101
|
Williams DB. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 2006; 119:615-23. [PMID: 16467570 DOI: 10.1242/jcs.02856] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calnexin and calreticulin are related proteins that comprise an ER chaperone system that ensures the proper folding and quality control of newly synthesized glycoproteins. The specificity for glycoproteins is conferred by a lectin site that recognizes an early oligosaccharide processing intermediate on the folding glycoprotein, Glc1Man9GlcNAc2. In addition, calnexin and calreticulin possess binding sites for ATP, Ca2+, non-native polypeptides and ERp57, an enzyme that catalyzes disulfide bond formation, reduction and isomerization. Recent studies have revealed the locations of some of these ligand-binding sites and have provided insights into how they contribute to overall chaperone function. In particular, the once controversial non-native-polypeptide-binding site has now been shown to function both in vitro and in cells. Furthermore, there is clear evidence that ERp57 participates in glycoprotein biogenesis either alone or in tandem with calnexin and calreticulin.
Collapse
Affiliation(s)
- David B Williams
- Department of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|
102
|
Wang N, Hebert DN. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. ACTA ACUST UNITED AC 2006; 19:3-18. [PMID: 16420243 DOI: 10.1111/j.1600-0749.2005.00288.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tyrosinase has been extensively utilized as a model substrate to study the maturation of glycoproteins in the mammalian secretory pathway. The visual nature of its enzymatic activity (melanin production) has facilitated the identification and characterization of the proteins that assist it becoming a functional enzyme, localized to its proper cellular location. Here, we review the steps involved in the maturation of tyrosinase from when it is first synthesized by cytosolic ribosomes until the mature protein reaches its post-Golgi residence in the melanosomes. These steps include protein processing, covalent modifications, chaperone binding, oligomerization, and trafficking. The disruption of any of these steps can lead to a wide range of pigmentation disorders.
Collapse
Affiliation(s)
- Ning Wang
- Program in Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
103
|
Delom F, Chevet E. In vitro mapping of calnexin interaction with ribosomes. Biochem Biophys Res Commun 2006; 341:39-44. [PMID: 16414013 DOI: 10.1016/j.bbrc.2005.12.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
Calnexin is an endoplasmic reticulum (ER) resident type I integral membrane phosphoprotein. This protein is actively involved in the ER glycoprotein quality control through its luminal domain. In addition, although calnexin also interacts with membrane-bound ribosomes, the nature of this interaction remains poorly characterized. Herein, using in vitro approaches, we demonstrate that calnexin cytosolic domain directly interacts with, at least 5 ribosomal proteins. Furthermore, we characterize more specifically its interaction with the ribosomal protein L4 and that L4 binds to the 19 carboxy terminal amino acids of calnexin. We suggest that the direct interaction of calnexin with membrane-bound ribosomes may represent a regulatory mechanism for its lectin-like chaperone function.
Collapse
Affiliation(s)
- Frédéric Delom
- Department of Surgery, McGill University, Montreal, PQ, Canada
| | | |
Collapse
|
104
|
Barel MT, Hassink GC, van Voorden S, Wiertz EJHJ. Human cytomegalovirus-encoded US2 and US11 target unassembled MHC class I heavy chains for degradation. Mol Immunol 2006; 43:1258-66. [PMID: 16098592 DOI: 10.1016/j.molimm.2005.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/06/2005] [Indexed: 02/07/2023]
Abstract
Surface MHC class I molecules serve important immune functions as ligands for both T and NK cell receptors for the elimination of infected and malignant cells. In order to reach the cell surface, MHC class I molecules have to fold properly and form trimers consisting of a heavy chain (HC), a beta2-microglobulin light chain and an 8-10-mer peptide. A panel of ER chaperones facilitates the folding and assembly process. Incorrectly assembled or folded MHC class I HCs are detected by the ER quality-control system and transported to the cytosol for degradation by proteasomes. In human cytomegalovirus-infected cells, two viral proteins are synthesized, US2 and US11, which target MHC class I HCs for proteasomal degradation. It is unknown at which stage of MHC class I folding and complex formation US2 and US11 come into play. In addition, it is unclear if the disposal takes place via the same pathway through which proteins are removed that fail to pass ER quality control. In this study, we show with a beta2m-deficient cell line that US2 and US11 both target unassembled HCs for degradation. This suggests that US2 and US11 both act at an early stage of MHC class I complex formation. In addition, our data indicate that US11-mediated degradation involves mechanisms that are similar to those normally used to remove terminally misfolded HCs.
Collapse
Affiliation(s)
- Martine T Barel
- Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
105
|
Lanctôt PM, Leclerc PC, Escher E, Guillemette G, Leduc R. Role of N-glycan-dependent quality control in the cell-surface expression of the AT1 receptor. Biochem Biophys Res Commun 2006; 340:395-402. [PMID: 16364240 DOI: 10.1016/j.bbrc.2005.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 11/22/2022]
Abstract
Most G protein-coupled receptors (GPCRs) are N-glycosylated proteins but the role of this post-translational modification in GPCR biosynthesis has not been extensively studied. We previously showed that the non-glycosylated AT(1) receptor is inefficiently expressed at the cell surface. In this study, we addressed whether AT(1) interacts with elements of the ER-based quality control processes. Interestingly, non-glycosylated AT(1) receptors associated with the molecular chaperones calnexin and HSP70, suggesting the importance of protein-based interactions between these partners. We also demonstrate that ER mannosidase I participates in the acquisition of mature glycoforms and in the targeting of the AT(1) receptor to the membrane. Taken together, these results indicate that decreased cell-surface expression of the non-glycosylated receptor cannot be attributed to diminished interactions with molecular chaperones and that mannose trimming of the wild-type AT(1) receptor by ER mannosidase I plays a critical role in its cell-surface expression.
Collapse
Affiliation(s)
- Pascal M Lanctôt
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | |
Collapse
|
106
|
Thankappan A, Fuller JR, Godwin UB, Kearse KP, McConnell TJ. Characterization of glycans on major histocompatibility complex class II molecules in channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:772-82. [PMID: 16364438 DOI: 10.1016/j.dci.2005.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/05/2005] [Accepted: 10/10/2005] [Indexed: 05/05/2023]
Abstract
The glycans associated with mammalian major histocompatibility complex (MHC) class II molecules have been studied extensively. Co-translational and post-translational addition of sugar molecules to proteins confers many structural and modulatory functions. In the present study we characterized the glycans associated with MHC class II molecules in the channel catfish to compare glycosylation patterns in a teleost to those known to occur in mammals. This study made use of enzymatic methods and two-dimensional (2D) gel electrophoresis to characterize the N-linked sugars. Unlike mammalian T cells which expressed complex N-linked sugars, channel catfish derived 28S T cells were found to express high-mannose/hybrid N-glycans on class II molecules. However studies with Endoglycosidase H in conjunction with cell surface labeling on peripheral blood leukocytes revealed that catfish possess the machinery to modify the intermediate high-mannose sugars to complex type sugars. Nonetheless, the majority of the class II cell surface glycoproteins were of the high-mannose type. Resolution of catfish MHC class II molecules by 2D gel analyses revealed multiple bands for class II beta chains whereas class II alpha chains focused as a single spot. Glycosylation in the channel catfish, a premier model system for studying the immune system of teleosts, has significant differences from the glycosylation patterns characterized in mammalian systems, likely with functional implications.
Collapse
Affiliation(s)
- Anil Thankappan
- Department of Biology, East Carolina University, Greenville 27858, USA
| | | | | | | | | |
Collapse
|
107
|
Martin V, Groenendyk J, Steiner SS, Guo L, Dabrowska M, Parker JMR, Müller-Esterl W, Opas M, Michalak M. Identification by Mutational Analysis of Amino Acid Residues Essential in the Chaperone Function of Calreticulin. J Biol Chem 2006; 281:2338-46. [PMID: 16291754 DOI: 10.1074/jbc.m508302200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor.
Collapse
Affiliation(s)
- Virginie Martin
- Membrane Protein Research Group and the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
109
|
Lee W, Lee TH, Park BJ, Chang JW, Yu JR, Koo HS, Park H, Yoo YJ, Ahnn J. Caenorhabditis elegans calnexin is N-glycosylated and required for stress response. Biochem Biophys Res Commun 2005; 338:1018-30. [PMID: 16256074 DOI: 10.1016/j.bbrc.2005.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/08/2005] [Indexed: 11/27/2022]
Abstract
Calnexin, a type I integral Ca(2+)-binding protein in the endoplasmic reticulum (ER) membrane, has been implicated in various biological functions including chaperone activity, calcium homeostasis, phagocytosis, and ER stress-induced apoptosis. Caenorhabditis elegans CNX-1 is expressed in the H-shaped excretory cell, intestine, dorsal and ventral nerve cord, spermatheca, and head and tail neurons throughout development. A cnx-1 null mutant displays temperature-sensitive developmental and reproductive defects, and retarded growth under stress. Moreover, a double knockout mutant of calnexin and calreticulin exhibits additive severe defects. Interestingly, both cnx-1 transcript and protein levels are elevated under stress conditions suggesting that CNX-1 may be important for stress-induced chaperoning functions in C. elegans. Glycosidase treatment and site-directed mutagenesis confirmed that CeCNX-1 is N-glycosylated at two asparagine residues of Asn(203) and Asn(571). When transgenic animals from cnx-1 mutant were generated, a glycosylation defective construct failed to rescue phenotypes of cnx-1 mutant suggesting that glycosylation is important for calnexin's functions in C. elegans.
Collapse
Affiliation(s)
- Wonhae Lee
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Garate M, Cubillos I, Marchant J, Panjwani N. Biochemical characterization and functional studies of Acanthamoeba mannose-binding protein. Infect Immun 2005; 73:5775-81. [PMID: 16113295 PMCID: PMC1231072 DOI: 10.1128/iai.73.9.5775-5781.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acanthamoebae produce a painful, sight-threatening corneal infection. The adhesion of parasites to the host cells is a critical first step in the pathogenesis of infection. Subsequent to adhesion, the parasites produce a potent cytopathic effect (CPE) leading to target cell death. Recent studies showing that acanthamoebae express a mannose-binding protein (MBP) and that free alpha-mannose (alpha-Man) specifically inhibits the adhesion of parasites to host cells suggest that the MBP plays a key role in the pathogenesis of Acanthamoeba infection by mediating host-parasite interactions. However, direct evidence showing that Acanthamoeba MBP is a virulence protein has been lacking. In this study, we demonstrate that the polyclonal immunoglobulin Y (IgY) antibodies prepared against affinity-purified Acanthamoeba MBP markedly inhibit the adhesion of parasites to host cells. The antibody also inhibited the Acanthamoeba-induced CPE on host cells. In contrast, preimmune IgY did not influence either the adhesion of the parasites to host cells or the amoeba-induced CPE. Using a variety of approaches, including affinity chromatography on an alpha-Man gel, electrophoresis under native and denaturing conditions, biotinylation of cell surface proteins, and immunostaining, it was conclusively established that Acanthamoeba MBP is located on the surface membranes of the parasites. Neutral-sugar analysis and lectin binding experiments using succinylated concanavalin A, a plant lectin with high affinity for mannose, revealed that Acanthamoeba MBP is itself a mannose-containing glycoprotein. N-Glycanase treatment to remove N-linked oligosaccharides shifted the subunit molecular mass of MBP from 130 kDa to 110 kDa. Hexosamine analysis revealed that Acanthamoeba MBP lacks detectable levels of GalNAc, suggesting the absence of O-linked oligosaccharides. In summary, we have characterized Acanthamoeba MBP and have shown that it is a major virulence protein responsible for host-parasite interactions and the parasite-induced target cell destruction.
Collapse
Affiliation(s)
- Marco Garate
- Department of Ophthalmology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
111
|
Wanamaker CP, Green WN. N-linked glycosylation is required for nicotinic receptor assembly but not for subunit associations with calnexin. J Biol Chem 2005; 280:33800-10. [PMID: 16091366 PMCID: PMC2373277 DOI: 10.1074/jbc.m501813200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated how asparagine (N)-linked glycosylation affects assembly of acetylcholine receptors (AChRs) in the endoplasmic reticulum (ER). Block of N-linked glycosylation inhibited AChR assembly whereas block of glucose trimming partially blocked assembly at the late stages. Removal of each of seven glycans had a distinct effect on AChR assembly, ranging from no effect to total loss of assembly. Because the chaperone calnexin (CN) associates with N-linked glycans, we examined CN interactions with AChR subunits. CN rapidly associates with 50% or more of newly synthesized AChR subunits, but not with subunits after maturation. Block of N-linked glycosylation or trimming did not alter CN-AChR subunit associations nor did subunit mutations prevent N-linked glycosylation. Additionally, CN associations with subunits lacking N-linked glycans occurred without subunit aggregation or misfolding. Our data indicate that CN associates with AChR subunits without N-linked glycan interactions. Furthermore, CN-subunit associations only occur early in AChR assembly and have no role in events later that require N-linked glycosylation.
Collapse
Affiliation(s)
- Christian P. Wanamaker
- From the Committee on Neurobiology and Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637
| | - William N. Green
- From the Committee on Neurobiology and Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
112
|
Yuki H, Hamanaka R, Shinohara T, Sakai K, Watanabe M. A novel approach for N-glycosylation studies using detergent extracted microsomes. Mol Cell Biochem 2005; 278:157-63. [PMID: 16180101 DOI: 10.1007/s11010-005-7282-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Recently, it has become apparent that asparagine-linked (N-linked) oligosaccharide at an early stage of processing can play an important role in quality control of the secretory pathway. Here, we have developed a system for better understanding of the N-glycosylation machinery and its involvement in quality control in the endoplasmic reticulum (ER). Rough microsomes (RM) treated with 0.18% Tx-100 (TxRM) preserved translocation activities to a similar extent detected in RM. TxRM were depleted of many soluble proteins including glucosidase II, BiP and Erp72, but maintained approximately 80% of calnexin, a membrane protein. More importantly, TxRM revealed insufficient glycosylation of T cell receptor-alpha (TCR-alpha), suggesting that a factor or factors extracted with 0.18% Tx-100 is responsible for facilitating the transfer of oligosaccharides to the protein. In addition, the top band of TCR-alpha translated in TxRM migrated slower than that in RM, but faster than that in RM treated with castanospermine (CST), an inhibitor of glucosidase I/II. This suggests that the trimming of the inner two glucose sugars is impaired by the loss of glucosidase II. Furthermore, we demonstrated that TCR-alpha coprecipitated with calnexin migrated between unglucosylated and diglucosylated forms on SDS-PAGE. Thus, the treatment of RM with low concentration of detergent is a very powerful method for elucidating not only N-glycosylation processes but also other biological functions such as quality control in the ER.
Collapse
Affiliation(s)
- Hideo Yuki
- Department of Anatomy, Biology and Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, Japan
| | | | | | | | | |
Collapse
|
113
|
Zhu X, Peng J, Chen D, Liu X, Ye L, Iijima H, Kadavil K, Lencer WI, Blumberg RS. Calnexin and ERp57 facilitate the assembly of the neonatal Fc receptor for IgG with beta 2-microglobulin in the endoplasmic reticulum. THE JOURNAL OF IMMUNOLOGY 2005; 175:967-76. [PMID: 16002696 DOI: 10.4049/jimmunol.175.2.967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neonatal FcR (FcRn) consists of an MHC class I-like H chain in noncovalent association with beta(2)-microglobulin (beta(2)m). The proper folding of FcRn in the endoplasmic reticulum is essential for FcRn function. Using a low stringency immunoprecipitation of human FcRn, we observed the coprecipitation of an 88-kDa band. Mass spectrometry analysis revealed that this band was identical with calnexin (CNX). This association was verified by Western blotting the CNX or FcRn immunoprecipitates with either an anti-FcRn or anti-CNX Ab. In the beta(2)m-null FO-1 cell transfected with FcRn H chain alone or both FcRn H chain and beta(2)m, CNX bound to the FcRn H chain before the FcRn H chain association with beta(2)m. However, calreticulin only bound to the FcRn H chain-beta(2)m complex. Furthermore, the thiol oxidoreductase ERp57 was detected in FcRn-CNX complexes, suggesting its role in disulfide bond formation of the FcRn H chain. Removal of the N-linked glycosylation site from the FcRn H chain resulted in a decreased association of the FcRn H chain for beta(2)m. However, the absence of CNX did not significantly affect FcRn assembly as defined by the ability of FcRn to bind IgG and exit to the cell surface. This suggests that other chaperones compensate for the function of CNX in FcRn assembly. In addition, we found that tapasin and TAP were not involved in FcRn assembly, as shown by coimmunoprecipitation in THP-1 cells and IgG-binding assays in 721.220 (tapasin-deficient) and 721.174 (TAP-deficient) cells transfected with FcRn. These findings show the importance of chaperones in FcRn assembly.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Paquet ME, Leach MR, Williams DB. In vitro and in vivo assays to assess the functions of calnexin and calreticulin in ER protein folding and quality control. Methods 2005; 35:338-47. [PMID: 15804605 DOI: 10.1016/j.ymeth.2004.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2004] [Indexed: 11/26/2022] Open
Abstract
Newly synthesized polypeptides entering the endoplasmic reticulum (ER) encounter a large array of molecular chaperones and folding factors that facilitate proper folding as well as assess folding status, retaining non-native proteins within the ER. Calnexin (CNX), an ER membrane protein, and its soluble homologue, calreticulin (CRT), are two important molecular chaperones that contribute to both processes. They are highly unusual chaperones in that they act as lectins, binding the Asn-linked oligosaccharides of newly synthesized glycoproteins, as well as recognizing the polypeptide segments of glycoproteins. Furthermore, they associate with ERp57, a thiol oxidoreductase, that is thought to enhance the oxidative folding of glycoproteins bound to CNX/CRT. These characteristics of CNX and CRT as well as their mode of action have been elucidated though the use of multiple in vitro and in vivo approaches. This chapter will focus on the description of a number of in vitro assays that have been used to characterize the lectin and ERp57-binding functions of CNX/CRT and also their abilities to act as molecular chaperones to suppress protein aggregation. In addition, we will describe insect and mammalian expression systems in which major histocompatibility complex class I molecules are used as model glycoprotein substrates for CNX and CRT. These systems have been valuable in assessing folding and quality control events in vivo that are influenced by CNX or CRT as well as in characterizing the spectrum of substrates that are recognized by these chaperones.
Collapse
Affiliation(s)
- Marie-Eve Paquet
- Department of Biochemistry, University of Toronto, Toronto, Canada M5S 1A8
| | | | | |
Collapse
|
115
|
Lanctot P, Leclerc P, Clément M, Auger-Messier M, Escher E, Leduc R, Guillemette G. Importance of N-glycosylation positioning for cell-surface expression, targeting, affinity and quality control of the human AT1 receptor. Biochem J 2005; 390:367-76. [PMID: 15869468 PMCID: PMC1188272 DOI: 10.1042/bj20050189] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/14/2005] [Accepted: 05/04/2005] [Indexed: 12/23/2022]
Abstract
GPCRs (G-protein-coupled receptors) are preferentially N-glycosylated on ECL2 (extracellular loop 2). We previously showed that N-glycosylation of ECL2 was crucial for cell-surface expression of the hAT1 receptor (human angiotensin II receptor subtype 1). Here, we ask whether positioning of the N-glycosylation sites within the various ECLs of the receptor is a vital determinant in the functional expression of hAT(1) receptor at the cell surface. Artificial N-glycosylation sequons (Asn-Xaa-Ser/Thr) were engineered into ECL1, ECL2 and ECL3. N-glycosylation of ECL1 caused a very significant decrease in affinity and cell surface expression of the resulting receptor. Shifting the position of the ECL2 glycosylation site by two residues led to the synthesis of a misfolded receptor which, nevertheless, was trafficked to the cell surface. The misfolded nature of this receptor is supported by an increased interaction with the chaperone HSP70 (heat-shock protein 70). Introduction of N-glycosylation motifs into ECL3 yielded mutant receptors with normal affinity, but low levels of cell surface expression caused by proteasomal degradation. This behaviour differed from that observed for the aglycosylated receptor, which accumulated in the endoplasmic reticulum. These results show how positioning of the N-glycosylation sites altered many properties of the AT1 receptor, such as targeting, folding, affinity, cell surface expression and quality control.
Collapse
Key Words
- angiotensin ii receptor subtype 1 (at1 receptor)
- degradation
- g-protein-coupled receptor (gpcr)
- n-glycosylation
- protein folding
- quality control
- afu, arbitrary fluorescence units
- angii, angiotensin ii
- (h)at1 receptor, (human) angiotensin ii receptor subtype 1
- at1-ag, aglycosylated at1 receptor
- at1-wt, wild-type at1 receptor
- [ca2+]i, intracellular [ca2+]
- dmem, dulbecco's modified eagle's medium
- ecl, extracellular loop
- er, endoplasmic reticulum
- erad, er-associated degradation
- fura 2/am, fura 2 acetoxymethyl ester
- gpcr, g-protein-coupled receptor
- grp78/bip, 78 kda glucose-regulated protein/heavy-chain binding protein
- hbss, hepes-buffered saline solution
- hsp70, heat-shock protein 70
- icl1, intracellular loop 1
- ip/ib, immunoprecipitation and immunoblotting
- upr, unfolded protein response
- wt, wild-type
Collapse
Affiliation(s)
- Pascal M. Lanctot
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Patrice C. Leclerc
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Martin Clément
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Mannix Auger-Messier
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Emanuel Escher
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Gaétan Guillemette
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| |
Collapse
|
116
|
Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005; 14:2387-98. [PMID: 16000318 DOI: 10.1093/hmg/ddi240] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gaucher disease (GD), an autosomal recessive disease, is characterized by accumulation of glucosylceramide mainly in cells of the reticuloendothelial system, due to mutations in the acid beta-glucocerebrosidase gene. Some of the patients suffer from neurological symptoms (type 2 and type 3 patients), whereas patients with type 1 GD do not present neurological signs. The disease is heterogeneous even among patients with the same genotype, implicating that a mutation in the glucocerebrosidase gene is required to cause GD but other factors play an important role in the manifestation of the disease. Glucocerebrosidase is a lysosomal enzyme, synthesized on endoplasmic reticulum (ER)-bound polyribosomes and translocated into the ER. Following N-linked glycosylations, it is transported to the Golgi apparatus, from where it is trafficked to the lysosomes. In this study, we tested glucocerebrosidase protein levels, N-glycans processing and intracellular localization in skin fibroblasts derived from patients with GD. Our results strongly suggest that mutant glucocerebrosidase variants present variable levels of ER retention and undergo ER-associated degradation in the proteasomes. The degree of ER retention and proteasomal degradation is one of the factors that determine GD severity.
Collapse
Affiliation(s)
- Idit Ron
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
117
|
Jones J, Nivitchanyong T, Giblin C, Ciccarone V, Judd D, Gorfien S, Krag SS, Betenbaugh MJ. Optimization of tetracycline‐responsive recombinant protein production and effect on cell growth and ER stress in mammalian cells. Biotechnol Bioeng 2005; 91:722-32. [PMID: 15981277 DOI: 10.1002/bit.20566] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inducible T-REx system and other inducible expression systems have been developed in order to control the expression levels of recombinant protein in mammalian cells. In order to study the effects of heterologous protein expression on mammalian host behavior, the gene for recombinant Human transferrin (hTf) was integrated into HEK-293 cells and expressed under the control of the T-REx inducible technology (293-TetR-Hyg-hTf) or using a constitutive promoter (293-CMV-hTf). A number of inducible clones with variable expression levels were identified for the T-REx system with levels of hTf for the high expressing clones nearly double those obtained using the constitutive cytomegalovirus (CMV) promoter. The level of transferrin produced was found to increase proportionately with tetracycline concentration between 0 and 1 mug/mL with no significant increases in transferrin production above 1 mug/mL. As a result, the optimal induction time and tetracycline concentrations were determined to be the day of plating and 1 mug/mL, respectively. Interestingly, the cells induced to express transferrin, 293-TetR-Hyg-hTf, exhibited lower viable cell densities and percent viabilities than the uninduced cultures for multiple clonal isolates. In addition, the induction of transferrin expression was found to cause an increase in the expression of the ER-stress gene, BiP, that was not observed in the uninduced cells. However, both uninduced and induced cell lines containing the hTf gene exhibited longer survival in culture than the control cells, possibly as a result of the positive effects of hTf on cell survival. Taken together, these results suggest that the high level expression of complex proteins in mammalian cells can limit the viable cell densities of cells in culture as a result of cellular stresses caused by generating proteins that may be difficult to fold or are otherwise toxic to cells. The application of inducible systems such as the T-REx technology will allow us to optimize protein production while limiting the negative effects that result from these cellular stresses.
Collapse
Affiliation(s)
- Jullian Jones
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Tani F, Shirai N, Nakanishi Y, Yasumoto K, Kitabatake N. Role of the carbohydrate chain and two phosphate moieties in the heat-induced aggregation of hen ovalbumin. Biosci Biotechnol Biochem 2005; 68:2466-76. [PMID: 15618616 DOI: 10.1271/bbb.68.2466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effect of the carbohydrate chain and two phosphate moieties on heat-induced aggregation of hen ovalbumin. The dephosphorylated form of ovalbumin was obtained by treating the original protein with acid phosphatase. The single carbohydrate chain was removed by digestion of heat-denatured ovalbumin with glycopeptidase F, and the resulting polypeptide without this carbohydrate chain was correctly refolded to acquire protease-resistance. Thermal unfolding can be approximated by a mechanism involving a two-state transition between the folded and unfolded states with a midpoint temperature of 76 degrees C for the original form, of 74 degrees C for the dephosphorylated form, and of 71 degrees C for the carbohydrate-free form. The conformational stability of the original form was higher than that of the carbohydrate-free form. When the three forms of ovalbumin were heated to 80 degrees C and then cooled rapidly in an ice bath, the polypeptide chains were compactly collapsed to metastable intermediates with secondary structures whose properties were indistinguishable. Upon incubation at 60 degrees C, renaturation was possible for a large portion of the intermediates of the original form, but for only a small portion of those of the carbohydrate-free form. Light scattering experiments showed that in the presence of sulfate anions, the intermediates of the carbohydrate-free form aggregated to a greater extent than did those of the original form. The intermediates of the carbohydrate-free form bound to the chaperonin GroEL with about 10-fold higher affinity than those of the original form. It follows that the carbohydrate chain and the two phosphate moieties do not affect hydrophobic collapse in the kinetic refolding of hen ovalbumin but play an important role in the slow rearrangement. They block the off-pathway reaction that competes with correct refolding by effectively decreasing surface hydrophobicity.
Collapse
Affiliation(s)
- Fumito Tani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Goka-sho, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | |
Collapse
|
119
|
Wang N, Daniels R, Hebert DN. The cotranslational maturation of the type I membrane glycoprotein tyrosinase: the heat shock protein 70 system hands off to the lectin-based chaperone system. Mol Biol Cell 2005; 16:3740-52. [PMID: 15958486 PMCID: PMC1182312 DOI: 10.1091/mbc.e05-05-0381] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The maturation of eukaryotic secretory cargo initiates cotranslationally and cotranslocationally as the polypeptide chain emerges into the endoplasmic reticulum lumen. Here, we characterized the cotranslational maturation pathway for the human type I membrane glycoprotein tyrosinase. To recapitulate the cotranslational events, including glycosylation, signal sequence cleavage, chaperone binding, and oxidation, abbreviated transcripts lacking a stop codon were in vitro translated in the presence of semipermeabilized melanocyte membranes. This created a series of ribosome/translocon-arrested chains of increasing lengths, simulating intermediates in the cotranslational folding process. Initially, nascent chains were found to associate with the heat shock protein (Hsp) 70 family member BiP. As the nascent chains elongated and additional glycans were transferred, BiP binding rapidly decreased and the lectin-based chaperone system was recruited in its place. The lectin chaperone calnexin bound to the nascent chain after the addition of two glycans, and calreticulin association followed upon the addition of a third. The glycan-specific oxidoreductase ERp57 was cross-linked to tyrosinase when calnexin and calreticulin were associated. This timing coincided with the formation of disulfide bonds within tyrosinase and the cleavage of its signal sequence. Therefore, tyrosinase maturation initiates cotranslationally with the Hsp70 system and is handed off to the lectin chaperone system that first uses calnexin before calreticulin. Interestingly, divergence in the maturation pathways of wild-type and mutant albino tyrosinase can already be observed for translocon-arrested nascent chains.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
120
|
Abstract
Receptors, hormones, enzymes, ion channels, and structural components of the cell are created by the act of protein synthesis. Synthesis alone is insufficient for proper function, of course; for a cell to operate effectively, its components must be correctly compartmentalized. The mechanism by which proteins maintain the fidelity of localization warrants attention in light of the large number of different molecules that must be routed to distinct subcellular loci, the potential for error, and resultant disease. This review summarizes diseases known to have etiologies based on defective protein folding or failure of the cell's quality control apparatus and presents approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Cecilia Castro-Fernández
- Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
121
|
Molecular analysis of a novel hereditary C3 deficiency with systemic lupus erythematosus. Biochem Biophys Res Commun 2005; 330:298-304. [PMID: 15781264 DOI: 10.1016/j.bbrc.2005.02.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Indexed: 12/31/2022]
Abstract
A case of inherited homozygous complement C3 deficiency (C3D) in a patient with systemic lupus erythematosus (SLE) and the molecular basis for this deficiency are reported. A 22-year-old Japanese male was diagnosed as having SLE and his medical history revealed recurrent tonsillitis and pneumonia. He was diagnosed as having C3D because of undetectable serum C3 level. His parents were consanguineous. Sequence analysis of C3D cDNA revealed a homozygous deletion of exon 39 (84bp). A single base substitution (AG to GG) in the 3'-splice acceptor site of intron 38 was identified by sequencing the genomic DNA. Expression of C3Delta(ex39) cDNA, the C3cDNA lacking exon 39, in COS-7 cells revealed that C3Delta(ex39) was retained in endoplasmic reticulum-Golgi intermediate compartment because of defective secretion. These data indicate that a novel AG-->GG 3'-splice acceptor site mutation in intron 38 caused aberrant splicing of exon 39, resulting in defective secretion of C3.
Collapse
|
122
|
Popescu CI, Paduraru C, Dwek RA, Petrescu SM. Soluble Tyrosinase is an Endoplasmic Reticulum (ER)-associated Degradation Substrate Retained in the ER by Calreticulin and BiP/GRP78 and Not Calnexin. J Biol Chem 2005; 280:13833-40. [PMID: 15677452 DOI: 10.1074/jbc.m413087200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosinase is a type I membrane protein regulating the pigmentation process in humans. Mutations of the human tyrosinase gene cause the tyrosinase negative type I oculocutaneous albinism (OCAI). Some OCAI mutations were shown to delete the transmembrane domain or to affect its hydrophobic properties, resulting in soluble tyrosinase mutants that are retained in the endoplasmic reticulum (ER). To understand the specific mechanisms involved in the ER retention of soluble tyrosinase, we have constructed a tyrosinase mutant truncated at its C-terminal end and investigated its maturation process. The mutant is retained in the ER, and it is degraded through the proteasomal pathway. We determined that the mannose trimming is required for an efficient degradation process. Moreover, this soluble ER-associated degradation substrate is stopped at the ER quality control checkpoint with no requirements for an ER-Golgi recycling pathway. Co-immmunoprecipitation experiments showed that soluble tyrosinase interacts with calreticulin and BiP/GRP78 (and not calnexin) during its ER transit. Expression of soluble tyrosinase in calreticulin-deficient cells resulted in the export of soluble tyrosinase of the ER, indicating the calreticulin role in ER retention. Taken together, these data show that OCAI soluble tyrosinase is an ER-associated degradation substrate that, unlike other albino tyrosinases, associates with calreticulin and BiP/GRP78. The lack of specificity for calnexin interaction reveals a novel role for calreticulin in OCAI albinism.
Collapse
Affiliation(s)
- Costin I Popescu
- Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania
| | | | | | | |
Collapse
|
123
|
Affiliation(s)
- C Hammond
- Department of Biology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
124
|
Bedard K, Szabo E, Michalak M, Opas M. Cellular Functions of Endoplasmic Reticulum Chaperones Calreticulin, Calnexin, and ERp57. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:91-121. [PMID: 16125546 DOI: 10.1016/s0074-7696(05)45004-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Glycosylated proteins destined for the cell surface or to be secreted from the cell are trafficked through the endoplasmic reticulum during synthesis and folding. Correct folding is determined in large part by the sequence of the protein, but it is also assisted by interaction with enzymes and chaperones of the endoplasmic reticulum. Calreticulin, calnexin, and ERp57 are among the endoplasmic chaperones that interact with partially folded glycoproteins and determine if the proteins are to be released from the endoplasmic reticulum to be expressed, or alternatively, if they are to be sent to the proteosome for degradation. Studies on the effect of alterations in the expression and function of these proteins are providing information about the importance of this quality control system, as well as uncovering other important functions these proteins play outside of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Karen Bedard
- Membrane Protein Research Group and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
125
|
Soldà T, Olivari S, Molinari M. Analyzing folding and degradation of metabolically labelled polypeptides by conventional and diagonal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biol Proced Online 2005; 7:136-43. [DOI: 10.1251/bpo111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/14/2005] [Accepted: 09/20/2005] [Indexed: 01/30/2023] Open
|
126
|
Norton PA, Conyers B, Gong Q, Steel LF, Block TM, Mehta AS. Assays for glucosidase inhibitors with potential antiviral activities: secreted alkaline phosphatase as a surrogate marker. J Virol Methods 2004; 124:167-72. [PMID: 15664065 DOI: 10.1016/j.jviromet.2004.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 11/11/2004] [Accepted: 11/22/2004] [Indexed: 10/26/2022]
Abstract
As secretion of the middle (MHBs) glycoprotein of hepatitis B virus is highly dependent upon the action of the host oligosaccharide processing enzymes glucosidase I and II, drugs that inhibit this enzyme have been proposed as potential antiviral agents. To facilitate the identification of new, more effective inhibitors of MHBs secretion, an assay has been developed based on the expression of this glycoprotein alone by transfection of Huh7 hepatoma cells. The data clearly demonstrate that both mono- and di-glycosylated forms of MHBs are produced in this system and both forms are equally dependent upon glucosidase processing for secretion. In addition, inclusion of a co-transfected reporter construct that encodes secreted alkaline phosphatase (SEAP) to permit normalization of transfection revealed that the SEAP gene product was itself sensitive to glucosidase inhibition. This sensitivity also was observed in HepG2 human hepatoma cells. Thus, measuring SEAP secretion may be another method for evaluating glucosidase inhibition. In addition, this finding has important implications for the use of a SEAP reporter in screens of potential antiviral agents.
Collapse
Affiliation(s)
- Pamela A Norton
- Jefferson Center for Biomedical Research, Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Doylestown, PA 18901, USA.
| | | | | | | | | | | |
Collapse
|
127
|
Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuroanat 2004; 28:51-65. [PMID: 15363491 DOI: 10.1016/j.jchemneu.2003.08.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/21/2003] [Accepted: 12/21/2003] [Indexed: 12/25/2022]
Abstract
Nearly all resident proteins of the organelles along the secretory pathway, as well as proteins that are expressed at the cell surface or secreted from the cell, are first co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Immediately after entering the ER, they are often modified with N-linked glycans, are folded into the appropriate secondary and tertiary structures, which are stabilized by disulfide bonds, and finally in many cases are assembled into multimeric complexes. These processes are aided and monitored by ER chaperones and folding enzymes. When cells experience conditions that alter the ER environment, protein folding can be dramatically affected and can lead to the accumulation of unfolded proteins in this organelle. This in turn activates a signaling response, which is shared among all eukaryotic organisms, termed the unfolded protein response (UPR). The hallmark of this response is the coordinate transcriptional up-regulation of ER chaperones and folding enzymes. A major role for the increased levels of chaperones and folding enzymes during conditions of ER stress is to provide the same functions they carry out during normal physiological conditions. This includes preventing unfolded and incompletely folded proteins from aggregating and promoting the proper folding and assembly of proteins in the ER. During conditions of ER stress, many proteins are unable to fold properly and the requirements for chaperones are therefore increased. However, more recently it has become clear that some ER chaperones are also involved in signaling the ER stress response, targeting misfolded proteins for degradation and perhaps even shutting down the UPR when the stress subsides. In addition, during some normal physiological conditions, like plasma cell differentiation where there is an increased demand in the secretory capacity of B cells, the levels of various ER chaperones are also up-regulated via at least part of the UPR pathway. In order to discuss these various functions of ER chaperones, we will begin with the roles of ER chaperones and folding enzymes during normal physiological conditions and then discuss their roles during ER stress.
Collapse
Affiliation(s)
- Yanjun Ma
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
128
|
Abstract
From a process involved in cell wall synthesis in archaea and some bacteria, N-linked glycosylation has evolved into the most common covalent protein modification in eukaryotic cells. The sugars are added to nascent proteins as a core oligosaccharide unit, which is then extensively modified by removal and addition of sugar residues in the endoplasmic reticulum (ER) and the Golgi complex. It has become evident that the modifications that take place in the ER reflect a spectrum of functions related to glycoprotein folding, quality control, sorting, degradation, and secretion. The glycans not only promote folding directly by stabilizing polypeptide structures but also indirectly by serving as recognition "tags" that allow glycoproteins to interact with a variety of lectins, glycosidases, and glycosyltranferases. Some of these (such as glucosidases I and II, calnexin, and calreticulin) have a central role in folding and retention, while others (such as alpha-mannosidases and EDEM) target unsalvageable glycoproteins for ER-associated degradation. Each residue in the core oligosaccharide and each step in the modification program have significance for the fate of newly synthesized glycoproteins.
Collapse
Affiliation(s)
- Ari Helenius
- Institute of Biochemistry1 Swiss Federal Institute of Technology Zurich, Zurich 8093, Switzerland.
| | | |
Collapse
|
129
|
Rozenfeld R, Muller L, El Messari S, Llorens-Cortes C. The C-terminal Domain of Aminopeptidase A Is an Intramolecular Chaperone Required for the Correct Folding, Cell Surface Expression, and Activity of This Monozinc Aminopeptidase. J Biol Chem 2004; 279:43285-95. [PMID: 15263000 DOI: 10.1074/jbc.m404369200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminopeptidase A (APA, EC 3.4.11.7) is a type II integral membrane glycoprotein responsible for the conversion of angiotensin II to angiotensin III in the brain. Previous site-directed mutagenesis studies and the recent molecular modeling of the APA zinc metallopeptidase domain have shown that all the amino acids involved in catalysis are located between residues 200 and 500. The APA ectodomain is cleaved in the kidney into an N-terminal fragment corresponding to the zinc metallopeptidase domain, and a C-terminal fragment of unknown function. We investigated the function of this C-terminal domain, by expressing truncated APAs in Chinese hamster ovary and AtT-20 cells. Deletion of the C-terminal domain abolished the maturation and enzymatic activity of the N-terminal domain, which was retained in the endoplasmic reticulum as an unfolded protein bound to calnexin. Expression in trans of the C-terminal domain resulted in association of the N- and C-terminal domains soon after biosynthesis, allowing folding rescue, maturation, cell surface expression, and activity of the N-terminal zinc metallopeptidase domain. We also show that the C-terminal domain is not required for the catalytic activity of APA but is essential for its activation. Moreover, we show that the C-terminal domain of aminopeptidase N (EC 3.4.11.2, APN) also promotes maturation and cell surface expression of the N-terminal domain of APN, suggesting a common role of the C-terminal domain in the monozinc aminopeptidase family. Our data provide the first demonstration that the C-terminal domain of an eukaryotic exopeptidase acts as an intramolecular chaperone.
Collapse
Affiliation(s)
- Raphaël Rozenfeld
- INSERM Unité 36, Collège de France 11, place Marcelin Berthelot, 75005 Paris, France
| | | | | | | |
Collapse
|
130
|
Manganas LN, Trimmer JS. Calnexin regulates mammalian Kv1 channel trafficking. Biochem Biophys Res Commun 2004; 322:577-84. [PMID: 15325269 DOI: 10.1016/j.bbrc.2004.06.182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 10/26/2022]
Abstract
Voltage-gated Kv1 channels are key factors regulating excitability in the mammalian central nervous system. Diverse posttranslational regulatory mechanisms operate to determine the density, subunit composition, and localization of Kv1 channel complexes in the neuronal plasma membrane. In this study, we investigated the role of the endoplasmic reticulum chaperone calnexin in the intracellular trafficking of Kv1 channels. We found that coexpressing calnexin with the Kv1.2alpha subunit in transfected mammalian COS-1 cells produced a dramatic dose-dependent increase in cell surface Kv1.2 channel complexes. In calnexin-transfected COS-1 cells, the proportion of Kv1.2 channels with mature N-linked oligosaccharide chains was comparable to that observed in neurons. In contrast, calnexin coexpression exerted no effects on trafficking of the intracellularly retained Kv1.1 or Kv1.6alpha subunits. We also found that calnexin and auxiliary Kvbeta2 subunit coexpression was epistatic, suggesting that they share a common pathway for promoting Kv1.2 channel surface expression. These results provide yet another component in the elaborate repertoire of determinants regulating the density of Kv1 channels in the plasma membrane.
Collapse
Affiliation(s)
- Louis N Manganas
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
131
|
Svedine S, Wang T, Halaban R, Hebert DN. Carbohydrates act as sorting determinants in ER-associated degradation of tyrosinase. J Cell Sci 2004; 117:2937-49. [PMID: 15161941 DOI: 10.1242/jcs.01154] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endoplasmic reticulum (ER) quality-control machinery maintains the fidelity of the maturation process by sorting aberrant proteins for ER-associated protein degradation (ERAD), a process requiring retrotranslocation from the ER lumen to the cytosol and degradation by the proteasome. Here, we assessed the role of N-linked glycans in ERAD by monitoring the degradation of wild-type (Tyr) and albino mutant (Tyr(C85S)) tyrosinase. Initially, mutant tyrosinase was established as a genuine ERAD substrate using intact melanocyte and semi-permeabilized cell systems. Inhibiting mannose trimming or accumulating Tyr(C85S) in a monoglucosylated form led to its stabilization, supporting a role for lectin chaperones in ER retention and proteasomal degradation. In contrast, ablating the lectin chaperone interactions by preventing glucose trimming caused a rapid disappearance of tyrosinase, initially due to the formation of protein aggregates, which were subsequently degraded by the proteasome. The co-localization of aggregated tyrosinase with protein disulfide isomerase and BiP, but not calnexin, supports an ER organization, which aids in protein maturation and degradation. Based on these studies, we propose a model of tyrosinase degradation in which interactions between N-linked glycans and lectin chaperones help to minimize tyrosinase aggregation and also target non-native substrates for retro-translocation and subsequent degradation.
Collapse
Affiliation(s)
- Sherri Svedine
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
132
|
Pollock S, Kozlov G, Pelletier MF, Trempe JF, Jansen G, Sitnikov D, Bergeron JJM, Gehring K, Ekiel I, Thomas DY. Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J 2004; 23:1020-9. [PMID: 14988724 PMCID: PMC380975 DOI: 10.1038/sj.emboj.7600119] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 01/16/2004] [Indexed: 11/09/2022] Open
Abstract
Calnexin and ERp57 act cooperatively to ensure a proper folding of proteins in the endoplasmic reticulum (ER). Calnexin contains two domains: a lectin domain and an extended arm termed the P-domain. ERp57 is a protein disulfide isomerase composed of four thioredoxin-like repeats and a short basic C-terminal tail. Here we show direct interactions between the tip of the calnexin P-domain and the ERp57 basic C-terminus by using NMR and a novel membrane yeast two-hybrid system (MYTHS) for mapping protein interactions of ER proteins. Our results prove that a small peptide derived from the P-domain is active in binding ERp57, and we determine the structure of the bound conformation of the P-domain peptide. The experimental strategy of using the MYTHS two-hybrid system to map interaction sites between ER proteins, together with NMR, provides a powerful new strategy for establishing the function of ER complexes.
Collapse
Affiliation(s)
- Stephanie Pollock
- Biochemistry Department, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Guennadi Kozlov
- Biochemistry Department, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Marc-François Pelletier
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Jean-François Trempe
- Biochemistry Department, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Gregor Jansen
- Biochemistry Department, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Dimitri Sitnikov
- Health Sector, Biotechnology Research Institute, Montréal, Québec, Canada
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Kalle Gehring
- Biochemistry Department, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Irena Ekiel
- Health Sector, Biotechnology Research Institute, Montréal, Québec, Canada
| | - David Y Thomas
- Biochemistry Department, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
133
|
Orlando RA. The low-density lipoprotein receptor-related protein associates with calnexin, calreticulin, and protein disulfide isomerase in receptor-associated-protein-deficient fibroblasts. Exp Cell Res 2004; 294:244-53. [PMID: 14980518 DOI: 10.1016/j.yexcr.2003.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/23/2003] [Indexed: 11/20/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP) is a large (>600 kDa) multi-ligand-binding cell surface receptor that is now known to participate in a diverse range of cellular events. To accomplish this diverse role, LRP is composed of repetitive amino acid motifs consisting of complement-type and EGF precursor-type repeats. Within these repeats are six conserved cysteine residues that form the core disulfide bond structure of each repeat. To accommodate the intricate folding that such a complex structure dictates, a specialized chaperone is present in the endoplasmic reticulum (ER) called the receptor-associated protein (RAP) that binds to LRP immediately following its biosynthesis and assists in its exocytic transport. Interestingly, RAP -/- mice show reduced LRP expression in certain cell types, but not a more global affect on LRP expression that was expected. Such a tissue-restricted effect by RAP prompted an investigation if other ER chaperones associate with LRP to assist in its complex folding requirements and compensate for the absence of RAP in RAP -/- cells. Fibroblasts obtained from RAP -/- mice demonstrate similar LRP expression levels and subcellular distribution as RAP +/+ fibroblasts. Moreover, RAP -/- cells show an identical exocytic trafficking rate for LRP as RAP +/+ cells and comparable cell surface internalization kinetics. In RAP -/- cells, three well-known ER chaperones, calnexin, calreticulin, and protein disulfide isomerase (PDI), associate with LRP and likely compensate for the absence of RAP.
Collapse
Affiliation(s)
- Robert A Orlando
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Health Sciences Center, Albuquerque, NM 87131-5221, USA.
| |
Collapse
|
134
|
Devlin GL, Carver JA, Bottomley SP. The Selective Inhibition of Serpin Aggregation by the Molecular Chaperone, α-Crystallin, Indicates a Nucleation-dependent Specificity. J Biol Chem 2003; 278:48644-50. [PMID: 14500715 DOI: 10.1074/jbc.m308376200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that prevent the misfolding and aggregation of proteins. However, specific details about their substrate specificity and mechanism of chaperone action are lacking. alpha1-Antichymotrypsin (ACT) and alpha1-antitrypsin (alpha1-AT) are two closely related members of the serpin superfamily that aggregate through nucleation-dependent and nucleation-independent pathways, respectively. The sHsp alpha-crystallin was unable to prevent the nucleation-independent aggregation of alpha1-AT, whereas alpha-crystallin inhibited ACT aggregation in a dose-dependent manner. This selective inhibition of ACT aggregation coincided with the formation of a stable high molecular weight alpha-crystallin-ACT complex with a stoichiometry of 1 on a molar subunit basis. The kinetics of this interaction occur at the same rate as the loss of ACT monomer, suggesting that the monomeric species is bound by the chaperone. 4,4'-Dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (Bis-ANS) binding and far-UV circular dichroism data suggest that alpha-crystallin interacts specifically with a non-native conformation of ACT. The finding that alpha-crystallin does not interact with alpha1-AT under these conditions suggests that alpha-crystallin displays a specificity for proteins that aggregate through a nucleation-dependent pathway, implying that the dynamic nature of both the chaperone and its substrate protein is a crucial factor in the chaperone action of alpha-crystallin and other sHsps.
Collapse
Affiliation(s)
- Glyn L Devlin
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800
| | | | | |
Collapse
|
135
|
Abstract
The biosynthesis of secretory and membrane proteins in the endoplasmic reticulum (ER) yields mostly properly folded and assembled structures with full biological activity. Such fidelity is maintained by quality control (QC) mechanisms that avoid the production of nonnative structures. QC relies on chaperone systems in the ER that monitor and assist in the folding process. When folding promotion is not sufficient, proteins are retained in the ER and eventually retranslocated to the cytosol for degradation by the ubiquitin proteasome pathway. Retention of proteins that fail QC can sometimes occur beyond the ER, and degradation can take place in lysosomes. Several diseases are associated with proteins that do not pass QC, fail to be degraded efficiently, and accumulate as aggregates. In other cases, pathology arises from the downregulation of mutated but potentially functional proteins that are retained and degraded by the QC system.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology, Yale University School of Medicine, PO Box 208002, New Haven, Connecticut 06520-8002, USA.
| | | |
Collapse
|
136
|
Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci 2003. [PMID: 12843282 DOI: 10.1523/jneurosci.23-13-05778.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staufen1, the mammalian homolog of Drosophila Staufen, assembles into ribonucleoprotein particles (RNPs), which are thought to transport and localize RNA into dendrites of mature hippocampal neurons. We therefore investigated whether additional components of the RNA localization complex besides Staufen are conserved. One candidate is the mammalian homolog of Drosophila Barentsz (Btz), which is essential for the localization of oskar mRNA to the posterior pole of the Drosophila oocyte and is a component of the oskar RNA localization complex along with Staufen. In this study, we report the characterization of mammalian Btz, which behaves like a nucleocytoplasmic shuttling protein. When expressed in the Drosophila egg chamber, mammalian Btz is still able to interact with Drosophila Staufen and reach the posterior pole in the wild-type oocyte, but does not rescue the btz mutant phenotype. Most interestingly, we show by immunoprecipitation assays that Btz interacts with mammalian Staufen in an RNA-dependent manner through a conserved domain, which encompasses the region of homology to the Drosophila Btz protein and contains a novel conserved motif. One candidate for an RNA that mediates this interaction is the dendritically localized brain cytoplasmic 1 transcript. In addition, Btz and Staufen1 colocalize within particles in the cell body and, to a more variable extent, in dendrites of mature hippocampal neurons. Together, our data suggest that the mRNA transport machinery is conserved during evolution, and that mammalian Btz is an additional component of the dendritic RNPs in hippocampal neurons.
Collapse
|
137
|
Shimada O, Hara-Kuge S, Yamashita K, Tosaka-Shimada H, Yanchao L, Einan L, Atsumi S, Ishikawa H. Localization of VIP36 in the post-Golgi secretory pathway also of rat parotid acinar cells. J Histochem Cytochem 2003; 51:1057-63. [PMID: 12871987 DOI: 10.1177/002215540305100809] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
VIP36 (36-kD vesicular integral membrane protein), originally purified from Madin-Darby canine kidney (MDCK) epithelial cells, belongs to a family of animal lectins and may act as a cargo receptor. To understand its role in secretory processes, we performed morphological analysis of the rat parotid gland. Immunoelectron microscopy provided evidence that endogenous VIP36 is localized in the trans-Golgi network, on immature granules, and on mature secretory granules in acinar cells. Double-staining immunofluorescence experiments confirmed that VIP36 and amylase co-localized in the apical regions of the acinar cells. This is the first study to demonstrate that endogenous VIP36 is involved in the post-Golgi secretory pathway, suggesting that VIP36 plays a role in trafficking and sorting of secretory and/or membrane proteins during granule formation.
Collapse
Affiliation(s)
- Osamu Shimada
- Department of Anatomy, Yamanashi University School of Medicine, Yamanashi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Knee R, Ahsan I, Mesaeli N, Kaufman RJ, Michalak M. Compromised calnexin function in calreticulin-deficient cells. Biochem Biophys Res Commun 2003; 304:661-6. [PMID: 12727205 DOI: 10.1016/s0006-291x(03)00643-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calnexin and calreticulin are molecular chaperones, which are involved in the protein folding, assembly, and retention/retrieval. We know that calreticulin-deficiency is lethal in utero, but do not understand the contribution of chaperone function to this phenotype. Here we studied protein folding and chaperone function of calnexin in the absence of calreticulin. We show that protein folding is accelerated and quality control is compromised in calreticulin-deficient cells. Calnexin-substrate association is severely reduced, leading to accumulation of unfolded proteins and a triggering of the unfolded protein response (UPR). PERK and Ire1alpha and eIF2alpha are also activated in calreticulin-deficient cells. We show that the absence of calreticulin can have devastating effects on the function of the others, compromising overall quality control of the secretory pathway and activating UPR-dependent pathways.
Collapse
Affiliation(s)
- Rai Knee
- Department of Biochemistry, Canadian Institutes of Health Research Membrane Protein Research Group, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
139
|
Tyedmers J, Lerner M, Wiedmann M, Volkmer J, Zimmermann R. Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep 2003; 4:505-10. [PMID: 12704426 PMCID: PMC1319181 DOI: 10.1038/sj.embor.embor826] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 03/10/2003] [Accepted: 03/13/2003] [Indexed: 11/08/2022] Open
Abstract
The first step in the secretion of most mammalian proteins is their transport into the lumen of the endoplasmic reticulum (ER). Transport of pre-secretory proteins into the mammalian ER requires signal peptides in the precursor proteins and a protein translocase in the ER membrane. In addition, hitherto unidentified lumenal ER proteins have been shown to be required for vectorial protein translocation. This requirement was confirmed in this study by using proteoliposomes that were made from microsomal detergent extracts and contained either low or high concentrations of lumenal ER proteins. Furthermore, immunoglobulin-heavy-chain-binding protein (BiP) was shown to be able to substitute for the full set of lumenal proteins and, in the case of biotinylated precursor proteins, avidin was found to be able to substitute for lumenal proteins. Thus, the polypeptide-chain-binding protein BiP was identified as one lumenal protein that is involved in efficient vectorial protein translocation into the mammalian ER.
Collapse
Affiliation(s)
- Jens Tyedmers
- Medizinische Biochemie, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Monika Lerner
- Medizinische Biochemie, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Martin Wiedmann
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Jörg Volkmer
- Medizinische Biochemie, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Richard Zimmermann
- Medizinische Biochemie, Universität des Saarlandes, D-66421 Homburg, Germany
- Tel: +49 6841 1626510; fax: +49 6841 1626288;
| |
Collapse
|
140
|
Di Jeso B, Ulianich L, Pacifico F, Leonardi A, Vito P, Consiglio E, Formisano S, Arvan P. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochem J 2003; 370:449-58. [PMID: 12401114 PMCID: PMC1223171 DOI: 10.1042/bj20021257] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 10/17/2002] [Accepted: 10/28/2002] [Indexed: 11/17/2022]
Abstract
During its initial folding in the endoplasmic reticulum (ER), newly synthesized thyroglobulin (Tg) is known to interact with calnexin and other ER molecular chaperones, but its interaction with calreticulin has not been examined previously. In the present study, we have investigated the interactions of endogenous Tg with calreticulin and with several other ER chaperones. We find that, in FRTL-5 and PC-Cl3 cells, calnexin and calreticulin interact with newly synthesized Tg in a carbohydrate-dependent manner, with largely overlapping kinetics that are concomitant with the maturation of Tg intrachain disulphide bonds, preceding Tg dimerization and exit from the ER. Calreticulin co-precipitates more newly synthesized Tg than does calnexin; however, using two different experimental approaches, calnexin and calreticulin were found in ternary complexes with Tg, making this the first endogenous protein reported in ternary complexes with calnexin and calreticulin in the ER of live cells. Depletion of Ca(2+) from the ER elicited by thapsigargin (a specific inhibitor of ER Ca(2+)-ATPases) results in retention of Tg in this organelle. Interestingly, thapsigargin treatment induces the premature exit of Tg from the calnexin/calreticulin cycle, while stabilizing and prolonging interactions of Tg with BiP (immunoglobulin heavy chain binding protein) and GRP94 (glucose-regulated protein 94), two chaperones whose binding is not carbohydrate-dependent. Our results suggest that calnexin and calreticulin, acting in ternary complexes with a large glycoprotein substrate such as Tg, might be engaged in the folding of distinct domains, and indicate that lumenal Ca(2+) strongly influences the folding of exportable glycoproteins, in part by regulating the balance of substrate binding to different molecular chaperone systems within the ER.
Collapse
Affiliation(s)
- Bruno Di Jeso
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Facoltà di Scienze MM. FF. NN., Università degli Studi di Lecce, Centro Ecotekne, 73100 Lecce, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The endoplasmic reticulum (ER) has a quality-control system for 'proof-reading' newly synthesized proteins, so that only native conformers reach their final destinations. Non-native conformers and incompletely assembled oligomers are retained, and, if misfolded persistently, they are degraded. As a large fraction of ER-synthesized proteins fail to fold and mature properly, ER quality control is important for the fidelity of cellular functions. Here, we discuss recent progress in understanding the conformation-specific sorting of proteins at the level of ER retention and export.
Collapse
Affiliation(s)
- Lars Ellgaard
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH) Zürich, Hönggerberg, CH - 8093 Zürich, Switzerland
| | | |
Collapse
|
142
|
Zhang J, Herscovitz H. Nascent lipidated apolipoprotein B is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, calreticulin, and cyclophilin B. J Biol Chem 2003; 278:7459-68. [PMID: 12397072 DOI: 10.1074/jbc.m207976200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that endoplasmic reticulum (ER)-resident molecular chaperones interact with apolipoprotein B-100 (apoB) during its maturation. The initial stages of apoB folding occur while it is bound to the ER membrane, where it becomes partially lipidated to form a primordial intermediate. We determined whether this intermediate is dependent on the assistance of molecular chaperones for its subsequent folding steps. To that end, microsomes were prepared from HepG2 cells and luminal contents were subjected to KBr density gradient centrifugation. Immunoprecipitation of apoB followed by Western blotting showed that the luminal pool floated at a density of 1.12 g/ml and, like the membrane-bound pool, was associated with GRP94, ERp72, BiP, calreticulin, and cyclophilin B. Except for calreticulin, chaperone/apoB ratio in the lumen was severalfold higher than that in the membrane, suggesting a role for these chaperones both in facilitating the release of the primordial intermediate into the ER lumen and in providing stability. Subcellular fractionation on sucrose gradients showed that apoB in the Golgi was associated with the same array of chaperones as the pool of apoB recovered from heavy microsomes containing the ER, except that chaperone/apoB ratio was lower. KBr density gradient fractionation showed that the major pool of luminal apoB in the Golgi was recovered from 1.02 < d < 1.08 g/ml, whereas apoB in ER was recovered primarily from 1.08 < d < 1.2 g/ml. Both fractions were associated with the same spectrum of chaperones. Together with the finding that GRP94 was found associated with sialylated apoB, we conclude that correct folding of apoB is dependent on the assistance of molecular chaperone, which play multiple roles in its maturation throughout the secretory pathway including distal compartments such as the trans-Golgi network.
Collapse
Affiliation(s)
- Jianying Zhang
- Department of Physiology and Biophysics, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
143
|
Mallardo M, Deitinghoff A, Müller J, Goetze B, Macchi P, Peters C, Kiebler MA. Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc Natl Acad Sci U S A 2003; 100:2100-5. [PMID: 12592035 PMCID: PMC149965 DOI: 10.1073/pnas.0334355100] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Localized mRNAs are thought to be transported in defined particles to their final destination. These particles represent large protein complexes that may be involved in recognizing, transporting, and anchoring localized messages. Few components of these ribonucleoparticles, however, have been identified yet. We chose the strategy to biochemically enrich native RNA-protein complexes involved in RNA transport to identify the associated RNAs and proteins. Because Staufen proteins were implicated in intracellular RNA transport, we chose mammalian Staufen proteins as markers for the purification of RNA transport particles. Here, we present evidence that Staufen proteins exist in two different complexes: (i) distinct large, ribosome- and endoplasmic reticulum-containing granules preferentially found in the membrane pellets during differential centrifugation and (ii) smaller particles in the S100 from rat brain homogenates. On gel filtration of the S100, we identified soluble 670-kDa Staufen1-containing and 440-kDa Staufen2-containing particles. They do not cofractionate with ribosomes and endoplasmic reticulum but rather coenrich with kinesin heavy chain. Furthermore, the fractions containing the Staufen1 particles show a 15-fold enrichment of mRNAs compared with control fractions. Most importantly, these fractions are highly enriched in BC1, and, to a lesser extent, in the alpha-subunit of the Ca(2+)/calmodulin-dependent kinase II, two dendritically localized RNAs. Finally, both RNAs colocalize with Staufen1-hemagglutinin in particles in dendrites of transfected hippocampal neurons. We therefore propose that these Staufen1-containing particles may represent RNA transport intermediates that are in transit to their final destination within neurons.
Collapse
Affiliation(s)
- Massimo Mallardo
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
144
|
Calnexin and Calreticulin, Molecular Chaperones of the Endoplasmic Reticulum. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-1-4419-9258-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
|
145
|
Schrag JD, Procopio DO, Cygler M, Thomas DY, Bergeron JJM. Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem Sci 2003; 28:49-57. [PMID: 12517452 DOI: 10.1016/s0968-0004(02)00004-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycan moieties are essential for folding, sorting and targeting of glycoproteins through the secretory pathway to various cellular compartments. The molecular mechanisms that underlie these processes, however, are only now coming to light. Recent crystallographic and NMR studies of proteins located in the endoplasmic reticulum (ER), Golgi complex and ER-Golgi intermediate compartment have illuminated their roles in glycoprotein folding and secretion. Calnexin and calreticulin, both ER-resident proteins, have lectin domains that are crucial for their function as chaperones. The crystal structure of the carbohydrate-recognition domain of ER-Golgi intermediate compartment (ERGIC)-53 complements the biochemical and functional characterization of the protein, confirming that a lectin domain is essential for the role of this protein in sorting and transfer of glycoproteins from the ER to the Golgi complex. The lectin domains of calnexin and ERGIC-53 are structurally similar, although there is little primary sequence similarity. By contrast, sequence similarity between ERGIC-53 and vesicular integral membrane protein (VIP36), a Golgi-resident protein, leaves little doubt that a similar lectin domain is central to the transport and/or sorting functions of VIP36. The theme emerging from these studies is that carbohydrate recognition and modification are central to mediation of glycoprotein folding and secretion.
Collapse
Affiliation(s)
- Joseph D Schrag
- Biotechnology Research Institute, NRC of Canada, Montreal, PQ, Canada
| | | | | | | | | |
Collapse
|
146
|
Hara-Kuge S, Seko A, Yamashita K. Carbohydrate Recognition of Vesicular Integral Protein of 36 kDa (VIP36) in Intracellular Transport of Newly Synthesized Glycoproteins. Methods Enzymol 2003; 363:525-32. [PMID: 14579601 DOI: 10.1016/s0076-6879(03)01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Sayuri Hara-Kuge
- Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
147
|
Mehta A, Conyers B, Tyrrell DLJ, Walters KA, Tipples GA, Dwek RA, Block TM. Structure-activity relationship of a new class of anti-hepatitis B virus agents. Antimicrob Agents Chemother 2002; 46:4004-8. [PMID: 12435712 PMCID: PMC132742 DOI: 10.1128/aac.46.12.4004-4008.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Nonyl-deoxy-galactonojirimycin (N-nonyl-DGJ) has been shown to reduce the amount of hepatitis B virus (HBV) produced by tissue cultures under conditions where cell viability is not affected. We show here that the compound N-nonyl-DGJ was effective against lamivudine-resistant HBV mutants bearing the YMDD motif in the polymerase gene, consistent with the compound's activity being distinct from those of nucleoside inhibitors. To better understand the chemical structures that influence its antiviral activity, a series of imino sugar derivatives were made and tested for their antiviral activity against HBV. This work suggests that the antiviral activity of the alkovirs requires an alkyl chain length of at least eight carbons but that the galactose-based head group can be modified with little or no loss in activity.
Collapse
Affiliation(s)
- Anand Mehta
- Department of Biochemistry and Molecular Pharmacology, The Jefferson Center, Jefferson Medical College, Doylestown, Pennsylvania 18901-2697, USA.
| | | | | | | | | | | | | |
Collapse
|
148
|
Michalak M, Robert Parker JM, Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002; 32:269-78. [PMID: 12543089 DOI: 10.1016/s0143416002001884] [Citation(s) in RCA: 342] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum is a centrally located organelle which affects virtually every cellular function. Its unique luminal environment consists of Ca(2+) binding chaperones, which are involved in protein folding, post-translational modification, Ca(2+) storage and release, and lipid synthesis and metabolism. The environment within the lumen of the endoplasmic reticulum has profound effects on endoplasmic reticulum function and signaling, including apoptosis, stress responses, organogenesis, and transcriptional activity. Calreticulin, a major Ca(2+) binding (storage) chaperone in the endoplasmic reticulum, is a key component of the calreticulin/calnexin cycle which is responsible for the folding of newly synthesized proteins and glycoproteins and for quality control pathways in the endoplasmic reticulum. The function of calreticulin, calnexin and other endoplasmic reticulum proteins is affected by continuous fluctuations in the concentration of Ca(2+) in the endoplasmic reticulum. Thus, changes in Ca(2+) concentration may play a signaling role in the lumen of the endoplasmic reticulum as well as in the cytosol. Recent studies on calreticulin-deficient and transgenic mice have revealed that calreticulin and the endoplasmic reticulum may be upstream regulators in the Ca(2+)-dependent pathways that control cellular differentiation and/or organ development.
Collapse
Affiliation(s)
- M Michalak
- Department of Biochemistry, Canadian Institutes of Health Research Membrane Protein Research Group, University of Alberta, Alta., T6G 2H7, Edmonton, Canada.
| | | | | |
Collapse
|
149
|
Mehta A, Ouzounov S, Jordan R, Simsek E, Lu X, Moriarty RM, Jacob G, Dwek RA, Block TM. Imino sugars that are less toxic but more potent as antivirals, in vitro, compared with N-n-nonyl DNJ. Antivir Chem Chemother 2002; 13:299-304. [PMID: 12630678 DOI: 10.1177/095632020201300505] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Imino sugar glucosidase inhibitors have selective antiviral activity against certain enveloped, mammalian viruses. Deoxynojirimycins (DNJs) modified by N-alkylation to contain a nine carbon atom side chain (N-n-nonyl-deoxynojirimycin; N-nonyl-DNJ, NN-DNJ) were shown to be, for example, at least 20 times more potent in inhibiting hepatitis B virus (HBV) and bovine viral diarrhoea virus (BVDV) in cell based assays than the non-alkylated DNJ. These data suggested that modification of the alkyl side chain could influence antiviral activity. Previous work has focused on varying side chain length. In this report, the influence of side chain branching and cyclization upon toxicity and antiviral activity was explored. Briefly, using a virus secretion assay for HBV and a single step growth (yield reduction) assay for BVDV, 14 different DNJ-based sugars, possessing various N-alkyl substitutions, were tested for antiviral activity. Of the series, N-methoxy-nonyl-DNJ and N-butyl-cyclohexyl DNJ were determined to have the best selectivity index against BVDV and HBV, with the N-methoxy analogue being the most potent with micromolar antiviral activity. The results of this antiviral survey and the implications for the mechanism of action and ultimate therapeutic potential of the DNJ-based imino sugars is provided and discussed.
Collapse
Affiliation(s)
- Anand Mehta
- Department of Biochemistry and Molecular Pharmacology, The Jefferson Center of Thomas Jefferson University, Doylestown, Pa., USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Jacob R, Pürschel B, Naim HY. Sucrase is an intramolecular chaperone located at the C-terminal end of the sucrase-isomaltase enzyme complex. J Biol Chem 2002; 277:32141-8. [PMID: 12055199 DOI: 10.1074/jbc.m204116200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sucrase-isomaltase enzyme complex (pro-SI) is a type II integral membrane glycoprotein of the intestinal brush border membrane. Its synthesis commences with the isomaltase (IM) subunit and ends with sucrase (SUC). Both domains reveal striking structural similarities, suggesting a pseudo-dimeric assembly of a correctly folded and an enzymatically active pro-SI. The impact of each domain on the folding and function of pro-SI has been analyzed by individual expression and coexpression of the individual subunits. SUC acquires correct folding, enzymatic activity and transport competence and is secreted into the external milieu independent of the presence of IM. By contrast, IM persists as a mannose-rich polypeptide that interacts with the endoplasmic reticulum resident molecular chaperone calnexin. This interaction is disrupted when SUC is coexpressed with IM, indicating that SUC competes with calnexin for binding of IM. The interaction between SUC and the membrane-anchored IM leads to maturation of IM and blocks the secretion of SUC into the external milieu. We conclude that SUC plays a role as an intramolecular chaperone in the context of the pro-SI protein. To our knowledge all intramolecular chaperones so far identified are located at the N-terminal end. SUC is therefore the first C-terminally located intramolecular chaperone in mammalian cells.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|