101
|
Salazar-Torres FJ, Medina-Perez M, Melo Z, Mendoza-Cerpa C, Echavarria R. Urinary expression of long non-coding RNA TUG1 in non-diabetic patients with glomerulonephritides. Biomed Rep 2020; 14:17. [PMID: 33365127 DOI: 10.3892/br.2020.1393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022] Open
Abstract
Metabolic alterations serve a significant role in the pathogenesis of kidney disease. Long non-coding RNA (lncRNA) taurine upregulated gene 1 (TUG1) is a known regulator of podocyte health and mitochondrial biogenesis. Although TUG1 protects against podocyte loss in models of diabetic nephropathy, it is unknown if urinary TUG1 expression is associated with clinical and histopathological findings in non-diabetic patients diagnosed with glomerulonephritides. In the present study, the expression of TUG1, podocyte-specific markers (nephrin and podocin) and mitochondrial biogenesis-associated mRNAs (transcription factor A mitochondrial, cytochrome C oxidase subunit 5A and peroxisome proliferator-activated receptor γ coactivator 1α) were examined in urinary sediment of non-diabetic patients with biopsy-confirmed glomerulonephritides and healthy controls. Urinary expression of TUG1 was significantly lower in patients with glomerulonephritides, particularly those diagnosed with Focal Segmental Glomerulosclerosis (FSGS). Furthermore, TUG1 levels were associated with urinary expression of podocyte-specific markers and mRNAs associated with mitochondrial biogenesis. Loss of TUG1 expression in urinary sediment was strongly associated with FSGS, highlighting the potential of this lncRNA and its mitochondrial biogenesis-associated targets as non-invasive biomarkers of assessing podocytopathy.
Collapse
Affiliation(s)
- Fernando Javier Salazar-Torres
- Departamento de Nefrología, UMAE-Hospital de Especialidades, CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México.,Unidad de Medicina Familiar con Unidad Médica de Atención Ambulatoria UMF/UMAA 39, Instituto Mexicano del Seguro Social, Matamoros, Tamaulipas 87344, México
| | - Miguel Medina-Perez
- Departamento de Nefrología, UMAE-Hospital de Especialidades, CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| | - Zesergio Melo
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| | - Claudia Mendoza-Cerpa
- Departamento de Patología, UMAE-Hospital de Especialidades, CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| | - Raquel Echavarria
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco 44340, México
| |
Collapse
|
102
|
Tokhmafshan F, Dickinson K, Akpa MM, Brasell E, Huertas P, Goodyer PR. A no-nonsense approach to hereditary kidney disease. Pediatr Nephrol 2020; 35:2031-2042. [PMID: 31807928 DOI: 10.1007/s00467-019-04394-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023]
Abstract
The advent of a new class of aminoglycosides with increased translational readthrough of nonsense mutations and reduced toxicity offers a new therapeutic strategy for a subset of patients with hereditary kidney disease. The renal uptake and retention of aminoglycosides at a high intracellular concentration makes the kidney an ideal target for this approach. In this review, we explore the potential of aminoglycoside readthrough therapy in a number of hereditary kidney diseases and discuss the therapeutic window of opportunity for subclasses of each disease, when caused by nonsense mutations.
Collapse
Affiliation(s)
- Fatima Tokhmafshan
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Kyle Dickinson
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada.,Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Murielle M Akpa
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Emma Brasell
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | - Paul R Goodyer
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada. .,Department of Experimental Medicine, McGill University, Montreal, Canada. .,Department of Human Genetics, McGill University, Montreal, Canada. .,Department of Pediatrics, McGill University, Montreal, Canada.
| |
Collapse
|
103
|
Jyoti SS, Islam F, Shrabonee II, Sultana TN, Chaity NI, Nahid NA, Islam MR, Islam MS, Apu MNH. Prevalence of NPHS2 gene R229Q polymorphism in Bangladeshi children with nephrotic syndrome. Heliyon 2020; 6:e05317. [PMID: 33102883 PMCID: PMC7578689 DOI: 10.1016/j.heliyon.2020.e05317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/12/2020] [Accepted: 10/16/2020] [Indexed: 01/10/2023] Open
Abstract
Background Limited and contradictory pharmacogenetic studies of NPHS2 gene R229Q polymorphism in nephrotic syndrome (NS) children of different ethnicities steered us to investigate the genotype frequency and associated risk of this polymorphism in Bangladeshi NS children. Methods A prospective case-control study was conducted which comprised a total of 142 children having nephrotic syndrome (NS), divided into 2 groups: case group consisted of 40 children with steroid-resistant nephrotic syndrome (SRNS), and control group involved 102 children with steroid-sensitive nephrotic syndrome (SSNS). Both were genotyped by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for R229Q polymorphism. Results The results indicate the presence of R229Q polymorphism in 27.50% of SRNS and 12.75% of SSNS children. SRNS children possess 2.94-fold greater risk (p = 0.025) of carrying Arg/Gln genotype compared to SSNS children. Moreover, R229Q variant in SRNS children was observed as in a compound heterozygous form with p.Ala297Val located in exon 8. Age of onset (4–6 years) presents as a significant contributing factor (adjusted OR = 1.06; 95% CI = 1.023–1.094; p = 0.001) for SRNS susceptibility in Bangladeshi children. Contrarily, though the incidence of SRNS was higher in male children than female (80% vs 20%), gender remains to be a neutral factor (p = 0.257) in relation to SRNS susceptibility. Conclusion Compound heterozygosity of NPHS2 p.R229Q gene variant with p.Ala297Val may cause pathogenic SRNS in Bangladeshi children. Large scale studies are warranted to establish the genotype-phenotype correlation. It is recommended to screen for p.R229Q first and, if positive, for p.Ala297Val in Bangladeshi SRNS children.
Collapse
Affiliation(s)
- Sharmin Sultana Jyoti
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Farhana Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ishrat Islam Shrabonee
- Department of Pediatric, Mymensingh Medical College Hospital, Mymensingh, 2200, Bangladesh
| | - Taposhi Nahid Sultana
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nusrat Islam Chaity
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Noor Ahmed Nahid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Reazul Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Saiful Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
- Corresponding author.
| |
Collapse
|
104
|
Siwińska N, Pasławska U, Bąchor R, Szczepankiewicz B, Żak A, Grocholska P, Szewczuk Z. Evaluation of podocin in urine in horses using qualitative and quantitative methods. PLoS One 2020; 15:e0240586. [PMID: 33057359 PMCID: PMC7561189 DOI: 10.1371/journal.pone.0240586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
No sensitive method for diagnosing early kidney dysfunction in horses has been identified so far. Many studies carried out in humans and small animals show that podocin can be useful to diagnose various kidney diseases, mainly affecting the glomeruli. The aim of this study was to perform a qualitative and quantitative analysis of podocin in urine samples obtained from healthy horses, horses with clinical kidney dysfunction and horses at risk of acute kidney injury. The study objectives aimed to assess: (1) whether the selected podocin tryptic peptide for LC-MS-MRM allows for podocin detection in horse; and (2) whether the species-specific ELISA test makes this detection possible as well;, (3) whether the chosen methods are sensitive enough to detect kidney dysfunction and glomerular injury, (4) whether the results of the tests applying both methods correspond with one another, (5) whether the results correlate with the hematological and biochemical data. The signals that may indicate the presence of trypsin fragments of podocin were found in three healthy horses, all the horses diagnosed with kidney dysfunction and half of the animals at risk for acute kidney injury. The concentration of podocin, diagnosed with the ELISA test was as follows: from 0.19 to 1.2 ng/ml in healthy animals, from 0.19 to 20.0 ng/ml in AKI horses, from 0.29 to 5.71 ng/ml in horses at risk for acute kidney injury. The results of both methods corresponded significantly. Podocin may be a potential biomarker of clinical kidney disease in horses and may be used in the detection of glomerular injury. However, its use is limited by the possibility of physiological podocyturia. LC-MS-MRM seems to be a more sensitive method to evaluate the presence of podocin than the ELISA test, whilst selected tryptic peptides of podocin appear to apply to horses. The ELISA test showed greater effectiveness in excluding the disease than in confirming it.
Collapse
Affiliation(s)
- Natalia Siwińska
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Urszula Pasławska
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Veterinary Institute, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Barbara Szczepankiewicz
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Agnieszka Żak
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | |
Collapse
|
105
|
Boyer O, Bérody S. Congenital nephrotic syndrome: is early aggressive treatment needed?-No. Pediatr Nephrol 2020; 35:1991-1996. [PMID: 32462257 DOI: 10.1007/s00467-020-04556-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/27/2022]
Abstract
The management of infants with congenital nephrotic syndrome (CNS) is very challenging as they are prone to severe complications such as hemodynamic disturbances, infections, thromboses, and impaired growth, and most will develop end-stage kidney disease (ESKD) within a few years. Since the seventies, an "aggressive" approach, including daily albumin infusions, early nephrectomies, dialysis, and transplantation, has dramatically improved survival and morbidity. More recent case-note reviews have reported successful conservative treatment (using optimized nutrition, complication prophylaxis, and delayed renal replacement therapy), which led to similarly good outcomes and low complication rates. This questions the indications for early preemptive bilateral nephrectomy and dialysis given the mortality and morbidity rates in dialysis in infants and their life-long management with possible repeated transplantations. Two large series provide the most recent evidences supporting the conservative management: firstly, at least 55% children with CNS are not spontaneously in ESKD at the age of 2 years; secondly, albumin tapering/discontinuation and hospital discharge are possible before nephrectomy; and lastly, CNS complication rates are similar in case of preemptive nephrectomies or conservative care. Until now, no clear genotype-phenotype correlation has been identified to guide clinical management. Taken together, these data support the safety of conservative care until ESKD in a subset of patients with CNS.
Collapse
Affiliation(s)
- Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence MARHEA, Centre de Référence du Syndrome Néphrotique Idiopathique de l'enfant et l'adulte, Hôpital Necker - Enfants Malades, APHP, Inserm U1163, Institut Imagine, Université de Paris, Paris, France.
| | - Sandra Bérody
- Unité de Soins Intensifs et Réanimation Néonatale, Centre Hospitalier Sud Francilien, Corbeil-Essonnes, France
| |
Collapse
|
106
|
Ning L, Suleiman HY, Miner JH. Synaptopodin Is Dispensable for Normal Podocyte Homeostasis but Is Protective in the Context of Acute Podocyte Injury. J Am Soc Nephrol 2020; 31:2815-2832. [PMID: 32938649 DOI: 10.1681/asn.2020050572] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Synaptopodin (Synpo) is an actin-associated protein in podocytes and dendritic spines. Many functions in regulating the actin cytoskeleton via RhoA and other pathways have been ascribed to Synpo, yet no pathogenic mutations in the SYNPO gene have been discovered in patients. Naturally occurring Synpo isoforms are known (Synpo-short and -long), and a novel truncated version (Synpo-T) is upregulated in podocytes from Synpo mutant mice. Synpo-T maintains some Synpo functions, which may prevent a podocyte phenotype from emerging in unchallenged mutant mice. METHODS Novel mouse models were generated to further investigate the functions of Synpo. In one, CRISPR/Cas9 deleted most of the Synpo gene, preventing production of any detectable Synpo protein. Two other mutant strains made truncated versions of the protein. Adriamycin injections were used to challenge the mice, and Synpo functions were investigated in primary cultured podocytes. RESULTS Mice that could not make detectable Synpo (Synpo -/- ) did not develop any kidney abnormalities up to 12 months of age. However, Synpo -/- mice were more susceptible to Adriamycin nephropathy. In cultured primary podocytes from mutant mice, the absence of Synpo caused loss of stress fibers, increased the number and size of focal adhesions, and impaired cell migration. Furthermore, loss of Synpo led to decreased RhoA activity and increased Rac1 activation. CONCLUSIONS In contrast to previous findings, podocytes can function normally in vivo in the absence of any Synpo isoform. Synpo plays a protective role in the context of podocyte injury through its involvement in actin reorganization and focal adhesion dynamics.
Collapse
Affiliation(s)
- Liang Ning
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Hani Y Suleiman
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
107
|
A descriptive study of NPHS1 and NPHS2 mutations in children with congenital nephrotic syndrome. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
108
|
Mulukala SK, Irukuvajjula SS, Kumar K, Garai K, Venkatesu P, Vadrevu R, Pasupulati AK. Structural features and oligomeric nature of human podocin domain. Biochem Biophys Rep 2020; 23:100774. [PMID: 32617419 PMCID: PMC7322680 DOI: 10.1016/j.bbrep.2020.100774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022] Open
Abstract
Podocytes are crucial cells of the glomerular filtration unit and plays a vital role at the interface of the blood-urine barrier. Podocyte slit-diaphragm is a modified tight junction that facilitates size and charge-dependent permselectivity. Several proteins including podocin, nephrin, CD2AP, and TRPC6 form a macromolecular assembly and constitute the slit-diaphragm. Podocin is an integral membrane protein attached to the inner membrane of the podocyte via a short transmembrane region (101-125). The cytosolic N- and C-terminus help podocin to attain a hook-like structure. Podocin shares 44% homology with stomatin family proteins and similar to the stomatin proteins, podocin was shown to associate into higher-order oligomers at the site of slit-diaphragm. However, the stoichiometry of the homo-oligomers and how it partakes in the macromolecular assemblies with other slit-diaphragm proteins remains elusive. Here we investigated the oligomeric propensity of a truncated podocin construct (residues:126-350). We show that the podocin domain majorly homo-oligomerizes into a 16-mer. Circular dichroism and fluorescence spectroscopy suggest that the 16-mer oligomer has considerable secondary structure and moderate tertiary packing.
Collapse
Key Words
- CD, Circular dichroism
- CD2AP, CD-2 associated protein
- GFB, Glomerular filtration barrier
- IDRs, Intrinsically disordered regions
- MALS, multi-angle light scattering
- NEPH, Nephrin-like protein
- NPHS1 & 2, Nephrotic syndrome-type I and type II
- NS, Nephrotic syndrome
- Nephrotic syndrome
- Podocin
- Podocyte
- Proteinuria
- SD, slit-diaphragm
- SEC, Size-exclusion chromatography
- SRNS, steroid-resistant NS
- Slit-diaphragm
- TRPC6, Transient receptor potential cation channel subfamily C member 6
- ZO-1, Zonula occludens-1
Collapse
Affiliation(s)
- Sandeep K.N. Mulukala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Shivkumar S. Irukuvajjula
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, New Delhi, 110 007, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, Hyderabad, 500019, India
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, New Delhi, 110 007, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Anil K. Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
109
|
Hays T, Groopman EE, Gharavi AG. Genetic testing for kidney disease of unknown etiology. Kidney Int 2020; 98:590-600. [PMID: 32739203 PMCID: PMC7784921 DOI: 10.1016/j.kint.2020.03.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023]
Abstract
In many cases of chronic kidney disease, the cause of disease remains unknown despite a thorough nephrologic workup. Genetic testing has revolutionized many areas of medicine and promises to empower diagnosis and targeted management of such cases of kidney disease of unknown etiology. Recent studies using genetic testing have demonstrated that Mendelian etiologies account for approximately 20% of cases of kidney disease of unknown etiology. Although genetic testing has significant benefits, including tailoring of therapy, informing targeted workup, detecting extrarenal disease, counseling patients and families, and redirecting care, it also has important limitations and risks that must be considered.
Collapse
Affiliation(s)
- Thomas Hays
- Department of Pediatrics, Division of Neonatology and Perinatology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Emily E Groopman
- Department of Medicine, Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Ali G Gharavi
- Department of Medicine, Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.
| |
Collapse
|
110
|
Feng D. Phosphorylation of key podocyte proteins and the association with proteinuric kidney disease. Am J Physiol Renal Physiol 2020; 319:F284-F291. [PMID: 32686524 DOI: 10.1152/ajprenal.00002.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Podocyte dysfunction contributes to proteinuric chronic kidney disease. A number of key proteins are essential for podocyte function, including nephrin, podocin, CD2-associated protein (CD2AP), synaptopodin, and α-actinin-4 (ACTN4). Although most of these proteins were first identified through genetic studies associated with human kidney disease, subsequent studies have identified phosphorylation of these proteins as an important posttranslational event that regulates their function. In this review, a brief overview of the function of these key podocyte proteins is provided. Second, the role of phosphorylation in regulating the function of these proteins is described. Third, the association between these phosphorylation pathways and kidney disease is reviewed. Finally, challenges and future directions in studying phosphorylation are discussed. Better characterization of these phosphorylation pathways and others yet to be discovered holds promise for translating this knowledge into new therapies for patients with proteinuric chronic kidney disease.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
111
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
112
|
Park E, Lee C, Kim NKD, Ahn YH, Park YS, Lee JH, Kim SH, Cho MH, Cho H, Yoo KH, Shin JI, Kang HG, Ha IS, Park WY, Cheong HI. Genetic Study in Korean Pediatric Patients with Steroid-Resistant Nephrotic Syndrome or Focal Segmental Glomerulosclerosis. J Clin Med 2020; 9:jcm9062013. [PMID: 32604935 PMCID: PMC7355646 DOI: 10.3390/jcm9062013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is one of the major causes of end-stage renal disease (ESRD) in childhood and is mostly associated with focal segmental glomerulosclerosis (FSGS). More than 50 monogenic causes of SRNS or FSGS have been identified. Recently, the mutation detection rate in pediatric patients with SRNS has been reported to be approximately 30%. In this study, genotype-phenotype correlations in a cohort of 291 Korean pediatric patients with SRNS/FSGS were analyzed. The overall mutation detection rate was 43.6% (127 of 291 patients). WT1 was the most common causative gene (23.6%), followed by COQ6 (8.7%), NPHS1 (8.7%), NUP107 (7.1%), and COQ8B (6.3%). Mutations in COQ6, NUP107, and COQ8B were more frequently detected, and mutations in NPHS2 were less commonly detected in this cohort than in study cohorts from Western countries. The mutation detection rate was higher in patients with congenital onset, those who presented with proteinuria or chronic kidney disease/ESRD, and those who did not receive steroid treatment. Genetic diagnosis in patients with SRNS provides not only definitive diagnosis but also valuable information for decisions on treatment policy and prediction of prognosis. Therefore, further genotype-phenotype correlation studies are required.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Nayoung K. D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children’s Hospital, Yangsan 50612, Korea;
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu 41944, Korea;
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Seoul 02841, Korea;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul 03722, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Correspondence: ; Tel.: +82-2-2072-2810
| |
Collapse
|
113
|
Menara G, Lefort N, Antignac C, Mollet G. Generation of an induced pluripotent stem cell (iPSC) line (IMAGINi007) from a patient with steroid-resistant nephrotic syndrome carrying the homozygous p.R138Q mutation in the podocin-encoding NPHS2 gene. Stem Cell Res 2020; 46:101878. [PMID: 32585588 DOI: 10.1016/j.scr.2020.101878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, are responsible for the majority of familial cases of steroid-resistant nephrotic syndrome (SRNS), a rare glomerulopathy that rapidly progresses to end-stage renal disease. We obtained peripheral blood mononuclear cells (PBMCs) from a patient carrying the homozygous c.413G>A substitution (p.R138Q) in NPHS2 gene, which is the most prevalent mutation in the European population. The PBMCs were reprogrammed by non-integrative viral transduction of the Yamanaka's factors. The resulting iPSCs display normal karyotype, express pluripotency hallmarks and are capable of multilineage differentiation, offering a useful tool to study pathological mechanisms of SRNS and perform drug testing.
Collapse
Affiliation(s)
- Giulia Menara
- Université de Paris, Imagine Institute, Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Nathalie Lefort
- iPS Core Facility, Université de Paris, Imagine Institute, INSERM UMR U1163, Paris, France.
| | - Corinne Antignac
- Université de Paris, Imagine Institute, Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris, France; Département de Génétique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Géraldine Mollet
- Université de Paris, Imagine Institute, Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris, France.
| |
Collapse
|
114
|
The Future of Paediatric Nephrology—Genomics and Personalised Precision Medicine. CURRENT PEDIATRICS REPORTS 2020. [DOI: 10.1007/s40124-020-00218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
115
|
Uchio-Yamada K, Yasuda K, Monobe Y, Akagi KI, Suzuki O, Manabe N. Tensin2 is important for podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier. Am J Physiol Renal Physiol 2020; 318:F1520-F1530. [PMID: 32390516 DOI: 10.1152/ajprenal.00055.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tensin2 (Tns2), an integrin-linked protein, is enriched in podocytes within the glomerulus. Previous studies have revealed that Tns2-deficient mice exhibit defects of the glomerular basement membrane (GBM) soon after birth in a strain-dependent manner. However, the mechanisms for the onset of defects caused by Tns2 deficiency remains unidentified. Here, we aimed to determine the role of Tns2 using newborn Tns2-deficient mice and murine primary podocytes. Ultrastructural analysis revealed that developing glomeruli during postnatal nephrogenesis exhibited abnormal GBM processing due to ectopic laminin-α2 accumulation followed by GBM thickening. In addition, analysis of primary podocytes revealed that Tns2 deficiency led to impaired podocyte-GBM interaction and massive expression of laminin-α2 in podocytes. Our study suggests that weakened podocyte-GBM interaction due to Tns2 deficiency causes increased mechanical stress on podocytes by continuous daily filtration after birth, resulting in stressed podocytes ectopically producing laminin-α2, which interrupts GBM processing. We conclude that Tns2 plays important roles in the podocyte-GBM interaction and maintenance of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Kozue Uchio-Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Keiko Yasuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoko Monobe
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Ken-Ichi Akagi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Noboru Manabe
- Department of Human Sciences, Osaka International University, Moriguchi, Osaka, Japan
| |
Collapse
|
116
|
Li G, Kidd J, Kaspar C, Dempsey S, Bhat OM, Camus S, Ritter JK, Gehr TWB, Gulbins E, Li PL. Podocytopathy and Nephrotic Syndrome in Mice with Podocyte-Specific Deletion of the Asah1 Gene: Role of Ceramide Accumulation in Glomeruli. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1211-1223. [PMID: 32194052 PMCID: PMC7280759 DOI: 10.1016/j.ajpath.2020.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Lysosomal acid ceramidase (Ac) has been shown to be critical for ceramide hydrolysis and regulation of lysosome function and cellular homeostasis. In the present study, we generated a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of the α subunit (main catalytic subunit) of Ac. Although no significant morphologic changes in glomeruli were observed in these mice under light microscope, severe proteinuria and albuminuria were found in these podocyte-specific knockout mice compared with control genotype littermates. Transmission electron microscopic analysis showed that podocytes of the knockout mice had distinctive foot process effacement and microvillus formation. These functional and morphologic changes indicate the development of nephrotic syndrome in mice bearing the Asah1 podocyte-specific gene deletion. Ceramide accumulation determined by liquid chromatography-tandem mass spectrometry was demonstrated in isolated glomeruli of Asah1fl/fl/PodoCre mice compared with their littermates. By crossbreeding Asah1fl/fl/PodoCre mice with Smpd1-/- mice, we also produced a double knockout strain, Smpd1-/-/Asah1fl/fl/PodoCre, that also lacks Smpd1, the acid sphingomyelinase that hydrolyzes sphingomyelin to ceramide. These mice exhibited significantly lower levels of glomerular ceramide with decreased podocyte injury compared with Asah1fl/fl/PodoCre mice. These results strongly suggest that lysosomal Ac in podocytes is essential for the maintenance of the structural and functional integrity of podocytes.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Cristin Kaspar
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sara Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Sarah Camus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
117
|
Dufek S, Holtta T, Trautmann A, Ylinen E, Alpay H, Ariceta G, Aufricht C, Bacchetta J, Bakkaloglu SA, Bayazit A, Cicek RY, Dursun I, Duzova A, Ekim M, Iancu D, Jankauskiene A, Klaus G, Paglialonga F, Pasini A, Printza N, Said Conti V, do Sameiro Faria M, Schmitt CP, Stefanidis CJ, Verrina E, Vidal E, Vondrak K, Webb H, Zampetoglou A, Bockenhauer D, Edefonti A, Shroff R. Management of children with congenital nephrotic syndrome: challenging treatment paradigms. Nephrol Dial Transplant 2020; 34:1369-1377. [PMID: 30215773 DOI: 10.1093/ndt/gfy165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Management of children with congenital nephrotic syndrome (CNS) is challenging. Bilateral nephrectomies followed by dialysis and transplantation are practiced in most centres, but conservative treatment may also be effective. METHODS We conducted a 6-year review across members of the European Society for Paediatric Nephrology Dialysis Working Group to compare management strategies and their outcomes in children with CNS. RESULTS Eighty children (50% male) across 17 tertiary nephrology units in Europe were included (mutations in NPHS1, n = 55; NPHS2, n = 1; WT1, n = 9; others, n = 15). Excluding patients with mutations in WT1, antiproteinuric treatment was given in 42 (59%) with an increase in S-albumin in 70% by median 6 (interquartile range: 3-8) g/L (P < 0.001). Following unilateral nephrectomy, S-albumin increased by 4 (1-8) g/L (P = 0.03) with a reduction in albumin infusion dose by 5 (2-9) g/kg/week (P = 0.02). Median age at bilateral nephrectomies (n = 29) was 9 (7-16) months. Outcomes were compared between two groups of NPHS1 patients: those who underwent bilateral nephrectomies (n = 25) versus those on conservative management (n = 17). The number of septic or thrombotic episodes and growth were comparable between the groups. The response to antiproteinuric treatment, as well as renal and patient survival, was independent of NPHS1 mutation type. At final follow-up (median age 34 months) 20 (80%) children in the nephrectomy group were transplanted and 1 died. In the conservative group, 9 (53%) remained without dialysis, 4 (24%; P < 0.001) were transplanted and 2 died. CONCLUSION An individualized, stepwise approach with prolonged conservative management may be a reasonable alternative to early bilateral nephrectomies and dialysis in children with CNS and NPHS1 mutations. Further prospective studies are needed to define indications for unilateral nephrectomy.
Collapse
Affiliation(s)
- Stephanie Dufek
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Tuula Holtta
- Department of Pediatric Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Agnes Trautmann
- Center for Pediatric & Adolescent Medicine, Heidelberg, Germany
| | - Elisa Ylinen
- Department of Pediatric Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harika Alpay
- School of Medicine, Marmara University, Istanbul, Turkey
| | - Gema Ariceta
- Hospital MaternoInfantil de la Vall d'Hebron, Barcelona, Spain
| | | | | | - Sevcan A Bakkaloglu
- Department of Pediatric Nephrology, Gazi University Hospital, Ankara, Turkey
| | - Aysun Bayazit
- Department of Pediatric Nephrology, Cukurova University, Adana, Turkey
| | | | - Ismail Dursun
- Department of Pediatric Nephrology, Erciyes University, Kayseri, Turkey
| | - Ali Duzova
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Turkey
| | | | - Daniela Iancu
- Center for Nephrology, University College London, London, UK
| | | | | | - Fabio Paglialonga
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Pasini
- Azienda Ospedaliero-Universitaria Sant'Orsola-Malpighi, Bologna, Italy
| | - Nikoleta Printza
- Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | | | | | | | | | | | - Enrico Vidal
- Department of Pediatrics, University Hospital of Padova, Padova, Italy
| | - Karel Vondrak
- Pediatric Nephrology, University Hospital Motol, Prague, Czech Republic
| | - Hazel Webb
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Detlef Bockenhauer
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rukshana Shroff
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
118
|
McPherson KC, Shields CA, Poudel B, Johnson AC, Taylor L, Stubbs C, Nichols A, Cornelius DC, Garrett MR, Williams JM. Altered renal hemodynamics is associated with glomerular lipid accumulation in obese Dahl salt-sensitive leptin receptor mutant rats. Am J Physiol Renal Physiol 2020; 318:F911-F921. [PMID: 32068459 DOI: 10.1152/ajprenal.00438.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The present study examined whether development of renal injury in the nondiabetic obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) strain is associated with elevations in glomerular filtration rate and renal lipid accumulation. Baseline mean arterial pressure at 6 wk of age was similar between Dahl salt-sensitive wild-type (SSWT) and SSLepRmutant rats. However, by 18 wk of age, the SSLepRmutant strain developed hypertension, while the elevation in mean arterial pressure was not as severe in SSWT rats (192 ± 4 and 149 ± 6 mmHg, respectively). At baseline, proteinuria was fourfold higher in SSLepRmutant than SSWT rats and remained elevated throughout the study. The early development of progressive proteinuria was associated with renal hyperfiltration followed by a decline in renal function over the course of study in the SSLepRmutant compared with SSWT rats. Kidneys from the SSLepRmutant strain displayed more glomerulosclerosis and glomerular lipid accumulation than SSWT rats. Glomeruli were isolated from the renal cortex of both strains at 6 and 18 wk of age, and RNA sequencing was performed to identify genes and pathways driving glomerular injury. We observed significant increases in expression of the influx lipid transporters, chemokine (C-X-C motif) ligand 16 (Cxcl16) and scavenger receptor and fatty acid translocase (Cd36), respectively, and a significant decrease in expression of the efflux lipid transporter, ATP-binding cassette subfamily A member 2 (Abca2; cholesterol efflux regulatory protein 2), in SSLepRmutant compared with SSWT rats at 6 and 18 wk of age, which were validated by RT-PCR analysis. These data suggest an association between glomerular hyperfiltration and glomerular lipid accumulation during the early development of proteinuria associated with obesity.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lateia Taylor
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Cassandra Stubbs
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Nichols
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
119
|
Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol 2020; 24:193-204. [PMID: 32020343 PMCID: PMC7040068 DOI: 10.1007/s10157-020-01854-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022]
Abstract
Dysfunction of slit diaphragm, a cell–cell junction of glomerular podocytes, is involved in the development of proteinuria in several glomerular diseases. Slit diaphragm should be a target of a novel therapy for proteinuria. Nephrin, NEPH1, P-cadherin, FAT, and ephrin-B1 were reported to be extracellular components forming a molecular sieve of the slit diaphragm. Several cytoplasmic proteins such as ZO-1, podocin, CD2AP, MAGI proteins and Par-complex molecules were identified as scaffold proteins linking the slit diaphragm to the cytoskeleton. In this article, new insights into these molecules and the pathogenic roles of the dysfunction of these molecules were introduced. The slit diaphragm functions not only as a barrier but also as a signaling platform transfer the signal to the inside of the cell. For maintaining the slit diaphragm function properly, the phosphorylation level of nephrin is strictly regulated. The recent studies on the signaling pathway from nephrin, NEPH1, and ephrin-B1 were reviewed. Although the mechanism regulating the function of the slit diaphragm had remained unclear, recent studies revealed TRPC6 and angiotensin II-regulating mechanisms play a critical role in regulating the barrier function of the slit diaphragm. In this review, recent investigations on the regulation of the slit diaphragm function were reviewed, and a strategy for the establishment of a novel therapy for proteinuria was proposed.
Collapse
Affiliation(s)
- Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
120
|
Tran T, Lindström NO, Ransick A, De Sena Brandine G, Guo Q, Kim AD, Der B, Peti-Peterdi J, Smith AD, Thornton M, Grubbs B, McMahon JA, McMahon AP. In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes. Dev Cell 2020; 50:102-116.e6. [PMID: 31265809 DOI: 10.1016/j.devcel.2019.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022]
Abstract
The renal corpuscle of the kidney comprises a glomerular vasculature embraced by podocytes and supported by mesangial myofibroblasts, which ensure plasma filtration at the podocyte-generated slit diaphragm. With a spectrum of podocyte-expressed gene mutations causing chronic disease, an enhanced understanding of podocyte development and function to create relevant in vitro podocyte models is a clinical imperative. To characterize podocyte development, scRNA-seq was performed on human fetal kidneys, identifying distinct transcriptional signatures accompanying the differentiation of functional podocytes from progenitors. Interestingly, organoid-generated podocytes exhibited highly similar, progressive transcriptional profiles despite an absence of the vasculature, although abnormal gene expression was pinpointed in late podocytes. On transplantation into mice, organoid-derived podocytes recruited the host vasculature and partially corrected transcriptional profiles. Thus, human podocyte development is mostly intrinsically regulated and vascular interactions refine maturation. These studies support the application of organoid-derived podocytes to model disease and to restore or replace normal kidney functions.
Collapse
Affiliation(s)
- Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Balint Der
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
121
|
Fractalkine is Involved in Lipopolysaccharide-Induced Podocyte Injury through the Wnt/β-Catenin Pathway in an Acute Kidney Injury Mouse Model. Inflammation 2020; 42:1287-1300. [PMID: 30919150 PMCID: PMC6647365 DOI: 10.1007/s10753-019-00988-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases as well as being associated with the progression of kidney disease. Activation of the Wnt/β-catenin pathway is associated with the pathogenesis of podocyte dysfunction and can play a role in renal injury. Furthermore, the expression of fractalkine (FKN) induced by lipopolysaccharides (LPS) is also one of crucial inflammation factors closely related to renal tissue damage. The aim of this study is to explore the mechanism of LPS-induced FKN expression leading to podocyte injury and contribute to acute kidney injury (AKI) through regulation of Wnt/β-catenin pathway. An AKI model was established for in vivo experiments and blood was collected for serum BUN and Cr measurement, and histopathological features of the kidneys were studied by PASM and IHC staining. For in vitro experiments, a mouse podocyte cell line was stimulated with different concentrations of LPS for 24 and 48 h after which podocyte viability and apoptosis of cells were evaluated. The expression of podocyte-specific markers, FKN and Wnt/β-catenin pathway mRNA and protein was detected in mice and cells by using qRT-PCR and western blotting. LPS induced the expression of FKN and activation of the Wnt/β-catenin pathway, leading to a decrease of podocyte-specific proteins which resulted in poor renal pathology and dysfunction in the AKI mouse model. Moreover, LPS treatment significantly decreased cell viability and induced podocyte apoptosis in a dose-dependent manner that causes changes in the expression of podocyte-specific proteins through activation of FKN and the Wnt/β-catenin pathway. Thus, the expression of FKN and Wnt/β-catenin pathway by LPS is closely associated with podocyte damage or loss and could therefore account for progressive AKI. Our findings indicate that LPS induce podocyte injury and contribute to the pathogenesis of AKI by upregulating the expression of FKN and Wnt/β-catenin pathway.
Collapse
|
122
|
Congenital nephrotic syndrome: is early aggressive treatment needed? Yes. Pediatr Nephrol 2020; 35:1985-1990. [PMID: 32377865 PMCID: PMC7501131 DOI: 10.1007/s00467-020-04578-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022]
Abstract
Congenital nephrotic syndrome (CNS) was primarily considered one disease entity. Hence, one treatment protocol was proposed in the beginning to all CNS patients. Today, with the help of gene diagnostics, we know that CNS is a heterogeneous group of disorders and therefore, different treatment protocols are needed. The most important gene defects causing CNS are NPHS1, NPHS2, WT1, LAMB2, and PLCE1. Before active treatment, all infants with CNS died. It was stated already in the mid-1980s that intensive medical therapy followed by kidney transplantation (KTx) should be the choice of treatment for infants with severe CNS. In Finland, early aggressive treatment protocol was adopted from the USA and further developed for treatment of children with the Finnish type of CNS. The aim of this review is to state reasons for "early aggressive treatment" including daily albumin infusions, intensified nutrition, and timely bilateral nephrectomy followed by KTx at the age of 1-2 years.
Collapse
|
123
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
124
|
Schapiro D, Daga A, Lawson JA, Majmundar AJ, Lovric S, Tan W, Warejko JK, Fessi I, Rao J, Airik M, Gee HY, Schneider R, Widmeier E, Hermle T, Ashraf S, Jobst-Schwan T, van der Ven AT, Nakayama M, Shril S, Braun DA, Hildebrandt F. Panel sequencing distinguishes monogenic forms of nephritis from nephrosis in children. Nephrol Dial Transplant 2019; 34:474-485. [PMID: 30295827 DOI: 10.1093/ndt/gfy050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/21/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alport syndrome (AS) and atypical hemolytic-uremic syndrome (aHUS) are rare forms of chronic kidney disease (CKD) that can lead to a severe decline of renal function. Steroid-resistant nephrotic syndrome (SRNS) is more common than AS and aHUS and causes 10% of childhood-onset CKD. In recent years, multiple monogenic causes of AS, aHUS and SRNS have been identified, but their relative prevalence has yet to be studied together in a typical pediatric cohort of children with proteinuria and hematuria. We hypothesized that identification of causative mutations by whole exome sequencing (WES) in known monogenic nephritis and nephrosis genes would allow distinguishing nephritis from nephrosis in a typical pediatric group of patients with both proteinuria and hematuria at any level. METHODS We therefore conducted an exon sequencing (WES) analysis for 11 AS, aHUS and thrombotic thrombocytopenic purpura-causing genes in an international cohort of 371 patients from 362 families presenting with both proteinuria and hematuria before age 25 years. In parallel, we conducted either WES or high-throughput exon sequencing for 23 SRNS-causing genes in all patients. RESULTS We detected pathogenic mutations in 18 of the 34 genes analyzed, leading to a molecular diagnosis in 14.1% of families (51 of 362). Disease-causing mutations were detected in 3 AS-causing genes (4.7%), 3 aHUS-causing genes (1.4%) and 12 NS-causing genes (8.0%). We observed a much higher mutation detection rate for monogenic forms of CKD in consanguineous families (35.7% versus 10.1%). CONCLUSIONS We present the first estimate of relative frequency of inherited AS, aHUS and NS in a typical pediatric cohort with proteinuria and hematuria. Important therapeutic and preventative measures may result from mutational analysis in individuals with proteinuria and hematuria.
Collapse
Affiliation(s)
- David Schapiro
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ankana Daga
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Lawson
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amar J Majmundar
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Svjetlana Lovric
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weizhen Tan
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jillian K Warejko
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inés Fessi
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Rao
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Merlin Airik
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heon Yung Gee
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronen Schneider
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugen Widmeier
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Hermle
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tilman Jobst-Schwan
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amelie T van der Ven
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela A Braun
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
125
|
Hall G, Wang L, Spurney RF. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019; 9:cells9010044. [PMID: 31877991 PMCID: PMC7016871 DOI: 10.3390/cells9010044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.
Collapse
|
126
|
Reynolds BC, Oswald RJA. Diagnostic and Management Challenges in Congenital Nephrotic Syndrome. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2019; 10:157-167. [PMID: 31908565 PMCID: PMC6930517 DOI: 10.2147/phmt.s193684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
Congenital Nephrotic Syndrome (CNS) is defined as nephrotic range proteinuria, hypoalbuminaemia and edema in the first three months of life. CNS is most commonly genetic in cause, with international variance in the incidence of causative mutations. Initially defined by the histopathological appearance, increasingly sophisticated and accessible genetic analyses now provide a body of evidence to suggest that there is a disparity between the histological appearance, the genotype of individuals and the severity of the clinical disease. Through the evolution of management approaches CNS has changed from being an invariably fatal condition to one with appreciable ongoing morbidity and mortality but comparably good outcomes to other causes of paediatric end-stage renal disease, especially following transplantation. This review briefly summarises the more commonly recognised genetic mutations leading to CNS, addresses common management decisions, and concludes with potential therapies for the future.
Collapse
|
127
|
Takamura S, Fukusumi Y, Zhang Y, Narita I, Kawachi H. Partitioning-Defective-6-Ephrin-B1 Interaction Is Regulated by Nephrin-Mediated Signal and Is Crucial in Maintaining Slit Diaphragm of Podocyte. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:333-346. [PMID: 31837290 DOI: 10.1016/j.ajpath.2019.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023]
Abstract
Ephrin-B1 plays a critical role at slit diaphragm. Partitioning-defective (Par)-6 is down-regulated in podocyte of ephrin-B1 knockout mouse, suggesting that Par-6 is associated with ephrin-B1. Par polarity complex, consisting of Par-6, Par-3, and atypical protein kinase C, is essential for tight junction formation. In this study, the expression of Par-6 was analyzed in the normal and nephrotic syndrome model rats, and the molecular association of Par-6, Par-3, ephrin-B1, and nephrin was assessed with the human embryonic kidney 293 cell expression system. Par-6 was concentrated at slit diaphragm. Par 6 interacted with ephrin-B1 but not with nephrin, and Par-3 interacted with nephrin but not with ephrin-B1. The complexes of Par-6-ephrin-B1 and Par-3-nephrin were linked via extracellular sites of ephrin-B1 and nephrin. The Par-6-ephrin-B1 complex was delinked from the Par-3-nephrin complex, and Par-6 and ephrin-B1 were clearly down-regulated already at early phase of nephrotic model. The alteration of Par-6/ephrin-B1 advanced that of Par-3/nephrin. Stimulation to nephrin phosphorylated not only nephrin but also ephrin-B1, and consequently inhibited the interaction between ephrin-B1 and Par-6. Par-6 appeared at presumptive podocyte of early developmental stage and moved to basal area at capillary loop stage to participate in slit diaphragm formation at the final stage. Par-6-ephrin-B1 interaction is crucial for formation and maintenance of slit diaphragm of podocyte.
Collapse
Affiliation(s)
- Sayuri Takamura
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ying Zhang
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
128
|
Rinschen MM, Gödel M, Grahammer F, Zschiedrich S, Helmstädter M, Kretz O, Zarei M, Braun DA, Dittrich S, Pahmeyer C, Schroder P, Teetzen C, Gee H, Daouk G, Pohl M, Kuhn E, Schermer B, Küttner V, Boerries M, Busch H, Schiffer M, Bergmann C, Krüger M, Hildebrandt F, Dengjel J, Benzing T, Huber TB. A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes. Cell Rep 2019; 23:2495-2508. [PMID: 29791858 PMCID: PMC5986710 DOI: 10.1016/j.celrep.2018.04.059] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/07/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022] Open
Abstract
Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knockdown experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease. Deep proteome and transcriptome analyses of native podocytes unravel druggable targets Static and dynamic proteomics uncover features of podocyte identity and proteostasis Candidate genes for nephrotic syndrome were predicted based on multi-omic integration FARP1 is a previously unreported candidate gene for human proteinuric kidney disease
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
| | - Markus Gödel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Stefan Zschiedrich
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Mostafa Zarei
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany
| | - Daniela A Braun
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Dittrich
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Caroline Pahmeyer
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Patricia Schroder
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Carolin Teetzen
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - HeonYung Gee
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA; Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ghaleb Daouk
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany
| | - Victoria Küttner
- Department for Neuroanatomy, University of Freiburg, 79104 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Department of Dermatology, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany; Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| | - Marcus Krüger
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joern Dengjel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany; Department of Dermatology, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
129
|
Hinrichs GR, Weyer K, Friis UG, Svenningsen P, Lund IK, Nielsen R, Mollet G, Antignac C, Bistrup C, Jensen BL, Birn H. Urokinase-type plasminogen activator contributes to amiloride-sensitive sodium retention in nephrotic range glomerular proteinuria in mice. Acta Physiol (Oxf) 2019; 227:e13362. [PMID: 31423748 DOI: 10.1111/apha.13362] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
AIM Activation of sodium reabsorption by urinary proteases has been implicated in sodium retention associated with nephrotic syndrome. The study was designed to test the hypothesis that nephrotic proteinuria in mice after conditional deletion of podocin leads to urokinase-dependent, amiloride-sensitive plasmin-mediated sodium and water retention. METHODS Ten days after podocin knockout, urine and faeces were collected for 10 days in metabolic cages and analysed for electrolytes, plasminogen, protease activity and ability to activate γENaC by patch clamp and western blot. Mice were treated with amiloride (2.5 mg kg-1 for 2 days and 10 mg kg-1 for 2 days) or an anti-urokinase-type plasminogen activator (uPA) targeting antibody (120 mg kg-1 /24 h) and compared to controls. RESULTS Twelve days after deletion, podocin-deficient mice developed significant protein and albuminuria associated with increased body wt, ascites, sodium accumulation and suppressed plasma renin. This was associated with increased urinary excretion of plasmin and plasminogen that correlated with albumin excretion, urine protease activity co-migrating with active plasmin, and the ability of urine to induce an amiloride-sensitive inward current in M1 cells in vitro. Amiloride treatment in podocin-deficient mice resulted in weight loss, increased sodium excretion, normalization of sodium balance and prevention of the activation of plasminogen to plasmin in urine in a reversible way. Administration of uPA targeting antibody abolished urine activation of plasminogen, attenuated sodium accumulation and prevented cleavage of γENaC. CONCLUSIONS Nephrotic range glomerular proteinuria leads to urokinase-dependent intratubular plasminogen activation and γENaC cleavage which contribute to sodium accumulation.
Collapse
Affiliation(s)
- Gitte R. Hinrichs
- Department of Molecular Medicine, Cardiovascular and Renal Research University of Southern Denmark Odense Denmark
| | - Kathrin Weyer
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Ulla G. Friis
- Department of Molecular Medicine, Cardiovascular and Renal Research University of Southern Denmark Odense Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research University of Southern Denmark Odense Denmark
| | - Ida K. Lund
- The Finsen Laboratory Rigshospitalet Copenhagen Denmark
- Biotech Research & Innovation Centre (BRIC) University of Copenhagen Copenhagen Denmark
| | - Rikke Nielsen
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Géraldine Mollet
- Laboratory of Hereditary Kidney Diseases Imagine Institute Inserm, U1163 Paris Descartes‐Sorbonne Paris Cité University Paris France
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases Imagine Institute Inserm, U1163 Paris Descartes‐Sorbonne Paris Cité University Paris France
- Department of Genetics Necker Hospital Assistance Publique‐Hôpitaux de Paris Paris France
| | - Claus Bistrup
- Department of Nephrology Odense University Hospital Odense Denmark
- Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Boye L. Jensen
- Department of Molecular Medicine, Cardiovascular and Renal Research University of Southern Denmark Odense Denmark
| | - Henrik Birn
- Department of Biomedicine Aarhus University Aarhus Denmark
- Department of Renal Medicine Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
130
|
Kampf LL, Schneider R, Gerstner L, Thünauer R, Chen M, Helmstädter M, Amar A, Onuchic-Whitford AC, Loza Munarriz R, Berdeli A, Müller D, Schrezenmeier E, Budde K, Mane S, Laricchia KM, Rehm HL, MacArthur DG, Lifton RP, Walz G, Römer W, Bergmann C, Hildebrandt F, Hermle T. TBC1D8B Mutations Implicate RAB11-Dependent Vesicular Trafficking in the Pathogenesis of Nephrotic Syndrome. J Am Soc Nephrol 2019; 30:2338-2353. [PMID: 31732614 DOI: 10.1681/asn.2019040414] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mutations in about 50 genes have been identified as monogenic causes of nephrotic syndrome, a frequent cause of CKD. These genes delineated the pathogenetic pathways and rendered significant insight into podocyte biology. METHODS We used whole-exome sequencing to identify novel monogenic causes of steroid-resistant nephrotic syndrome (SRNS). We analyzed the functional significance of an SRNS-associated gene in vitro and in podocyte-like Drosophila nephrocytes. RESULTS We identified hemizygous missense mutations in the gene TBC1D8B in five families with nephrotic syndrome. Coimmunoprecipitation assays indicated interactions between TBC1D8B and active forms of RAB11. Silencing TBC1D8B in HEK293T cells increased basal autophagy and exocytosis, two cellular functions that are independently regulated by RAB11. This suggests that TBC1D8B plays a regulatory role by inhibiting endogenous RAB11. Coimmunoprecipitation assays showed TBC1D8B also interacts with the slit diaphragm protein nephrin, and colocalizes with it in immortalized cell lines. Overexpressed murine Tbc1d8b with patient-derived mutations had lower affinity for endogenous RAB11 and nephrin compared with wild-type Tbc1d8b protein. Knockdown of Tbc1d8b in Drosophila impaired function of the podocyte-like nephrocytes, and caused mistrafficking of Sns, the Drosophila ortholog of nephrin. Expression of Rab11 RNAi in nephrocytes entailed defective delivery of slit diaphragm protein to the membrane, whereas RAB11 overexpression revealed a partial phenotypic overlap to Tbc1d8b loss of function. CONCLUSIONS Novel mutations in TBC1D8B are monogenic causes of SRNS. This gene inhibits RAB11. Our findings suggest that RAB11-dependent vesicular nephrin trafficking plays a role in the pathogenesis of nephrotic syndrome.
Collapse
Affiliation(s)
- Lina L Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Roland Thünauer
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Advanced Light and Fluorescence Microscopy Facility, Centre for Structural Systems Biology (CSSB) and University of Hamburg, Hamburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ali Amar
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana C Onuchic-Whitford
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Afig Berdeli
- Department of Pediatrics, Molecular Medicine Laboratory, Ege University, Izmir, Turkey
| | - Dominik Müller
- Department of Pediatric Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Kristen M Laricchia
- Broad Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
| | - Heidi L Rehm
- Broad Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
| | - Daniel G MacArthur
- Broad Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Winfried Römer
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carsten Bergmann
- Center for Human Genetics, Mainz, Germany.,Center for Human Genetics, Bioscientia, Ingelheim, Germany; and.,Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany;
| |
Collapse
|
131
|
Govender MA, Fabian J, Gottlich E, Levy C, Moonsamy G, Maher H, Winkler CA, Ramsay M. The podocin V260E mutation predicts steroid resistant nephrotic syndrome in black South African children with focal segmental glomerulosclerosis. Commun Biol 2019; 2:416. [PMID: 31754646 PMCID: PMC6858321 DOI: 10.1038/s42003-019-0658-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 01/17/2023] Open
Abstract
In black African children with focal segmental glomerulosclerosis (FSGS) there are high rates of steroid resistance. The aim was to determine genetic associations with apolipoprotein L1 (APOL1) renal risk variants and podocin (NPHS2) variants in 30 unrelated black South African children with FSGS. Three APOL1 variants were genotyped and the exons of the NPHS2 gene sequenced in the cases and controls. APOL1 risk alleles show a modest association with steroid sensitive nephrotic syndrome (SSNS) and steroid resistant nephrotic syndrome (SRNS). The NPHS2 V260E variant was present in SRNS cases (V/V = 5; V/E = 4; E/E = 11), and was absent in SSNS cases. Haplotype analysis suggests a single mutation origin for V260E and it was associated with a decline in kidney function over a 60-month period (p = 0.026). The V260E variant is a good predictor of autosomal recessive SRNS in black South African children and could provide useful information in a clinical setting.
Collapse
Affiliation(s)
- Melanie A. Govender
- Sydney Brenner Institute for Molecular Bioscience and Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - June Fabian
- Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
- Division of Nephrology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Errol Gottlich
- Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics, University of Pretoria, Pretoria, South Africa
| | - Cecil Levy
- Nelson Mandela Children’s Hospital, Division of Nephrology, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Glenda Moonsamy
- Charlotte Maxeke Johannesburg Academic Hospital, Division of Nephrology, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Maher
- Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl A. Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience and Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
132
|
Zaki M, El-Shaer S, Rady S, El-Salam MA, Abd-El-Salam R, Alkashlan IA, Saber M, Mohamed S, Hassaan M, Rabie E, Amr K. Analysis of NPHS2 Gene Mutations in Egyptian Children with Nephrotic Syndrome. Open Access Maced J Med Sci 2019; 7:3145-3148. [PMID: 31949506 PMCID: PMC6953933 DOI: 10.3889/oamjms.2019.700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Mutations in the NPHS2 genes are the main aetiology of early-onset and familial steroid-resistant nephrotic syndrome (SRNS). The pathogenic NPHS2 mutation together with the p.R229Q variant has been less described among Egyptian children. AIM: This study aims to determine the mutation of NPHS2 in children with NS and discover the role of p.R229Q variant in SRNS METHODS: The study included 53 children with NS, and 53 healthy volunteers matched in age and sex controls. The median age at disease onset was 7.3 years. Among NS cases, 31 cases had steroid-sensitive nephrotic syndrome (SSNS) and 22 children with steroid-resistant nephrotic syndrome (SRNS). Polymerase chain reaction amplification of the whole coding region of NPHS2 gene was carried out for its mutational analysis. Restriction digestion testing was carried out after PCR to determine the presence of R229Q polymorphism. Randomly selected samples were re-genotyped by two independent technicians for assessment of Quality control RESULTS: NS patients showed a significant higher frequency of heterozygous genotype GA (89.5%) compared to control group (10.5%) with increased risk of NS (OR, 12.04; 95% CI, 2.61 to55.38; p < 0.0001). Moreover, SRNS showed a significant higher frequency of GA genotype (68.2%) than the SSNS group (6.5%). The GA genotype was associated with increased risk of SRNS (OR, 31.1; 95% CI, 5.73 to 168.48; P < 0.001) and the A allele was associated with increased risk of SRNS (OR, 15.52; 95% CI, 3.325 to 72.422; P < .001). CONCLUSION: R229Q polymorphisms are associated with SRNS, and any child with SRNS should be searched for mutations in the NPHS2 gene.
Collapse
Affiliation(s)
- Moushira Zaki
- Biological Anthropology Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Shreen El-Shaer
- Biochemistry- Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Sahar Rady
- Biochemistry- Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Manal Abd El-Salam
- Department of Pediatrics (Nephrology Unit), Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Ragaa Abd-El-Salam
- Department of Pediatrics (Nephrology Unit), Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | | | - Mohamed Saber
- Pediatric Nephrology Unite, Al-Hussein University Hospital, Cairo, Egypt
| | - Sanaa Mohamed
- Biological Anthropology Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Mohamed Hassaan
- Slagelse Hospital, Internal Medicine Department, Slagelse, Denmark
| | - Eman Rabie
- Medical Molecular Genetics, National Research Center, Cairo, Egypt
| | - Khalda Amr
- Medical Molecular Genetics, National Research Center, Cairo, Egypt
| |
Collapse
|
133
|
Solanki AK, Widmeier E, Arif E, Sharma S, Daga A, Srivastava P, Kwon SH, Hugo H, Nakayama M, Mann N, Majmundar AJ, Tan W, Gee HY, Sadowski CE, Rinat C, Becker-Cohen R, Bergmann C, Rosen S, Somers M, Shril S, Huber TB, Mane S, Hildebrandt F, Nihalani D. Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney Int 2019; 96:883-889. [PMID: 31472902 PMCID: PMC6756928 DOI: 10.1016/j.kint.2019.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Steroid-resistant nephrotic syndrome is a frequent cause of chronic kidney disease almost inevitably progressing to end-stage renal disease. More than 58 monogenic causes of SRNS have been discovered and majority of known steroid-resistant nephrotic syndrome causing genes are predominantly expressed in glomerular podocytes, placing them at the center of disease pathogenesis. Herein, we describe two unrelated families with steroid-resistant nephrotic syndrome with homozygous mutations in the KIRREL1 gene. One mutation showed high frequency in the European population (minor allele frequency 0.0011) and this patient achieved complete remission following treatment, but later progressed to chronic kidney disease. We found that mutant KIRREL1 proteins failed to localize to the podocyte cell membrane, indicating defective trafficking and impaired podocytes function. Thus, the KIRREL1 gene product has an important role in modulating the integrity of the slit diaphragm and maintaining glomerular filtration function.
Collapse
Affiliation(s)
- Ashish K Solanki
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shailza Sharma
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj Srivastava
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Hannah Hugo
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Mann
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Tan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heon Yung Gee
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology, Brain Korea 21 Program for Leading Universities & Students (PLUS) Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Caroline E Sadowski
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Choni Rinat
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, The Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Rachel Becker-Cohen
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, The Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Michael Somers
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias B Huber
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Biological Signalling Studies (BIOSS) Center for Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
134
|
Lu XY, Liu BC, Cao YZ, Song C, Su H, Chen G, Klein JD, Zhang HX, Wang LH, Ma HP. High glucose reduces expression of podocin in cultured human podocytes by stimulating TRPC6. Am J Physiol Renal Physiol 2019; 317:F1605-F1611. [PMID: 31566428 DOI: 10.1152/ajprenal.00215.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transient receptor potential canonical 6 (TRPC6) channel and podocin are colocalized in the glomerular slit diaphragm as an important complex to maintain podocyte function. Gain of TRPC6 function and loss of podocin function induce podocyte injury. We have previously shown that high glucose induces apoptosis of podocytes by activating TRPC6; however, whether the activated TRPC6 can alter podocin expression remains unknown. Western blot analysis and confocal microscopy were used to examine both expression levels of TRPC6, podocin, and nephrin and morphological changes of podocytes in response to high glucose. High glucose increased the expression of TRPC6 but reduced the expression of podocin and nephrin, in both cultured human podocytes and type 1 diabetic rat kidneys. The decreased podocin was diminished in TRPC6 knockdown podocytes. High glucose elevated intracellular Ca2+ in control podocytes but not in TRPC6 knockdown podocytes. High glucose also elevated the expression of a tight junction protein, zonula occludens-1, and induced the redistribution of zonula occludens-1 and loss of podocyte processes. These data together suggest that high glucose reduces protein levels of podocin by activating TRPC6 and induces morphological changes of cultured podocytes.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Bing-Chen Liu
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia.,Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yu-Ze Cao
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Neurology, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Chang Song
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Hua Su
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Guangping Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Janet D Klein
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Hui-Xue Zhang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Li-Hua Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
135
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
136
|
Park SJ, Kim Y, Chen YM. Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr Nephrol 2019; 34:1493-1500. [PMID: 30099615 PMCID: PMC6370526 DOI: 10.1007/s00467-018-4031-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
The advent of next-generation sequencing (NGS) in recent years has led to a rapid discovery of novel or rare genetic variants in human kidney cell genes, which is transforming the risk assessment, diagnosis, and treatment of kidney disease. Mutations may lead to protein misfolding, disruption of protein trafficking, and endoplasmic reticulum (ER) retention. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and unfolded protein response. Mutations in nephrin (NPHS1), podocin (NPHS2), laminin β2 (LAMB2), and α-actinin-4 (ACTN4) have been shown to induce ER stress in HEK293 cells and podocytes in hereditary nephrotic syndromes; various founder mutations in collagen IV α chains (COL4A) have been demonstrated to activate podocyte ER stress in collagen IV nephropathies; and mutations in uromodulin (UMOD) have been reported to trigger tubular ER stress in autosomal dominant tubulointerstitial kidney disease. Meanwhile, ER resident protein SEC63 may modify disease severity in autosomal dominant polycystic kidney disease. These findings underscore the importance of ER stress in the pathogenesis of monogenic kidney disease. Recently, we have identified mesencephalic astrocyte-derived neurotrophic factor (MANF) and cysteine-rich with EGF-like domains 2 (CRELD2) as urinary ER stress biomarkers in ER stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA
| | - Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA.
| |
Collapse
|
137
|
Zhu X, Ye Y, Xu C, Gao C, Zhang Y, Zhou J, Lin W, Mao J. Protein phosphatase 2A modulates podocyte maturation and glomerular functional integrity in mice. Cell Commun Signal 2019; 17:91. [PMID: 31387591 PMCID: PMC6685276 DOI: 10.1186/s12964-019-0402-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023] Open
Abstract
Background Protein phosphorylation & dephosphorylation are ubiquitous cellular processes that allow for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a multifunction phosphatase that is well expressed in all cell types of kidney during early renal development, though its functions in kidney remains to be elucidated. Methods PP2A conditional knock-out mice was generated with PP2A fl/fl mice that were crossed with Podocin-Cre mice. The phenotype of Pod-PP2A–KO mice (homozygous for the floxed PP2A allele with Podocin-Cre) and littermate PP2A fl/fl controls (homozygous for the PP2A allele but lacking Podocin-Cre) were further studied. Primary podocytes isolated from the Pod-PP2A-KO mice were cultured and they were then employed with sing label-free nano-LC − MS/MS technology on a Q-exactive followed by SIEVE processing to identify possible target molecular entities for the dephosphorylation effect of PP2A, in which Western blot and immunofluorescent staining were used to analyze further. Results Pod-PP2A–KO mice were developed with weight loss, growth retardation, proteinuria, glomerulopathy and foot process effacement, together with reduced expression of some slit diaphragm molecules and cytoskeleton rearrangement of podocytes. Y box protein 1 (YB-1) was identified to be the target molecule for dephosphorylation effect of PP2A. Furthermore, YB-1 phosphorylation was up-regulated in the Pod-PP2A–KO mice in contrast to the wild type controls, while total and un-phosphorylated YB-1 both was moderately down-regulated in podocytes from the Pod-PP2A-KO mice. Conclusion Our study revealed the important role of PP2A in regulating the development of foot processes and fully differentiated podocytes whereas fine-tuning of YB-1 via a post-translational modification by PP2A regulating its activity might be crucial for the functional integrity of podocytes and glomerular filtration barrier. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0402-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiujuan Zhu
- Department of Nephrology, The Children Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Yuhong Ye
- Department of Nephrology, The Children Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Chengxian Xu
- Department of Nephrology, The Children Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Cunji Gao
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yingying Zhang
- Department of Nephrology, The Children Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA02115, USA
| | - Weiqiang Lin
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, Zhejiang Province, People's Republic of China.
| |
Collapse
|
138
|
Kalantari S, Naji M, Nafar M, Yazdani-Kachooei H, Borumandnia N, Parvin M. Chondroitin sulfate degradation and eicosanoid metabolism pathways are impaired in focal segmental glomerulosclerosis: Experimental confirmation of an in silico prediction. ACTA ACUST UNITED AC 2019; 9:89-95. [PMID: 31334040 PMCID: PMC6637215 DOI: 10.15171/bi.2019.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/16/2018] [Accepted: 12/22/2018] [Indexed: 11/09/2022]
Abstract
Introduction: Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease, is a diverse clinical entity that occurs after podocyte injury. Although numerous studies have suggested molecular pathways responsible for the development of FSGS, many still remain unknown about its pathogenic mechanisms. Two important pathways were predicted as candidates for the pathogenesis of FSGS in our previous in silico analysis, whom we aim to confirm experimentally in the present study. Methods: The expression levels of 4 enzyme genes that are representative of "chondroitin sulfate degradation" and "eicosanoid metabolism" pathways were investigated in the urinary sediments of biopsy-proven FSGS patients and healthy subjects using real-time polymerase chain reaction (RT-PCR). These target genes were arylsulfatase, hexosaminidase, cyclooxygenase-2 (COX-2), and prostaglandin I2 synthase. The patients were sub-divided into 2 groups based on the range of proteinuria and glomerular filtration rate and were compared for variation in the expression of target genes. Correlation of target genes with clinical and pathological characteristics of the disease was calculated and receiver operating characteristic (ROC) analysis was performed. Results: A combined panel of arylsulfatase, hexosaminidase, and COX-2 improved the diagnosis of FSGS by 76%. Hexosaminidase was correlated with the level of proteinuria, while COX-2 was correlated with interstitial inflammation and serum creatinine level in the disease group. Conclusion: Our data supported the implication of these target genes and pathways in the pathogenesis of FSGS. In addition, these genes can be considered as non-invasive biomarkers for FSGS.
Collapse
Affiliation(s)
- Shiva Kalantari
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- Urology-Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nafar
- Urology-Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hootan Yazdani-Kachooei
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Nasrin Borumandnia
- Urology-Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Parvin
- Department of Pathology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
139
|
Organelle crosstalk in the kidney. Kidney Int 2019; 95:1318-1325. [DOI: 10.1016/j.kint.2018.11.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
|
140
|
Mulukala Narasimha SK, Kar PP, Vadrevu R, Pasupulati AK. Intrinsically disordered regions mediate macromolecular assembly of the Slit diaphragm proteins associated with Nephrotic syndrome. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1570508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Prajna Parimita Kar
- Laboratory of Molecular Interactions, National Institute of Animal Biotechnology, Hyderabad, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, BITS-Pilani, Hyderabad Campus, Hyderabad, India
| | | |
Collapse
|
141
|
Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease. Sci Rep 2019; 9:7679. [PMID: 31118506 PMCID: PMC6531474 DOI: 10.1038/s41598-019-44194-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
MYH9, a widely expressed gene encoding nonmuscle myosin heavy chain, is also expressed in podocytes and is associated with glomerular pathophysiology. However, the mechanisms underlying MYH9-related glomerular diseases associated with proteinuria are poorly understood. Therefore, we investigated the role and mechanism of MYH9 in diabetic kidney injury. MYH9 expression was decreased in glomeruli from diabetic patients and animals and in podocytes treated with Ang II in vitro. Ang II treatment and siRNA-mediated MYH9 knockdown in podocytes resulted in actin cytoskeleton reorganization, reduced cell adhesion, actin-associated protein downregulation, and increased albumin permeability. Ang II treatment increased NOX4 expression and ROS generation. The Ang II receptor blocker losartan and the ROS scavenger NAC restored MYH9 expression in Ang II-treated podocytes, attenuated disrupted actin cytoskeleton and decreased albumin permeability. Furthermore, MYH9 overexpression in podocytes restored the effects of Ang II on the actin cytoskeleton and actin-associated proteins. Ang II-mediated TRPC6 activation reduced MYH9 expression. These results suggest that Ang II-mediated MYH9 depletion in diabetic nephropathy may increase filtration barrier permeability by inducing structural and functional podocyte injury through TRPC6-mediated Ca2+ influx by NOX4-mediated ROS generation. These findings reveal a novel MYH9 function in maintaining urinary filtration barrier integrity. MYH9 may be a potential target for treating diabetic nephropathy.
Collapse
|
142
|
Dlugos CP, Picciotto C, Lepa C, Krakow M, Stöber A, Eddy ML, Weide T, Jeibmann A, P Krahn M, Van Marck V, Klingauf J, Ricker A, Wedlich-Söldner R, Pavenstädt H, Klämbt C, George B. Nephrin Signaling Results in Integrin β1 Activation. J Am Soc Nephrol 2019; 30:1006-1019. [PMID: 31097607 DOI: 10.1681/asn.2018040362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with certain mutations in the gene encoding the slit diaphragm protein Nephrin fail to develop functional slit diaphragms and display severe proteinuria. Many adult-onset glomerulopathies also feature alterations in Nephrin expression and function. Nephrin signals from the podocyte slit diaphragm to the Actin cytoskeleton by recruiting proteins that can interact with C3G, a guanine nucleotide exchange factor of the small GTPase Rap1. Because Rap activity affects formation of focal adhesions, we hypothesized that Nephrin transmits signals to the Integrin receptor complex, which mediates podocyte adhesion to the extracellular matrix. METHODS To investigate Nephrin's role in transmitting signals to the Integrin receptor complex, we conducted genetic studies in Drosophila nephrocytes and validated findings from Drosophila in a cultured human podocyte model. RESULTS Drosophila nephrocytes form a slit diaphragm-like filtration barrier and express the Nephrin ortholog Sticks and stones (Sns). A genetic screen identified c3g as necessary for nephrocyte function. In vivo, nephrocyte-specific gene silencing of sns or c3g compromised nephrocyte filtration and caused nephrocyte diaphragm defects. Nephrocytes with impaired Sns or C3G expression displayed an altered localization of Integrin and the Integrin-associated protein Talin. Furthermore, gene silencing of c3g partly rescued nephrocyte diaphragm defects of an sns overexpression phenotype, pointing to genetic interaction of sns and c3g in nephrocytes. We also found that activated Nephrin recruited phosphorylated C3G and resulted in activation of Integrin β1 in cultured podocytes. CONCLUSIONS Our findings suggest that Nephrin can mediate a signaling pathway that results in activation of Integrin β1 at focal adhesions, which may affect podocyte attachment to the extracellular matrix.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christian Klämbt
- Neurobiology, Westfälische-Wilhelms University Münster, Münster, Germany
| | | |
Collapse
|
143
|
Zhang WN, Yang L, He SS, Qin XM, Li AP. Metabolomics coupled with integrative pharmacology reveal the protective effect of FangjiHuangqi Decoction against adriamycin-induced rat nephropathy model. J Pharm Biomed Anal 2019; 174:525-533. [PMID: 31252309 DOI: 10.1016/j.jpba.2019.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 05/11/2019] [Indexed: 01/23/2023]
Abstract
With the development of the society, the number of people who got the nephrotic syndrome (NS) is going up roughly. Therefore, finding a better way to treat NS is becoming a major global public health issue. As we all know, traditional Chinese medicine (TCM), especially Fangji Huangqi Decoction (FHD), has a long history and has good curative effects on NS. However, the mechanism of FHD treating NS has not been clearly elucidated. To address this problem, a feasible system was developed by metabolomics and integrative pharmacology approach. To study the mechanisms of Chinese medical formula FHD treating NS based on metabolomics and integrative pharmacology. In this study, a NMR based metabolomics approach coupled with biochemical assay and Western Blot had been employed to study the protective effect of FHD against adriamycin-induced nephropathy using rat model. And we proposed a integrative pharmacology-based method, which combined chemical ingredients database building, target identification and network analysis. These were aimed to decipher the mechanisms of action for the FHD in NS treatment. Multivariate analysis revealed that 13 of 16 perturbed metabolites could be reversed by FHD, and the MetaboAnalyst analysis revealed that the anti-nephrotic syndrome effect of FHD was probably related with regulation of alanine, aspartate and glutamate metabolism, citrate cycle, pyruvate metabolism, cysteine and methionine metabolism and glyoxylate and dicarboxylate metabolism. The integrative pharmacology analysis revealed 93 potential targets for FHD, and suggested that the protective effect of FHD on the nephrotic syndrome was probably related with the regulation of immune, and energy metabolic and fatty acid metabolic. In addition, both the metabolomics and the integrative pharmacology are focus together on the alanine, aspartate and glutamate metabolism pathway. These metabolites changes and the core targets changes, as well as the metabolite-target pathway network provide insights into the mechanisms of FHD treating nephrotic syndrome, and further studies are needed to validate the bioactive compounds responsible for the anti-nephrotic syndrome effect of FHD.
Collapse
Affiliation(s)
- Wang-Ning Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Liu Yang
- College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Sheng-Sheng He
- College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China.
| | - Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China.
| |
Collapse
|
144
|
Nilsson D, Heglind M, Arani Z, Enerbäck S. Foxc2 is essential for podocyte function. Physiol Rep 2019; 7:e14083. [PMID: 31062503 PMCID: PMC6503019 DOI: 10.14814/phy2.14083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Foxc2 is one of the earliest podocyte markers during glomerular development. To circumvent embryonic lethal effects of global deletion of Foxc2, and to specifically investigate the role of Foxc2 in podocytes, we generated mice with a podocyte-specific Foxc2 deletion. Mice carrying the homozygous deletion developed early proteinuria which progressed rapidly into end stage kidney failure and death around postnatal day 10. Conditional loss of Foxc2 in podocytes caused typical characteristics of podocyte injury, such as podocyte foot process effacement and podocyte microvillus transformation, probably caused by disruption of the slit diaphragm. These effects were accompanied by a redistribution of several proteins known to be necessary for correct podocyte structure. One target gene that showed reduced glomerular expression was Nrp1, the gene encoding neuropilin 1, a protein that has been linked to diabetic nephropathy and proteinuria. We could show that NRP1 was regulated by Foxc2 in vitro, but podocyte-specific ablation of Nrp1 in mice did not generate any phenotype in terms of proteinuria, suggesting that the gene might have more important roles in endothelial cells than in podocytes. Taken together, this study highlights a critical role for Foxc2 as an important gene for podocyte function.
Collapse
Affiliation(s)
- Daniel Nilsson
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Mikael Heglind
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Zahra Arani
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
145
|
Sahu SN, Moharana M, Sahu R, Pattanayak SK. Impact of mutation on podocin protein involved in type 2 nephrotic syndrome: Insights into docking and molecular dynamics simulation study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
146
|
The Role of p.Ser1105Ser (in NPHS1 Gene) and p.Arg548Leu (in PLCE1 Gene) with Disease Status of Vietnamese Patients with Congenital Nephrotic Syndrome: Benign or Pathogenic? ACTA ACUST UNITED AC 2019; 55:medicina55040102. [PMID: 31013750 PMCID: PMC6524047 DOI: 10.3390/medicina55040102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/20/2022]
Abstract
Background and Objectives: Congenital nephrotic syndrome (CNS), a genetic disease caused by mutations in genes on autosomes, usually occurs in the first three months after birth. A number of genetic mutations in genes, which encode for the components of the glomerular filtration barrier have been identified. We investigated mutations in NPHS1, NPHS2, PLCE1 (NPHS3), and WT1 genes that relate to the disease in Vietnamese patients. Materials and Methods: We performed genetic analysis of two unrelated patients, who were diagnosed with CNS in the Vietnam National Children’s Hospital with different disease status. The entire coding region and adjacent splice sites of these genes were amplified and sequenced using the Sanger method. The sequencing data were analyzed and compared with the NPHS1, NPHS2, PLCE1, and WT1 gene sequences published in Ensembl (ENSG00000161270, ENSG00000116218, ENSG00000138193, and ENSG00000184937, respectively) using BioEdit software to detect mutations. Results: We detected a new variant p.Ser607Arg and two other (p.Glu117Lys and p.Ser1105Ser) in the NPHS1 gene, as well as two variants (p.Arg548Leu, p.Pro1575Arg) in the PLCE1 gene. No mutations were detected in the NPHS2 and WT1 genes. Patient 1, who presented a heterozygous genotype of p.Ser1105Ser and p.Arg548Leu had a mild disease status but patient 2, who presented a homozygous genotype of these alleles, had a severe phenotype. Conclusions: These results suggest that variants p.Ser1105Ser (in NPHS1 gene) and p.Arg548Leu (in PLCE1 gene) in the homozygous form might play a role in the development of the disease in patients.
Collapse
|
147
|
Zhao F, Zhu JY, Richman A, Fu Y, Huang W, Chen N, Pan X, Yi C, Ding X, Wang S, Wang P, Nie X, Huang J, Yang Y, Yu Z, Han Z. Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome. J Am Soc Nephrol 2019; 30:840-853. [PMID: 30910934 DOI: 10.1681/asn.2018080786] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Studies have identified mutations in >50 genes that can lead to monogenic steroid-resistant nephrotic syndrome (SRNS). The NUP160 gene, which encodes one of the protein components of the nuclear pore complex nucleoporin 160 kD (Nup160), is expressed in both human and mouse kidney cells. Knockdown of NUP160 impairs mouse podocytes in cell culture. Recently, siblings with SRNS and proteinuria in a nonconsanguineous family were found to carry compound-heterozygous mutations in NUP160. METHODS We identified NUP160 mutations by whole-exome and Sanger sequencing of genomic DNA from a young girl with familial SRNS and FSGS who did not carry mutations in other genes known to be associated with SRNS. We performed in vivo functional validation studies on the NUP160 mutations using a Drosophila model. RESULTS We identified two compound-heterozygous NUP160 mutations, NUP160R1173× and NUP160E803K . We showed that silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by expression of the wild-type human NUP160 gene in nephrocytes. By contrast, expression of the NUP160 mutant allele NUP160R1173× completely failed to rescue nephrocyte phenotypes, and mutant allele NUP160E803K rescued only nuclear pore complex and nuclear lamin localization defects. CONCLUSIONS Mutations in NUP160 are implicated in SRNS. Our findings indicate that NUP160 should be included in the SRNS diagnostic gene panel to identify additional patients with SRNS and homozygous or compound-heterozygous NUP160 mutations and further strengthen the evidence that NUP160 mutations can cause SRNS.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Jun-Yi Zhu
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Adam Richman
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Wen Huang
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; and
| | - Xiaoxia Pan
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; and
| | - Cuili Yi
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Xiaohua Ding
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Si Wang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Ping Wang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China
| | - Xiaojing Nie
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Jun Huang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Yonghui Yang
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China.,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Zihua Yu
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People's Republic of China; .,Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People's Republic of China.,Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People's Republic of China
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC; .,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
148
|
Ottlewski I, Münch J, Wagner T, Schönauer R, Bachmann A, Weimann A, Hentschel J, Lindner TH, Seehofer D, Bergmann C, Jamra RA, Halbritter J. Value of renal gene panel diagnostics in adults waiting for kidney transplantation due to undetermined end-stage renal disease. Kidney Int 2019; 96:222-230. [PMID: 31027891 DOI: 10.1016/j.kint.2019.01.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
End-stage renal disease (ESRD) of undetermined etiology is highly prevalent and constitutes a significant clinical challenge, particularly in the context of kidney transplantation (KT). Despite the identification of numerous rare hereditary nephropathies over the last few decades, patients with undetermined ESRD are not being systematically investigated for rare genetic causes in clinical practice. To address this, we utilized mutation analysis in patients on the kidney transplant waitlist and scrutinized underlying renal diagnoses of 142 patients in a single center KT-waitlist. This cohort was stratified into 85 cases of determined and 57 cases of undetermined ESRD. The latter patients were analyzed by a renal gene panel for mutations in 209 genes associated with ESRD. The most likely genetic diagnoses in 12% of the tested individuals with undetermined ESRD were established. All of these patients showed mutations in genes encoding components of the glomerular filtration barrier. Taken together, hereditary nephropathies, including autosomal dominant polycystic kidney disease, were identified in 35 of the 142 patients of the waitlist cohort. By significantly increasing the proportion of hereditary diagnoses from 29 to 35 patients, the rate of undetermined ESRD significantly decreased from 57 to 51 patients. This study demonstrates the beneficial use of genetic diagnostics in significantly unraveling undetermined ESRD cases prior to KT. Thus, in the absence of renal histology or the presence of unspecific histological conditions, such as hypertensive nephrosclerosis, focal segmental glomerulosclerosis or thrombotic microangiopathy, genetic analysis may provide a robust and specific renal diagnosis and allow for optimizing pre- and post-KT management.
Collapse
Affiliation(s)
- Isabel Ottlewski
- Division of Nephrology, Department of Internal Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Timo Wagner
- Bioscientia, Institute of Human Genetics, Ingelheim, Germany
| | - Ria Schönauer
- Division of Nephrology, Department of Internal Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Anette Bachmann
- Division of Nephrology, Department of Internal Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Antje Weimann
- Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Tom H Lindner
- Division of Nephrology, Department of Internal Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Carsten Bergmann
- Bioscientia, Institute of Human Genetics, Ingelheim, Germany; Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
149
|
Balkawade RS, Chen C, Crowley MR, Crossman DK, Clapp WL, Verlander JW, Marshall CB. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am J Physiol Renal Physiol 2019; 316:F1026-F1040. [PMID: 30810063 DOI: 10.1152/ajprenal.00359.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5β2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.
Collapse
Affiliation(s)
- Rohan S Balkawade
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chao Chen
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - William L Clapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine Electron Microscopy Core, University of Florida , Gainesville, Florida
| | - Caroline B Marshall
- Department of Veterans Affairs Medical Center , Birmingham, Alabama.,Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
150
|
Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP. Directed Differentiation of Human Pluripotent Stem Cells to Podocytes under Defined Conditions. Sci Rep 2019; 9:2765. [PMID: 30808965 PMCID: PMC6391455 DOI: 10.1038/s41598-019-39504-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/10/2018] [Indexed: 01/20/2023] Open
Abstract
A major cause of chronic kidney disease (CKD) is glomerular disease, which can be attributed to a spectrum of podocyte disorders. Podocytes are non-proliferative, terminally differentiated cells. Thus, the limited supply of primary podocytes impedes CKD research. Differentiation of human pluripotent stem cells (hPSCs) into podocytes has the potential to produce podocytes for disease modeling, drug screening, and cell therapies. In the podocyte differentiation process described here, hPSCs are first induced to primitive streak-like cells by activating canonical Wnt signaling. Next, these cells progress to mesoderm precursors, proliferative nephron progenitors, and eventually become mature podocytes by culturing in a serum-free medium. Podocytes generated via this protocol adopt podocyte morphology, express canonical podocyte markers, and exhibit podocyte phenotypes, including albumin uptake and TGF-β1 triggered cell death. This study provides a simple, defined strategy to generate podocytes for in vitro modeling of podocyte development and disease or for cell therapies.
Collapse
Affiliation(s)
- Tongcheng Qian
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Shaenah E Hernday
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Xiaoping Bao
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - William R Olson
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Sarah E Panzer
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA.
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|