101
|
Chang PKY, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease - advantages, caveats, and future outlook. Eur J Neurosci 2012; 35:1908-16. [DOI: 10.1111/j.1460-9568.2012.08165.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
102
|
Tanaka H, Takafuji K, Taguchi A, Wiriyasermkul P, Ohgaki R, Nagamori S, Suh PG, Kanai Y. Linkage of N-cadherin to multiple cytoskeletal elements revealed by a proteomic approach in hippocampal neurons. Neurochem Int 2012; 61:240-50. [PMID: 22609377 DOI: 10.1016/j.neuint.2012.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023]
Abstract
The CNS synapse is an adhesive junction differentiated for chemical neurotransmission and is equipped with presynaptic vesicles and postsynaptic neurotransmitter receptors. Cell adhesion molecule cadherins not only maintain connections between pre- and postsynaptic membranes but also modulate the efficacy of synaptic transmission. Although the components of the cadherin-mediated adhesive apparatus have been studied extensively in various cell systems, the complete picture of these components, particularly at the synaptic junction, remains elusive. Here, we describe the proteomic assortment of the N-cadherin-mediated synaptic adhesion apparatus in cultured hippocampal neurons. N-cadherin immunoprecipitated from Triton X-100-solubilized neuronal extract contained equal amounts of β- and α-catenins, as well as F-actin-related membrane anchor proteins such as integrins bridged with α-actinin-4, and Na(+)/K(+)-ATPase bridged with spectrins. A close relative of β-catenin, plakoglobin, and its binding partner, desmoplakin, were also found, suggesting that a subset of the N-cadherin-mediated adhesive apparatus also anchors intermediate filaments. Moreover, dynein heavy chain and LEK1/CENPF/mitosin were found. This suggests that internalized pools of N-cadherin in trafficking vesicles are conveyed by dynein motors on microtubules. In addition, ARVCF and NPRAP/neurojungin/δ2-catenin, but not p120ctn/δ1-catenin or plakophilins-1, -2, -3, -4 (p0071), were found, suggesting other possible bridges to microtubules. Finally, synaptic stimulation by membrane depolarization resulted in an increased 93-kDa band, which corresponded to proteolytically truncated β-catenin. The integration of three different classes of cytoskeletal systems found in the synaptic N-cadherin complex may imply a dynamic switching of adhesive scaffolds in response to synaptic activity.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Pharmacology, Osaka University School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Rubio MD, Haroutunian V, Meador-Woodruff JH. Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry 2012; 71:906-14. [PMID: 22458949 PMCID: PMC3334466 DOI: 10.1016/j.biopsych.2012.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies on GTPases have suggested that reduced Duo and cell division cycle 42 (Cdc42) transcript expression is involved in dendritic spine loss in schizophrenia. In murine models, Duo and Cdc42 phosphorylate p21-activated kinase 1 (PAK1), which modifies the activity of regulatory myosin light chain (MLC) and cofilin by altering their phosphorylation. Therefore, we hypothesized that in schizophrenia abnormal Duo and Cdc42 expression result in changes in MLC and/or cofilin phosphorylation, which might alter actin cytoskeleton dynamics underlying dendritic spine maintenance. METHODS We performed Western blot protein expression analysis in postmortem brains from patients diagnosed with schizophrenia and a comparison group. We focused our studies in the anterior cingulate cortex (ACC; n = 33 comparison group; n = 36 schizophrenia) and dorsolateral prefrontal cortex (DLPFC; n = 29 comparison group; n = 35 schizophrenia). RESULTS In both ACC and DLPFC, we found a reduction of Duo expression and PAK1 phosphorylation in schizophrenia. Cdc42 protein expression was decreased in ACC but not in DLPFC. In ACC, we observed decreased PAK1 phosphorylation and increased MLC phosphorylation (pMLC), whereas in DLPFC pMLC remained unchanged. CONCLUSIONS These data suggest a novel mechanism that might underlie dendritic spine loss in schizophrenia. The increase in pMLC seen in ACC might be associated with dendritic spine shrinkage. The lack of an effect on pMLC in DLPFC suggests that in schizophrenia PAK1 downstream pathways are differentially affected in these cortical areas.
Collapse
Affiliation(s)
- María D. Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,Corresponding author: , Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Ave. S., CIRC 590C, Birmingham, AL 35294-0021, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
104
|
Bae J, Sung BH, Cho IH, Kim SM, Song WK. NESH regulates dendritic spine morphology and synapse formation. PLoS One 2012; 7:e34677. [PMID: 22485184 PMCID: PMC3317636 DOI: 10.1371/journal.pone.0034677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/06/2012] [Indexed: 11/18/2022] Open
Abstract
Background Dendritic spines are small membranous protrusions on the neuronal dendrites that receive synaptic input from axon terminals. Despite their importance for integrating the enormous information flow in the brain, the molecular mechanisms regulating spine morphogenesis are not well understood. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family, and its overexpression is known to reduce cell motility and tumor metastasis. NESH is prominently expressed in the brain, but its function there remains unknown. Methodology/Principal Findings NESH was strongly expressed in the hippocampus and moderately expressed in the cerebral cortex, cerebellum and striatum, where it co-localized with the postsynaptic proteins PSD95, SPIN90 and F-actin in dendritic spines. Overexpression of NESH reduced numbers of mushroom-type spines and synapse density but increased thin, filopodia-like spines and had no effect on spine density. siRNA knockdown of NESH also reduced mushroom spine numbers and inhibited synapse formation but it increased spine density. The N-terminal region of NESH co-sedimented with filamentous actin (F-actin), which is an essential component of dendritic spines, suggesting this interaction is important for the maturation of dendritic spines. Conclusions/Significance NESH is a novel F-actin binding protein that likely plays important roles in the regulation of dendritic spine morphogenesis and synapse formation.
Collapse
Affiliation(s)
- Jeomil Bae
- Cell Dynamics and Bioimaging Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Bong Hwan Sung
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - In Ha Cho
- Cell Dynamics and Bioimaging Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seon-Myung Kim
- Department of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Woo Keun Song
- Cell Dynamics and Bioimaging Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
105
|
Kramár EA, Chen LY, Lauterborn JC, Simmons DA, Gall CM, Lynch G. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2012; 33:708-19. [PMID: 20674095 PMCID: PMC2978788 DOI: 10.1016/j.neurobiolaging.2010.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/30/2010] [Accepted: 06/12/2010] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a possible broad-spectrum treatment for the plasticity losses found in rodent models of human conditions associated with memory and cognitive deficits. We have tested this strategy in the particular case of ovariectomy. The actin polymerization in spines normally found after patterned afferent stimulation was greatly reduced, along with the stabilization of long-term potentiation, in hippocampal slices prepared from middle-aged ovariectomized rats. Both effects were fully restored by a 60-minute infusion of 2 nM BDNF. Comparable rescue results were obtained after elevating endogenous BDNF protein levels in hippocampus with 4 daily injections of a short half-life ampakine (positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [AMPA]-type glutamate receptors). These results provide the first evidence that minimally invasive, mechanism-based drug treatments can ameliorate defects in spine plasticity caused by depressed estrogen levels.
Collapse
Affiliation(s)
- Enikö A Kramár
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4291, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Yamaguchi J, Nishiyama S, Shimanuki M, Ono T, Sato A, Nakada K, Hayashi JI, Yonekawa H, Shitara H. Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging. Transgenic Res 2012; 21:439-47. [PMID: 21792696 DOI: 10.1007/s11248-011-9539-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/11/2011] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential for many cellular functions such as oxidative phosphorylation and calcium homeostasis; consequently, mitochondrial dysfunction could cause many diseases, including neurological disorders. Recently, mitochondrial dynamics, such as fusion, fission, and transportation, have been visualized in living cells by using time-lapse imaging systems. The changes in mitochondrial morphology could be an indicator for estimating the activity of mitochondrial biological function. Here, we report a transgenic mouse strain, mtDsRed2-Tg, which expresses a red fluorescent protein, DsRed2, exclusively in mitochondria. Mitochondrial morphology could be clearly observed in various tissues of this strain under confocal microscope. Recently, many transgenic mouse strains in which enhanced green fluorescent protein (EGFP)-tagged proteins of interest are expressed have been established for physiological analysis in vivo. After mating these strains with mtDsRed2-Tg mice, red-colored mitochondria and green-colored proteins were detected simultaneously using fluorescent imaging systems, and the interactions between mitochondria and those proteins could be morphologically analyzed in cells and tissues of the F(1) hybrids. Thus, mtDsRed2-Tg mice can be a powerful tool for bioimaging studies on mitochondrial functions.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, 1-6, Kamikitazawa 2-chome, Setagaya-ku, Tokyo, 156-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Murk K, Wittenmayer N, Michaelsen-Preusse K, Dresbach T, Schoenenberger CA, Korte M, Jockusch BM, Rothkegel M. Neuronal profilin isoforms are addressed by different signalling pathways. PLoS One 2012; 7:e34167. [PMID: 22470532 PMCID: PMC3314592 DOI: 10.1371/journal.pone.0034167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/23/2012] [Indexed: 01/29/2023] Open
Abstract
Profilins are prominent regulators of actin dynamics. While most mammalian cells express only one profilin, two isoforms, PFN1 and PFN2a are present in the CNS. To challenge the hypothesis that the expression of two profilin isoforms is linked to the complex shape of neurons and to the activity-dependent structural plasticity, we analysed how PFN1 and PFN2a respond to changes of neuronal activity. Simultaneous labelling of rodent embryonic neurons with isoform-specific monoclonal antibodies revealed both isoforms in the same synapse. Immunoelectron microscopy on brain sections demonstrated both profilins in synapses of the mature rodent cortex, hippocampus and cerebellum. Both isoforms were significantly more abundant in postsynaptic than in presynaptic structures. Immunofluorescence showed PFN2a associated with gephyrin clusters of the postsynaptic active zone in inhibitory synapses of embryonic neurons. When cultures were stimulated in order to change their activity level, active synapses that were identified by the uptake of synaptotagmin antibodies, displayed significantly higher amounts of both isoforms than non-stimulated controls. Specific inhibition of NMDA receptors by the antagonist APV in cultured rat hippocampal neurons resulted in a decrease of PFN2a but left PFN1 unaffected. Stimulation by the brain derived neurotrophic factor (BDNF), on the other hand, led to a significant increase in both synaptic PFN1 and PFN2a. Analogous results were obtained for neuronal nuclei: both isoforms were localized in the same nucleus, and their levels rose significantly in response to KCl stimulation, whereas BDNF caused here a higher increase in PFN1 than in PFN2a. Our results strongly support the notion of an isoform specific role for profilins as regulators of actin dynamics in different signalling pathways, in excitatory as well as in inhibitory synapses. Furthermore, they suggest a functional role for both profilins in neuronal nuclei.
Collapse
Affiliation(s)
- Kai Murk
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Nina Wittenmayer
- Department of Anatomy and Cell Biology, Center of Anatomy, Georg August University Göttingen, Göttingen, Germany
| | | | - Thomas Dresbach
- Department of Anatomy and Cell Biology, Center of Anatomy, Georg August University Göttingen, Göttingen, Germany
| | | | - Martin Korte
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | | | - Martin Rothkegel
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
108
|
Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, Gianfelice A, Sala C, Goda Y, Passafaro M. The X-linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking. Neuron 2012; 73:1143-58. [PMID: 22445342 PMCID: PMC3314997 DOI: 10.1016/j.neuron.2012.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 11/28/2022]
Abstract
Mutations in TSPAN7—a member of the tetraspanin protein superfamily—are implicated in some forms of X-linked intellectual disability. Here we show that TSPAN7 overexpression promotes the formation of filopodia and dendritic spines in cultured hippocampal neurons from embryonic rats, whereas TSPAN7 silencing reduces head size and stability of spines and AMPA receptor currents. Via its C terminus, TSPAN7 interacts with the PDZ domain of protein interacting with C kinase 1 (PICK1), to regulate PICK1 and GluR2/3 association and AMPA receptor trafficking. These findings indicate that, in hippocampal neurons, TSPAN7 regulates AMPA receptor trafficking by limiting PICK1 accessibility to AMPA receptors and suggest an additional mechanism for the functional maturation of glutamatergic synapses, whose impairment is implicated in intellectual disability.
Collapse
Affiliation(s)
- Silvia Bassani
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan 20129, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc Nutr Soc 2012; 71:246-62. [PMID: 22414320 DOI: 10.1017/s0029665112000146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is considerable interest in the potential of a group of dietary-derived phytochemicals known as flavonoids in modulating neuronal function and thereby influencing memory, learning and cognitive function. The present review begins by detailing the molecular events that underlie the acquisition and consolidation of new memories in the brain in order to provide a critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on memory. Data suggests that despite limited brain bioavailability, dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular studies suggest that the mechanisms underpinning their ability to induce improvements in memory are linked to the potential of absorbed flavonoids and their metabolites to interact with and modulate critical signalling pathways, transcription factors and gene and/or protein expression which control memory and learning processes in the hippocampus; the brain structure where spatial learning occurs. Overall, current evidence suggests that human translation of these animal investigations are warranted, as are further studies, to better understand the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.
Collapse
|
110
|
Bethea CL, Reddy AP. Effect of ovarian steroids on gene expression related to synapse assembly in serotonin neurons of macaques. J Neurosci Res 2012; 90:1324-34. [PMID: 22411564 DOI: 10.1002/jnr.23004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/24/2011] [Accepted: 11/17/2011] [Indexed: 12/24/2022]
Abstract
Dendritic spines are the elementary structural units of neural plasticity. In a model of hormone replacement therapy (HT), we sought to determine the effect of estradiol (E) and progesterone (P) on gene expression related to synapse assembly in a laser-captured preparation enriched for serotonin neurons from rhesus macaques. Microarray analysis was conducted (n = 2 animals/treatment), and the results were confirmed for pivotal genes with qRT-PCR on additional laser-captured material (n = 3 animals/treatment). Ovariectomized rhesus macaques were treated with placebo, E, or E + P via Silastic implants for 1 month. The midbrain was obtained, sectioned, and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an arcturus laser dissection microscope (Pixel II). RNA from laser-captured serotonin neurons was hybridized to Rhesus Affymetrix GeneChips for screening purposes. There was a twofold or greater change in the expression of 63 probe sets in the cell adhesion molecule (CAM) category, and 31 probe sets in the synapse assembly category were similarly altered in E- and E + P-treated animals. qRT-PCR assays showed that E treatment induced a significant increase in ephrin receptor A4 (EPHA4) and in integrin A8 (ITGA8) but not in ephrin receptor B4 (EPHB4) or integrin B8 (ITGB8) expression. E also increased expression of cadherin 11 (CDH11), neuroligin 3 (NLGN3), neurexin 3 (NRXN3), syndecan 2 (SCD2), and neural cell adhesion molecule (NCAM) compared with placebo. Supplemental P treatment suppressed E-induced gene expression. In summary, ovarian steroids target gene expression of adhesion molecules in serotonin neurons that are important for synapse assembly.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|
111
|
Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. J Neurosci 2012; 32:1043-55. [PMID: 22262902 DOI: 10.1523/jneurosci.4405-11.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines, the actin-rich protrusions emerging from dendrites, are the locations of excitatory synapses in mammalian brains. Many molecules that regulate actin dynamics also influence the morphology and/or density of dendritic spines. Since dendritic spines are neuron-specific subcellular structures, neuron-specific proteins or signals are expected to control spinogenesis. In this report, we characterize the distribution and function of neuron-predominant cortactin-binding protein 2 (CTTNBP2) in rodents. An analysis of an Expressed Sequence Tag database revealed three splice variants of mouse CTTNBP2: short, long, and intron. Immunoblotting indicated that the short form is the dominant CTTNBP2 variant in the brain. CTTNBP2 proteins were highly concentrated at dendritic spines in cultured rat hippocampal neurons as well as in the mouse brain. Knockdown of CTTNBP2 in neurons reduced the density and size of dendritic spines. Consistent with these morphological changes, the frequencies of miniature EPSCs in CTTNBP2 knockdown neurons were lower than those in control neurons. Cortactin acts downstream of CTTNBP2 in spinogenesis, as the defects caused by CTTNBP2 knockdown were rescued by overexpression of cortactin but not expression of a CTTNBP2 mutant protein lacking the cortactin interaction. Finally, immunofluorescence staining demonstrated that, unlike cortactin, CTTNBP2 stably resided at dendritic spines even after glutamate stimulation. Fluorescence recovery after photobleaching further suggested that CTTNBP2 modulates the mobility of cortactin in neurons. CTTNBP2 may thus help to immobilize cortactin in dendritic spines and control the density of dendritic spines.
Collapse
|
112
|
Rivera HM, Bethea CL. Ovarian steroids increase spinogenetic proteins in the macaque dorsal raphe. Neuroscience 2012; 208:27-40. [PMID: 22342969 DOI: 10.1016/j.neuroscience.2012.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/09/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
Abstract
Dendritic spines are the basic structural units of neuronal plasticity. Intracellular signaling cascades that promote spinogenesis have centered on RhoGTPases. We found that ovarian steroids increase gene expression of RhoGTPases [Ras homolog gene family member A (RhoA), cell division control protein 42 homolog (Cdc42), and ras-related C3 botulinum toxin substrate (Rac)] in laser-captured serotonin neurons. We sought to confirm that the increases observed in gene expression translate to the protein level. In addition, a preliminary study was conducted to determine whether an increase in spines occurs via detection of the spine marker protein, postsynaptic density-95 (PSD-95). Adult ovariectomized (Ovx) monkeys were treated with estradiol (E), progesterone (P), or E+P for 1 month. Sections through the dorsal raphe nucleus were immunostained for RhoA and Cdc42 (n=3-4/group). The number and positive pixel area of RhoA-positive cells and the positive pixel area of Cdc42-positive fibers were determined. On combining E- and E+P-treated groups, there was a significant increase in the average and total cell number and positive pixel area of RhoA-positive cells. E, P, and E+P treatments, individually or combined, also increased the average and total positive pixel area of Cdc42-positive fibers. With remaining sections from two animals in each group, we conducted a preliminary examination of the regulation of PSD-95 protein expression. PSD-95, a postsynaptic scaffold protein, was examined with immunogold silver staining (n=2/group), and the total number of PSD-95-positive puncta was determined with stereology across four levels of the dorsal raphe. E, P, and E+P treatment significantly increased the total number of PSD-95-positive puncta. Together, these findings indicate that ovarian steroids act to increase gene and protein expression of two pivotal RhoGTPases involved in spinogenesis and preliminarily indicate that an increased number of spines and/or synapses result from this action. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and in turn, increase serotonin neuronal activity throughout the brain.
Collapse
Affiliation(s)
- H M Rivera
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|
113
|
Network, cellular, and molecular mechanisms underlying long-term memory formation. Curr Top Behav Neurosci 2012; 15:73-115. [PMID: 22976275 DOI: 10.1007/7854_2012_229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.
Collapse
|
114
|
Bethea CL, Reddy AP. Ovarian steroids increase glutamatergic related gene expression in serotonin neurons of macaques. Mol Cell Neurosci 2011; 49:251-62. [PMID: 22154832 DOI: 10.1016/j.mcn.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/11/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022] Open
Abstract
Dendritic spines are the elementary structural units of neuronal plasticity and their proliferation and stabilization involve components of glutamate neurotransmission. In a model of hormone replacement therapy (HT), we sought the effect of estradiol (E) and progesterone (P) on gene expression related to glutamate neurotransmission in a laser captured preparation enriched for serotonin neurons from rhesus macaques. Microarray analysis was conducted (n=2 animals/treatment) and then confirmed for pivotal genes with qRT-PCR on additional laser captured material (n=3 animals/treatment). Ovariectomized rhesus macaques were treated with either placebo, E or E+P via Silastic implants for 1month prior to euthanasia. The midbrain was obtained, sectioned and immunostained for TPH. TPH-positive neurons were laser captured using an Arcturus Laser Dissection Microscope (Pixel II). RNA from laser captured serotonin neurons (n=2 animals/treatment) was hybridized to Rhesus Affymetrix GeneChips for screening purposes. There was a 2-fold or greater change in the expression of 28 probe sets related to glutamate processes in E and E+P treated animals. Quantitative (q) RT-PCR was conducted for 11 genes with a custom Taqman PCR array containing monkey specific primers and analyzed with ANOVA followed by Bonferroni's test. The log of the relative expression values indicated that in general, the responses to E and E+P were similar. Comparison of the relative expression or log relative expression in Ovx-controls to combined E and E+P treated groups with t-tests showed a significant increase in AMPA1 (GRIA1), AMPA2 (GRIA2), AMPA4 (GRIA4), NMDA2a (GRIN2A), metabotrophic glutamate receptor (GRM1), glutamine synthetase (GLUL), glutamate dehydrogenase (GLUD), glutamate cysteine ligase modifier subunit (GCLM), the glutamate transporter 2 (SLC1A2) and the glutamate transporter 3 (SLC1A3) with steroid treatment. There was no effect of steroid treatment on gene expression of the glutamate cysteine ligase catalytic subunit (GCLC). These data suggest that ovarian steroids target gene expression of ionotrophic and metabotrophic glutamate receptors in serotonin neurons. These receptors are present on dendritic spines and are necessary for spine maturation. The mRNAs coding for glutamate-related enzymes and transporters are likely derived from astrocytes or glutamate-containing terminals. Their induction by ovarian steroids indicates a complex upregulation of multiple components in the glutamate cycle and antioxidation, in addition to spine proliferation.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|
115
|
Lippi G, Steinert JR, Marczylo EL, D'Oro S, Fiore R, Forsythe ID, Schratt G, Zoli M, Nicotera P, Young KW. Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. ACTA ACUST UNITED AC 2011; 194:889-904. [PMID: 21930776 PMCID: PMC3207289 DOI: 10.1083/jcb.201103006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated that microribonucleic acids (miRs) are key regulators of protein expression in the brain and modulate dendritic spine morphology and synaptic activity. To identify novel miRs involved in neuronal plasticity, we exposed adult mice to chronic treatments with nicotine, cocaine, or amphetamine, which are psychoactive drugs that induce well-documented neuroadaptations. We observed brain region- and drug-specific changes in miR expression levels and identified miR-29a/b as regulators of synaptic morphology. In vitro imaging experiments indicated that miR-29a/b reduce mushroom-shaped dendritic spines on hippocampal neurons with a concomitant increase in filopodial-like outgrowths, suggesting an effect on synapse formation via actin cytoskeleton remodeling. We identified Arpc3, a component of the ARP2/3 actin nucleation complex, as a bona fide target for down-regulation by miR-29a/b. This work provides evidence that targeting of Arpc3 by miR-29a/b fine tunes structural plasticity by regulating actin network branching in mature and developing spines.
Collapse
Affiliation(s)
- Giordano Lippi
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, LE1 9HN, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Peng X, Kim J, Zhou Z, Fink DJ, Mata M. Neuronal Nogo-A regulates glutamate receptor subunit expression in hippocampal neurons. J Neurochem 2011; 119:1183-93. [PMID: 21985178 DOI: 10.1111/j.1471-4159.2011.07520.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nogo-A and its cognate receptor NogoR1 (NgR1) are both expressed in neurons. To explore the function of these proteins in neurons of the CNS, we carried out a series of studies using postnatal hippocampal neurons in culture. Interfering with the binding of Nogo-A to NgR1 either by adding truncated soluble fragment of NgR1 (NgSR) or by reducing NgR1 protein with a specific siRNA, resulted in a marked reduction in Nogo-A expression. Inhibition of Rho-ROCK or MEK-MAPK signaling resulted in a similar reduction in neuronal Nogo-A mRNA and protein. Reducing Nogo-A protein levels by siRNA resulted in an increase in the post-synaptic scaffolding protein PSD95, as well as increases in GluA1/GluA2 AMPA receptor and GluN1/GluN2A/GluN2B NMDA glutamate receptor subunits. siRNA treatment to reduce Nogo-A resulted in phosphorylation of mTOR; addition of rapamycin to block mTOR signaling prevented the up-regulation in glutamate receptor subunits. siRNA reduction of NgR1 resulted in increased expression of the same glutamate receptor subunits. Taken together the results suggest that transcription and translation of Nogo-A in hippocampal neurons is regulated by a signaling through NgR1, and that interactions between neuronal Nogo-A and NgR1 regulate glutamatergic transmission by altering NMDA and AMPA receptor levels through an rapamycin-sensitive mTOR-dependent translation mechanism.
Collapse
Affiliation(s)
- Xiangmin Peng
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
117
|
Korkotian E, Segal M. Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. J Physiol 2011; 589:5987-95. [PMID: 22025667 DOI: 10.1113/jphysiol.2011.217315] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The presence of calcium stores and their function in dendritic spines is still unsettled. We have now studied the kinetics of calcium released inside dendritic spines of cultured rat hippocampal neurons by flash photolysis of caged calcium. Photolysis of calcium produced a fast rise in [Ca(2+)](i), followed by a variable decay. We were able to correlate the decay of elevated [Ca(2+)](i) with the presence of synaptopodin (SP), an actin-binding protein, in the spines; spines containing SP generated the same initial [Ca(2+)](i) transient, but their decay time was significantly slower and more complex than that of SP-negative ones. The altered decay kinetics of the flash-elevated [Ca(2+)](i) transient was blocked by thapsigargin or cyclopiazonic acid (CPA), indicating that this kinetic change is due to compartmentalized release of calcium from intracellular stores. Thus, SP plays a pivotal role in the calcium store-associated ability of spines to locally tune calcium kinetics.
Collapse
Affiliation(s)
- Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, 76100 Rehovot, Israel
| | | |
Collapse
|
118
|
Lauri S, Taira T. Kainate receptors in developing presynaptic terminals. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
119
|
Upadhya SC, Smith TK, Brennan PA, Mychaleckyj JC, Hegde AN. Expression profiling reveals differential gene induction underlying specific and non-specific memory for pheromones in mice. Neurochem Int 2011; 59:787-803. [PMID: 21884744 DOI: 10.1016/j.neuint.2011.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/11/2011] [Accepted: 08/08/2011] [Indexed: 01/06/2023]
Abstract
Memory for the mating male's pheromones in female mice is thought to require synaptic changes in the accessory olfactory bulb (AOB). Induction of this memory depends on release of glutamate in response to pheromonal exposure coincident with release of norepinephrine (NE) in the AOB following mating. A similar memory for pheromones can also be induced artificially by local infusion of the GABA(A) receptor antagonist bicuculline into the AOB. The natural memory formed by exposure to pheromones during mating is specific to the pheromones sensed by the female during mating. In contrast, the artificial memory induced by bicuculline is non-specific and results in the female mice recognizing all pheromones as if they were from the mating male. Although protein synthesis has been shown to be essential for development of pheromone memory, the gene expression cascades critical for memory formation are not known. We investigated changes in gene expression in the AOB using oligonucleotide microarrays during mating-induced pheromone memory (MIPM) as well as bicuculline-induced pheromone memory (BIPM). We found the set of genes induced during MIPM and BIPM are largely non-overlapping and Ingenuity Pathway Analysis revealed that the signaling pathways in MIPM and BIPM also differ. The products of genes induced during MIPM are associated with synaptic function, indicating the possibility of modification at specific synapses, while those induced during BIPM appear to possess neuron-wide functions, which would be consistent with global cellular changes. Thus, these results begin to provide a mechanistic explanation for specific and non-specific memories induced by pheromones and bicuculline infusion respectively.
Collapse
Affiliation(s)
- Sudarshan C Upadhya
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
120
|
Schätzle P, Ster J, Verbich D, McKinney RA, Gerber U, Sonderegger P, Mateos JM. Rapid and reversible formation of spine head filopodia in response to muscarinic receptor activation in CA1 pyramidal cells. J Physiol 2011; 589:4353-64. [PMID: 21768266 DOI: 10.1113/jphysiol.2010.204446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A key feature at excitatory synapses is the remodelling of dendritic spines, which in conjunction with receptor trafficking modifies the efficacy of neurotransmission. Here we investigated whether activation of cholinergic receptors, which can modulate synaptic plasticity, also mediates changes in dendritic spine structure. Using confocal time-lapse microscopy in mouse slice cultures we found that brief activation of muscarinic receptors induced the emergence of fine filopodia from spine heads in all CA1 pyramidal cells examined. This response was widespread occurring in 48% of imaged spines, appeared within minutes, was reversible, and was blocked by atropine. Electron microscopic analyses showed that the spine head filopodia (SHFs) extend along the presynaptic bouton. In addition, the decay time of miniature EPSCs was longer after application of the muscarinic acetylcholine receptor agonist methacholine (MCh). Both morphological and electrophysiological changes were reduced by preventing microtubule polymerization with nocodazole. This extension of SHFs during cholinergic receptor activation represents a novel structural form of subspine plasticity that may regulate synaptic properties by fine-tuning interactions between presynaptic boutons and dendritic spines.
Collapse
Affiliation(s)
- Philipp Schätzle
- Department of Biochemistry, Centre for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
121
|
Lamprecht R. The roles of the actin cytoskeleton in fear memory formation. Front Behav Neurosci 2011; 5:39. [PMID: 21808614 PMCID: PMC3139223 DOI: 10.3389/fnbeh.2011.00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023] Open
Abstract
The formation and storage of fear memory is needed to adapt behavior and avoid danger during subsequent fearful events. However, fear memory may also play a significant role in stress and anxiety disorders. When fear becomes disproportionate to that necessary to cope with a given stimulus, or begins to occur in inappropriate situations, a fear or anxiety disorder exists. Thus, the study of cellular and molecular mechanisms underpinning fear memory may shed light on the formation of memory and on anxiety and stress related disorders. Evidence indicates that fear learning leads to changes in neuronal synaptic transmission and morphology in brain areas underlying fear memory formation including the amygdala and hippocampus. The actin cytoskeleton has been shown to participate in these key neuronal processes. Recent findings show that the actin cytoskeleton is needed for fear memory formation and extinction. Moreover, the actin cytoskeleton is involved in synaptic plasticity and in neuronal morphogenesis in brain areas that mediate fear memory. The actin cytoskeleton may therefore mediate between synaptic transmission during fear learning and long-term cellular alterations mandatory for fear memory formation.
Collapse
Affiliation(s)
- Raphael Lamprecht
- Faculty of Natural Sciences, Department of Neurobiology and Ethology, University of Haifa Haifa, Israel
| |
Collapse
|
122
|
Spolidoro M, Putignano E, Munafò C, Maffei L, Pizzorusso T. Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. ACTA ACUST UNITED AC 2011; 22:725-34. [PMID: 21685398 DOI: 10.1093/cercor/bhr158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ocular dominance (OD) shift induced by monocular deprivation (MD) during the critical period is mediated by an initial depression of deprived-eye responses followed by an increased responsiveness to the nondeprived eye. It is not fully clear to what extent these 2 events are correlated and which are their physiological and molecular mediators. The extracellular synaptic environment plays an important role in regulating visual cortical plasticity. Matrix metalloproteinases (MMPs) are a family of activity-dependent zinc-dependent extracellular endopeptidases mediating extracellular matrix remodeling. We investigated the effects of MMP inhibition on OD plasticity in juvenile monocularly deprived rats. By using electrophysiological recordings, we found that MMP inhibition selectively prevented the potentiation of neuronal responses to nondeprived-eye stimulation occurring after 7 days of MD and potentiation of deprived-eye responses occurring after eye reopening. Three days of MD only resulted in a depression of deprived-eye responses insensitive to MMP inhibition. MMP inhibition did not influence homeostatic plasticity tested in the monocular cortex but significantly prevented an increase in dendritic spine density present after 7 days MD in layer II-III pyramids.
Collapse
Affiliation(s)
- M Spolidoro
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy.
| | | | | | | | | |
Collapse
|
123
|
Loss of prestin does not alter the development of auditory cortical dendritic spines. Neural Plast 2011; 2011:305621. [PMID: 21773053 PMCID: PMC3134106 DOI: 10.1155/2011/305621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022] Open
Abstract
Disturbance of sensory input during development can have disastrous effects on the development of sensory cortical areas. To examine how moderate perturbations of hearing can impact the development of primary auditory cortex, we examined markers of excitatory synapses in mice who lacked prestin, a protein responsible for somatic electromotility of cochlear outer hair cells. While auditory brain stem responses of these mice show an approximately 40 dB increase in threshold, we found that loss of prestin produced no changes in spine density or morphological characteristics on apical dendrites of cortical layer 5 pyramidal neurons. PSD-95 immunostaining also showed no changes in overall excitatory synapse density. Surprisingly, behavioral assessments of auditory function using the acoustic startle response showed only modest changes in prestin KO animals. These results suggest that moderate developmental hearing deficits produce minor changes in the excitatory connectivity of layer 5 neurons of primary auditory cortex and surprisingly mild auditory behavioral deficits in the startle response.
Collapse
|
124
|
Reactivation of visual cortical plasticity by NEP1-40 from early monocular deprivation in adult rats. Neurosci Lett 2011; 494:196-201. [DOI: 10.1016/j.neulet.2011.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/04/2011] [Accepted: 03/04/2011] [Indexed: 01/18/2023]
|
125
|
Thomas CG, Tian H, Diamond JS. The relative roles of diffusion and uptake in clearing synaptically released glutamate change during early postnatal development. J Neurosci 2011; 31:4743-54. [PMID: 21430173 PMCID: PMC3071753 DOI: 10.1523/jneurosci.5953-10.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/12/2011] [Accepted: 02/04/2011] [Indexed: 12/31/2022] Open
Abstract
Glutamate uptake by transporters expressed in astrocytes combines with synaptic structure to regulate the time that synaptically released glutamate remains in the extracellular space and, consequently, the duration and location of postsynaptic receptor activation. Both factors change greatly in the rodent hippocampus during the second postnatal week when most synapses become established and begin to mature, processes that are influenced by synaptically released glutamate. Transporter expression increases, potentially speeding removal of synaptically released glutamate, whereas extracellular space decreases, thereby slowing dilution. We investigated whether these competing changes influence the glutamate concentration time course and postsynaptic responses in the CA1 region of the mouse hippocampus during this critical period of synaptic development. Our results suggest that the glutamate concentration time course remains relatively consistent over this period, although the primary mechanisms regulating glutamate clearance change. Before the second postnatal week, clearance of synaptically released glutamate depends primarily on diffusion into large extracellular spaces, whereas later in development it relies more on increased uptake capacity. Thus, increased transporter expression during this period accompanies structural changes in the neuropil, preserving a relatively consistent glutamate concentration time course and ensuring that postsynaptic receptor activation remains brief and primarily localized to receptors close to release sites.
Collapse
Affiliation(s)
- Christopher G. Thomas
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Hua Tian
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
126
|
Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer's disease. PLoS One 2011; 6:e17669. [PMID: 21412423 PMCID: PMC3055881 DOI: 10.1371/journal.pone.0017669] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/10/2011] [Indexed: 12/28/2022] Open
Abstract
We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer's disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function.
Collapse
|
127
|
Carlson BR, Lloyd KE, Kruszewski A, Kim IH, Rodriguiz RM, Heindel C, Faytell M, Dudek SM, Wetsel WC, Soderling SH. WRP/srGAP3 facilitates the initiation of spine development by an inverse F-BAR domain, and its loss impairs long-term memory. J Neurosci 2011; 31:2447-60. [PMID: 21325512 PMCID: PMC3541779 DOI: 10.1523/jneurosci.4433-10.2011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/10/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022] Open
Abstract
The WAVE-associated Rac GAP, WRP, is thought to regulate key aspects of synapse development and function and may be linked to mental retardation in humans. WRP contains a newly described inverse F-BAR (IF-BAR) domain of unknown function. Our studies show that this domain senses/facilitates outward protrusions analogous to filopodia and that the molecular basis for this is likely explained by a convex lipid-binding surface on the WRP IF-BAR domain. In dendrites the IF-BAR domain of WRP forms a bud on the shaft from which precursors to spines emerge. Loss of WRP in vivo and in vitro results in reduced density of spines. In vivo this is primarily a loss of mushroom-shaped spines. Developmentally, WRP function is critical at the onset of spinogenesis, when dendritic filopodia are prevalent. Finally, because WRP is implicated in mental retardation, behaviors of WRP heterozygous and null mice have been evaluated. Results from these studies confirm that loss of WRP is linked to impaired learning and memory.
Collapse
Affiliation(s)
| | | | | | | | - Ramona M. Rodriguiz
- Psychiatry and Behavioral Sciences
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina 27710, and
| | | | - Marika Faytell
- Psychiatry and Behavioral Sciences
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina 27710, and
| | - Serena M. Dudek
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - William C. Wetsel
- Departments of Cell Biology
- Neurobiology, and
- Psychiatry and Behavioral Sciences
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina 27710, and
| | - Scott H. Soderling
- Departments of Cell Biology
- Neurobiology, and
- Neonatal Perinatal Research Institute, and
| |
Collapse
|
128
|
Nestor MW, Cai X, Stone MR, Bloch RJ, Thompson SM. The actin binding domain of βI-spectrin regulates the morphological and functional dynamics of dendritic spines. PLoS One 2011; 6:e16197. [PMID: 21297961 PMCID: PMC3031527 DOI: 10.1371/journal.pone.0016197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/07/2010] [Indexed: 01/30/2023] Open
Abstract
Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3.
Collapse
Affiliation(s)
- Michael W. Nestor
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiang Cai
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michele R. Stone
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Scott M. Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
129
|
Izeddin I, Specht CG, Lelek M, Darzacq X, Triller A, Zimmer C, Dahan M. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 2011; 6:e15611. [PMID: 21264214 PMCID: PMC3022016 DOI: 10.1371/journal.pone.0015611] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/17/2010] [Indexed: 12/27/2022] Open
Abstract
The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We implemented a strategy for the visualization of morphological changes of dendritic spines over tens of minutes at a lateral resolution of 25 to 65 nm. We have generated a low-affinity photoconvertible probe, capable of reversibly binding to actin and thus allowing long-term photoactivated localization microscopy of the spine cytoskeleton. Using this approach, we resolve structural parameters of spines and record their long-term dynamics at a temporal resolution below one minute. Furthermore, we have determined changes in the spine morphology in response to pharmacologically induced synaptic activity and quantified the actin redistribution underlying these changes. By combining PALM imaging with quantum dot tracking, we could also simultaneously visualize the cytoskeleton and the spine membrane, allowing us to record complementary information on the morphological changes of the spines at super-resolution.
Collapse
Affiliation(s)
- Ignacio Izeddin
- Laboratoire Kastler Brossel, CNRS UMR 8552, Departments of Physics and Biology, École Normale Supérieure, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Christian G. Specht
- Biologie Cellulaire de la Synapse, École Normale Supérieure, Inserm U1024, Paris, France
| | - Mickaël Lelek
- Institut Pasteur, Groupe Imagerie et Modélisation, CNRS, URA 2582, Paris, France
| | - Xavier Darzacq
- Régulation de l'Expression Génétique, École Normale Supérieure, CNRS UMR8541, Paris, France
| | - Antoine Triller
- Biologie Cellulaire de la Synapse, École Normale Supérieure, Inserm U1024, Paris, France
- * E-mail: (MD); (AT)
| | - Christophe Zimmer
- Institut Pasteur, Groupe Imagerie et Modélisation, CNRS, URA 2582, Paris, France
| | - Maxime Dahan
- Laboratoire Kastler Brossel, CNRS UMR 8552, Departments of Physics and Biology, École Normale Supérieure, Université Pierre et Marie Curie-Paris 6, Paris, France
- * E-mail: (MD); (AT)
| |
Collapse
|
130
|
Learning and memory consolidation: linking molecular and behavioral data. Neuroscience 2011; 176:12-9. [PMID: 21215299 DOI: 10.1016/j.neuroscience.2010.12.056] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 12/21/2022]
Abstract
This paper puts together and links some classic and recent molecular data and hypothesis from different authors and laboratories related to learning and memory consolidation. Mainly addressed to non-specialists, it describes how the glutamatergic activation of plastic synapses in the hippocampus can give rise to new or enlarged dendritic spines which may constitute the main structural basis of some kind of memories. To establish learning and memory, the nervous system can use part of the same mechanisms which make the basic structure of neurons during the ontogenetic development of the brain. Through different families of kinases, phosphatases and other proteins, the activated N-methyl-d-aspartate (NMDA) receptors and different intracellular signals originated in the post-synaptic membranes can promote the synthesis of new proteins and the dynamic of actin. The consecutive morphological changes in the cytoskeleton of the neuron, later stabilized by new receptors inserted in the post-synaptic membranes, make possible memory consolidation. Short and long-term, as well as persistence, of memory mechanisms are related to these molecular processes. Recent research on system consolidation and memory allocation in neural circuits is also explained.
Collapse
|
131
|
Abstract
Activins, which are members of the TGF-β superfamily, were initially isolated from gonads and served as modulators of follicle-stimulating hormone secretion. Activins regulate various biological functions, including induction of the dorsal mesoderm, craniofacial development, and differentiation of numerous cell types. Activin receptors are highly expressed in neuronal cells, and activin mRNA expression is upregulated by neuronal activity. Activins also exhibit neuroprotective action during excitotoxic brain injury. However, very little is known about the functional roles of activins in the brain. We recently generated various types of transgenic mice, demonstrating that activins regulate spine formation, behavioral activity, anxiety, adult neurogenesis, late-phase long-term potentiation, and maintenance of long-term memory. The present chapter describes recent progress in the study of the role of activin in the brain.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi, Japan
| | | |
Collapse
|
132
|
Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 2010; 68:1067-81. [PMID: 21172610 PMCID: PMC3026458 DOI: 10.1016/j.neuron.2010.11.030] [Citation(s) in RCA: 809] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2010] [Indexed: 11/23/2022]
Abstract
The microtubule-associated protein tau accumulates in Alzheimer's and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mistargeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines.
Collapse
Affiliation(s)
- Brian R. Hoover
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Miranda N. Reed
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Jianjun Su
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Rachel D. Penrod
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Linda A. Kotilinek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Marianne K. Grant
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT 59405
| | | | - Lorene M. Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Li-Lian Yuan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Karen H. Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
- Geriatric Research Education and Clinical Center and the Veterans Administration Medical Center, Minneapolis, MN 55417
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
133
|
Minamida S, Iwamura M, Kodera Y, Kawashima Y, Ikeda M, Okusa H, Fujita T, Maeda T, Baba S. Profilin 1 overexpression in renal cell carcinoma. Int J Urol 2010; 18:63-71. [PMID: 21091798 DOI: 10.1111/j.1442-2042.2010.02670.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To gain information about overexpressed antigens in renal cell carcinoma (RCC) by using a chemical proteomics approach. METHODS RCC cell line 769P was cultured and proteome analysis was subsequently carried out in the culture supernatants. By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry (LC-MS/MS), proteins in the culture supernatants were searched. A MEDLINE search to define the functions of the identified proteins was carried out. RESULTS Four differentially regulated proteins (profilin 1, amyloid beta A4 protein [APP], proprotein convertase subtilisin/kexin type 1 inhibitor [ProSAAS], galectin-3-binding protein [LGALS3BP]) were selected. These were not overexpressed in normal kidney tissue or reported in RCC. Their levels were measured through western blotting of normal kidney and RCC tissues. No differences were observed in the expression levels of APP, ProSAAS or LGALS3BP between RCC and normal kidney tissues. Profilin 1 was overexpressed in RCC tissue. On the basis of this observation, an immunohistochemical analysis of profilin 1 in normal kidney and RCC tissues was carried out. In normal tissues, tubules that were sources of RCC stained positive for profilin 1. In RCC tissue, in contrast, the stromal cells in the tumors stained positive. CONCLUSIONS Profilin 1 can be a key element in the pathological processes of RCC, such as tumorigenesis and/or tumor growth. Thus, it has the potential to serve as a diagnostic or progression biomarker and therapeutic target in RCC.
Collapse
Affiliation(s)
- Satoru Minamida
- Department of Urology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Nakagawa T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol Neurobiol 2010; 42:161-84. [PMID: 21080238 PMCID: PMC2992128 DOI: 10.1007/s12035-010-8149-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Terunaga Nakagawa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
135
|
Bethea CL, Reddy AP. Effect of ovarian hormones on genes promoting dendritic spines in laser-captured serotonin neurons from macaques. Mol Psychiatry 2010; 15:1034-44. [PMID: 19687787 PMCID: PMC3910421 DOI: 10.1038/mp.2009.78] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/29/2009] [Accepted: 06/25/2009] [Indexed: 01/08/2023]
Abstract
Dendritic spines are the elementary structural units of neuronal plasticity and the cascades that promote dendritic spine remodeling center on Rho GTPases and downstream effectors of actin dynamics. In a model of hormone replacement therapy, we sought the effect of estradiol (E) and progesterone (P) on gene expression in these cascades in laser-captured serotonin neurons from rhesus macaques with complementary DNA array analysis. Ovariectomized rhesus macaques were treated with either placebo, E or E+P through Silastic implant for 1 month before euthanasia. The midbrain was obtained, sectioned and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an Arcturus Laser Dissection Microscope (PixCell II). RNA from laser-captured serotonin neurons (n=2 animals/treatment) was hybridized to Rhesus Affymetrix GeneChips. With E±P treatment, there was a significant change in 744 probe sets (analysis of variance, P<0.05), but 10,493 probe sets exhibited a twofold or greater change. Pivotal changes in pathways leading to dendritic spine proliferation and transformation included twofold or greater increases in expression of the Rho GTPases called CDC42, Rac1 and RhoA. In addition, twofold or greater increases occurred in downstream effectors of actin dynamics, including p21-activated kinase (PAK1), Rho-associated coiled-coil-containing protein kinase (ROCK), PIP5K, IRSp53, Wiskott-Aldrich syndrome protein (WASP), WASP family Verprolin-homologous protein (WAVE), MLC, cofilin, gelsolin, profilin and three subunits of actin-related protein (ARP2/3). Finally, twofold or greater decreases occurred in CRIPAK, LIMK2 and myosin light chain kinase (MLCK). The regulation of RhoA, Rac1, CDC42, ROCK, PIP5k, IRSp53, WASP, WAVE, LIMK2, CRIPAK1, MLCK, ARP2/3 subunit 3, gelsolin, profilin and cofilin was confirmed with nested quantitative reverse transcriptase-PCR on laser-captured RNA (n=3 animals/treatment). The data indicate that ovarian steroids target gene expression of the Rho GTPases and pivotal downstream proteins, that in turn would promote dendritic spine proliferation and stabilization on serotonin neurons of the dorsal raphe nucleus.
Collapse
Affiliation(s)
- C L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR97006, USA.
| | | |
Collapse
|
136
|
Kapitein LC, Hoogenraad CC. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 2010; 46:9-20. [PMID: 20817096 DOI: 10.1016/j.mcn.2010.08.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 01/01/2023] Open
Abstract
To establish and maintain their polarized morphology, neurons employ active transport driven by cytoskeletal motor proteins to sort cargo between axons and dendrites. These motors can move in a specific direction over either microtubules (kinesins, dynein) or actin filaments (myosins). The basic traffic rules governing polarized transport on the neuronal cytoskeleton have long remained unclear, but recent work has revealed several fundamental sorting principles based on differences in the cytoskeletal organization in axons versus dendrites. We will highlight the basic characteristics of the neuronal cytoskeleton and review existing evidence for microtubule and actin based traffic rules in polarized neuronal transport. We will propose a model in which polarized sorting of cargo is established by recruiting or activating the proper subset of motor proteins, which are subsequently guided to specific directions by the polarized organization of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Lukas C Kapitein
- Department of Neuroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | |
Collapse
|
137
|
Tropea D, Majewska AK, Garcia R, Sur M. Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex. J Neurosci 2010; 30:11086-95. [PMID: 20720116 PMCID: PMC2932955 DOI: 10.1523/jneurosci.1661-10.2010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/08/2010] [Accepted: 06/30/2010] [Indexed: 01/20/2023] Open
Abstract
The impact of activity on neuronal circuitry is complex, involving both functional and structural changes whose interaction is largely unknown. We have used optical imaging of mouse visual cortex responses and two-photon imaging of superficial layer spines on layer 5 neurons to monitor network function and synaptic structural dynamics in the mouse visual cortex in vivo. Total lack of vision due to dark-rearing from birth dampens visual responses and shifts spine dynamics and morphologies toward an immature state. The effects of vision after dark rearing are strongly dependent on the timing of exposure: over a period of days, functional and structural changes are temporally related such that light stabilizes spines while increasing visually driven activity. The effects of long-term light exposure can be partially mimicked by experimentally enhancing inhibitory signaling in the darkness. Brief light exposure, however, results in a rapid, transient, NMDA-dependent increase of cortical responses, accompanied by increased dynamics of dendritic spines. These findings indicate that visual experience induces rapid reorganization of cortical circuitry followed by a period of stabilization, and demonstrate a close relationship between dynamic changes at single synapses and cortical network function.
Collapse
Affiliation(s)
- Daniela Tropea
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Ania K. Majewska
- Department of Neurobiology and Anatomy, Center for Visual Science, University of Rochester, Rochester, New York 14642
| | - Rodrigo Garcia
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| |
Collapse
|
138
|
Peng Y, Zhao J, Gu QH, Chen RQ, Xu Z, Yan JZ, Wang SH, Liu SY, Chen Z, Lu W. Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses. Hippocampus 2010; 20:646-58. [PMID: 19489005 DOI: 10.1002/hipo.20654] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although an increasing number of studies have demonstrated the plasticity of NMDA receptor-mediated synaptic transmission, little is known about the molecular mechanisms that underlie this neurologically important process. In a study of NMDAR-mediated synaptic responses in hippocampal Schaffer-CA1 synapses whose AMPA receptor (AMPAR) activity is totally blocked, we uncovered differences between the trafficking mechanisms that underlie the long-term potentiation (LTP) and long-term depression (LTD) that can be induced in these cells under these conditions. The LTP-producing protocol failed to induce a change in the amplitude of NMDAR-mediated postsynaptic currents (NMDAR EPSCs) in the first 5-10 min, but induced gradual enhancement of NMDAR EPSCs thereafter that soon reached a stable magnitude. This "slow" LTP of NMDAR EPSCs (LTP(NMDA)) was blocked by inhibiting exocytosis or actin polymerization in postsynaptic cells. By contrast, LTD of NMDAR EPSCs (LTD(NMDA)) was immediately inducible, and, although it was blocked by the actin stabilizer, it was unaffected by exocytosis or endocytosis inhibitors. Furthermore, concomitant changes in the decay time of NMDAR EPSCs suggested that differential switches in NR2 subunit composition accompanied LTP(NMDA) and LTD(NMDA), and these changes were blocked by the calcium buffer BAPTA or an mGluR antagonist. Our results suggest that LTP(NMDA) and LTD(NMDA) utilize different NMDAR trafficking pathways and express different ratios of NMDAR subunits on the postsynaptic surface.
Collapse
Affiliation(s)
- Yi Peng
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Lemmens MAM, Steinbusch HWM, Rutten BPF, Schmitz C. Advanced microscopy techniques for quantitative analysis in neuromorphology and neuropathology research: current status and requirements for the future. J Chem Neuroanat 2010; 40:199-209. [PMID: 20600825 DOI: 10.1016/j.jchemneu.2010.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 06/16/2010] [Indexed: 12/24/2022]
Abstract
Visualizing neuromorphology and in particular neuropathology has been the focus of many researchers in the quest to solve the numerous questions that are still remaining related to several neurological and neuropsychiatric diseases. Over the last years, intense research into microscopy techniques has resulted in the development of various new types of microscopes, software imaging systems, and analysis programs. This review briefly discusses some key techniques, such as confocal stereology and automated neuron tracing and reconstruction, and their applications in neuroscience research. Special emphasis is placed on needs for further developments, such as the demand for higher-throughput analyses in quantitative neuromorphology. These developments will advance basic neuroscience research as well as pharmaceutical and biotechnology research and development.
Collapse
Affiliation(s)
- Marijke A M Lemmens
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
140
|
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory.
Collapse
Affiliation(s)
- Pirta Hotulainen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland.
| | | |
Collapse
|
141
|
Tian X, Kai L, Hockberger PE, Wokosin DL, Surmeier DJ. MEF-2 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Mol Cell Neurosci 2010; 44:94-108. [PMID: 20197093 PMCID: PMC2878643 DOI: 10.1016/j.mcn.2010.01.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 11/30/2022] Open
Abstract
Striatal dopamine depletion profoundly reduces the density of spines and corticostriatal glutamatergic synapses formed on D(2) dopamine receptor expressing striatopallidal medium spiny neurons, leaving D(1) receptor expressing striatonigral medium spiny neurons relatively intact. Because D(2) dopamine receptors diminish the excitability of striatopallidal MSNs, the pruning of synapses could be a form of homeostatic plasticity aimed at restoring activity into a preferred range. To characterize the homeostatic mechanisms controlling synapse density in striatal medium spiny neurons, striatum from transgenic mice expressing a D(2) receptor reporter construct was co-cultured with wild-type cerebral cortex. Sustained depolarization of these co-cultures induced a profound pruning of glutamatergic synapses and spines in striatopallidal medium spiny neurons. This pruning was dependent upon Ca(2+) entry through Cav1.2 L-type Ca(2+) channels, activation of the Ca(2+)-dependent protein phosphatase calcineurin and up-regulation of myocyte enhancer factor 2 (MEF2) transcriptional activity. Depolarization and MEF2 up-regulation increased the expression of two genes linked to synaptic remodeling-Nur77 and Arc. Taken together, these studies establish a translational framework within which striatal adaptations linked to the symptoms of Parkinson's disease can be explored.
Collapse
MESH Headings
- Action Potentials/genetics
- Adaptation, Physiological/genetics
- Animals
- Calcineurin/genetics
- Calcineurin/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Coculture Techniques
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Dendritic Spines/metabolism
- Dendritic Spines/ultrastructure
- Dopamine/metabolism
- Efferent Pathways/cytology
- Efferent Pathways/metabolism
- Globus Pallidus/cytology
- Globus Pallidus/metabolism
- Glutamic Acid/metabolism
- MEF2 Transcription Factors
- Mice
- Mice, Transgenic
- Myogenic Regulatory Factors/genetics
- Neostriatum/cytology
- Neostriatum/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuronal Plasticity/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission/genetics
Collapse
Affiliation(s)
- Xinyong Tian
- Department of Physiology Feinberg School of Medicine Northwestern University 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
142
|
Segal M, Vlachos A, Korkotian E. The Spine Apparatus, Synaptopodin, and Dendritic Spine Plasticity. Neuroscientist 2010; 16:125-31. [DOI: 10.1177/1073858409355829] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spine apparatus (SA) is an essential component of mature dendritic spines of cortical and hippocampal neurons, yet its functions are still enigmatic. Synaptopodin (SP), an actin-binding protein, colocalizes with the SA. Hippocampal neurons in SP-knockout mice lack SA, and they express lower LTP. SP probably plays a role in synaptic plasticity, but only recently it is being linked mechanistically to synaptic functions. These authors and others have studied endogenous and transfected SP in dendritic spines of cultured hippocampal neurons. They found that spines containing SP generate twice as large responses to flash photolysis of caged glutamate than SP-negative ones. An N-methyl-d-aspartate receptor—mediated chemical LTP caused accumulation of GFP-GluR1 in spine heads of control but not of shRNA transfected, SP-deficient neurons. SP is linked to calcium stores, because their pharmacological blockade eliminated SP-related enhancement of glutamate responses. Furthermore, release of calcium from stores produces an SP-dependent delivery of GluR1 into spines. Thus, SP plays a crucial role in the calcium store-associated ability of neurons to undergo long-term plasticity.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel,
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| |
Collapse
|
143
|
|
144
|
Spine Remodeling and Synaptic Modification. Mol Neurobiol 2010; 41:29-41. [DOI: 10.1007/s12035-009-8093-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 12/09/2009] [Indexed: 01/05/2023]
|
145
|
Hameroff S. The "conscious pilot"-dendritic synchrony moves through the brain to mediate consciousness. J Biol Phys 2010; 36:71-93. [PMID: 19669425 PMCID: PMC2791805 DOI: 10.1007/s10867-009-9148-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 02/18/2009] [Indexed: 11/24/2022] Open
Abstract
Cognitive brain functions including sensory processing and control of behavior are understood as "neurocomputation" in axonal-dendritic synaptic networks of "integrate-and-fire" neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic-dendritic gap junctions, forming transient syncytia ("dendritic webs") in input/integration layers oriented sideways to axonal-dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The "conscious pilot" is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation.
Collapse
Affiliation(s)
- Stuart Hameroff
- Department of Anesthesiology, Center for Consciousness Studies, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
146
|
Gisselsson L, Toresson H, Ruscher K, Wieloch T. Rho kinase inhibition protects CA1 cells in organotypic hippocampal slices during in vitro ischemia. Brain Res 2009; 1316:92-100. [PMID: 20026316 DOI: 10.1016/j.brainres.2009.11.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 01/24/2023]
Abstract
The actin cytoskeleton is a dynamic superstructure that regulates multiple cellular functions and that has been implicated in cell death regulation. We investigated whether modulating the neuronal actin cytoskeleton polymerization by Rho-GTPase kinase (ROCK) inhibition influences cell death in hippocampal neuronal cultures and in murine organotypic hippocampal slice cultures subjected to in vitro ischemia (IVI). During IVI, spines on vehicle treated hippocampal neurons collapsed and large dendritic actin aggregates were formed. Following ROCK inhibition by Y27632, the actin aggregates were markedly smaller while large filopodia extended from the dendritic trunk. Y27632 also provided strong neuroprotection of hippocampal pyramidal CA1 neurons, which was of similar magnitude as protection by NMDA receptor blockade. Likewise, treatment with the F-actin depolymerizing agent latrunculin during IVI diminished actin aggregation and mitigated cell death following IVI. We propose that ROCK inhibition protects neurons against ischemic damage by disrupting actin polymerization thereby mitigating NMDA receptor induced toxicity and releasing ATP bound to actin for cellular energy use. We conclude that ROCK inhibitors abrogate multiple detrimental processes and could therefore be useful in stroke therapy.
Collapse
Affiliation(s)
- Lennart Gisselsson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184 Lund, Sweden
| | | | | | | |
Collapse
|
147
|
McKinney RA. Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 2009; 588:107-16. [PMID: 19933758 DOI: 10.1113/jphysiol.2009.178905] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the central nervous system, most excitatory synapses occur on dendritic spines, which are small protrusions from the dendritic tree. In the mature cortex and hippocampus, dendritic spines are heterogeneous in shape. It has been shown that the shapes of the spine can affect synapse stability and synaptic function. Dendritic spines are highly motile structures that can undergo actin-dependent shape changes, which occur over a time scale ranging from seconds to tens of minutes or even days. The formation, remodelling and elimination of excitatory synapses on dendritic spines represent ways of refining the microcircuitry in the brain. Here I review the current knowledge on the effects of modulation of AMPA and NMDA ionotropic glutamate receptors on dendritic spine formation, motility and remodelling.
Collapse
Affiliation(s)
- R Anne McKinney
- Department of Pharmacology and Therapeutics, Bellini Life Science Building, McGill University, Montreal, H3G 0B1, Canada.
| |
Collapse
|
148
|
Elhardt M, Martinez L, Tejada-Simon MV. Neurochemical, behavioral and architectural changes after chronic inactivation of NMDA receptors in mice. Neurosci Lett 2009; 468:166-71. [PMID: 19895868 DOI: 10.1016/j.neulet.2009.10.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a psychotic illness characterized by problems in perception, learning, and memory. Post-mortem clinical data revealed abnormalities in neuronal organization, reduced soma and dendritic tree size. In rodents, reduction of glutamatergic neurotransmission by NMDA receptor antagonists mimics symptoms of schizophrenia. However, the dosage, treatment and species used in previous studies have not been consistent, leading to a lack of correlation between the findings reported in low-dose, long-term treatment models and the results in acute or chronic high dose administration. Thus, the present study investigates whether long-term, low-dose blockade of NMDA receptors with MK-801 in the early postnatal period results in molecular, cellular, morphological and behavioral changes in the mouse, alterations that have been singly described by using different drugs and dosages in either mice or rats. We found that early postnatal administration of 0.1mg/kg MK-801 for 15 days altered protein translation, synapse formation, hippocampus-dependent learning and neuronal development, resembling findings reported in schizophrenia. These results suggest that there are strong parallels between this animal model and schizophrenia, which validates it as an animal model for this condition and lends further strength of the NMDA receptor hypofunction as a useful model for the study of psychosis.
Collapse
Affiliation(s)
- Mary Elhardt
- Pharmacological and Pharmaceutical Sciences, University of Houston, TX 77204, USA
| | | | | |
Collapse
|
149
|
Impey S, Davare M, Lesiak A, Lasiek A, Fortin D, Ando H, Varlamova O, Obrietan K, Soderling TR, Goodman RH, Wayman GA. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 2009; 43:146-56. [PMID: 19850129 DOI: 10.1016/j.mcn.2009.10.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 01/22/2023] Open
Abstract
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis. Moreover, miR132 is necessary and sufficient for hippocampal spine formation. Expression of the miR132 target, p250GAP, is inversely correlated with miR132 levels and spinogenesis. Furthermore, knockdown of p250GAP increases spine formation while introduction of a p250GAP mutant unresponsive to miR132 attenuates this activity. Inhibition of miR132 decreases both mEPSC frequency and the number of GluR1-positive spines, while knockdown of p250GAP has the opposite effect. Additionally, we show that the miR132/p250GAP circuit regulates Rac1 activity and spine formation by modulating synapse-specific Kalirin7-Rac1 signaling. These data suggest that neuronal activity regulates spine formation, in part, by increasing miR132 transcription, which in turn activates a Rac1-Pak actin remodeling pathway.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Dendritic spines are the postsynaptic components of most excitatory synapses in the mammalian brain. Spines accumulate rapidly during early postnatal development and undergo a substantial loss as animals mature into adulthood. In past decades, studies have revealed that the number and size of dendritic spines are regulated by a variety of gene products and environmental factors, underscoring the dynamic nature of spines and their importance to brain plasticity. Recently, in vivo time-lapse imaging of dendritic spines in the cerebral cortex suggests that, although spines are highly plastic during development, they are remarkably stable in adulthood, and most of them last throughout life. Therefore, dendritic spines may provide a structural basis for lifelong information storage, in addition to their well-established role in brain plasticity. Because dendritic spines are the key elements for information acquisition and retention, understanding how spines are formed and maintained, particularly in the intact brain, will likely provide fundamental insights into how the brain possesses the extraordinary capacity to learn and to remember.
Collapse
Affiliation(s)
- D Harshad Bhatt
- Molecular Neurobiology Program, The Helen and Martin Kimmel Center for Biology and Medicine at Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|