101
|
Yong SM, Ong QR, Siew BE, Wong BS. The effect of chicken extract on ERK/CREB signaling is ApoE isoform-dependent. Food Funct 2015; 5:2043-51. [PMID: 25080220 DOI: 10.1039/c4fo00428k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is unclear how the nutritional supplement chicken extract (CE) enhances cognition. Human apolipoprotein E (ApoE) can regulate cognition and this isoform-dependent effect is associated with the N-methyl-d-aspartate receptor (NMDAR). To understand if CE utilizes this pathway, we compared the NMDAR signaling in neuronal cells expressing ApoE3 and ApoE4. We observed that CE increased S896 phosphorylation on NR1 in ApoE3 cells and this was linked to higher protein kinase C (PKC) activation. However, ApoE4 cells treated with CE have lowered S897 phosphorylation on NR1 and this was associated with reduced protein kinase A (PKA) phosphorylation. In ApoE3 cells, CE increased calmodulin kinase II (CaMKII) activation and AMPA GluR1 phosphorylation on S831. In contrast, CE reduced CaMKII phosphorylation and led to higher de-phosphorylation of S831 and S845 on GluR1 in ApoE4 cells. While CE enhanced ERK/CREB phosphorylation in ApoE3 cells, this pathway was down-regulated in both ApoE4 and mock cells after CE treatment. These results show that CE triggers ApoE isoform-specific changes on ERK/CREB signaling.
Collapse
Affiliation(s)
- Shan-May Yong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117597.
| | | | | | | |
Collapse
|
102
|
RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proc Natl Acad Sci U S A 2015; 112:4797-802. [PMID: 25825749 DOI: 10.1073/pnas.1417053112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling has a well-established role as a regulator of nervous system development, but its role in the maintenance and regulation of established synapses in the mature brain remains poorly understood. At excitatory glutamatergic synapses, NMDA receptors (NMDARs) have a fundamental role in synaptogenesis, synaptic plasticity, and learning and memory; however, it is not known what controls their number and subunit composition. Here we show that the receptor tyrosine kinase-like orphan receptor 2 (RoR2) functions as a Wnt receptor required to maintain basal NMDAR-mediated synaptic transmission. In addition, RoR2 activation by a noncanonical Wnt ligand activates PKC and JNK and acutely enhances NMDAR synaptic responses. Regulation of a key component of glutamatergic synapses through RoR2 provides a mechanism for Wnt signaling to modulate synaptic transmission, synaptic plasticity, and brain function acutely beyond embryonic development.
Collapse
|
103
|
Chen LJ, Wang YJ, Chen JR, Tseng GF. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons. Exp Neurol 2015; 266:86-98. [PMID: 25708984 DOI: 10.1016/j.expneurol.2015.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Compression causes the reduction of dendritic spines of underlying adult cortical pyramidal neurons but the mechanisms remain at large. Using a rat epidural cerebral compression model, dendritic spines on the more superficial-lying layer III pyramidal neurons were found quickly reduced in 12h, while those on the deep-located layer V pyramidal neurons were reduced slightly later, starting 1day following compression. No change in the synaptic vesicle markers synaptophysin and vesicular glutamate transporter 1 suggest no change in afferents. Postsynaptically, N-methyl-d-aspartate (NMDA) receptor trafficking to synaptic membrane was detected in 10min and lasting to 1day after compression. Translocation of calcineurin to synapses and enhancement of its enzymatic activity were detected within 10min as well. These suggest that compression rapidly activated NMDA receptors to increase postsynaptic calcium, which then activated the phosphatase calcineurin. In line with this, dephosphorylation and activation of the actin severing protein cofilin, and the consequent depolymerization of actin were all identified in the compressed cortex within matching time frames. Antagonizing NMDA receptors with MK801 before compression prevented this cascade of events, including NR1 mobilization, calcineurin activation and actin depolymerization, in the affected cortex. Morphologically, MK801 pretreatment prevented the loss of dendritic spines on the compressed cortical pyramidal neurons as well. In short, we demonstrated, for the first time, mechanisms underlying the rapid compression-induced cortical neuronal dendritic spine plasticity. In addition, the mechanical force of compression appears to activate NMDA receptors to initiate a rapid postsynaptic molecular cascade to trim dendritic spines on the compressed cortical pyramidal neurons within half a day.
Collapse
Affiliation(s)
- Li-Jin Chen
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
104
|
Zappettini S, Grilli M, Olivero G, Chen J, Padolecchia C, Pittaluga A, Tomé AR, Cunha RA, Marchi M. Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens. Front Cell Neurosci 2014; 8:332. [PMID: 25360085 PMCID: PMC4199379 DOI: 10.3389/fncel.2014.00332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/30/2014] [Indexed: 11/13/2022] Open
Abstract
We here provide functional and immunocytochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid receptors (NMDARs) in glutamatergic terminals of the nucleus accumbens (NAc). Immunocytochemical studies showed that a significant percentage of NAc terminals were glutamatergic and possessed GluN1 and α7-containing nAChR. A short-term pre-exposure of synaptosomes to nicotine (30 µM) or choline (1 mM) caused a significant potentiation of the 100 µM NMDA-evoked [3H]D-aspartate ([3H]D-Asp) outflow, which was prevented by α-bungarotoxin (100 nM). The pre-exposure to nicotine (100 µM) or choline (1 mM) also enhanced the NMDA-induced cytosolic free calcium levels, as measured by FURA-2 fluorescence imaging in individual NAc terminals, an effect also prevented by α-bungarotoxin. Pre-exposure to the α4-nAChR agonists 5IA85380 (10 nM) or RJR2429 (1 µM) did not modify NMDA-evoked ([3H]D-Asp) outflow and calcium transients. The NMDA-evoked ([3H]D-Asp) overflow was partially antagonized by the NMDAR antagonists MK801, D-AP5, 5,7-DCKA and R(-)CPP and unaffected by the GluN2B-NMDAR antagonists Ro256981 and ifenprodil. Notably, pre-treatment with choline increased GluN2A biotin-tagged proteins. In conclusion, our results show that the GluN2A-NMDA receptor function can be positively regulated in NAc terminals in response to a brief incubation with α7 but not α4 nAChRs agonists. This might be a general feature in different brain areas since a similar nAChR-mediated bolstering of NMDA-induced ([3H]D-Asp) overflow was also observed in hippocampal synaptosomes.
Collapse
Affiliation(s)
- Stefania Zappettini
- Faculté de Médecine, Institut de Neurosciences des Systèmes Inserm UMR1106, Aix Marseille Université La Timone Marseille, France
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano Genoa, Italy
| | - Jiayang Chen
- Department of Pharmacy, University of Genoa, Viale Cembrano Genoa, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano Genoa, Italy ; Center of Excellence for Biomedical Research, University of Genoa Genoa, Italy
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Faculty of Medicine, University of Coimbra Coimbra, Portugal
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano Genoa, Italy ; Center of Excellence for Biomedical Research, University of Genoa Genoa, Italy
| |
Collapse
|
105
|
Yong SM, Lim ML, Low CM, Wong BS. Reduced neuronal signaling in the ageing apolipoprotein-E4 targeted replacement female mice. Sci Rep 2014; 4:6580. [PMID: 25301084 PMCID: PMC4192620 DOI: 10.1038/srep06580] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
The effect of ApoE on NMDAR-dependent ERK/CREB signaling is isoform-dependent, and ApoE4 accelerates memory decline in ageing. However, this isoform-dependent function on neuronal signaling during ageing is unclear. In this study, we have examined NMDAR-associated ERK/CREB signal transduction in young and aged huApoE3 and huApoE4 targeted replacement (TR) mice. At 12 weeks huApoE4 mouse brain, increased NR1-S896 phosphorylation was linked to higher protein kinase C (PKC) activation. This up-regulation was accompanied by higher phosphorylation of AMPA GluR1-S831, CaMKII, ERK1/2 and CREB. But at 32 weeks, there was no significant difference between huApoE3 and huApoE4 TR mice on NMDAR-associated ERK/CREB signaling. Interestingly, in 72-week-old huApoE4 TR mice, protein phosphorylation that were increased in younger mice were significantly reduced. Lower NR1-S896 phosphorylation was linked to reduced PKC, GluR1-S831, CaMKII, ERK1/2 and CREB phosphorylation in huApoE4 TR mice as compared to huApoE3 TR mice. Furthermore, we have consistently detected lower ApoE levels in young and aged huApoE4 TR mouse brain, and this was associated with reduced expression of the ApoE receptor, LRP1 and NR2A-Y1246 phosphorylation. These results suggest age-specific, isoform-dependent effects of ApoE on neuronal signaling.
Collapse
Affiliation(s)
- Shan-May Yong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mei-Li Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chian-Ming Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Seng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
106
|
Xu F, Luk CC, Wiersma-Meems R, Baehre K, Herman C, Zaidi W, Wong N, Syed NI. Neuronal somata and extrasomal compartments play distinct roles during synapse formation between Lymnaea neurons. J Neurosci 2014; 34:11304-15. [PMID: 25143611 PMCID: PMC6615512 DOI: 10.1523/jneurosci.1651-14.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/07/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022] Open
Abstract
Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined. In this study, we identified different roles of neuronal compartments (somal vs extrasomal) in chemical and electrical synaptogenesis. Specifically, the electrically synapsed Lymnaea pedal dorsal A cluster neurons were used to study electrical synapses, whereas chemical synaptic partners, visceral dorsal 4 (presynaptic, cholinergic), and left pedal dorsal 1 (LPeD1; postsynaptic) were explored for chemical synapse formation. Neurons were cultured in a soma-soma or soma-axon configuration and synapses explored electrophysiologically. We provide the first direct evidence that electrical synapses develop in a soma-soma, but not soma-axon (removal of soma) configuration, indicating the requirement of gene transcription regulation in the somata of both synaptic partners. In addition, the soma-soma electrical coupling was contingent upon trophic factors present in Lymnaea brain-conditioned medium. Further, we demonstrate that chemical (cholinergic) synapses between soma-soma and soma-axon pairs were indistinguishable, with both exhibiting a high degree of contact site and target cell type specificity. We also provide direct evidence that presynaptic cell contact-mediated, clustering of postsynaptic cholinergic receptors at the synaptic site requires transmitter-receptor interaction, receptor internalization, and a protein kinase C-dependent lateral migration toward the contact site. This study provides novel insights into synaptogenesis between central neurons revealing both distinct and synergistic roles of cell-cell signaling and extrinsic trophic factors in executing the synaptogenic program.
Collapse
Affiliation(s)
- Fenglian Xu
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Collin C Luk
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Ryanne Wiersma-Meems
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Kelly Baehre
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Cameron Herman
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Wali Zaidi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Noelle Wong
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
107
|
mGluR5 Upregulation increases excitability of hypothalamic presympathetic neurons through NMDA receptor trafficking in spontaneously hypertensive rats. J Neurosci 2014; 34:4309-17. [PMID: 24647951 DOI: 10.1523/jneurosci.4295-13.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is critically involved in elevated sympathetic output and the development of hypertension. However, changes in group I metabotropic glutamate receptors (mGluR1 and mGluR5) and their relevance to the hyperactivity of PVN presympathetic neurons in hypertension remain unclear. Here, we found that selectively blocking mGluR5 significantly reduced the basal firing activity of spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs), but not in normotensive Wistar-Kyoto (WKY) rats. However, blocking mGluR1 had no effect on the firing activity of PVN neurons in either group. The mRNA and protein levels of mGluR5 in the PVN and rostral ventrolateral medulla were significantly higher in SHRs than in WKY rats. The group I mGluR selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) similarly increased the firing activity of PVN neurons in WKY rats and SHRs. In addition, blocking NMDA receptors (NMDARs) through bath application or intracellular dialysis not only decreased the basal firing in SHRs, but also eliminated DHPG-induced excitation of spinally projecting PVN neurons. DHPG significantly increased the amplitude of NMDAR currents without changing their decay kinetics. Interestingly, DHPG still increased the amplitude of NMDAR currents and caused reappearance of functional NMDAR channels after initially blocking NMDARs. In addition, protein kinase C (PKC) inhibition or intracellular dialysis with synaptosomal-associated protein of 25 kDa (SNAP-25)-blocking peptide abolished DHPG-induced increases in NMDAR currents of PVN neurons in SHRs. Our findings suggest that mGluR5 in the PVN is upregulated in hypertension and contributes to the hyperactivity of PVN presympathetic neurons through PKC- and SNAP-25-mediated surface expression of NMDARs.
Collapse
|
108
|
Segovia M, Louvet C, Charnet P, Savina A, Tilly G, Gautreau L, Carretero-Iglesia L, Beriou G, Cebrian I, Cens T, Hepburn L, Chiffoleau E, Floto RA, Anegon I, Amigorena S, Hill M, Cuturi MC. Autologous dendritic cells prolong allograft survival through Tmem176b-dependent antigen cross-presentation. Am J Transplant 2014; 14:1021-1031. [PMID: 24731243 PMCID: PMC4629416 DOI: 10.1111/ajt.12708] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/18/2013] [Accepted: 01/07/2014] [Indexed: 01/25/2023]
Abstract
The administration of autologous (recipient-derived) tolerogenic dendritic cells (ATDCs) is under clinical evaluation. However, the molecular mechanisms by which these cells prolong graft survival in a donor-specific manner is unknown. Here, we tested mouse ATDCs for their therapeutic potential in a skin transplantation model. ATDC injection in combination with anti-CD3 treatment induced the accumulation of CD8(+) CD11c(+) T cells and significantly prolonged allograft survival. TMEM176B is an intracellular protein expressed in ATDCs and initially identified in allograft tolerance. We show that Tmem176b(-/-) ATDCs completely failed to trigger both phenomena but recovered their effect when loaded with donor peptides before injection. These results strongly suggested that ATDCs require TMEM176B to cross-present antigens in a tolerogenic fashion. In agreement with this, Tmem176b(-/-) ATDCs specifically failed to cross-present male antigens or ovalbumin to CD8(+) T cells. Finally, we observed that a Tmem176b-dependent cation current controls phagosomal pH, a critical parameter in cross-presentation. Thus, ATDCs require TMEM176B to cross-present donor antigens to induce donor-specific CD8(+) CD11c(+) T cells with regulatory properties and prolong graft survival.
Collapse
Affiliation(s)
- M. Segovia
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - C. Louvet
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - P. Charnet
- CRBM, CNRS UMR 5237, Montpellier, France
| | - A. Savina
- Institut Curie, Paris, France
,INSERM U932, Paris, France
| | - G. Tilly
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - L. Gautreau
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - L. Carretero-Iglesia
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - G. Beriou
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - I. Cebrian
- Institut Curie, Paris, France
,INSERM U932, Paris, France
| | - T. Cens
- CRBM, CNRS UMR 5237, Montpellier, France
| | - L. Hepburn
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - E. Chiffoleau
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - R. A. Floto
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - I. Anegon
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - S. Amigorena
- Institut Curie, Paris, France
,INSERM U932, Paris, France
| | - M. Hill
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
,Corresponding authors: Marcelo Hill, , and Maria Cristina Cuturi,
| | - M. C. Cuturi
- ITUN, INSERM UMR_S 1064, Center for Research in Transplantation and Immunology, Nantes, France
,Corresponding authors: Marcelo Hill, , and Maria Cristina Cuturi,
| |
Collapse
|
109
|
Marballi KK, McCullumsmith RE, Yates S, Escamilla MA, Leach RJ, Raventos H, Walss-Bass C. Global signaling effects of a schizophrenia-associated missense mutation in neuregulin 1: an exploratory study using whole genome and novel kinome approaches. J Neural Transm (Vienna) 2014; 121:479-90. [PMID: 24380930 PMCID: PMC3999257 DOI: 10.1007/s00702-013-1142-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Aberrant neuregulin 1-ErbB4 signaling has been implicated in schizophrenia. We previously identified a novel schizophrenia-associated missense mutation (valine to leucine) in the NRG1 transmembrane domain. This variant inhibits formation of the NRG1 intracellular domain (ICD) and causes decreases in dendrite formation. To assess the global effects of this mutation, we used lymphoblastoid cell lines from unaffected heterozygous carriers (Val/Leu) and non-carriers (Val/Val). Transcriptome data showed 367 genes differentially expressed between the two groups (Val/Val N = 6, Val/Leu N = 5, T test, FDR (1 %), α = 0.05, -log10 p value >1.5). Ingenuity pathway (IPA) analyses showed inflammation and NRG1 signaling as the top pathways altered. Within NRG1 signaling, protein kinase C (PKC)-eta (PRKCH) and non-receptor tyrosine kinase (SRC) were down-regulated in heterozygous carriers. Novel kinome profiling (serine/threonine) was performed after stimulating cells (V/V N = 6, V/L N = 6) with ErbB4, to induce release of the NRG1 ICD, and revealed significant effects of treatment on the phosphorylation of 35 peptides. IPA showed neurite outgrowth (six peptides) as the top annotated function. Phosphorylation of these peptides was significantly decreased in ErbB4-treated Val/Val but not in Val/Leu cells. These results show that perturbing NRG1 ICD formation has major effects on cell signaling, including inflammatory and neurite formation pathways, and may contribute significantly to schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Ketan K Marballi
- Department of Cellular and Structural Biology, 7703 Floyd Curl Dr., University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Psychiatry, Neuroscience Program, South Texas Research Facility, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Robert E McCullumsmith
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 576A Birmingham, AL 35294, USA
| | - Stefani Yates
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 576A Birmingham, AL 35294, USA
| | - Michael A Escamilla
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Ave, El Paso, TX 79905
| | - Robin J Leach
- Department of Cellular and Structural Biology, 7703 Floyd Curl Dr., University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | | | - Consuelo Walss-Bass
- Department of Psychiatry, Neuroscience Program, South Texas Research Facility, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
110
|
The impairment in spatial learning and hippocampal LTD induced through the PKA pathway in juvenile-onset diabetes rats are rescued by modulating NMDA receptor function. Neurosci Res 2014; 81-82:55-63. [DOI: 10.1016/j.neures.2014.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/30/2022]
|
111
|
Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci 2014; 34:869-79. [PMID: 24431445 DOI: 10.1523/jneurosci.4538-13.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The NMDA-type glutamate receptor (NMDAR) is essential for synaptogenesis, synaptic plasticity, and higher cognitive function. Emerging evidence indicates that NMDAR Ca(2+) permeability is under the control of cAMP/protein kinase A (PKA) signaling. Whereas the functional impact of PKA on NMDAR-dependent Ca(2+) signaling is well established, the molecular target remains unknown. Here we identify serine residue 1166 (Ser1166) in the carboxy-terminal tail of the NMDAR subunit GluN2B to be a direct molecular and functional target of PKA phosphorylation critical to NMDAR-dependent Ca(2+) permeation and Ca(2+) signaling in spines. Activation of β-adrenergic and D1/D5-dopamine receptors induces Ser1166 phosphorylation. Loss of this single phosphorylation site abolishes PKA-dependent potentiation of NMDAR Ca(2+) permeation, synaptic currents, and Ca(2+) rises in dendritic spines. We further show that adverse experience in the form of forced swim, but not exposure to fox urine, elicits striking phosphorylation of Ser1166 in vivo, indicating differential impact of different forms of stress. Our data identify a novel molecular and functional target of PKA essential to NMDAR-mediated Ca(2+) signaling at synapses and regulated by the emotional response to stress.
Collapse
|
112
|
Recent progress in understanding subtype specific regulation of NMDA receptors by G Protein Coupled Receptors (GPCRs). Int J Mol Sci 2014; 15:3003-24. [PMID: 24562329 PMCID: PMC3958896 DOI: 10.3390/ijms15023003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/30/2013] [Accepted: 02/12/2014] [Indexed: 12/24/2022] Open
Abstract
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity.
Collapse
|
113
|
Luo F, Tang H, Li BM, Li SH. Activation of α1-adrenoceptors enhances excitatory synaptic transmission via a pre- and postsynaptic protein kinase C-dependent mechanism in the medial prefrontal cortex of rats. Eur J Neurosci 2014; 39:1281-93. [DOI: 10.1111/ejn.12495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/16/2013] [Accepted: 12/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Fei Luo
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology; Institutes of Brain Science; Fudan University; Shanghai 200032 China
| | - Hua Tang
- Center for Neuropsychiatric Diseases; Institute of Life Science; Nanchang University; Nanchang China
| | - Bao-ming Li
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology; Institutes of Brain Science; Fudan University; Shanghai 200032 China
- Center for Neuropsychiatric Diseases; Institute of Life Science; Nanchang University; Nanchang China
| | - Si-hai Li
- Center for Neuropsychiatric Diseases; Institute of Life Science; Nanchang University; Nanchang China
| |
Collapse
|
114
|
Yamamori S, Sugaya D, Iida Y, Kokubo H, Itakura M, Suzuki E, Kataoka M, Miyaoka H, Takahashi M. Stress-induced phosphorylation of SNAP-25. Neurosci Lett 2014; 561:182-7. [DOI: 10.1016/j.neulet.2013.12.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/25/2013] [Accepted: 12/20/2013] [Indexed: 11/15/2022]
|
115
|
Abstract
Among the largest cells in the body, neurons possess an immense surface area and intricate geometry that poses many unique cell biological challenges. This morphological complexity is critical for neural circuit formation and enables neurons to compartmentalize cell-cell communication and local intracellular signalling to a degree that surpasses other cell types. The adaptive plastic properties of neurons, synapses and circuits have been classically studied by measurement of electrophysiological properties, ionic conductances and excitability. Over the last 15 years, the field of synaptic and neural electrophysiology has collided with neuronal cell biology to produce a more integrated understanding of how these remarkable highly differentiated cells utilize common eukaryotic cellular machinery to decode, integrate and propagate signals in the nervous system. The present article gives a very brief and personal overview of the organelles and trafficking machinery of neuronal dendrites and their role in dendritic and synaptic plasticity.
Collapse
Affiliation(s)
- Michael D Ehlers
- *Neuroscience Research Unit, Pfizer Worldwide Research and Development, 700 Main Street, Cambridge, MA 02139, U.S.A
| |
Collapse
|
116
|
De Montigny A, Elhiri I, Allyson J, Cyr M, Massicotte G. NMDA reduces Tau phosphorylation in rat hippocampal slices by targeting NR2A receptors, GSK3β, and PKC activities. Neural Plast 2013; 2013:261593. [PMID: 24349798 PMCID: PMC3856160 DOI: 10.1155/2013/261593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/11/2013] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. In the present study, pharmacological inhibitors were deployed to investigate potential processes by which the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors modulates Tau phosphorylation in rat hippocampal slices. Our results demonstrated that Tau phosphorylation at Ser199-202 residues was decreased in NMDA-treated hippocampal slices, an effect that was not reproduced at Ser262 and Ser404 epitopes. NMDA-induced reduction of Tau phosphorylation at Ser199-202 was further promoted when NR2A-containing receptors were pharmacologically isolated and were completely abrogated by the NR2A receptor antagonist NVP-AAM077. Compared with nontreated slices, we observed that NMDA receptor activation was reflected in high Ser9 and low Tyr216 phosphorylation of glycogen synthase kinase-3 beta (GSK3β), suggesting that NMDA receptor activation might diminish Tau phosphorylation via a pathway involving GSK3β inhibition. Accordingly, we found that GSK3β inactivation by a protein kinase C- (PKC-) dependent mechanism is involved in the NMDA-induced reduction of Tau phosphorylation at Ser199-202 epitopes. Taken together, these data indicate that NR2A receptor activation may be important in limiting Tau phosphorylation by a PKC/GSK3β pathway and strengthen the idea that these receptors might act as an important molecular device counteracting neuronal cell death mechanisms in various pathological conditions.
Collapse
Affiliation(s)
- Audrée De Montigny
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Ismaël Elhiri
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Julie Allyson
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Michel Cyr
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Guy Massicotte
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| |
Collapse
|
117
|
Micevych P, Sinchak K. Temporal and concentration-dependent effects of oestradiol on neural pathways mediating sexual receptivity. J Neuroendocrinol 2013; 25:1012-23. [PMID: 24028299 PMCID: PMC3943611 DOI: 10.1111/jne.12103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 11/27/2022]
Abstract
The acceptance of oestradiol signalling through receptors found in the cell membrane, as well as, the nucleus, has provided for a re-examination of the timing and location of the actions of oestradiol on neural circuits mediating sexual receptivity (lordosis). Oestradiol membrane signalling involves the transactivation of metabotrophic glutamate receptors (mGluRs) that transduce steroid information through protein kinase C signalling cascades producing rapid activation of lordosis-regulating circuits. It has been known for some time that oestradiol initially produces an inhibition of the medial preoptic nucleus. We have demonstrated that underlying this inhibition is oestradiol acting in the arcuate nucleus to induce β-endorphin release, which inhibits the medial preoptic nucleus through a μ-opioid receptor mechanism. This transient inhibition is relieved by either subsequent progesterone treatment or longer exposure to higher doses of oestradiol to facilitate lordosis behaviour. We review recent findings about oestradiol membrane signalling inducing dendritic spine formation in the arcuate nucleus that is critical for oestradiol induction of sexual receptivity. Moreover, we discuss the evidence that, in addition to oestrogen receptor α, several other putative membrane oestrogen receptors facilitate lordosis behaviour through regulation of the arcuate nucleus. These include the GRP30 and the STX activated Gq-mER. Finally, we report on the importance of GABA acting at GABAB receptors for oestradiol membrane signalling that regulates lordosis circuit activation and sexual receptivity.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, CA 90840
| |
Collapse
|
118
|
Kostakis E, Smith C, Jang MK, Martin SC, Richards KG, Russek SJ, Gibbs TT, Farb DH. The neuroactive steroid pregnenolone sulfate stimulates trafficking of functional N-methyl D-aspartate receptors to the cell surface via a noncanonical, G protein, and Ca2+-dependent mechanism. Mol Pharmacol 2013; 84:261-74. [PMID: 23716622 PMCID: PMC3716320 DOI: 10.1124/mol.113.085696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2013] [Indexed: 01/06/2023] Open
Abstract
N-methyl D-aspartate (NMDA) receptors (NMDARs) mediate fast excitatory synaptic transmission and play a critical role in synaptic plasticity associated with learning and memory. NMDAR hypoactivity has been implicated in the pathophysiology of schizophrenia, and clinical studies have revealed reduced negative symptoms of schizophrenia with a dose of pregnenolone that elevates serum levels of the neuroactive steroid pregnenolone sulfate (PregS). This report describes a novel process of delayed-onset potentiation whereby PregS approximately doubles the cell's response to NMDA via a mechanism that is pharmacologically and kinetically distinct from rapid positive allosteric modulation by PregS. The number of functional cell-surface NMDARs in cortical neurons increases 60-100% within 10 minutes of exposure to PregS, as shown by surface biotinylation and affinity purification. Delayed-onset potentiation is reversible and selective for expressed receptors containing the NMDAR subunit subtype 2A (NR2A) or NR2B, but not the NR2C or NR2D, subunits. Moreover, substitution of NR2B J/K helices and M4 domain with the corresponding region of NR2D ablates rapid allosteric potentiation of the NMDA response by PregS but not delayed-onset potentiation. This demonstrates that the initial phase of rapid positive allosteric modulation is not a first step in NMDAR upregulation. Delayed-onset potentiation by PregS occurs via a noncanonical, pertussis toxin-sensitive, G protein-coupled, and Ca(2+)-dependent mechanism that is independent of NMDAR ion channel activation. Further investigation into the sequelae for PregS-stimulated trafficking of NMDARs to the neuronal cell surface may uncover a new target for the pharmacological treatment of disorders in which NMDAR hypofunction has been implicated.
Collapse
Affiliation(s)
- Emmanuel Kostakis
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Cheng J, Liu W, Duffney LJ, Yan Z. SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol 2013; 591:3935-47. [PMID: 23774277 DOI: 10.1113/jphysiol.2013.255075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The group II metabotropic glutamate receptors (group II mGluRs) have emerged as the new drug targets for the treatment of mental disorders like schizophrenia. To understand the potential mechanisms underlying the antipsychotic effects of group II mGluRs, we examined their impact on NMDA receptors (NMDARs), since NMDAR hypofunction has been implicated in schizophrenia. The activation of group II mGluRs caused a significant enhancement of NMDAR currents in cortical pyramidal neurons, which was associated with increased NMDAR surface expression and synaptic localization. We further examined whether these effects of group II mGluRs are through the regulation of NMDAR exocytosis via SNARE proteins, a family of proteins involved in vesicle fusion. We found that the enhancing effect of APDC, a selective agonist of group II mGluRs, on NMDAR currents was abolished when botulinum toxin was delivered into the recorded neurons to disrupt the SNARE complex. Inhibiting the function of two key SNARE proteins, SNAP-25 and syntaxin 4, also eliminated the effect of APDC on NMDAR currents. Moreover, the application of APDC increased the activity of Rab4, a small Rab GTPase mediating fast recycling from early endosomes to the plasma membrane, and enhanced the interaction between syntaxin 4 and Rab4. Knockdown of Rab4 or expression of dominant-negative Rab4 attenuated the effect of APDC on NMDAR currents. Taken together, these results have identified key molecules involved in the group II mGluR-induced potentiation of NMDAR exocytosis and function.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Physiology and Biophysics, State University of New York at Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
120
|
Dominguez R, Dewing P, Kuo J, Micevych P. Membrane-initiated estradiol signaling in immortalized hypothalamic N-38 neurons. Steroids 2013; 78:607-13. [PMID: 23296142 PMCID: PMC3636190 DOI: 10.1016/j.steroids.2012.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022]
Abstract
Regulation of sexual reproduction by estradiol involves the activation of estrogen receptors (ERs) in the hypothalamus. Of the two classical ERs involved in reproduction, ERα appears to be the critical isoform. The role of ERα in reproduction has been found to involve a nuclear ERα that induces a genomic mechanism of action. More recently, a plasma membrane ERα has been shown to trigger signaling pathways involved in reproduction. Mechanisms underlying membrane-initiated estradiol signaling are emerging, including evidence that activation of plasma membrane ERα involves receptor trafficking. The present study examined the insertion of ERα into the plasma membrane of N-38 neurons, an immortalized murine hypothalamic cell line. We identified, using western blotting and PCR that N-38 neurons express full-length 66kDa ERα and a 52kDa ERα spliced variant missing the fourth exon - ERαΔ4. Using surface biotinylation, we observed that treatment of N-38 neurons with estradiol or with a membrane impermeant estradiol elevated plasma membrane ERα protein levels, indicating that membrane signaling increased receptor insertion into the cell membrane. Insertion of ERα was blocked by the ER antagonist ICI 182,780 or with the protein kinase C (PKC) pathway inhibitor bisindolylmaleimide (BIS). Downstream membrane-initiated signaling was confirmed by estradiol activation of PKC-theta (PKCθ) and the release of intracellular calcium. These results indicate that membrane ERα levels in N-38 neurons are dynamically autoregulated by estradiol.
Collapse
Affiliation(s)
- Reymundo Dominguez
- Laboratory of Neuroendocrinology of the Brain Research Institute, Departments of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, United States.
| | | | | | | |
Collapse
|
121
|
Ibrahim F, Maragkakis M, Alexiou P, Maronski MA, Dichter MA, Mourelatos Z. Identification of in vivo, conserved, TAF15 RNA binding sites reveals the impact of TAF15 on the neuronal transcriptome. Cell Rep 2013; 3:301-8. [PMID: 23416048 PMCID: PMC3594071 DOI: 10.1016/j.celrep.2013.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/13/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
RNA binding proteins (RBPs) have emerged as major causative agents of amyotrophic lateral sclerosis (ALS). To investigate the function of TAF15, an RBP recently implicated in ALS, we explored its target RNA repertoire in normal human brain and mouse neurons. Coupling high-throughput sequencing of immunoprecipitated and crosslinked RNA with RNA sequencing and TAF15 knockdowns, we identified conserved TAF15 RNA targets and assessed the impact of TAF15 on the neuronal transcriptome. We describe a role of TAF15 in the regulation of splicing for a set of neuronal RNAs encoding proteins with essential roles in synaptic activities. We find that TAF15 is required for a critical alternative splicing event of the zeta-1 subunit of the glutamate N-methyl-D-aspartate receptor (Grin1) that controls the activity and trafficking of NR1. Our study uncovers neuronal RNA networks impacted by TAF15 and sets the stage for investigating the role of TAF15 in ALS pathogenesis.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Margaret A. Maronski
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marc A. Dichter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Mahoney Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
122
|
Kim EC, Lee MJ, Shin SY, Seol GH, Han SH, Yee J, Kim C, Min SS. Phorbol 12-Myristate 13-Acetate Enhances Long-Term Potentiation in the Hippocampus through Activation of Protein Kinase Cδ and ε. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:51-6. [PMID: 23440225 PMCID: PMC3579105 DOI: 10.4196/kjpp.2013.17.1.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 12/03/2012] [Accepted: 01/20/2013] [Indexed: 11/15/2022]
Abstract
Many intracellular proteins and signaling cascades contribute to the sensitivity of N-methyl-D-aspartate receptors (NMDARs). One such putative contributor is the serine/threonine kinase, protein kinase C (PKC). Activation of PKC by phorbol 12-myristate 13-acetate (PMA) causes activation of extracellular signal-regulated kinase (ERK) and promotes the formation of new spines in cultured hippocampal neurons. The purpose of this study was to examine which PKC isoforms are responsible for the PMA-induced augmentation of long-term potentiation (LTP) in the CA1 stratum radiatum of the hippocampus in vitro and verify that this facilitation requires NMDAR activation. We found that PMA enhanced the induction of LTP by a single episode of theta-burst stimulation in a concentration-dependent manner without affecting to magnitude of baseline field excitatory postsynaptic potentials. Facilitation of LTP by PMA (200 nM) was blocked by the nonspecific PKC inhibitor, Ro 31-8220 (10µM); the selective PKCδ inhibitor, rottlerin (1µM); and the PKCε inhibitor, TAT-εV1-2 peptide (500 nM). Moreover, the NMDAR blocker DL-APV (50µM) prevented enhancement of LTP by PMA. Our results suggest that PMA contributes to synaptic plasticity in the nervous system via activation of PKCδ and/or PKCε, and confirm that NMDAR activity is required for this effect.
Collapse
Affiliation(s)
- Eung Chang Kim
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 301-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Melo CV, Mele M, Curcio M, Comprido D, Silva CG, Duarte CB. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons. PLoS One 2013; 8:e53793. [PMID: 23326507 PMCID: PMC3543267 DOI: 10.1371/journal.pone.0053793] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.
Collapse
Affiliation(s)
- Carlos V. Melo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Biological and Environmental Science, University of Sannio, Benevento, Italy
| | - Diogo Comprido
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carla G. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
124
|
Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 2013; 54:225-38. [PMID: 23313318 DOI: 10.1016/j.nbd.2012.12.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, USA; Department of Neurology, Veterans Administration Greater Los Angeles Healthcare System, USA.
| | | | | | | |
Collapse
|
125
|
Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Brück W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 2012; 18:1805-11. [PMID: 23160238 DOI: 10.1038/nm.3015] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 08/24/2012] [Indexed: 12/12/2022]
Abstract
In multiple sclerosis, an inflammatory disease of the central nervous system (CNS), axonal and neuronal loss are major causes for irreversible neurological disability. However, which molecules contribute to axonal and neuronal injury under inflammatory conditions remains largely unknown. Here we show that the transient receptor potential melastatin 4 (TRPM4) cation channel is crucial in this process. TRPM4 is expressed in mouse and human neuronal somata, but it is also expressed in axons in inflammatory CNS lesions in experimental autoimmune encephalomyelitis (EAE) in mice and in human multiple sclerosis tissue. Deficiency or pharmacological inhibition of TRPM4 using the antidiabetic drug glibenclamide resulted in reduced axonal and neuronal degeneration and attenuated clinical disease scores in EAE, but this occurred without altering EAE-relevant immune function. Furthermore, Trpm4(-/-) mouse neurons were protected against inflammatory effector mechanisms such as excitotoxic stress and energy deficiency in vitro. Electrophysiological recordings revealed TRPM4-dependent neuronal ion influx and oncotic cell swelling upon excitotoxic stimulation. Therefore, interference with TRPM4 could translate into a new neuroprotective treatment strategy.
Collapse
Affiliation(s)
- Benjamin Schattling
- Forschergruppe Neuroimmunologie, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Mattison HA, Hayashi T, Barria A. Palmitoylation at two cysteine clusters on the C-terminus of GluN2A and GluN2B differentially control synaptic targeting of NMDA receptors. PLoS One 2012; 7:e49089. [PMID: 23166606 PMCID: PMC3499554 DOI: 10.1371/journal.pone.0049089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022] Open
Abstract
Palmitoylation of NMDARs occurs at two distinct cysteine clusters in the carboxyl-terminus of GluN2A and GluN2B subunits that differentially regulates retention in the Golgi apparatus and surface expression of NMDARs. Mutations of palmitoylatable cysteine residues in the membrane-proximal cluster to non-palmitoylatable serines leads to a reduction in the surface expression of recombinant NMDARs via enhanced internalization of the receptors. Mutations in a cluster of cysteines in the middle of the carboxyl-terminus of GluN2A and GluN2B, leads to an increase in the surface expression of NMDARs via an increase in post-Golgi trafficking. Using a quantitative electrophysiological assay, we investigated whether palmitoylation of GluN2 subunits and the differential regulation of surface expression affect functional synaptic incorporation of NMDARs. We show that a reduction in surface expression due to mutations in the membrane-proximal cluster translates to a reduction in synaptic expression of NMDARs. However, increased surface expression induced by mutations in the cluster of cysteines that regulates post-Golgi trafficking of NMDARs does not increase the synaptic pool of NMDA receptors, indicating that the number of synaptic receptors is tightly regulated.
Collapse
Affiliation(s)
- Hayley A. Mattison
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Takashi Hayashi
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
127
|
Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J Neurosci 2012; 32:11991-2004. [PMID: 22933784 DOI: 10.1523/jneurosci.0041-12.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Projections from thalamic intralaminar nuclei convey sensory signals to striatal cholinergic interneurons. These neurons respond with a pause in their pacemaking activity, enabling synaptic integration with cortical inputs to medium spiny neurons (MSNs), thus playing a crucial role in motor function. In mice with the DYT1 dystonia mutation, stimulation of thalamostriatal axons, mimicking a response to salient events, evoked a shortened pause and triggered an abnormal spiking activity in interneurons. This altered pattern caused a significant rearrangement of the temporal sequence of synaptic activity mediated by M(1) and M(2) muscarinic receptors in MSNs, consisting of an increase in postsynaptic currents and a decrease of presynaptic inhibition, respectively. Consistent with a major role of acetylcholine, either lowering cholinergic tone or antagonizing postsynaptic M(1) muscarinic receptors normalized synaptic activity. Our data demonstrate an abnormal time window for synaptic integration between thalamostriatal and corticostriatal inputs, which might alter the action selection process, thereby predisposing DYT1 gene mutation carriers to develop dystonic movements.
Collapse
|
128
|
Excitotoxicity in the Pathogenesis of Autism. Neurotox Res 2012; 23:393-400. [DOI: 10.1007/s12640-012-9354-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 01/29/2023]
|
129
|
Gocel J, Larson J. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse. Neuroscience 2012; 221:170-81. [PMID: 22750206 PMCID: PMC3424403 DOI: 10.1016/j.neuroscience.2012.06.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1 knockout (KO) mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and wild-type (WT) mice, using the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from 3-18months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6-18months of age, but does not explain normal LTP at these synapses in mice 3-6months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24-28months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.
Collapse
Affiliation(s)
- James Gocel
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
130
|
Zhao YL, Chen SR, Chen H, Pan HL. Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-D-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J Biol Chem 2012; 287:25073-85. [PMID: 22679016 DOI: 10.1074/jbc.m112.378737] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance.
Collapse
Affiliation(s)
- Yi-Lin Zhao
- Center for Pain and Neuroscience Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
131
|
Harney SC, Anwyl R. Plasticity of NMDA receptor-mediated excitatory postsynaptic currents at perforant path inputs to dendrite-targeting interneurons. J Physiol 2012; 590:3771-86. [PMID: 22615437 DOI: 10.1113/jphysiol.2012.234740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synaptic plasticity of NMDA receptors (NMDARs) has been recently described in a number of brain regions and we have previously characterised LTP and LTD of glutamatergic NMDA receptor-mediated EPSCs (NMDAR-EPSCs) in granule cells of dentate gyrus. The functional significance of NMDAR plasticity at perforant path synapses on hippocampal network activity depends on whether this is a common feature of perforant path synapses on all postsynaptic target cells or if this plasticity occurs only at synapses on principal cells. We recorded NMDAR-EPSCs at medial perforant path synapses on interneurons in dentate gyrus which had significantly slower decay kinetics compared to those recorded in granule cells. NMDAR pharmacology in interneurons was consistent with expression of both GluN2B- and GluN2D-containing receptors. In contrast to previously described high frequency stimulation-induced bidirectional plasticity of NMDAR-EPSCs in granule cells, only LTD of NMDAR-EPSCs was induced in interneurons in our standard experimental conditions. In interneurons, LTD of NMDAR-EPSCs was associated with a loss of sensitivity to a GluN2D-selective antagonist and was inhibited by the actin stabilising agent, jasplakinolide. While LTP of NMDAR-EPSCs can be readily induced in granule cells, this form of plasticity was only observed in interneurons when extracellular calcium was increased above physiological concentrations during HFS or when PKC was directly activated by phorbol ester, suggesting that opposing forms of plasticity at inputs to interneurons and principal cells may act to regulate granule cell dendritic integration and processing.
Collapse
Affiliation(s)
- Sarah C Harney
- Department of Physiology, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
132
|
Yang ZJ, Carter EL, Kibler KK, Kwansa H, Crafa DA, Martin LJ, Roman RJ, Harder DR, Koehler RC. Attenuation of neonatal ischemic brain damage using a 20-HETE synthesis inhibitor. J Neurochem 2012; 121:168-79. [PMID: 22251169 PMCID: PMC3303996 DOI: 10.1111/j.1471-4159.2012.07666.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons. Administration of HET0016 after H-I improved early neurological recovery and protected neurons in putamen after 4 days of recovery. HET0016 had no significant effect on cerebral blood flow. cytochrome P450 4A immunoreactivity was detected in putamen neurons, and direct infusion of 20-HETE in the putamen increased phosphorylation of Na(+), K(+) -ATPase and NMDA receptor NR1 subunit selectively at protein kinase C-sensitive sites but not at protein kinase A-sensitive sites. HET0016 selectively inhibited the H-I induced phosphorylation at these same sites at 3 h of recovery and improved Na(+), K(+) -ATPase activity. At 3 h, HET0016 also suppressed H-I induced extracellular signal-regulated kinase 1/2 activation and protein markers of nitrosative and oxidative stress. Thus, 20-HETE can exert direct effects on key proteins involved in neuronal excitotoxicity in vivo and contributes to neurodegeneration after global cerebral ischemia in immature brain.
Collapse
Affiliation(s)
- Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Schultz MK, Wright LKM, Stone MF, Schwartz JE, Kelley NR, Moffett MC, Lee RB, Lumley LA. The anticholinergic and antiglutamatergic drug caramiphen reduces seizure duration in soman-exposed rats: synergism with the benzodiazepine diazepam. Toxicol Appl Pharmacol 2012; 259:376-86. [PMID: 22310180 DOI: 10.1016/j.taap.2012.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/26/2022]
Abstract
Therapy of seizure activity following exposure to the nerve agent soman (GD) includes treatment with the anticonvulsant diazepam (DZP), an allosteric modulator of γ-aminobutyric acid A (GABA(A)) receptors. However, seizure activity itself causes the endocytosis of GABA(A) receptors and diminishes the inhibitory effects of GABA, thereby reducing the efficacy of DZP. Treatment with an N-methyl-d-aspartic acid (NMDA) receptor antagonist prevents this reduction in GABAergic inhibition. We examined the efficacy of the NMDA receptor antagonist caramiphen edisylate (CED; 20mg/kg, im) and DZP (10mg/kg, sc), administered both separately and in combination, at 10, 20 or 30min following seizure onset for attenuation of the deleterious effects associated with GD exposure (1.2 LD(50); 132μg/kg, sc) in rats. Outcomes evaluated were seizure duration, neuropathology, acetylcholinesterase (AChE) activity, body weight, and temperature. We also examined the use of the reversible AChE inhibitor physostigmine (PHY; 0.2mg/kg, im) as a therapy for GD exposure. We found that the combination of CED and DZP yielded a synergistic effect, shortening seizure durations and reducing neuropathology compared to DZP alone, when treatment was delayed 20-30min after seizure onset. PHY reduced the number of animals that developed seizures, protected a fraction of AChE from GD inhibition, and attenuated post-exposure body weight and temperature loss independent of CED and/or DZP treatment. We conclude that: 1) CED and DZP treatment offers considerable protection against the effects of GD and 2) PHY is a potential therapeutic option following GD exposure, albeit with a limited window of opportunity.
Collapse
Affiliation(s)
- M K Schultz
- US Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Bigford GE, Chaudhry NS, Keane RW, Holohean AM. 5-Hydroxytryptamine 5HT2C receptors form a protein complex with N-methyl-D-aspartate GluN2A subunits and activate phosphorylation of Src protein to modulate motoneuronal depolarization. J Biol Chem 2012; 287:11049-59. [PMID: 22291020 DOI: 10.1074/jbc.m111.277806] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA)-gated ion channels are known to play a critical role in motoneuron depolarization, but the molecular mechanisms modulating NMDA activation in the spinal cord are not well understood. This study demonstrates that activated 5HT2C receptors enhance NMDA depolarizations recorded electrophysiologically from motoneurons. Pharmacological studies indicate involvement of Src tyrosine kinase mediates 5HT2C facilitation of NMDA. RT-PCR analysis revealed edited forms of 5HT2C were present in mammalian spinal cord, indicating the availability of G-protein-independent isoforms. Spinal cord neurons treated with the 5HT2C agonist MK 212 showed increased Src(Tyr-416) phosphorylation in a dose-dependent manner thus verifying that Src is activated after treatment. In addition, 5HT2C antagonists and tyrosine kinase inhibitors blocked 5HT2C-mediated Src(Tyr-416) phosphorylation and also enhanced NMDA-induced motoneuron depolarization. Co-immunoprecipitation of synaptosomal fractions showed that GluN2A, 5HT2C receptors, and Src tyrosine kinase form protein associations in synaptosomes. Moreover, immunohistochemical analysis demonstrated GluN2A and 5HT2C receptors co-localize on the processes of spinal neurons. These findings reveal that a distinct multiprotein complex links 5-hydroxytryptamine-activated intracellular signaling events with NMDA-mediated functional activity.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
135
|
Ruscheweyh R, Sandkühler J. Opioids and central sensitisation: II. Induction and reversal of hyperalgesia. Eur J Pain 2012; 9:149-52. [PMID: 15737805 DOI: 10.1016/j.ejpain.2004.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 11/19/2022]
Abstract
Opioids are powerful analgesics when used to treat acute pain and some forms of chronic pain. In addition, opioids can preempt some forms of central sensitization. Here we review evidence that opioids may also induce and perhaps reverse some forms of central sensitization.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Department of Neurophysiology, Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | |
Collapse
|
136
|
Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 2011; 48:308-20. [DOI: 10.1016/j.mcn.2011.05.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/20/2011] [Accepted: 05/01/2011] [Indexed: 11/23/2022] Open
|
137
|
Li XZ, Yan J, Huang SH, Zhao L, Wang J, Chen ZY. Identification of a key motif that determines the differential surface levels of RET and TrkB tyrosine kinase receptors and controls depolarization enhanced RET surface insertion. J Biol Chem 2011; 287:1932-45. [PMID: 22128160 DOI: 10.1074/jbc.m111.283457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RET tyrosine kinase receptor plays an important role in the development and maintenance of the nervous system. Although the ligand-induced RET signaling pathway has been well described, little is known about the regulation of RET surface expression, which is integral to the cell ability to control the response to ligand stimuli. We found that in dorsal root ganglion (DRG) neurons, which co-express RET and TrkB, the receptor surface levels of RET are significantly higher than that of TrkB. Using a sequence substitution strategy, we identified a key motif (Box1), which is necessary and sufficient for the differential RET and TrkB surface levels. Furthermore, pharmacological and mutagenesis assays revealed that protein kinase C (PKC) and high K(+) depolarization increase RET surface levels through phosphorylation of the Thr(675) residue in the Box1 motif. Finally, we found that the phosphorylation status of the Thr(675) residue influences RET mediated response to GDNF stimulation. In all, these findings provide a novel mechanism for the modulation of RET surface expression.
Collapse
Affiliation(s)
- Xue-Zhi Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | | | | | | | | | | |
Collapse
|
138
|
Xu H, Bae M, Tovar-y-Romo LB, Patel N, Bandaru VVR, Pomerantz D, Steiner JP, Haughey NJ. The human immunodeficiency virus coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains. J Neurosci 2011; 31:17074-90. [PMID: 22114277 PMCID: PMC3254245 DOI: 10.1523/jneurosci.4072-11.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022] Open
Abstract
Infection by the human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV-associated neurocognitive disorders. Although the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for this effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. gp120 enlarged and stabilized the structure of lipid microdomains on dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2) to the plasma membrane. A concurrent pathway was activated that accelerated the forward traffic of NMDA receptors by a PKA-dependent phosphorylation of the NR1 C-terminal serine 897 (masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced by threefold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from accelerating the surface localization of NMDA receptors. Disrupting the structure of membrane microdomains after gp120 treatments restored the ability of NMDA receptors to disperse and internalize. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV infection by interfering with NMDA receptor trafficking.
Collapse
Affiliation(s)
- Hangxiu Xu
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Mihyun Bae
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Luis B. Tovar-y-Romo
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Neha Patel
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | | | - Daniel Pomerantz
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Joseph P. Steiner
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Norman J. Haughey
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
- Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
139
|
Xiao Z, Jaiswal MK, Deng PY, Matsui T, Shin HS, Porter JE, Lei S. Requirement of phospholipase C and protein kinase C in cholecystokinin-mediated facilitation of NMDA channel function and anxiety-like behavior. Hippocampus 2011; 22:1438-50. [PMID: 22072552 DOI: 10.1002/hipo.20984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2011] [Indexed: 01/07/2023]
Abstract
Although cholecystokinin (CCK) has long been known to exert anxiogenic effects in both animal anxiety models and humans, the underlying cellular and molecular mechanisms are ill-defined. CCK interacts with CCK-1 and CCK-2 receptors resulting in up-regulation of phospholipase C (PLC) and protein kinase C (PKC). However, the roles of PLC and PKC in CCK-mediated anxiogenic effects have not been determined. We have shown previously that CCK facilitates glutamate release in the hippocampus especially at the synapses formed by the perforant path and dentate gyrus granule cells via activations of PLC and PKC. Here we further demonstrated that CCK enhanced NMDA receptor function in dentate gyrus granule cells via activation of PLC and PKC pathway. At the single-channel level, CCK increased NMDA single-channel open probability and mean open time, reduced the mean close time, and had no effects on the conductance of NMDA channels. Because elevation of glutamatergic functions results in anxiety, we explored the roles of PLC and PKC in CCK-induced anxiogenic actions using the Vogel Conflict Test (VCT). Our results from both pharmacological approach and knockout mice demonstrated that microinjection of CCK into the dentate gyrus concentration-dependently increased anxiety-like behavior via activation of PLC and PKC. Our results provide a novel unidentified signaling mechanism whereby CCK increases anxiety.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Effects of pentoxifylline and H-89 on epileptogenic activity of bucladesine in pentylenetetrazol-treated mice. Eur J Pharmacol 2011; 670:464-70. [PMID: 21946102 DOI: 10.1016/j.ejphar.2011.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 11/24/2022]
Abstract
The present study shows interactive effects of pentoxifylline (PTX) as a phosphodiesterase (PDE) inhibitor, H-89 as a protein kinase A (PKA) inhibitor and bucladesine (db-cAMP) as a cAMP agonist on pentylenetetrazol (PTZ)-induced seizure in mice. Different doses of pentoxifylline (25, 50, 100 mg/kg), bucladesine (50, 100, 300 nM/mouse), and H-89 (0.05, 0.1, 0.2 mg/100g) were administered intraperitoneally (i.p.), 30 min before intravenous (i.v.) infusion of PTZ (0.5% w/v). In combination groups, the first and second components were injected 45 and 30 min before PTZ infusion. In all groups, the control animals received an appropriate volume of vehicle. Single administration of PTX had no significant effect on both seizure latency and threshold. Bucladesine significantly decreased seizure latency and threshold only at a high concentration (300 nM/mouse). Intraperitoneal administration of H-89 (0.2 mg/100g) significantly increased seizure latency and threshold in PTZ-treated animals. All applied doses of bucladesine in combination with PTX (50 mg/kg) caused a significant reduction in seizure latency. Pretreatment of animals with PTX (50 and 100 mg/kg) attenuated the anticonvulsant effect of H-89 (0.2 mg/100g) in PTZ-exposed animals. H-89 (0.05, 0.2 mg/100g) prevented the epileptogenic activity of bucladesine (300 nM) with significant increase of seizure latency and seizure threshold. In conclusion, we showed that seizure activities were affected by pentoxifylline, H-89 and bucladesine via interactions with intracellular cAMP and cGMP signaling pathways, cyclic nucleotide-dependent protein kinases, and related neurotransmitters.
Collapse
|
141
|
Reneau J, Reyland ME, Popp RL. Acute ethanol exposure prevents PMA-mediated augmentation of N-methyl-D-aspartate receptor function in primary cultured cerebellar granule cells. Alcohol 2011; 45:595-605. [PMID: 21624785 PMCID: PMC3154614 DOI: 10.1016/j.alcohol.2011.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/06/2023]
Abstract
Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-D-aspartate receptors (NMDARs). One putative protein is the serine/threonine kinase, protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (I(NMDA)) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50, or 100 mM ethanol of NMDA-induced steady-state current amplitudes (I(SS)) or peak current amplitudes (I(Pk)) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37°C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of I(Pk) in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol coapplied with agonists, and this suppression of enhanced receptor function was observed for up to 8 min post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of I(NMDA) of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50, and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of I(NMDA) may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved.
Collapse
Affiliation(s)
- Jason Reneau
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4 Street, STOP 6592, Lubbock, TX 79430-0002
| | - Mary E. Reyland
- Department of Craniofacial Biology, University of Colorado Denver, Aurora, Colorado
| | - R. Lisa Popp
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4 Street, STOP 6592, Lubbock, TX 79430-0002
- South Plains Alcohol and Addiction Research Center, Texas Tech University Health Sciences Center, 3601 4 Street, STOP 6592, Lubbock, TX 79430-0002
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4 Street, STOP 6592, Lubbock, TX 79430-0002
| |
Collapse
|
142
|
Coronel MF, Labombarda F, Roig P, Villar MJ, De Nicola AF, González SL. Progesterone Prevents Nerve Injury-Induced Allodynia and Spinal NMDA Receptor Upregulation in Rats. PAIN MEDICINE 2011; 12:1249-61. [DOI: 10.1111/j.1526-4637.2011.01178.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
143
|
George AA, Macleod GT, Zakon HH. Calcium-dependent phosphorylation regulates neuronal stability and plasticity in a highly precise pacemaker nucleus. J Neurophysiol 2011; 106:319-31. [PMID: 21525377 PMCID: PMC3129731 DOI: 10.1152/jn.00741.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 04/21/2011] [Indexed: 12/24/2022] Open
Abstract
Specific types of neurons show stable, predictable excitability properties, while other neurons show transient adaptive plasticity of their excitability. However, little attention has been paid to how the cellular pathways underlying adaptive plasticity interact with those that maintain neuronal stability. We addressed this question in the pacemaker neurons from a weakly electric fish because these neurons show a highly stable spontaneous firing rate as well as an N-methyl-D-aspartate (NMDA) receptor-dependent form of plasticity. We found that basal firing rates were regulated by a serial interaction of conventional and atypical PKC isoforms and that this interaction establishes individual differences within the species. We observed that NMDA receptor-dependent plasticity is achieved by further activation of these kinases. Importantly, the PKC pathway is maintained in an unsaturated baseline state to allow further Ca(2+)-dependent activation during plasticity. On the other hand, the Ca(2+)/calmodulin-dependent phosphatase calcineurin does not regulate baseline firing but is recruited to control the duration of the NMDA receptor-dependent plasticity and return the pacemaker firing rate back to baseline. This work illustrates how neuronal plasticity can be realized by biasing ongoing mechanisms of stability (e.g., PKC) and terminated by recruiting alternative mechanisms (e.g., calcineurin) that constrain excitability. We propose this as a general model for regulating activity-dependent change in neuronal excitability.
Collapse
Affiliation(s)
- Andrew A George
- Section of Neurobiology and Institute for Neuroscience, Patterson Laboratory, University of Texas at Austin, Texas, USA.
| | | | | |
Collapse
|
144
|
Cerpa W, Gambrill A, Inestrosa NC, Barria A. Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 2011; 31:9466-71. [PMID: 21715611 PMCID: PMC3141819 DOI: 10.1523/jneurosci.6311-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/08/2011] [Accepted: 05/07/2011] [Indexed: 11/21/2022] Open
Abstract
Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections, is not known. We found that Wnt-5a acutely and specifically upregulates synaptic NMDAR currents in rat hippocampal slices, facilitating induction of long-term potentiation, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca(2+) and activation of noncanonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR-mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission, adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism.
Collapse
Affiliation(s)
- Waldo Cerpa
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, and
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Abigail Gambrill
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, and
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, and
| |
Collapse
|
145
|
Zhang Y, Gong K, Zhou W, Shao G, Li S, Lin Q, Li J. Involvement of subtypes γ and ε of protein kinase C in colon pain induced by formalin injection. Neurosignals 2011; 19:142-50. [PMID: 21701146 PMCID: PMC3699812 DOI: 10.1159/000328311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/11/2011] [Indexed: 12/20/2022] Open
Abstract
Protein kinase C (PKC) has been widely reported to participate in somatic pain; however, its role in visceral pain remains largely unclear. Using a colon inflammatory pain model by intracolonic injection of formalin in rats, the present study was to examine the role of PKC in visceral pain and determine which subtypes may be involved. The colon pain behavior induced by formalin injection could be enhanced by intrathecal pretreatment with a PKC activator (PMA), and alleviated by a PKC inhibitor (H-7). Wide dynamic range (WDR) neurons in the L6-S1 spinal dorsal horn that were responsive to colorectal distension were recorded extracellularly. It was found that neuronal activity was greatly increased following formalin injection. Microdialysis of PMA near the recorded neuron in the spinal dorsal horn facilitated the enhanced responsive activity induced by formalin injection, while H-7 inhibited significantly the enhanced response induced by formalin injection. Western blot analysis revealed that membrane translocation of PKC-γ and PKC-∊, but not other subtypes, in the spinal cord was obviously increased following formalin injection. Therefore, our findings suggest that PKC is actively involved in the colon pain induced by intracolonic injection of formalin. PKC-γ and PKC-∊ subtypes seem to significantly contribute to this process.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Neurology, the Affiliated Hospital of Taishan Medical College, Tai'an, China
| | | | | | | | | | | | | |
Collapse
|
146
|
Ferreira JS, Rooyakkers A, She K, Ribeiro L, Carvalho AL, Craig AM. Activity and protein kinase C regulate synaptic accumulation of N-methyl-D-aspartate (NMDA) receptors independently of GluN1 splice variant. J Biol Chem 2011; 286:28331-42. [PMID: 21676872 DOI: 10.1074/jbc.m111.222539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
NMDA receptors are calcium-permeable ionotropic receptors that detect coincident glutamate binding and membrane depolarization and are essential for many forms of synaptic plasticity in the mammalian brain. The obligatory GluN1 subunit of NMDA receptors is alternatively spliced at multiple sites, generating forms that vary in N-terminal N1 and C-terminal C1, C2, and C2' cassettes. Based on expression of GluN1 constructs in heterologous cells and in wild type neurons, the prevalent view is that the C-terminal cassettes regulate synaptic accumulation and its modulation by homeostatic activity blockade and by protein kinase C (PKC). Here, we tested the role of GluN1 splicing in regulated synaptic accumulation of NMDA receptors by lentiviral expression of individual GluN1 splice variants in hippocampal neurons cultured from GluN1 (-/-) mice. High efficiency transduction of GluN1 at levels similar to endogenous was achieved. Under control conditions, the C2' cassette mediated enhanced synaptic accumulation relative to the alternate C2 cassette, whereas the presence or absence of N1 or C1 had no effect. Surprisingly all GluN1 splice variants showed >2-fold increased synaptic accumulation with chronic blockade of NMDA receptor activity. Furthermore, in this neuronal rescue system, all GluN1 splice variants were equally rapidly dispersed upon activation of PKC. These results indicate that the major mechanisms mediating homeostatic synaptic accumulation and PKC dispersal of NMDA receptors occur independently of GluN1 splice isoform.
Collapse
Affiliation(s)
- Joana S Ferreira
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
147
|
Ferraro L, Beggiato S, Tomasini MC, Fuxe K, Tanganelli S, Antonelli T. Neurotensin regulates cortical glutamate transmission by modulating N-methyl-D-aspartate receptor functional activity: an in vivo microdialysis study. J Neurosci Res 2011; 89:1618-26. [PMID: 21656844 DOI: 10.1002/jnr.22686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/30/2022]
Abstract
The aim of the present in vivo microdialysis study was to investigate whether the tridecapeptide neurotensin (NT) influences the N-methyl-D-aspartate (NMDA) receptor-mediated increase of cortical glutamate transmission in freely moving rats. Intracortical perfusion with NT influenced local extracellular glutamate levels in a bell-shaped, concentration-dependent manner. One hundred and three hundred nanomolar NT concentrations increased glutamate levels (151% ± 7% and 124% ± 3% of basal values, respectively). Higher (1,000 nM) and lower (10 nM) NT concentrations did not alter extracellular glutamate levels. The NT receptor antagonist SR48692 (100 nM) prevented the NT (100 nM)-induced increase in glutamate levels. NMDA (100 and 500 μM) perfusion induced a concentration-dependent increase in extracellular glutamate levels, the lower 10 μM NMDA concentration being ineffective. When NT (10 nM, a concentration by itself ineffective) was added in combination with NMDA (100 μM) to the perfusion medium, a significant greater increase in extracellular glutamate levels (169% ± 7%) was observed with respect to the increase induced by NMDA (100 μM) alone (139% ± 4%). SR48692 (100 nM) counteracted the increase in glutamate levels induced by the treatment with NT (10 nM) plus NMDA (100 μM). The enhancement of cortical glutamate levels induced by NMDA (100 and 500 μM) was partially antagonized by the presence of SR48692, at a concentration (100 nM) that by itself was ineffective in modulating glutamate release. These findings indicate that NT plays a relevant role in the regulation of cortical glutamatergic transmission, especially by modulating the functional activity of cortical NMDA receptors. A possible role in glutamate-mediated neurotoxicity is suggested.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Pharmacology Section and LTTA Centre, Universityof Ferrara, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
148
|
Yan JZ, Xu Z, Ren SQ, Hu B, Yao W, Wang SH, Liu SY, Lu W. Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation. J Biol Chem 2011; 286:25187-200. [PMID: 21606495 DOI: 10.1074/jbc.m110.192708] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.
Collapse
Affiliation(s)
- Jing-Zhi Yan
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Yamamori S, Itakura M, Sugaya D, Katsumata O, Sakagami H, Takahashi M. Differential expression of SNAP-25 family proteins in the mouse brain. J Comp Neurol 2011; 519:916-32. [PMID: 21280044 DOI: 10.1002/cne.22558] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP)-25 is a neuronal SNARE protein essential for neurotransmitter release from presynaptic terminals. Three palmitoylated SNAP-25 family proteins: SNAP-25a, SNAP-25b, and SNAP-23, are expressed in the brain, but little is known about their distributions and functions. In the present study, we generated specific antibodies to distinguish these three homologous proteins. Immunoblot and immunohistochemical analyses revealed that SNAP-25b was distributed in synapse-enriched regions throughout almost the entire brain, whereas SNAP-25a and SNAP-23 were expressed in relatively specific brain regions with partially complementary expression patterns. SNAP-25a and SNAP-25b, but not SNAP-23, were also present in the axoplasm of nerve fibers. The intracellular localization was also different, and although SNAP-25b and SNAP-23 were found primarily in membrane and lipid raft-enriched fractions of mouse brain homogenates, a substantial amount of SNAP-25a was recovered in soluble fractions. In PC12 cells, SNAP-25b was localized to the plasma membrane, but SNAP-25a and SNAP-23 were distributed throughout the cytoplasm. The expression and distribution of these three proteins were also differentially regulated in the early postnatal period. These results indicate that the three SNAP-25 family proteins display a differential distribution in the brain as well as in neuronal cells, and possibly play distinct roles.
Collapse
Affiliation(s)
- Saori Yamamori
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
Dendritic exocytosis is required for a broad array of neuronal functions including retrograde signaling, neurotransmitter release, synaptic plasticity, and establishment of neuronal morphology. While the details of synaptic vesicle exocytosis from presynaptic terminals have been intensely studied for decades, the mechanisms of dendritic exocytosis are only now emerging. Here we review the molecules and mechanisms of dendritic exocytosis and discuss how exocytosis from dendrites influences neuronal function and circuit plasticity.
Collapse
Affiliation(s)
- Matthew J. Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Pfizer Global Research and Development, Neuroscience Research Unit, Groton CT, USA
| |
Collapse
|