflect the temporal appearance of these molecules in individual brain areas.
Collapse
Affiliation(s)
- Misato Yoshikawa
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Pharmacology, Shujitsu University, Okayama, Japan
| | - Yoshiyuki Soeda
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan.,Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Makoto Michikawa
- Department of Biochemistry, School of Medicine, Nagoya City University, Nagoya, Japan
| | - Osborne F X Almeida
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Akihiko Takashima
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Japan.,Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
108
|
Bittar A, Sengupta U, Kayed R. Prospects for strain-specific immunotherapy in Alzheimer's disease and tauopathies. NPJ Vaccines 2018; 3:9. [PMID: 29507776 PMCID: PMC5829136 DOI: 10.1038/s41541-018-0046-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
With increasing age, as the incidence of Alzheimer's disease is increasing, finding a therapeutic intervention is becoming critically important to either prevent or slow down the progression of the disease. Passive immunotherapy has been demonstrated as a successful way of reducing large aggregates and improving cognition in animal models of both tauopathies and Alzheimer's disease. However, with all the continuous attempts and significant success of immunotherapy in preclinical studies, finding a successful clinical therapy has been a great challenge, possibly indicating a lack of accuracy in targeting the toxic species. Both active and passive immunotherapy approaches in transgenic animals have been demonstrated to have pros and cons. Passive immunotherapy has been favored and many mechanisms have been shown to clear toxic amyloid and tau aggregates and improve memory. These mechanisms may differ depending on the antibodie's' target and administration route. In this regard, deciding on affinity vs. specificity of the antibodies plays a significant role in terms of avoiding the clearance of the physiological forms of the targeted proteins and reducing adverse side effects. In addition, knowing that a single protein can exist in different conformational states, termed as strains, with varying degrees of neurotoxicity and seeding properties, presents an additional level of complexity. Therefore, immunotherapy targeting specifically the toxic strains will aid in developing potential strategies for intervention. Moreover, an approach of combinatorial immunotherapies against different amyloidogenic proteins, at distinct levels of the disease progression, might offer an effective therapy in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
109
|
Blockx I, Einstein S, Guns PJ, Van Audekerke J, Guglielmetti C, Zago W, Roose D, Verhoye M, Van der Linden A, Bard F. Monitoring Blood-Brain Barrier Integrity Following Amyloid-β Immunotherapy Using Gadolinium-Enhanced MRI in a PDAPP Mouse Model. J Alzheimers Dis 2018; 54:723-35. [PMID: 27567811 DOI: 10.3233/jad-160023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Amyloid-related imaging abnormalities (ARIA) have been reported with some anti-amyloid-β (Aβ) immunotherapy trials. They are detected with magnetic resonance imaging (MRI) and thought to represent transient accumulation of fluid/edema (ARIA-E) or microhemorrhages (ARIA-H). Although the clinical significance and pathophysiology are unknown, it has been proposed that anti-Aβimmunotherapy may affect blood-brain barrier (BBB) integrity. OBJECTIVE To examine vascular integrity in aged (12-16 months) PDAPP and wild type mice (WT), we performed a series of longitudinal in vivo MRI studies. METHODS Mice were treated on a weekly basis using anti-Aβimmunotherapy (3D6) and follow up was done longitudinally from 1-12 weeks after treatment. BBB-integrity was assessed using both visual assessment of T1-weighted scans and repeated T1 mapping in combination with gadolinium (Gd-DOTA). RESULTS A subset of 3D6 treated PDAPP mice displayed numerous BBB disruptions, whereas WT and saline-treated PDAPP mice showed intact BBB integrity under the conditions tested. In addition, the contrast induced decrease in T1 value was observed in the meningeal and midline area. BBB disruption events occurred early during treatment (between 1 and 5 weeks), were transient, and resolved quickly. Finally, BBB-leakages associated with microhemorrhages were confirmed by Perls'Prussian blue histopathological analysis. CONCLUSION Our preclinical findings support the hypothesis that 3D6 leads to transient leakage from amyloid-positive vessels. The current study has provided valuable insights on the time course of vascular alterations during immunization treatment and supports further research in relation to the nature of ARIA and the utility of in vivo repeated T1 MRI as a translational tool.
Collapse
Affiliation(s)
- Ines Blockx
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Pieter-Jan Guns
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.,Expert Group Antwerp Molecular Imaging (EGAMI), University of Antwerp, Antwerp, Belgium
| | | | | | - Wagner Zago
- Prothena Biosciences Inc, South San Francisco, CA, USA
| | - Dimitri Roose
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | | | - Frederique Bard
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| |
Collapse
|
110
|
Fessel J. Amyloid is essential but insufficient for Alzheimer causation: addition of subcellular cofactors is required for dementia. Int J Geriatr Psychiatry 2018; 33:e14-e21. [PMID: 28509380 DOI: 10.1002/gps.4730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/03/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study is to examine the hypotheses stating the importance of amyloid or of its oligomers in the pathogenesis of Alzheimer's disease (AD). METHODS Published studies were examined. RESULTS The importance of amyloid in the pathogenesis of AD is well established, yet accepting it as the main cause for AD is problematic, because amyloid-centric treatments have provided no clinical benefit and about one-third of cognitively normal, older persons have cerebral amyloid plaques. Also problematic is the alternative hypothesis that, instead of amyloid plaques, it is oligomers of amyloid precursor protein that cause AD.Evidence is presented suggesting amyloid/oligomers as necessary but insufficient causes of the dementia and that, for dementia to develop, requires the addition of cofactors known to be associated with AD. Those cofactors include several subcellular processes: mitochondrial impairments; the Wnt signaling system; the unfolded protein response; the ubiquitin proteasome system; the Notch signaling system; and tau, calcium, and oxidative damage. CONCLUSIONS A modified amyloid/oligomer hypothesis for the pathogenesis of AD is that activation of one or more of the aforementioned cofactors creates a burden of functional impairments that, in conjunction with amyloid/oligomers, now crosses a threshold of dysfunction that results in clinical dementia. Of considerable importance, several treatments that might reverse the activation of some of the subcellular processes are available, for example, lithium, pioglitazone, erythropoietin, and prazosin; they should be given in combination in a clinical trial to test their safety and efficacy. © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Trials Unit, Kaiser Permanente, San Francisco, CA, USA
| |
Collapse
|
111
|
Song GL, Chen C, Wu QY, Zhang ZH, Zheng R, Chen Y, Jia SZ, Ni JZ. Selenium-enriched yeast inhibited β-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer's disease. Metallomics 2018; 10:1107-1115. [DOI: 10.1039/c8mt00041g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Se-yeast reduced the burden of Aβ accumulation by both decreased the generation and inhibited the initiation of autophagy pathway, enhanced autophagic clearance of Aβ in the brains of AD mice.
Collapse
Affiliation(s)
- Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Qiu-Yan Wu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Rui Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Yao Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| |
Collapse
|
112
|
Neuroinflammatory responses in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:771-779. [PMID: 29273951 DOI: 10.1007/s00702-017-1831-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 12/21/2022]
Abstract
Neuroinflammatory responses in Alzheimer's disease (AD) are complex and not fully understood. They involve various cellular and molecular players and associate interaction between the central nervous system (CNS) and the periphery. Amyloid peptides within the senile plaques and abnormally phosphorylated tau in neurofibrillary tangles are able to initiate inflammatory responses, in brain of AD patients and in mouse models of this disease. The outcome of these responses on the pathophysiology of AD depends on several factors and can be either beneficial or detrimental. Thus, understanding the role of neuroinflammation in AD could help to develop safer and more efficient therapeutic strategies. This review discusses recent knowledge on microglia responses toward amyloid and tau pathology in AD, focusing on the role of Toll-like receptors and NOD-like receptor protein 3 (NLRP3) inflammasome activation in microglial cells.
Collapse
|
113
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
114
|
Martins YA, Tsuchida CJ, Antoniassi P, Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer's Disease in Animal Models: A Systematic Review from Literature. J Alzheimers Dis Rep 2017; 1:195-217. [PMID: 30480238 PMCID: PMC6159633 DOI: 10.3233/adr-170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that does not have a proven cure; however, one of the most promising strategies for its treatment has been DNA vaccines. OBJECTIVE The present review is aimed to report the new developments of the efficacy and safety of DNA vaccines for AD in animal models. METHOD The method PRISMA was used for this review. The article search was made in the electronic databases PubMed, LILACS, and Scopus using the descriptors ''Alzheimer disease" and ''Vaccine, DNA". Articles published between January 2001 and September 2017 in English, Portuguese, and Spanish were included. RESULTS Upon the consensus, the researchers identified 28 original articles. The studies showed satisfying results as for the decrease of amyloid plaques in mouse, rabbits, and monkeys brains using mostly the DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11, mainly with a gene gun. In addition to a reduction in tau by the first DNA vaccine (AV-1980D) targeting this protein. The use of adjuvants and boosters also had positive results as they increased the destruction of the amyloid plaques and induced an anti-inflammatory response profile without side effects. CONCLUSION The results of DNA vaccines targeting the amyloid-β and the tau protein with or without adjuvants and boosters were promising in reducing amyloid plaques and tau protein without side effects in animals. Although there are many vaccines being tested in animals, few reach clinical trials. Thus, as a future perspective, we suggest that clinical studies should be conducted with vaccines that have been promising in animal models (e.g., DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11).
Collapse
|
115
|
Sunkaria A, Yadav A, Bhardwaj S, Sandhir R. Postnatal Proteasome Inhibition Promotes Amyloid-β Aggregation in Hippocampus and Impairs Spatial Learning in Adult Mice. Neuroscience 2017; 367:47-59. [DOI: 10.1016/j.neuroscience.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
|
116
|
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868:341-358. [PMID: 28694093 PMCID: PMC5675793 DOI: 10.1016/j.bbcan.2017.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease and accounts for majority of human dementia. The hyper-phosphorylated tau-mediated intracellular neurofibrillary tangle and amyloid β-mediated extracellular senile plaque are characterized as major pathological lesions of AD. Different from the dysregulated growth control and ample genetic mutations associated with human cancers, AD displays damage and death of brain neurons in the absence of genomic alterations. Although various biological processes predominately governing tumorigenesis such as inflammation, metabolic alteration, oxidative stress and insulin resistance have been associated with AD genesis, the mechanistic connection of these biological processes and signaling pathways including mTOR, MAPK, SIRT, HIF, and the FOXO pathway controlling aging and the pathological lesions of AD are not well recapitulated. Hence, we performed a thorough review by summarizing the physiological roles of these key cancer-related signaling pathways in AD pathogenesis, comprising of the crosstalk of these pathways with neurofibrillary tangle and senile plaque formation to impact AD phenotypes. Importantly, the pharmaceutical investigations of anti-aging and AD relevant medications have also been highlighted. In summary, in this review, we discuss the potential role that cancer-related signaling pathways may play in governing the pathogenesis of AD, as well as their potential as future targeted strategies to delay or prevent aging-related diseases and combating AD.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
117
|
Latta-Mahieu M, Elmer B, Bretteville A, Wang Y, Lopez-Grancha M, Goniot P, Moindrot N, Ferrari P, Blanc V, Schussler N, Brault E, Roudières V, Blanchard V, Yang ZY, Barneoud P, Bertrand P, Roucourt B, Carmans S, Bottelbergs A, Mertens L, Wintmolders C, Larsen P, Hersley C, McGathey T, Racke MM, Liu L, Lu J, O'Neill MJ, Riddell DR, Ebneth A, Nabel GJ, Pradier L. Systemic immune-checkpoint blockade with anti-PD1 antibodies does not alter cerebral amyloid-β burden in several amyloid transgenic mouse models. Glia 2017; 66:492-504. [PMID: 29134678 DOI: 10.1002/glia.23260] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/22/2023]
Abstract
Chronic inflammation represents a central component in the pathogenesis of Alzheimer's disease (AD). Recent work suggests that breaking immune tolerance by Programmed cell Death-1 (PD1) checkpoint inhibition produces an IFN-γ-dependent systemic immune response, with infiltration of the brain by peripheral myeloid cells and neuropathological as well as functional improvements even in mice with advanced amyloid pathology (Baruch et al., (): Nature Medicine, 22:135-137). Immune checkpoint inhibition was therefore suggested as potential treatment for neurodegenerative disorders when activation of the immune system is appropriate. Because a xenogeneic rat antibody (mAb) was used in the study, whether the effect was specific to PD1 target engagement was uncertain. In the present study we examined whether PD1 immunotherapy can lower amyloid-β pathology in a range of different amyloid transgenic models performed at three pharmaceutical companies with the exact same anti-PD1 isotype and two mouse chimeric variants. Although PD1 immunotherapy stimulated systemic activation of the peripheral immune system, monocyte-derived macrophage infiltration into the brain was not detected, and progression of brain amyloid pathology was not altered. Similar negative results of the effect of PD1 immunotherapy on amyloid brain pathology were obtained in two additional models in two separate institutions. These results show that inhibition of PD1 checkpoint signaling by itself is not sufficient to reduce amyloid pathology and that additional factors might have contributed to previously published results (Baruch et al., (): Nature Medicine, 22:135-137). Until such factors are elucidated, animal model data do not support further evaluation of PD1 checkpoint inhibition as a therapeutic modality for Alzheimer's disease.
Collapse
Affiliation(s)
| | - Bradford Elmer
- SANOFI NA BT Lab, 270 Albany St, Cambridge, Massachusetts, 02319
| | - Alexis Bretteville
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Yaming Wang
- Lilly Research Laboratories, Indianapolis, Indiana, 46285
| | - Mati Lopez-Grancha
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | - Philippe Goniot
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | - Nicolas Moindrot
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | - Paul Ferrari
- SANOFI, 13 quai Jules Guesde, Vitry/Seine, 94403, France
| | | | - Nathalie Schussler
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | - Emmanuel Brault
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | - Valérie Roudières
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | | | - Zhi-Yong Yang
- SANOFI NA BT Lab, 270 Albany St, Cambridge, Massachusetts, 02319
| | - Pascal Barneoud
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | - Philippe Bertrand
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| | - Bart Roucourt
- reMYND NV, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Sofie Carmans
- reMYND NV, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Astrid Bottelbergs
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Liesbeth Mertens
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Cindy Wintmolders
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Peter Larsen
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | | | - Tyler McGathey
- Lilly Research Laboratories, Indianapolis, Indiana, 46285
| | | | - Ling Liu
- Lilly Research Laboratories, Indianapolis, Indiana, 46285
| | - Jirong Lu
- Lilly Research Laboratories, Indianapolis, Indiana, 46285
| | | | | | - Andreas Ebneth
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, Beerse, B-2340, Belgium
| | - Gary J Nabel
- SANOFI NA BT Lab, 270 Albany St, Cambridge, Massachusetts, 02319
| | - Laurent Pradier
- SANOFI Neurosciences, 1 rue P. Brossolette, Chilly-Mazarin, 91385, France
| |
Collapse
|
118
|
Palomino-Alonso M, Lachén-Montes M, González-Morales A, Ausín K, Pérez-Mediavilla A, Fernández-Irigoyen J, Santamaría E. Network-Driven Proteogenomics Unveils an Aging-Related Imbalance in the Olfactory IκBα-NFκB p65 Complex Functionality in Tg2576 Alzheimer's Disease Mouse Model. Int J Mol Sci 2017; 18:ijms18112260. [PMID: 29077059 PMCID: PMC5713230 DOI: 10.3390/ijms18112260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/12/2023] Open
Abstract
Olfaction is often deregulated in Alzheimer’s disease (AD) patients, and is also impaired in transgenic Tg2576 AD mice, which overexpress the Swedish mutated form of human amyloid precursor protein (APP). However, little is known about the molecular mechanisms that accompany the neurodegeneration of olfactory structures in aged Tg2576 mice. For that, we have applied proteome- and transcriptome-wide approaches to probe molecular disturbances in the olfactory bulb (OB) dissected from aged Tg2576 mice (18 months of age) as compared to those of age matched wild-type (WT) littermates. Some over-represented biological functions were directly relevant to neuronal homeostasis and processes of learning, cognition, and behavior. In addition to the modulation of CAMP responsive element binding protein 1 (CREB1) and APP interactomes, an imbalance in the functionality of the IκBα-NFκB p65 complex was observed during the aging process in the OB of Tg2576 mice. At two months of age, the phosphorylated isoforms of olfactory IκBα and NFκB p65 were inversely regulated in transgenic mice. However, both phosphorylated proteins were increased at 6 months of age, while a specific drop in IκBα levels was detected in 18-month-old Tg2576 mice, suggesting a transient activation of NFκB in the OB of Tg2576 mice. Taken together, our data provide a metabolic map of olfactory alterations in aged Tg2576 mice, reflecting the progressive effect of APP overproduction and β-amyloid (Aβ) accumulation on the OB homeostasis in aged stages.
Collapse
Affiliation(s)
- Maialen Palomino-Alonso
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Alberto Pérez-Mediavilla
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), Department of Biochemistry, University of Navarra, 31008 Pamplona, Spain.
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| |
Collapse
|
119
|
Gallardo G, Holtzman DM. Antibody Therapeutics Targeting Aβ and Tau. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024331. [PMID: 28062555 DOI: 10.1101/cshperspect.a024331] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The astonishing findings that active and passive immunization against amyloid-β (Aβ) in mouse models of Alzheimer's disease (AD) dramatically decreased amyloid burden led to a rapid initiation of human clinical trials with much enthusiasm. However, methodological issues and adverse effects relating to these clinical trials arose, challenging the effectiveness and safety of these reagents. Efforts are now underway to develop safer immunotherapeutic approaches toward Aβ and the treatment of individuals at risk for AD before or in the earliest stages of cognitive decline with new hopes. Furthermore, several studies have shown tau as a potential immunotherapeutic target for the treatment of tauopathy-related diseases including frontotemporal lobar dementia (FTLD). Both active and passive immunization targeting tau in mouse models of tauopathy effectively decreased tau pathology while improving cognitive performance. These preclinical studies have highlighted tau as an alternative target with much anticipation of clinical trials to be undertaken.
Collapse
Affiliation(s)
- Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
120
|
Chauhan R, Chen KF, Kent BA, Crowther DC. Central and peripheral circadian clocks and their role in Alzheimer's disease. Dis Model Mech 2017; 10:1187-1199. [PMID: 28993311 PMCID: PMC5665458 DOI: 10.1242/dmm.030627] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Molecular and cellular oscillations constitute an internal clock that tracks the time of day and permits organisms to optimize their behaviour and metabolism to suit the daily demands they face. The workings of this internal clock become impaired with age. In this review, we discuss whether such age-related impairments in the circadian clock interact with age-related neurodegenerative disorders, such as Alzheimer's disease. Findings from mouse and fly models of Alzheimer's disease have accelerated our understanding of the interaction between neurodegeneration and circadian biology. These models show that neurodegeneration likely impairs circadian rhythms either by damaging the central clock or by blocking its communication with other brain areas and with peripheral tissues. The consequent sleep and metabolic deficits could enhance the susceptibility of the brain to further degenerative processes. Thus, circadian dysfunction might be both a cause and an effect of neurodegeneration. We also discuss the primary role of light in the entrainment of the central clock and describe important, alternative time signals, such as food, that play a role in entraining central and peripheral circadian clocks. Finally, we propose how these recent insights could inform efforts to develop novel therapeutic approaches to re-entrain arrhythmic individuals with neurodegenerative disease.
Collapse
Affiliation(s)
- Ruchi Chauhan
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Ko-Fan Chen
- Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Brianne A Kent
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Damian C Crowther
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| |
Collapse
|
121
|
Hinrich AJ, Jodelka FM, Chang JL, Brutman D, Bruno AM, Briggs CA, James BD, Stutzmann GE, Bennett DA, Miller SA, Rigo F, Marr RA, Hastings ML. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med 2017; 8:328-45. [PMID: 26902204 PMCID: PMC4818756 DOI: 10.15252/emmm.201505846] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long‐term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19. Here, we report that the balance of ApoER2 exon 19 splicing is deregulated in postmortem brain tissue from AD patients and in a transgenic mouse model of AD. To test the role of deregulated ApoER2 splicing in AD, we designed an antisense oligonucleotide (ASO) that increases exon 19 splicing. Treatment of AD mice with a single dose of ASO corrected ApoER2 splicing for up to 6 months and improved synaptic function and learning and memory. These results reveal an association between ApoER2 isoform expression and AD, and provide preclinical evidence for the utility of ASOs as a therapeutic approach to mitigate Alzheimer's disease symptoms by improving ApoER2 exon 19 splicing.
Collapse
Affiliation(s)
- Anthony J Hinrich
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Francine M Jodelka
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Jennifer L Chang
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Daniella Brutman
- Department of Biology, Lake Forest College, Lake Forest, IL, USA
| | - Angela M Bruno
- Department of Neuroscience, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Clark A Briggs
- Department of Neuroscience, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Bryan D James
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Steven A Miller
- Department of Psychology, College of Health Professions Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Robert A Marr
- Department of Neuroscience, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
122
|
McKeever PM, Kim T, Hesketh AR, MacNair L, Miletic D, Favrin G, Oliver SG, Zhang Z, St George-Hyslop P, Robertson J. Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer's disease. Neurobiol Aging 2017; 57:104-119. [PMID: 28628896 DOI: 10.1016/j.neurobiolaging.2017.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
Cholinergic neurotransmission is impaired in Alzheimer's disease (AD), and loss of basal forebrain cholinergic neurons is a key component of disease pathogenicity and symptomatology. To explore the molecular basis of this cholinergic dysfunction, we paired translating ribosome affinity purification (TRAP) with RNA sequencing (TRAP-Seq) to identify the actively translating mRNAs in anterior forebrain cholinergic neurons in the TgCRND8 mouse model of AD. Bioinformatic analyses revealed the downregulation of 67 of 71 known cholinergic-related transcripts, consistent with cholinergic neuron dysfunction in TgCRND8 mice, as well as transcripts related to oxidative phosphorylation, neurotrophins, and ribosomal processing. Upregulated transcripts included those related to axon guidance, glutamatergic synapses and kinase activity and included AD-risk genes Sorl1 and Ptk2b. In contrast, the total transcriptome of the anterior forebrain showed upregulation in cytokine signaling, microglia, and immune system pathways, including Trem2, Tyrobp, and Inpp5d. Hence, TRAP-Seq clearly distinguished the differential gene expression alterations occurring in cholinergic neurons of TgCRND8 mice compared with wild-type littermates, providing novel candidate pathways to explore for therapeutic development in AD.
Collapse
Affiliation(s)
- Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - TaeHyung Kim
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada
| | - Andrew R Hesketh
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Laura MacNair
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Denise Miletic
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Giorgio Favrin
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Stephen G Oliver
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Zhaolei Zhang
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
123
|
Wang H, Williams D, Griffin J, Saito T, Saido TC, Fraser PE, Rogaeva E, Schmitt-Ulms G. Time-course global proteome analyses reveal an inverse correlation between Aβ burden and immunoglobulin M levels in the APPNL-F mouse model of Alzheimer disease. PLoS One 2017; 12:e0182844. [PMID: 28832675 PMCID: PMC5568403 DOI: 10.1371/journal.pone.0182844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
Alzheimer disease (AD) stands out amongst highly prevalent diseases because there is no effective treatment nor can the disease be reliably diagnosed at an early stage. A hallmark of AD is the accumulation of aggregation-prone amyloid β peptides (Aβ), the main constituent of amyloid plaques. To identify Aβ-dependent changes to the global proteome we used the recently introduced APPNL-F mouse model of AD, which faithfully recapitulates the Aβ pathology of the disease, and a workflow that interrogated the brain proteome of these mice by quantitative mass spectrometry at three different ages. The elevated Aβ burden in these mice was observed to cause almost no changes to steady-state protein levels of the most abundant >2,500 brain proteins, including 12 proteins encoded by well-confirmed AD risk loci. The notable exception was a striking reduction in immunoglobulin heavy mu chain (IGHM) protein levels in homozygote APPNL-F/NL-F mice, relative to APPNL-F/wt littermates. Follow-up experiments revealed that IGHM levels generally increase with age in this model. Although discovered with brain samples, the relative IGHM depletion in APPNL-F/NL-F mice was validated to manifest systemically in the blood, and did not extend to other blood proteins, including immunoglobulin G. Results presented are consistent with a cause-effect relationship between the excessive accumulation of Aβ and the selective depletion of IGHM levels, which may be of relevance for understanding the etiology of the disease and ongoing efforts to devise blood-based AD diagnostics.
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Jennifer Griffin
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Hirosawa, Wako-shi, Saitama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Hirosawa, Wako-shi, Saitama, Japan
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
124
|
MacPherson REK. Filling the void: a role for exercise-induced BDNF and brain amyloid precursor protein processing. Am J Physiol Regul Integr Comp Physiol 2017; 313:R585-R593. [PMID: 28814391 DOI: 10.1152/ajpregu.00255.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
Inactivity, obesity, and insulin resistance are significant risk factors for the development of Alzheimer's disease (AD). Several studies have demonstrated that diet-induced obesity, inactivity, and insulin resistance exacerbate the neuropathological hallmarks of AD. The aggregation of β-amyloid peptides is one of these hallmarks. β-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in amyloid precursor protein (APP) processing, leading to β-amyloid peptide formation. Understanding how BACE1 content and activity are regulated is essential for establishing therapies aimed at reducing and/or slowing the progression of AD. Exercise training has been proven to reduce the risk of AD as well as decrease β-amyloid production and BACE1 content and/or activity. However, these long-term interventions also result in improvements in adiposity, circulating metabolites, glucose tolerance, and insulin sensitivity making it difficult to determine the direct effects of exercise on brain APP processing. This review highlights this large void in our knowledge and discusses our current understanding of the direct of effect of exercise on β-amyloid production. We have concentrated on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the direct effects of exercise on reducing brain BACE1 content and activity as well as β-amyloid production. Future studies should aim to generate a greater understanding of how obesity and exercise can directly alter APP processing and AD-related pathologies. This knowledge could provide evidence-based hypotheses for designing therapies to reduce the risk of AD and dementia.
Collapse
|
125
|
Wijesekara N, Ahrens R, Sabale M, Wu L, Ha K, Verdile G, Fraser PE. Amyloid-β and islet amyloid pathologies link Alzheimer's disease and type 2 diabetes in a transgenic model. FASEB J 2017; 31:5409-5418. [PMID: 28808140 DOI: 10.1096/fj.201700431r] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/25/2017] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) present a significant risk to each other. AD and T2D are characterized by deposition of cerebral amyloid-β (Aβ) and pancreatic human islet amyloid polypeptide (hIAPP), respectively. We investigated the role of amyloidogenic proteins in the interplay between these diseases. A novel double transgenic mouse model combining T2D and AD was generated and characterized. AD-related amyloid transgenic mice coexpressing hIAPP displayed peripheral insulin resistance, hyperglycemia, and glucose intolerance. Aβ and IAPP amyloid co-deposition increased tau phosphorylation, and a reduction in pancreatic β-cell mass was detected in islets. Increased brain Aβ deposition and tau phosphorylation and reduced insulin levels and signaling were accompanied by extensive synaptic loss and decreased neuronal counts. Aβ immunization rescued the peripheral insulin resistance and hyperglycemia, suggesting a role for Aβ in T2D pathogenesis for individuals predisposed to AD. These findings demonstrate that Aβ and IAPP are key factors in the overlapping pathologies of AD and T2D.-Wijesekara, N., Ahrens, R., Sabale, M., Wu, L., Ha, K., Verdile, G., Fraser, P. E. Amyloid-β and islet amyloid pathologies link Alzheimer's disease and type 2 diabetes in a transgenic model.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada;
| | - Rosemary Ahrens
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Miheer Sabale
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Kathy Ha
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
126
|
Shamsi TN, Athar T, Parveen R, Fatima S. A review on protein misfolding, aggregation and strategies to prevent related ailments. Int J Biol Macromol 2017; 105:993-1000. [PMID: 28743576 DOI: 10.1016/j.ijbiomac.2017.07.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/28/2023]
Abstract
This review aims to highlight the fundamental mechanism of protein misfolding leading to protein aggregation and associated diseases. It also aims to anticipate novel therapeutic strategies with which to prevent or treat these highly debilitating conditions linked to these pathologies. The failure of a protein to correctly fold de novo or to remain correctly folded can have profound consequences on a living system especially when the cellular quality control processes fail to eliminate the rogue proteins. The core cause of over 20 different human diseases which have now been designated as 'conformational diseases' including neurodegenerative diseases such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD) etc. A comprehensive study on protein misfolding, aggregation, and the outcomes of the effects of cytotoxic aggregates will lead to understand the aggregation-mediated cell toxicity and serves as a foundation for future research in development of promising therapies and drugs. This review has also shed light on the mechanism of protein misfolding which leads to its aggregation and hence the neurodegeneration. From these considerations, one could also envisage the possibility that protein aggregation may be exploited by nature to perform specific physiological functions in differing biological contexts.
Collapse
Affiliation(s)
- Tooba Naz Shamsi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Teeba Athar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
127
|
Ding L, Meng Y, Zhang HY, Yin WC, Yan Y, Cao YP. Prophylactic active immunization with a novel epitope vaccine improves cognitive ability by decreasing amyloid plaques and neuroinflammation in APP/PS1 transgenic mice. Neurosci Res 2017; 119:7-14. [DOI: 10.1016/j.neures.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/06/2016] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
|
128
|
Franco Bocanegra DK, Nicoll JAR, Boche D. Innate immunity in Alzheimer's disease: the relevance of animal models? J Neural Transm (Vienna) 2017; 125:827-846. [PMID: 28516241 PMCID: PMC5911273 DOI: 10.1007/s00702-017-1729-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
Abstract
The mouse is one of the organisms most widely used as an animal model in biomedical research, due to the particular ease with which it can be handled and reproduced in laboratory. As a member of the mammalian class, mice share with humans many features regarding metabolic pathways, cell morphology and anatomy. However, important biological differences between mice and humans exist and must be taken into consideration when interpreting research results, to properly translate evidence from experimental studies into information that can be useful for human disease prevention and/or treatment. With respect to Alzheimer’s disease (AD), much of the experimental information currently known about this disease has been gathered from studies using mainly mice as models. Therefore, it is notably important to fully characterise the differences between mice and humans regarding important aspects of the disease. It is now widely known that inflammation plays an important role in the development of AD, a role that is not only a response to the surrounding pathological environment, but rather seems to be strongly implicated in the aetiology of the disease as indicated by the genetic studies. This review highlights relevant differences in inflammation and in microglia, the innate immune cell of the brain, between mice and humans regarding genetics and morphology in normal ageing, and the relationship of microglia with AD-like pathology, the inflammatory profile, and cognition. We conclude that some noteworthy differences exist between mice and humans regarding microglial characteristics, in distribution, gene expression, and states of activation. This may have repercussions in the way that transgenic mice respond to, and influence, the AD-like pathology. However, despite these differences, human and mouse microglia also show similarities in morphology and behaviour, such that the mouse is a suitable model for studying the role of microglia, as long as these differences are taken into consideration when delineating new strategies to approach the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana K Franco Bocanegra
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 806, Southampton, SO16 6YD, UK
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 806, Southampton, SO16 6YD, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, Southampton, SO16 6YD, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Mailpoint 806, Southampton, SO16 6YD, UK.
| |
Collapse
|
129
|
Yang DS, Stavrides P, Kumar A, Jiang Y, Mohan PS, Ohno M, Dobrenis K, Davidson CD, Saito M, Pawlik M, Huo C, Walkley SU, Nixon RA. Cyclodextrin has conflicting actions on autophagy flux in vivo in brains of normal and Alzheimer model mice. Hum Mol Genet 2017; 26:843-859. [PMID: 28062666 DOI: 10.1093/hmg/ddx001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/03/2016] [Indexed: 12/13/2022] Open
Abstract
2-hydroxypropyl-β-cyclodextrin (CYCLO), a modifier of cholesterol efflux from cellular membrane and endo-lysosomal compartments, reduces lysosomal lipid accumulations and has therapeutic effects in animal models of Niemann-Pick disease type C and several other neurodegenerative states. Here, we investigated CYCLO effects on autophagy in wild-type mice and TgCRND8 mice-an Alzheimer's Disease (AD) model exhibiting β-amyloidosis, neuronal autophagy deficits leading to protein and lipid accumulation within greatly enlarged autolysosomes. A 14-day intracerebroventricular administration of CYCLO to 8-month-old TgCRND8 mice that exhibit moderately advanced neuropathology markedly diminished the sizes of enlarged autolysosomes and lowered their content of GM2 ganglioside and Aβ-immunoreactivity without detectably altering amyloid precursor protein processing or extracellular Aβ/β-amyloid burden. We identified two major actions of CYCLO on autophagy underlying amelioration of lysosomal pathology. First, CYCLO stimulated lysosomal proteolytic activity by increasing cathepsin D activity, levels of cathepsins B and D and two proteins known to interact with cathepsin D, NPC1 and ABCA1. Second, CYCLO impeded autophagosome-lysosome fusion as evidenced by the accumulation of LC3, SQSTM1/p62, and ubiquitinated substrates in an expanded population of autophagosomes in the absence of greater autophagy induction. By slowing substrate delivery to lysosomes, autophagosome maturational delay, as further confirmed by our in vitro studies, may relieve lysosomal stress due to accumulated substrates. These findings provide in vivo evidence for lysosomal enhancing properties of CYCLO, but caution that prolonged interference with cellular membrane fusion/autophagosome maturation could have unfavorable consequences, which might require careful optimization of dosage and dosing schedules.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | | | - Asok Kumar
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Ying Jiang
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Panaiyur S Mohan
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Masuo Ohno
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristin D Davidson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mitsuo Saito
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | | | | | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ralph A Nixon
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.,Cell Biology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
130
|
Sekiyama K, Takamatsu Y, Koike W, Waragai M, Takenouchi T, Sugama S, Hashimoto M. Insight into the Dissociation of Behavior from Histology in Synucleinopathies and in Related Neurodegenerative Diseases. J Alzheimers Dis 2017; 52:831-41. [PMID: 27031478 DOI: 10.3233/jad-151015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent clinical trials using immunization approaches against Alzheimer's disease (AD) have failed to demonstrate improved cognitive functions in patients, despite potent suppression in the formation of both senile plaques and other amyloid-β deposits in postmortem brains. Similarly, we observed that treatment with ibuprofen, a non-steroidal anti-inflammatory drug, was effective in improving the histopathology, such as reducing both protein aggregation and glial activation, in the brains of transgenic mice expressing dementia with Lewy bodies-linked P123H β-synuclein. In contrast, only a small improvement in cognitive functions was observed in these mice. Collectively, it is predicted that histology does not correlate with behavior that is resilient and resistant to therapeutic stimuli. Notably, such a 'discrepancy between histology and behavior' is reminiscent of AD-like pathologies and incidental Lewy bodies, which are frequently encountered in postmortem brains of the elderly who had been asymptomatic for memory loss and Parkinsonism during their lives. We suggest that 'the discrepancy between histology and behavior' may be a universal feature that is associated with various aspects of neurodegenerative diseases. Furthermore, given that the cognitive reserve is specifically observed in human brains, human behavior may be evolutionally distinct from that in other animals, thus, contributing to the differential efficiency of therapy between human and lower animals, an important issue in the therapy of neurodegenerative diseases. Overall, it is important to better understand 'the discrepancy between histology and behavior' in the mechanism of neurodegeneration for the development of effective therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Kazunari Sekiyama
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Wakako Koike
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Takato Takenouchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
131
|
Sami N, Rahman S, Kumar V, Zaidi S, Islam A, Ali S, Ahmad F, Hassan MI. Protein aggregation, misfolding and consequential human neurodegenerative diseases. Int J Neurosci 2017; 127:1047-1057. [PMID: 28110595 DOI: 10.1080/00207454.2017.1286339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are major components of the biological functions in a cell. Biology demands that a protein must fold into its stable three-dimensional structure to become functional. In an unfavorable cellular environment, protein may get misfolded resulting in its aggregation. These conformational disorders are directly related to the tissue damage resulting in cellular dysfunction giving rise to different diseases. This way, several neurodegenerative diseases such as Alzheimer, Parkinson Huntington diseases and amyotrophic lateral sclerosis are caused. Misfolding of the protein is prevented by innate molecular chaperones of different classes. It is envisaged that work on this line is likely to translate the knowledge into the development of possible strategies for early diagnosis and efficient management of such related human diseases. The present review deals with the human neurodegenerative diseases caused due to the protein misfolding highlighting pathomechanisms and therapeutic intervention.
Collapse
Affiliation(s)
- Neha Sami
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Safikur Rahman
- b Department of Medical Biotechnology , Yeungnam University , Gyeongsan , South Korea
| | - Vijay Kumar
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Sobia Zaidi
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Sher Ali
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
132
|
Hamm V, Héraud C, Bott JB, Herbeaux K, Strittmatter C, Mathis C, Goutagny R. Differential contribution of APP metabolites to early cognitive deficits in a TgCRND8 mouse model of Alzheimer's disease. SCIENCE ADVANCES 2017; 3:e1601068. [PMID: 28275722 PMCID: PMC5325539 DOI: 10.1126/sciadv.1601068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology commonly characterized by a progressive and irreversible deterioration of cognitive functions, especially memory. Although the etiology of AD remains unknown, a consensus has emerged on the amyloid hypothesis, which posits that increased production of soluble amyloid β (Aβ) peptide induces neuronal network dysfunctions and cognitive deficits. However, the relative failures of Aβ-centric therapeutics suggest that the amyloid hypothesis is incomplete and/or that the treatments were given too late in the course of AD, when neuronal damages were already too extensive. Hence, it is striking to see that very few studies have extensively characterized, from anatomy to behavior, the alterations associated with pre-amyloid stages in mouse models of AD amyloid pathology. To fulfill this gap, we examined memory capacities as well as hippocampal network anatomy and dynamics in young adult pre-plaque TgCRND8 mice when hippocampal Aβ levels are still low. We showed that TgCRND8 mice present alterations in hippocampal inhibitory networks and γ oscillations at this stage. Further, these mice exhibited deficits only in a subset of hippocampal-dependent memory tasks, which are all affected at later stages. Last, using a pharmacological approach, we showed that some of these early memory deficits were Aβ-independent. Our results could partly explain the limited efficacy of Aβ-directed treatments and favor multitherapy approaches for early symptomatic treatment for AD.
Collapse
Affiliation(s)
- Valentine Hamm
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
- LNCA, UMR 7364, CNRS, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - Céline Héraud
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
- LNCA, UMR 7364, CNRS, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - Jean-Bastien Bott
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
- LNCA, UMR 7364, CNRS, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - Karine Herbeaux
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
- LNCA, UMR 7364, CNRS, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - Carole Strittmatter
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
- LNCA, UMR 7364, CNRS, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - Chantal Mathis
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
- LNCA, UMR 7364, CNRS, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| | - Romain Goutagny
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, Faculté de Psychologie, 12 rue Goethe, F-67000 Strasbourg, France
- LNCA, UMR 7364, CNRS, Neuropôle de Strasbourg, 12 rue Goethe, F-67000 Strasbourg, France
| |
Collapse
|
133
|
Petrushina I, Davtyan H, Hovakimyan A, Davtyan A, Passos GF, Cribbs DH, Ghochikyan A, Agadjanyan MG. Comparison of Efficacy of Preventive and Therapeutic Vaccines Targeting the N Terminus of β-Amyloid in an Animal Model of Alzheimer's Disease. Mol Ther 2017; 25:153-164. [PMID: 28129111 PMCID: PMC5363310 DOI: 10.1016/j.ymthe.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
Previously, we reported that Alzheimer's disease (AD) epitope vaccines (EVs) composed of N-terminal β-amyloid (Aβ42) B cell epitope fused with universal foreign T helper (Th) epitope(s) were immunogenic, potent, and safe in different amyloid precursor protein (APP) transgenic mice with early AD-like pathology. However, developing an effective therapeutic vaccine is much more challenging, especially when a self-antigen such as Aβ42 is a target. Here, we directly compare the efficacy of anti-Aβ42 antibodies in Tg2576 mice with low or high levels of AD-like pathology at the start of immunizations: 6-6.5 months for preventive vaccinations and 16-19 months for therapeutic vaccinations. EV in a preventive setting induced high levels of anti-Aβ antibodies, significantly reducing pathologic forms of Aβ in the brains of Tg2576 mice. When used therapeutically for immunesenescent Tg2576 mice, EV induced low levels of antibodies not sufficient for clearing of AD-like pathology. Separately, we demonstrated that EV was also not effective in 11-11.5-month-old Tg2576 mice with moderate AD-like pathology. However, we augmented the titers of anti-Aβ antibodies in transgenic (Tg) mice of the same age possessing the pre-existing memory Th cells and detected a significant decrease in diffuse and core plaques in cortical regions compared to control animals along with improved novel object recognition performance.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Arpine Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Giselle F Passos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| | - Michael G Agadjanyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| |
Collapse
|
134
|
Soudy R, Patel A, Fu W, Kaur K, MacTavish D, Westaway D, Davey R, Zajac J, Jhamandas J. Cyclic AC253, a novel amylin receptor antagonist, improves cognitive deficits in a mouse model of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2017; 3:44-56. [PMID: 29067318 PMCID: PMC5651374 DOI: 10.1016/j.trci.2016.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Amylin receptor serves as a portal for the expression of deleterious effects of amyloid β-protein (Aβ), a key pathologic hallmark of Alzheimer's disease. Previously, we showed that AC253, an amylin receptor antagonist, is neuroprotective against Aβ toxicity in vitro and abrogates Aβ-induced impairment of hippocampal long-term potentiation. METHODS Amyloid precursor protein-overexpressing TgCRND8 mice received intracerebroventricularly AC253 for 5 months. New cyclized peptide cAC253 was synthesized and administered intraperitoneally three times a week for 10 weeks in the same mouse model. Cognitive functions were monitored, and pathologic changes were quantified biochemically and immunohistochemically. RESULTS AC253, when administered intracerebroventricularly, improves spatial memory and learning, increases synaptic integrity, reduces microglial activation without discernible adverse effects in TgCRND8 mice. cAC253 demonstrates superior brain permeability, better proteolytic stability, and enhanced binding affinity to brain amylin receptors after a single intraperitoneal injection. Furthermore, cAC253 administered intraperitoneally also demonstrates improvement in spatial memory in TgCRND8 mice. DISCUSSION Amylin receptor is a therapeutic target for Alzheimer's disease and represents a disease-modifying therapy for this condition.
Collapse
Affiliation(s)
- Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Chapman University School of Pharmacy, Irvine, California, USA
| | - David MacTavish
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Davey
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jeffrey Zajac
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jack Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
135
|
Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 2016; 12:187-200. [DOI: 10.1080/17460441.2017.1271320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
136
|
Ding L, Meng Y, Zhang HY, Yin WC, Yan Y, Cao YP. Active immunization with the peptide epitope vaccine Aβ3-10-KLH induces a Th2-polarized anti-Aβ antibody response and decreases amyloid plaques in APP/PS1 transgenic mice. Neurosci Lett 2016; 634:1-6. [DOI: 10.1016/j.neulet.2016.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 11/28/2022]
|
137
|
Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur J Med Chem 2016; 124:1105-1120. [DOI: 10.1016/j.ejmech.2016.07.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
|
138
|
Salahuddin P, Siddiqi MK, Khan S, Abdelhameed AS, Khan RH. Mechanisms of protein misfolding: Novel therapeutic approaches to protein-misfolding diseases. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
139
|
Tatarnikova OG, Orlov MA, Bobkova NV. Beta-Amyloid and Tau-Protein: Structure, Interaction, and Prion-Like Properties. BIOCHEMISTRY (MOSCOW) 2016; 80:1800-19. [PMID: 26878581 DOI: 10.1134/s000629791513012x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During the last twenty years, molecular genetic investigations of Alzheimer's disease (AD) have significantly broadened our knowledge of basic mechanisms of this disorder. However, still no unambiguous concept on the molecular bases of AD pathogenesis has been elaborated, which significantly impedes the development of AD therapy. In this review, we analyze issues concerning processes of generation of two proteins (β-amyloid peptide and Tau-protein) in the cell, which are believed to play the key role in AD genesis. Until recently, these agents were considered independently of each other, but in light of the latest studies, it becomes clear that it is necessary to study their interaction and combined effects. Studies of mechanisms of toxic action of these endogenous compounds, beginning from their interaction with known receptors of main neurotransmitters to specific peculiarities of functioning of signal intracellular pathways upon development of this pathology, open the way to development of new pharmaceutical substances directed concurrently on key mechanisms of interaction of toxic proteins inside the cell and on the pathways of their propagation in the extracellular space.
Collapse
Affiliation(s)
- O G Tatarnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
140
|
Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity. Sci Rep 2016; 6:35865. [PMID: 27775057 PMCID: PMC5075897 DOI: 10.1038/srep35865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022] Open
Abstract
The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.
Collapse
|
141
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14:101-15. [PMID: 26813123 PMCID: PMC4787279 DOI: 10.2174/1570159x13666150716165726] [Citation(s) in RCA: 893] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Acetylcholine (ACh) has a crucial role in the peripheral and central nervous
systems. The enzyme choline acetyltransferase (ChAT) is responsible for
synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular
acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic
vesicles. Following depolarization, ACh undergoes exocytosis reaching the
synaptic cleft, where it can bind its receptors, including muscarinic and
nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by
the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is
recycled into the presynaptic nerve terminal by the high-affinity choline
transporter (CHT1). Cholinergic neurons located in the basal forebrain,
including the neurons that form the nucleus basalis of Meynert, are severely
lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia
affecting 25 million people worldwide. The hallmarks of the disease are the
accumulation of neurofibrillary tangles and amyloid plaques. However, there is
no real correlation between levels of cortical plaques and AD-related cognitive
impairment. Nevertheless, synaptic loss is the principal correlate of disease
progression and loss of cholinergic neurons contributes to memory and attention
deficits. Thus, drugs that act on the cholinergic system represent a promising
option to treat AD patients.
Collapse
Affiliation(s)
| | | | | | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
142
|
Schwartz M, Deczkowska A. Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol 2016; 37:668-679. [DOI: 10.1016/j.it.2016.08.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
143
|
Davis PR, Giannini G, Rudolph K, Calloway N, Royer CM, Beckett TL, Murphy MP, Bresch F, Pagani D, Platt T, Wang X, Donovan AS, Sudduth TL, Lou W, Abner E, Kryscio R, Wilcock DM, Barrett EG, Head E. Aβ vaccination in combination with behavioral enrichment in aged beagles: effects on cognition, Aβ, and microhemorrhages. Neurobiol Aging 2016; 49:86-99. [PMID: 27776266 DOI: 10.1016/j.neurobiolaging.2016.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
Abstract
Beta-amyloid (Aβ) immunotherapy is a promising intervention to slow Alzheimer's disease. Aging dogs naturally accumulate Aβ and show cognitive decline. An active vaccine against fibrillar Aβ 1-42 (VAC) in aged beagles resulted in maintenance but not improvement of cognition along with reduced brain Aβ. Behavioral enrichment (ENR) led to cognitive benefits but no reduction in Aβ. We hypothesized cognitive outcomes could be improved by combining VAC with ENR in aged dogs. Aged dogs (11-12 years) were placed into 4 groups: (1) control/control (C/C); (2) control/VAC (C/V); (3) ENR/control (E/C); and (4) ENR/VAC (E/V) and treated for 20 months. VAC decreased brain Aβ, pyroglutamate Aβ, increased cerebrospinal fluid Aβ 42 and brain-derived neurotrophic factor RNA levels but also increased microhemorrhages. ENR reduced brain Aβ and prevented microhemorrhages. The combination treatment resulted in a significant maintenance of learning over time, reduced Aβ, and increased brain-derived neurotrophic factor mRNA despite increased microhemorrhages; however, there were no benefits to memory. These results suggest that the combination of immunotherapy with behavioral enrichment leads to cognitive maintenance associated with reduced neuropathology that may benefit people with Alzheimer's disease.
Collapse
Affiliation(s)
- Paulina R Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Karin Rudolph
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Nathaniel Calloway
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Tina L Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Frederick Bresch
- Metacog Testing Systems, New Westminster, British Columbia, Canada
| | | | - Thomas Platt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Xiaohong Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Tiffany L Sudduth
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Wenjie Lou
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Erin Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Richard Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | | | - Elizabeth Head
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
144
|
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 2016; 13:236. [PMID: 27596607 PMCID: PMC5011997 DOI: 10.1186/s12974-016-0708-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, 0200, Australia.
| | - Bryce Vissel
- Neurodegeneration Research Group, Garvan Institute, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
145
|
Neuroprotection by Endoplasmic Reticulum Stress-Induced HRD1 and Chaperones: Possible Therapeutic Targets for Alzheimer's and Parkinson's Disease. Med Sci (Basel) 2016; 4:medsci4030014. [PMID: 29083378 PMCID: PMC5635799 DOI: 10.3390/medsci4030014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/14/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are neurodegenerative disorders with a severe medical and social impact. Further insights from clinical and scientific studies are essential to develop effective therapies. Various stresses on the endoplasmic reticulum (ER) cause unfolded/misfolded proteins to aggregate, initiating unfolded protein responses (UPR), one of which is the induction of neuronal cell death. Some of the pathogenic factors for AD and PD are associated with UPR. ER molecules such as ubiquitin ligases (E3s) and chaperones are also produced during UPR to degrade and refold aberrant proteins that accumulate in the ER. In this review, we examine the role of HMG-CoA reductase degradation protein 1 (HRD1) and the chaperone protein-disulfide isomerase (PDI), which are both produced in the ER in response to stress. We discuss the importance of HRD1 in degrading amyloid precursor protein (APP) and Parkin-associated endothelin receptor-like receptor (Pael-R) to protect against neuronal death. PDI and the chemical chaperone 4-phenyl-butyrate also exert neuroprotective effects. We discuss the pathophysiological roles of ER stress, UPR, and the induction and neuroprotective effects of HRD1 and PDI, which may represent significant targets for novel AD and PD therapies.
Collapse
|
146
|
George S, Brundin P. Immunotherapy in Parkinson's Disease: Micromanaging Alpha-Synuclein Aggregation. JOURNAL OF PARKINSONS DISEASE 2016; 5:413-24. [PMID: 26406122 PMCID: PMC4923719 DOI: 10.3233/jpd-150630] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Currently, several α-synuclein immunotherapies are being tested in experimental Parkinson’s disease models and in clinical trials. Recent research has revealed that α-synuclein is not just an intracellular synaptic protein but also exists extracellularly. Moreover, the transfer of misfolded α-synuclein between cells might be a crucial step in the process leading to a progressive increase in deposition of α-synuclein aggregates throughout the Parkinson’s disease brain. The revelation that α-synuclein is present outside cells has increased the interest in antibody-based therapies and opens up for the notion that microglia might play a key role in retarding Parkinson’s disease progression. The objectives of this review are to describe and contrast the use of active and passive immunotherapy in treating α-synucleinopathies and highlight the likely important role of microglia in clearing misfolded α-synuclein from the extracellular space.
Collapse
Affiliation(s)
| | - Patrik Brundin
- Correspondence to: Patrik Brundin, Van Andel Research Insti-tute, Center for Neurodegenerative Science, 333 Bostwick AvenueNE, Grand Rapids, MI 49503, USA.
Tel.: 616 234 5684; Fax: 616 234 5129.
| |
Collapse
|
147
|
Abstract
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.
Collapse
|
148
|
ElAli A, Rivest S. Microglia in Alzheimer's disease: A multifaceted relationship. Brain Behav Immun 2016; 55:138-150. [PMID: 26254232 DOI: 10.1016/j.bbi.2015.07.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting elderly people worldwide, which is mainly characterized by cerebral amyloid-beta (Aβ) plaque deposition and neurofibrillary tangle formation. The interest in microglia arose from the overwhelming experimental evidence that outlined a key role of neuroinflammation in AD pathology. Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that microglia are myeloid-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a highly ramified phenotype postnatally. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, microglia get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Earlier reports have demonstrated, unequivocally, that microglia surround Aβ plaques and internalize Aβ microaggregates. However, the implication of these observations in AD pathology, and consequently treatment, is still a matter of debate. Nonetheless, targeting the activity of these cells constituted a convergent point in this debate. Unfortunately, the conflicting experimental findings obtained following the modulation of microglial activity in AD, further fueled the debate. This review aims at providing an overview regarding what we know about the implication of microglia in AD pathology, and treatment. The emerging role of monocytes is also discussed.
Collapse
Affiliation(s)
- Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada.
| |
Collapse
|
149
|
Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice. Nat Commun 2016; 7:11761. [PMID: 27249364 PMCID: PMC4895343 DOI: 10.1038/ncomms11761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023] Open
Abstract
Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. Identifying early signs of Alzheimer's disease is important when it comes to diagnosis and treatment. Here, the authors identify subtle memory retrieval deficits and associated brain glucose uptake impairments in very young mouse models of Alzheimer's, prior to plaque development.
Collapse
|
150
|
Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114:41-58. [DOI: 10.1016/j.ejmech.2016.02.065] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
|