101
|
Pekkarinen L, Kantonen T, Rebelos E, Latva-Rasku A, Dadson P, Karjalainen T, Bucci M, Kalliokoski K, Laitinen K, Houttu N, Kirjavainen AK, Rajander J, Rönnemaa T, Nummenmaa L, Nuutila P. Obesity risk is associated with brain glucose uptake and insulin resistance. Eur J Endocrinol 2022; 187:917-928. [PMID: 36288097 PMCID: PMC9782452 DOI: 10.1530/eje-22-0509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/26/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate whether alterations in brain glucose uptake (BGU), insulin action in the brain-liver axis and whole-body insulin sensitivity occur in young adults in pre-obese state. METHODS Healthy males with either high risk (HR; n = 19) or low risk (LR; n = 22) for developing obesity were studied with [18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography during hyperinsulinemic-euglycemic clamp. Obesity risk was assessed according to BMI, physical activity and parental overweight/obesity and type 2 diabetes. Brain, skeletal muscle, brown adipose tissue (BAT), visceral adipose tissue (VAT) and abdominal and femoral s.c. adipose tissue (SAT) glucose uptake (GU) rates were measured. Endogenous glucose production (EGP) was calculated by subtracting the exogenous glucose infusion rate from the rate of disappearance of [18F]FDG. BGU was analyzed using statistical parametric mapping, and peripheral tissue activity was determined using Carimas Software imaging processing platform. RESULTS BGU was higher in the HR vs LR group and correlated inversely with whole-body insulin sensitivity (M value) in the HR group but not in the LR group. Insulin-suppressed EGP did not differ between the groups but correlated positively with BGU in the whole population, and the correlation was driven by the HR group. Skeletal muscle, BAT, VAT, abdominal and femoral SAT GU were lower in the HR group as compared to the LR group. Muscle GU correlated negatively with BGU in the HR group but not in the LR group. CONCLUSION Increased BGU, alterations in insulin action in the brain-liver axis and decreased whole-body insulin sensitivity occur early in pre-obese state.
Collapse
Affiliation(s)
- Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Marco Bucci
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Kirsi Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Noora Houttu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | | | - Johan Rajander
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Tapani Rönnemaa
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- Correspondence should be addressed to P Nuutila;
| |
Collapse
|
102
|
Parent JH, Ciampa CJ, Harrison TM, Adams JN, Zhuang K, Betts MJ, Maass A, Winer JR, Jagust WJ, Berry AS. Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging. Neuroimage 2022; 263:119658. [PMID: 36191755 PMCID: PMC10060440 DOI: 10.1016/j.neuroimage.2022.119658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Higher neuroticism is a risk factor for Alzheimer's disease (AD), and is implicated in disordered stress responses. The locus coeruleus (LC)-catecholamine system is activated during perceived threat and is a centerpiece of developing models of the pathophysiology of AD, as it is the first brain region to develop abnormal tau. We examined relationships among the "Big 5" personality traits, LC catecholamine synthesis capacity measured with [18F]Fluoro-m-tyrosine PET, and tau burden measured with [18F]Flortaucipir PET in cognitively normal older adults (n = 47). β-amyloid (Aβ) status was determined using [11C]Pittsburgh compound B PET (n = 14 Aβ positive). Lower LC catecholamine synthesis capacity was associated with higher neuroticism, more depressive symptoms as measured by the Geriatric Depression Scale, and higher amygdala tau-PET binding. Exploratory analyses with other personality traits revealed that low trait conscientiousness was also related to both lower LC catecholamine synthesis capacity, and more depressive symptoms. A significant indirect path linked both high neuroticism and low conscientiousness to greater amygdala tau burden via their mutual association with low LC catecholamine synthesis capacity. Together, these findings reveal LC catecholamine synthesis capacity to be a promising marker of affective health and pathology burden in aging, and identifies candidate neurobiological mechanisms for the effect of personality on increased vulnerability to dementia.
Collapse
Affiliation(s)
- Jourdan H. Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Claire J. Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M. Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
| | - Joseph R. Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S. Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
103
|
van Sluis J, van Snick JH, Brouwers AH, Noordzij W, Dierckx RAJO, Borra RJH, Lammertsma AA, Glaudemans AWJM, Slart RHJA, Yaqub M, Tsoumpas C, Boellaard R. Shortened duration whole body 18F-FDG PET Patlak imaging on the Biograph Vision Quadra PET/CT using a population-averaged input function. EJNMMI Phys 2022; 9:74. [PMID: 36308568 PMCID: PMC9618000 DOI: 10.1186/s40658-022-00504-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Excellent performance characteristics of the Vision Quadra PET/CT, e.g. a substantial increase in sensitivity, allow for precise measurements of image-derived input functions (IDIF) and tissue time activity curves. Previously we have proposed a method for a reduced 30 min (as opposed to 60 min) whole body 18F-FDG Patlak PET imaging procedure using a previously published population-averaged input function (PIF) scaled to IDIF values at 30–60 min post-injection (p.i.). The aim of the present study was to apply this method using the Vision Quadra PET/CT, including the use of a PIF to allow for shortened scan durations. Methods Twelve patients with suspected lung malignancy were included and received a weight-based injection of 18F-FDG. Patients underwent a 65-min dynamic PET acquisition which were reconstructed using European Association of Nuclear Medicine Research Ltd. (EARL) standards 2 reconstruction settings. A volume of interest (VOI) was placed in the ascending aorta (AA) to obtain the IDIF. An external PIF was scaled to IDIF values at 30–60, 40–60, and 50–60 min p.i., respectively, and parametric 18F-FDG influx rate constant (Ki) images were generated using a t* of 30, 40 or 50 min, respectively. Herein, tumour lesions as well as healthy tissues, i.e. liver, muscle tissue, spleen and grey matter, were segmented. Results Good agreement between the IDIF and corresponding PIF scaled to 30–60 min p.i. and 40–60 min p.i. was obtained with 7.38% deviation in Ki. Bland–Altman plots showed excellent agreement in Ki obtained using the PIF scaled to the IDIF at 30–60 min p.i. and at 40–60 min p.i. as all data points were within the limits of agreement (LOA) (− 0.004–0.002, bias: − 0.001); for the 50–60 min p.i. Ki, all except one data point fell in between the LOA (− 0.021–0.012, bias: − 0.005). Conclusions Parametric whole body 18F-FDG Patlak Ki images can be generated non-invasively on a Vision Quadra PET/CT system. In addition, using a scaled PIF allows for a substantial (factor 2 to 3) reduction in scan time without substantial loss of accuracy (7.38% bias) and precision (image quality and noise interference). Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00504-9.
Collapse
|
104
|
Halff EF, Natesan S, Bonsall DR, Veronese M, Garcia-Hidalgo A, Kokkinou M, Tang SP, Riggall LJ, Gunn RN, Irvine EE, Withers DJ, Wells LA, Howes OD. Evaluation of Intraperitoneal [ 18F]-FDOPA Administration for Micro-PET Imaging in Mice and Assessment of the Effect of Subchronic Ketamine Dosing on Dopamine Synthesis Capacity. Mol Imaging 2022; 2022:4419221. [PMID: 36721730 PMCID: PMC9881672 DOI: 10.1155/2022/4419221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/08/2022] [Indexed: 02/05/2023] Open
Abstract
Positron emission tomography (PET) using the radiotracer [18F]-FDOPA provides a tool for studying brain dopamine synthesis capacity in animals and humans. We have previously standardised a micro-PET methodology in mice by intravenously administering [18F]-FDOPA via jugular vein cannulation and assessment of striatal dopamine synthesis capacity, indexed as the influx rate constant K i Mod of [18F]-FDOPA, using an extended graphical Patlak analysis with the cerebellum as a reference region. This enables a direct comparison between preclinical and clinical output values. However, chronic intravenous catheters are technically difficult to maintain for longitudinal studies. Hence, in this study, intraperitoneal administration of [18F]-FDOPA was evaluated as a less-invasive alternative that facilitates longitudinal imaging. Our experiments comprised the following assessments: (i) comparison of [18F]-FDOPA uptake between intravenous and intraperitoneal radiotracer administration and optimisation of the time window used for extended Patlak analysis, (ii) comparison of Ki Mod in a within-subject design of both administration routes, (iii) test-retest evaluation of Ki Mod in a within-subject design of intraperitoneal radiotracer administration, and (iv) validation of Ki Mod estimates by comparing the two administration routes in a mouse model of hyperdopaminergia induced by subchronic ketamine. Our results demonstrate that intraperitoneal [18F]-FDOPA administration resulted in good brain uptake, with no significant effect of administration route on Ki Mod estimates (intraperitoneal: 0.024 ± 0.0047 min-1, intravenous: 0.022 ± 0.0041 min-1, p = 0.42) and similar coefficient of variation (intraperitoneal: 19.6%; intravenous: 18.4%). The technique had a moderate test-retest validity (intraclass correlation coefficient (ICC) = 0.52, N = 6) and thus supports longitudinal studies. Following subchronic ketamine administration, elevated K i Mod as compared to control condition was measured with a large effect size for both methods (intraperitoneal: Cohen's d = 1.3; intravenous: Cohen's d = 0.9), providing further evidence that ketamine has lasting effects on the dopamine system, which could contribute to its therapeutic actions and/or abuse liability.
Collapse
Affiliation(s)
- Els F. Halff
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - Sridhar Natesan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
| | - David R. Bonsall
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Italy
| | - Anna Garcia-Hidalgo
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Michelle Kokkinou
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sac-Pham Tang
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Laura J. Riggall
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roger N. Gunn
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Elaine E. Irvine
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Dominic J. Withers
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, London, UK
| | - Lisa A. Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, UK
| | - Oliver D. Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
- H. Lundbeck A/S, St Albans AL1 2PS, UK
| |
Collapse
|
105
|
Fu JF, Wegener T, Klyuzhin IS, Mannheim JG, McKeown MJ, Stoessl AJ, Sossi V. Spatiotemporal patterns of putaminal dopamine processing in Parkinson's disease: A multi-tracer positron emission tomography study. Neuroimage Clin 2022; 36:103246. [PMID: 36451352 PMCID: PMC9668665 DOI: 10.1016/j.nicl.2022.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Alterations in different aspects of dopamine processing may exhibit different progressive behaviours throughout the course of Parkinson's disease. We used a novel data-driven multivariate approach to quantify and compare spatiotemporal patterns related to different aspects of dopamine processing from cross-sectional Parkinson's subjects obtained with: 1) 69 [11C]±dihydrotetrabenazine (DTBZ) scans, most closely related to dopaminergic denervation; 2) 73 [11C]d-threo-methylphenidate (MP) scans, marker of dopamine transporter density; 3) 50 6-[18F]fluoro-l-DOPA (FD) scans, marker of dopamine synthesis and storage. The anterior-posterior gradient in the putamen was identified as the most salient feature associated with disease progression, however the temporal progression of the spatial gradient was different for the three tracers. The expression of the anterior-posterior gradient was the highest for FD at disease onset compared to that of DTBZ and MP (P = 0.018 and P = 0.047 respectively), but decreased faster (P = 0.006) compared to that of DTBZ. The gradient expression for MP was initially similar but decreased faster (P = 0.015) compared to that for DTBZ. These results reflected unique temporal behaviours of regulatory mechanisms related to dopamine synthesis (FD) and reuptake (MP). While the relative early disease upregulation of dopamine synthesis in the anterior putamen prevalent likely extends to approximately 10 years after symptom onset, the presumed downregulation of dopamine transporter density may play a compensatory role in the prodromal/earliest disease stages only.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Corresponding author at: Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA 02129, USA.
| | - Tilman Wegener
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Department of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Ivan S. Klyuzhin
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julia G. Mannheim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen, Germany,Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Martin J. McKeown
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - A. Jon Stoessl
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
106
|
Skandali N, Majuri J, Joutsa J, Baek K, Arponen E, Forsback S, Kaasinen V, Voon V. The neural substrates of risky rewards and losses in healthy volunteers and patient groups: a PET imaging study. Psychol Med 2022; 52:3280-3288. [PMID: 33568248 PMCID: PMC9693671 DOI: 10.1017/s0033291720005450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Risk is an essential trait of most daily decisions. Our behaviour when faced with risks involves evaluation of many factors including the outcome probabilities, the valence (gains or losses) and past experiences. Several psychiatric disorders belonging to distinct diagnostic categories, including pathological gambling and addiction, show pathological risk-taking and implicate abnormal dopaminergic, opioidergic and serotonergic neurotransmission. In this study, we adopted a transdiagnostic approach to delineate the neurochemical substrates of decision making under risk. METHODS We recruited 39 participants, including 17 healthy controls, 15 patients with pathological gambling and seven binge eating disorder patients, who completed an anticipatory risk-taking task. Separately, participants underwent positron emission tomography (PET) imaging with three ligands, [18F]fluorodopa (FDOPA), [11C]MADAM and [11C]carfentanil to assess presynaptic dopamine synthesis capacity and serotonin transporter and mu-opioid receptor binding respectively. RESULTS Risk-taking behaviour when faced with gains positively correlated with dorsal cingulate [11C]carfentanil binding and risk-taking to losses positively correlated with [11C]MADAM binding in the caudate and putamen across all subjects. CONCLUSIONS We show distinct neurochemical substrates underlying risk-taking with the dorsal cingulate cortex mu-opioid receptor binding associated with rewards and dorsal striatal serotonin transporter binding associated with losses. Risk-taking and goal-directed control appear to dissociate between dorsal and ventral fronto-striatal systems. Our findings thus highlight the potential role of pharmacological agents or neuromodulation on modifying valence-specific risk-taking biases.
Collapse
Affiliation(s)
- Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Joonas Majuri
- Department of Neurology and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Neurology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Juho Joutsa
- Department of Neurology and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | | | - Valtteri Kaasinen
- Department of Neurology and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
107
|
Thuillier P, Bourhis D, Pavoine M, Metges JP, Le Pennec R, Schick U, Blanc-Béguin F, Hennebicq S, Salaun PY, Kerlan V, Karakatsanis NA, Abgral R. Population-based input function (PBIF) applied to dynamic whole-body 68Ga-DOTATOC-PET/CT acquisition. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:941848. [PMID: 39390995 PMCID: PMC11464975 DOI: 10.3389/fnume.2022.941848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 10/12/2024]
Abstract
Rational To validate a population-based input function (PBIF) model that alleviates the need for scanning since injection time in dynamic whole-body (WBdyn) PET. Methods Thirty-seven patients with suspected/known well-differentiated neuroendocrine tumors were included (GAPETNET trial NTC03576040). All WBdyn 68Ga-DOTATOC-PET/CT acquisitions were performed on a digital PET system (one heart-centered 6 min-step followed by nine WB-passes). The PBIF model was built from 20 image-derived input functions (IDIFs) obtained from a respective number of patients' WBdyn exams using an automated left-ventricle segmentation tool. All IDIF peaks were aligned to the median time-to-peak, normalized to patient weight and administrated activity, and then fitted to an exponential model function. PBIF was then applied to 17 independent patient studies by scaling it to match the respective IDIF section at 20-55 min post-injection time windows corresponding to WB-passes 3-7. The ratio of area under the curves (AUCs) of IDIFs and PBIF3-7 were compared using a Bland-Altman analysis (mean bias ± SD). The Patlak-estimated mean Ki for physiological uptake (Ki-liver and Ki-spleen) and tumor lesions (Ki-tumor) using either IDIF or PBIF were also compared. Results The mean AUC ratio (PBIF/IDIF) was 0.98 ± 0.06. The mean Ki bias between PBIF3-7 and IDIF was -2.6 ± 6.2% (confidence interval, CI: -5.8; 0.6). For Ki-spleen and Ki-tumor, low relative bias with low SD were found [4.65 ± 7.59% (CI: 0.26; 9.03) and 3.70 ± 8.29% (CI: -1.09; 8.49) respectively]. For Ki-liver analysis, relative bias and SD were slightly higher [7.43 ± 13.13% (CI: -0.15; 15.01)]. Conclusion Our study showed that the PBIF approach allows for reduction in WBdyn DOTATOC-PET/CT acquisition times with a minimum gain of 20 min.
Collapse
Affiliation(s)
- Philippe Thuillier
- Department of Endocrinology, University Hospital of Brest, Brest, France
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
| | - David Bourhis
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Mathieu Pavoine
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
| | | | - Romain Le Pennec
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Ulrike Schick
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Frédérique Blanc-Béguin
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Simon Hennebicq
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Pierre-Yves Salaun
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Véronique Kerlan
- Department of Endocrinology, University Hospital of Brest, Brest, France
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
| | - Nicolas A. Karakatsanis
- Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY, United States
| | - Ronan Abgral
- UMR 1304 Inserm GETBO, University Hospital of Brest, Brest, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| |
Collapse
|
108
|
Wang Z, Wu Y, Li X, Bai Y, Chen H, Ding J, Shen C, Hu Z, Liang D, Liu X, Zheng H, Yang Y, Zhou Y, Wang M, Sun T. Comparison between a dual-time-window protocol and other simplified protocols for dynamic total-body 18F-FDG PET imaging. EJNMMI Phys 2022; 9:63. [PMID: 36104580 PMCID: PMC9474964 DOI: 10.1186/s40658-022-00492-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Efforts have been made both to avoid invasive blood sampling and to shorten the scan duration for dynamic positron emission tomography (PET) imaging. A total-body scanner, such as the uEXPLORER PET/CT, can relieve these challenges through the following features: First, the whole-body coverage allows for noninvasive input function from the aortic arteries; second, with a dramatic increase in sensitivity, image quality can still be maintained at a high level even with a shorter scan duration than usual. We implemented a dual-time-window (DTW) protocol for a dynamic total-body 18F-FDG PET scan to obtain multiple kinetic parameters. The DTW protocol was then compared to several other simplified quantification methods for total-body FDG imaging that were proposed for conventional setup. METHODS The research included 28 patient scans performed on an uEXPLORER PET/CT. By discarding the corresponding data in the middle of the existing full 60-min dynamic scan, the DTW protocol was simulated. Nonlinear fitting was used to estimate the missing data in the interval. The full input function was obtained from 15 subjects using a hybrid approach with a population-based image-derived input function. Quantification was carried out in three areas: the cerebral cortex, muscle, and tumor lesion. Micro- and macro-kinetic parameters for different scan durations were estimated by assuming an irreversible two-tissue compartment model. The visual performance of parametric images and region of interest-based quantification in several parameters were evaluated. Furthermore, simplified quantification methods (DTW, Patlak, fractional uptake ratio [FUR], and standardized uptake value [SUV]) were compared for similarity to the reference net influx rate Ki. RESULTS Ki and K1 derived from the DTW protocol showed overall good consistency (P < 0.01) with the reference from the 60-min dynamic scan with 10-min early scan and 5-min late scan (Ki correlation: 0.971, 0.990, and 0.990; K1 correlation: 0.820, 0.940, and 0.975 in the cerebral cortex, muscle, and tumor lesion, respectively). Similar correlationss were found for other micro-parameters. The DTW protocol had the lowest bias relative to standard Ki than any of the quantification methods, followed by FUR and Patlak. SUV had the weakest correlation with Ki. The whole-body Ki and K1 images generated by the DTW protocol were consistent with the reference parametric images. CONCLUSIONS Using the DTW protocol, the dynamic total-body FDG scan time can be reduced to 15 min while obtaining accurate Ki and K1 quantification and acceptable visual performance in parametric images. However, the trade-off between quantification accuracy and protocol implementation feasibility must be considered in practice. We recommend that the DTW protocol be used when the clinical task requires reliable visual assessment or quantifying multiple micro-parameters; FUR with a hybrid input function may be a more feasible approach to quantifying regional metabolic rate with a known lesion position or organs of interest.
Collapse
Affiliation(s)
- Zhenguo Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Yaping Wu
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, Zhengzhou, People's Republic of China
| | - Xiaochen Li
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yan Bai
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, Zhengzhou, People's Republic of China
| | - Hongzhao Chen
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Jie Ding
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Chushu Shen
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, People's Republic of China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, People's Republic of China
| | - Meiyun Wang
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, Zhengzhou, People's Republic of China.
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, People's Republic of China.
| |
Collapse
|
109
|
Tanaka T, Nakajo M, Kawakami H, Motomura E, Fujisaka T, Ojima S, Saigo Y, Yoshiura T. Short-time-window Patlak imaging using a population-based arterial input function and optimized Bayesian penalized likelihood reconstruction: a feasibility study. EJNMMI Res 2022; 12:57. [PMID: 36075998 PMCID: PMC9458796 DOI: 10.1186/s13550-022-00933-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the feasibility of short-time-window Ki imaging using a population-based arterial input function (IF) and optimized Bayesian penalized likelihood (BPL) reconstruction as a practical alternative to long-time-window Ki imaging with an individual patient-based IF. Myocardial Ki images were generated from 73 dynamic 18F-FDG-PET/CT scans of 30 patients with cardiac sarcoidosis. For each dynamic scan, the Ki images were obtained using the IF from each individual patient and a long time window (10-60 min). In addition, Ki images were obtained using the normalized averaged population-based IF and BPL algorithms with different beta values (350, 700, and 1000) with a short time window (40-60 min). The visual quality of each image was visually rated using a 4-point scale (0, not visible; 1, poor; 2, moderate; and 3, good), and the Ki parameters (Ki-max, Ki-mean, Ki-volume) of positive myocardial lesions were measured independently by two readers. Wilcoxon's rank sum test, McNemar's test, or linear regression analysis were performed to assess the differences or relationships between two quantitative variables. RESULTS Both readers similarly rated 51 scans as positive (scores = 1-3) and 22 scans as negative (score = 0) for all four Ki images. Among the three types of population-based IF Ki images, the proportion of images with scores of 3 was highest with a beta of 1000 (78.4 and 72.5%, respectively) and lowest with a beta of 350 (33.3 and 23.5%) for both readers (all p < 0.001). The coefficients of determination between the Ki parameters obtained with the individual patient-based IF and those obtained with the population-based IF were highest with a beta of 1000 for both readers (Ki-max, 0.91 and 0.92, respectively; Ki-mean, 0.91 and 0.92, respectively; Ki-volume, 0.75 and 0.60, respectively; and all p < 0.001). CONCLUSIONS Short-time-window Ki images with a population-based IF reconstructed using the BPL algorithm and a high beta value were closely correlated with long-time-window Ki images generated with an individual patient-based IF. Short-time-window Ki images using a population-based IF and BPL reconstruction might represent practical alternatives to long-time-window Ki images generated using an individual patient-based IF.
Collapse
Affiliation(s)
- Takato Tanaka
- Department of Radiation Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Hirofumi Kawakami
- Academic Department, GE Healthcare Japan, 4-7-127 Asahigaoka-Hinoshi, Tokyo, 191-8503, Japan
| | - Eriko Motomura
- Department of Radiation Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomofumi Fujisaka
- Department of Radiation Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Satoko Ojima
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yasumasa Saigo
- Department of Radiation Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
110
|
Dias AH, Smith AM, Shah V, Pigg D, Gormsen LC, Munk OL. Clinical validation of a population-based input function for 20-min dynamic whole-body 18F-FDG multiparametric PET imaging. EJNMMI Phys 2022; 9:60. [PMID: 36076097 PMCID: PMC9458803 DOI: 10.1186/s40658-022-00490-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Contemporary PET/CT scanners can use 70-min dynamic whole-body (D-WB) PET to generate more quantitative information about FDG uptake than just the SUV by generating parametric images of FDG metabolic rate (MRFDG). The analysis requires the late (50–70 min) D-WB tissue data combined with the full (0–70 min) arterial input function (AIF). Our aim was to assess whether the use of a scaled population-based input function (sPBIF) obviates the need for the early D-WB PET acquisition and allows for a clinically feasible 20-min D-WB PET examination.
Methods A PBIF was calculated based on AIFs from 20 patients that were D-WB PET scanned for 120 min with simultaneous arterial blood sampling. MRFDG imaging using PBIF requires that the area under the curve (AUC) of the sPBIF is equal to the AUC of the individual patient’s input function because sPBIF AUC bias translates into MRFDG bias. Special patient characteristics could affect the shape of their AIF. Thus, we validated the use of PBIF in 171 patients that were divided into 12 subgroups according to the following characteristics: diabetes, cardiac ejection fraction, blood pressure, weight, eGFR and age. For each patient, the PBIF was scaled to the aorta image-derived input function (IDIF) to calculate a sPBIF, and the AUC bias was calculated. Results We found excellent agreement between the AIF and IDIF at all times. For the clinical validation, the use of sPBIF led to an acceptable AUC bias of 1–5% in most subgroups except for patients with diabetes or patients with low eGFR, where the biases were marginally higher at 7%. Multiparametric MRFDG images based on a short 20-min D-WB PET and sPBIF were visually indistinguishable from images produced by the full 70-min D-WB PET and individual IDIF. Conclusions A short 20-min D-WB PET examination using PBIF can be used for multiparametric imaging without compromising the image quality or precision of MRFDG. The D-WB PET examination may therefore be used in clinical routine for a wide range of patients, potentially allowing for more precise quantification in e.g. treatment response imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00490-y.
Collapse
Affiliation(s)
- André H Dias
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Anne M Smith
- Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | - Vijay Shah
- Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | - David Pigg
- Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | - Lars C Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| |
Collapse
|
111
|
Perik TH, van Genugten EAJ, Aarntzen EHJG, Smit EJ, Huisman HJ, Hermans JJ. Quantitative CT perfusion imaging in patients with pancreatic cancer: a systematic review. Abdom Radiol (NY) 2022; 47:3101-3117. [PMID: 34223961 PMCID: PMC9388409 DOI: 10.1007/s00261-021-03190-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death with a 5-year survival rate of 10%. Quantitative CT perfusion (CTP) can provide additional diagnostic information compared to the limited accuracy of the current standard, contrast-enhanced CT (CECT). This systematic review evaluates CTP for diagnosis, grading, and treatment assessment of PDAC. The secondary goal is to provide an overview of scan protocols and perfusion models used for CTP in PDAC. The search strategy combined synonyms for 'CTP' and 'PDAC.' Pubmed, Embase, and Web of Science were systematically searched from January 2000 to December 2020 for studies using CTP to evaluate PDAC. The risk of bias was assessed using QUADAS-2. 607 abstracts were screened, of which 29 were selected for full-text eligibility. 21 studies were included in the final analysis with a total of 760 patients. All studies comparing PDAC with non-tumorous parenchyma found significant CTP-based differences in blood flow (BF) and blood volume (BV). Two studies found significant differences between pathological grades. Two other studies showed that BF could predict neoadjuvant treatment response. A wide variety in kinetic models and acquisition protocol was found among included studies. Quantitative CTP shows a potential benefit in PDAC diagnosis and can serve as a tool for pathological grading and treatment assessment; however, clinical evidence is still limited. To improve clinical use, standardized acquisition and reconstruction parameters are necessary for interchangeability of the perfusion parameters.
Collapse
Affiliation(s)
- T H Perik
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - E A J van Genugten
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E J Smit
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H J Huisman
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J J Hermans
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
112
|
High-fructose feeding suppresses cold-stimulated brown adipose tissue glucose uptake independently of changes in thermogenesis and the gut microbiome. Cell Rep Med 2022; 3:100742. [PMID: 36130480 PMCID: PMC9512695 DOI: 10.1016/j.xcrm.2022.100742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Diets rich in added sugars are associated with metabolic diseases, and studies have shown a link between these pathologies and changes in the microbiome. Given the reported associations in animal models between the microbiome and brown adipose tissue (BAT) function, and the alterations in the microbiome induced by high-glucose or high-fructose diets, we investigated the potential causal link between high-glucose or -fructose diets and BAT dysfunction in humans. Primary outcomes are changes in BAT cold-induced thermogenesis and the fecal microbiome (clinicaltrials.gov, NCT03188835). We show that BAT glucose uptake, but not thermogenesis, is impaired by a high-fructose but not high-glucose diet, in the absence of changes in the gastrointestinal microbiome. We conclude that decreased BAT glucose metabolism occurs earlier than other pathophysiological abnormalities during fructose overconsumption in humans. This is a potential confounding factor for studies relying on 18F-FDG to assess BAT thermogenesis. Fructose overfeeding decreases brown adipose tissue glucose metabolism These changes occur independently of oxidative metabolism No change is observed with glucose overfeeding The gut microbiome is not affected by fructose/glucose overfeeding
Collapse
|
113
|
Quigg M, Kundu B. Dynamic FDG-PET demonstration of functional brain abnormalities. Ann Clin Transl Neurol 2022; 9:1487-1497. [PMID: 36069052 PMCID: PMC9463948 DOI: 10.1002/acn3.51546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022] Open
Abstract
Positron emission tomography with fluorine‐18 fluorodeoxyglucose (18F‐FDG‐PET) has been used over 3 decades to map patterns of brain glucose metabolism to evaluate normal brain function or demonstrate abnormalities of metabolism in brain disorders. Traditional PET maps patterns of absolute tracer uptake but has demonstrated shortcomings in disorders such as brain neoplasm or focal epilepsy in the ability to resolve normally from pathological tissue. In this review, we describe an alternative process of metabolic mapping, dynamic PET. This new technology quantifies the dynamics of tracer uptake and decays with the goal of improving the functional mapping of the desired metabolic activity in the target organ. We discuss technical implementation and findings of initial pilot studies in brain tumor treatment and epilepsy surgery.
Collapse
Affiliation(s)
- Mark Quigg
- Department of Neurology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Bijoy Kundu
- Departments of Radiology & Medical Imaging and Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
114
|
van den Bosch R, Lambregts B, Määttä J, Hofmans L, Papadopetraki D, Westbrook A, Verkes RJ, Booij J, Cools R. Striatal dopamine dissociates methylphenidate effects on value-based versus surprise-based reversal learning. Nat Commun 2022; 13:4962. [PMID: 36002446 PMCID: PMC9402573 DOI: 10.1038/s41467-022-32679-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Psychostimulants such as methylphenidate are widely used for their cognitive enhancing effects, but there is large variability in the direction and extent of these effects. We tested the hypothesis that methylphenidate enhances or impairs reward/punishment-based reversal learning depending on baseline striatal dopamine levels and corticostriatal gating of reward/punishment-related representations in stimulus-specific sensory cortex. Young healthy adults (N = 100) were scanned with functional magnetic resonance imaging during a reward/punishment reversal learning task, after intake of methylphenidate or the selective D2/3-receptor antagonist sulpiride. Striatal dopamine synthesis capacity was indexed with [18F]DOPA positron emission tomography. Methylphenidate improved and sulpiride decreased overall accuracy and response speed. Both drugs boosted reward versus punishment learning signals to a greater degree in participants with higher dopamine synthesis capacity. By contrast, striatal and stimulus-specific sensory surprise signals were boosted in participants with lower dopamine synthesis. These results unravel the mechanisms by which methylphenidate gates both attention and reward learning. The mechanisms underpinning the variability in methylphenidate’s effects on cognition remain unclear. Here, the authors show that such effects reflect changes in striatal dopamine-related output gating of task-relevant cortical signals, and that these changes depend on baseline dopamine synthesis capacity.
Collapse
Affiliation(s)
- Ruben van den Bosch
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Britt Lambregts
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jessica Määttä
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lieke Hofmans
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Danae Papadopetraki
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Andrew Westbrook
- Cognitive, Linguistic & Psychological Sciences Department, Brown University, Providence, RI, USA
| | - Robbert-Jan Verkes
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands.,Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
115
|
Modeling Blood–Brain Barrier Permeability to Solutes and Drugs In Vivo. Pharmaceutics 2022; 14:pharmaceutics14081696. [PMID: 36015323 PMCID: PMC9414534 DOI: 10.3390/pharmaceutics14081696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Our understanding of the pharmacokinetic principles governing the uptake of endogenous substances, xenobiotics, and biologicals across the blood–brain barrier (BBB) has advanced significantly over the past few decades. There is now a spectrum of experimental techniques available in experimental animals and humans which, together with pharmacokinetic models of low to high complexity, can be applied to describe the transport processes at the BBB of low molecular weight agents and macromolecules. This review provides an overview of the models in current use, from initial rate uptake studies over compartmental models to physiologically based models and points out the advantages and shortcomings associated with the different methods. A comprehensive pharmacokinetic profile of a compound with respect to brain exposure requires the knowledge of BBB uptake clearance, intra-brain distribution, and extent of equilibration across the BBB. The application of proper pharmacokinetic analysis and suitable models is a requirement not only in the drug development process, but in all of the studies where the brain uptake of drugs or markers is used to make statements about the function or integrity of the BBB.
Collapse
|
116
|
Shin S, Jung WH, McCutcheon R, Veronese M, Beck K, Lee JS, Lee YS, Howes OD, Kim E, Kwon JS. The Relationship Between Frontostriatal Connectivity and Striatal Dopamine Function in Schizophrenia: An 18F-DOPA PET and Diffusion Tensor Imaging Study in Treatment Responsive and Resistant Patients. Psychiatry Investig 2022; 19:570-579. [PMID: 35903059 PMCID: PMC9334810 DOI: 10.30773/pi.2022.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Striatal dopamine dysfunction caused by cortical abnormalities is a leading hypothesis of schizophrenia. Although prefrontal cortical pathology is negatively correlated with striatal dopamine synthesis, the relationship between structural frontostriatal connectivity and striatal dopamine synthesis has not been proved in patients with schizophrenia with different treatment response. We therefore investigated the relationship between frontostriatal connectivity and striatal dopamine synthesis in treatment-responsive schizophrenia (non-TRS) and compared them to treatment-resistant schizophrenia (TRS) and healthy controls (HC). METHODS Twenty-four patients with schizophrenia and twelve HC underwent [18F] DOPA PET scans to measure dopamine synthesis capacity (the influx rate constant Kicer) and diffusion 3T MRI to measure structural connectivity (fractional anisotropy, FA). Connectivity was assessed in 2 major frontostriatal tracts. Associations between Kicer and FA in each group were evaluated using Spearman's rho correlation coefficients. RESULTS Non-TRS showed a negative correlation (r=-0.629, p=0.028) between connectivity of dorsolateral prefrontal cortex-associative striatum (DLPFC-AST) and dopamine synthesis capacity of associative striatum but this was not evident in TRS (r=-0.07, p=0.829) and HC (r=-0.277, p=0.384). CONCLUSION Our findings are consistent with the hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology localized to connectivity of DLPFC-AST in non-TRS, and also extend the hypothesis to suggest that different mechanisms underlie the pathophysiology of non-TRS and TRS.
Collapse
Affiliation(s)
- Sangho Shin
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.,Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Wi Hoon Jung
- Department of Psychology, Gachon University, Seongnam, Republic of Korea
| | - Robert McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
117
|
Liu G, Yu H, Shi D, Hu P, Hu Y, Tan H, Zhang Y, Yin H, Shi H. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging 2022; 49:2493-2503. [PMID: 34417855 DOI: 10.1007/s00259-021-05500-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the performance of short-time dynamic imaging in quantifying kinetic metrics of 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG). METHODS Dynamic total-body positron emission tomography (PET) imaging was performed in 11 healthy volunteers for 75 min. The data were divided into 30-, 45- and 75-min groups. Nonlinear regression (NLR) generated constant rates (k1 to k3) and NLR-based Ki in various organs. The Patlak method calculated parametric Ki images to generate Patlak-based Ki values. Paired samples t-test or the Wilcoxon signed-rank test compared the kinetic metrics between the groups, depending on data normality. Deming regression and Bland-Altman analysis assessed the correlation and agreement between NLR- and Patlak-based Ki. A two-sided P < 0.05 was considered statistically significant. RESULTS The 45- and 75-min groups were similar in NLR-based kinetic metrics. The relative difference ranges were as follows: k1, from 3.4% (P = 0.627) in the spleen to 57.9% (P = 0.130) in the white matter; k2, from 6.0% (P = 0.904) in the spleen to 60.7% (P = 0.235) in the left ventricle (LV) myocardium; k3, from 45.6% (P = 0.302) in the LV myocardium to 96.3% (P = 0.478) in the liver; Ki, from 14.0% (P = 0.488) in the liver to 77.8% (P = 0.067) in the kidney. Patlak-based Ki values were also similar between these groups in all organs, except the grey matter (9.6%, P = 0.029) and cerebellum (14.4%, P = 0.002). However, significant differences in kinetic metrics were found between the 30-min and 75-min groups in most organs both in NLR- and Patlak-based analyses. The NLR- and Patlak-based Ki values significantly correlated, with no bias in any of the organs. CONCLUSION Dynamic imaging using a high-sensitivity total-body PET scanner for a shorter time of 45 min could achieve relevant kinetic metrics of 18F-FDG as done by long-time imaging.
Collapse
Affiliation(s)
- Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongyan Yin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
118
|
Viswanath V, Sari H, Pantel AR, Conti M, Daube-Witherspoon ME, Mingels C, Alberts I, Eriksson L, Shi K, Rominger A, Karp JS. Abbreviated scan protocols to capture 18F-FDG kinetics for long axial FOV PET scanners. Eur J Nucl Med Mol Imaging 2022; 49:3215-3225. [PMID: 35278108 PMCID: PMC10695012 DOI: 10.1007/s00259-022-05747-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Kinetic parameters from dynamic 18F-fluorodeoxyglucose (FDG) imaging offer complementary insights to the study of disease compared to static clinical imaging. However, dynamic imaging protocols are cumbersome due to the long acquisition time. Long axial field-of-view (LAFOV) PET scanners (> 70 cm) have two advantages for dynamic imaging over clinical PET scanners with a standard axial field-of-view (SAFOV; 16-30 cm). The large axial coverage enables multi-organ dynamic imaging in a single bed position, and the high sensitivity may enable clinically routine abbreviated dynamic imaging protocols. METHODS In this work, we studied two abbreviated protocols using data from a 65-min dynamic 18F-FDG scan: (A) dynamic imaging immediately post-injection (p.i.) for variable durations, and (B) dynamic imaging immediately p.i. for variable durations plus a 1-h p.i. (5-min-long) datapoint. Nine cancer patients were imaged on the Biograph Vision Quadra (Siemens Healthineers). Time-activity curves over the lesions (N = 39) were fitted using the Patlak graphical analysis and a 2-tissue-compartment (2C, k4 = 0) model for variable scan durations (5-60 min). Kinetic parameters from the complete dataset served as the reference. Lesions from all cancers were grouped into low, medium, and high flux groups, and bias and precision of Ki (Patlak) and Ki, K1, k2, and k3 (2C) were calculated for each group. RESULTS Using only early dynamic data with the 2C (or Patlak) model, accurate quantification of Ki required at least 50 (or 55) min of dynamic data for low flux lesions, at least 30 (or 40) min for medium flux lesions, and at least 15 (or 20) min for high flux lesions to achieve both 10% bias and precision. The addition of the final (5-min) datapoint allowed for accurate quantification of Ki with a bias and precision of 10% using only 10-15 min of early dynamic data for either model. CONCLUSION Dynamic imaging for 10-15 min immediately p.i. followed by a 5-min scan at 1-h p.i can accurately and precisely quantify 18F-FDG on a long axial FOV scanner, potentially allowing for more widespread use of dynamic 18F-FDG imaging.
Collapse
Affiliation(s)
- Varsha Viswanath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 18, 3010, Bern, Switzerland
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 18, 3010, Bern, Switzerland
| | - Lars Eriksson
- Siemens Medical Solutions, USA Inc., Knoxville, TN, USA
- Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 18, 3010, Bern, Switzerland
| | - Joel S Karp
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
119
|
Application of Dynamic 18F-FDG PET/CT for Distinguishing Intrapulmonary Metastases from Synchronous Multiple Primary Lung Cancer. Mol Imaging 2022; 2022:8081299. [PMID: 35903246 PMCID: PMC9281433 DOI: 10.1155/2022/8081299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/27/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
It has been a big challenge to distinguish synchronous multiple primary lung cancer (sMPLC) from primary lung cancer with intrapulmonary metastases (IPM). We aimed to assess the clinical application of dynamic 18F-FDG PET/CT in patients with multiple lung cancer nodules. We enrolled patients with multiple pulmonary nodules who had undergone dynamic 18F-FDG PET/CT and divided them into sMPLC and IPM groups based on comprehensive features. The SUVmax, fitted Ki value based on dynamic scanning, and corresponding maximum diameter (Dmax) from the two largest tumors were determined in each patient. We determined the absolute between-tumor difference of SUVmax/Dmax and Ki/Dmax (ΔSUVmax/Dmax; ΔKi/Dmax) and assessed the between-group differences. Further, the diagnostic accuracy was evaluated by ROC analysis and the correlation between ΔSUVmax/Dmax and ΔKi/Dmax from all groups was determined. There was no significant difference for ΔSUVmax/Dmax between the IPM and sMPLC groups, while the IPM group had a significantly higher ΔKi/Dmax than the sMPLC group. The AUC of ΔKi/Dmax for differentiating sMPLC from IPM was 0.80 (cut-off value of Ki = 0.0059, sensitivity 79%, specificity 75%, p < 0.001). There was a good correlation (Pearson r = 0.91, 95% CI: 0.79-0.96, p < 0.0001) between ΔSUVmax/Dmax and ΔKi/Dmax in the IPM group but not in the sMPLC group (Pearson r = 0.45, p > 0.05). Dynamic 18F-FDG PET/CT could be a useful tool for distinguishing sMPLC from IPM. Ki calculation based on Patlak graphic analysis could be more sensitive than SUVmax in discriminating IPM from sMPLC in patients with multiple lung cancer nodules.
Collapse
|
120
|
Zaker N, Haddad K, Faghihi R, Arabi H, Zaidi H. Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks. Eur J Nucl Med Mol Imaging 2022; 49:4048-4063. [PMID: 35716176 PMCID: PMC9525418 DOI: 10.1007/s00259-022-05867-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
Abstract
Purpose This study proposed and investigated the feasibility of estimating Patlak-derived influx rate constant (Ki) from standardized uptake value (SUV) and/or dynamic PET image series. Methods Whole-body 18F-FDG dynamic PET images of 19 subjects consisting of 13 frames or passes were employed for training a residual deep learning model with SUV and/or dynamic series as input and Ki-Patlak (slope) images as output. The training and evaluation were performed using a nine-fold cross-validation scheme. Owing to the availability of SUV images acquired 60 min post-injection (20 min total acquisition time), the data sets used for the training of the models were split into two groups: “With SUV” and “Without SUV.” For “With SUV” group, the model was first trained using only SUV images and then the passes (starting from pass 13, the last pass, to pass 9) were added to the training of the model (one pass each time). For this group, 6 models were developed with input data consisting of SUV, SUV plus pass 13, SUV plus passes 13 and 12, SUV plus passes 13 to 11, SUV plus passes 13 to 10, and SUV plus passes 13 to 9. For the “Without SUV” group, the same trend was followed, but without using the SUV images (5 models were developed with input data of passes 13 to 9). For model performance evaluation, the mean absolute error (MAE), mean error (ME), mean relative absolute error (MRAE%), relative error (RE%), mean squared error (MSE), root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) were calculated between the predicted Ki-Patlak images by the two groups and the reference Ki-Patlak images generated through Patlak analysis using the whole acquired data sets. For specific evaluation of the method, regions of interest (ROIs) were drawn on representative organs, including the lung, liver, brain, and heart and around the identified malignant lesions. Results The MRAE%, RE%, PSNR, and SSIM indices across all patients were estimated as 7.45 ± 0.94%, 4.54 ± 2.93%, 46.89 ± 2.93, and 1.00 ± 6.7 × 10−7, respectively, for models predicted using SUV plus passes 13 to 9 as input. The predicted parameters using passes 13 to 11 as input exhibited almost similar results compared to the predicted models using SUV plus passes 13 to 9 as input. Yet, the bias was continuously reduced by adding passes until pass 11, after which the magnitude of error reduction was negligible. Hence, the predicted model with SUV plus passes 13 to 9 had the lowest quantification bias. Lesions invisible in one or both of SUV and Ki-Patlak images appeared similarly through visual inspection in the predicted images with tolerable bias. Conclusion This study concluded the feasibility of direct deep learning-based approach to estimate Ki-Patlak parametric maps without requiring the input function and with a fewer number of passes. This would lead to shorter acquisition times for WB dynamic imaging with acceptable bias and comparable lesion detectability performance. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05867-w.
Collapse
Affiliation(s)
- Neda Zaker
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.,School of Mechanical Engineering, Department of Nuclear Engineering, Shiraz University, Shiraz, Iran
| | - Kamal Haddad
- School of Mechanical Engineering, Department of Nuclear Engineering, Shiraz University, Shiraz, Iran
| | - Reza Faghihi
- School of Mechanical Engineering, Department of Nuclear Engineering, Shiraz University, Shiraz, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland. .,Geneva University Neurocenter, Geneva University, Geneva, Switzerland. .,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. .,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
121
|
Smailovic H, Wilk B, Wisenberg G, Sykes J, Butler J, Hicks J, Thiessen JD, Prato FS. Simultaneous measurements of myocardial glucose metabolism and extracellular volumes with hybrid PET/MRI using concurrent injections of Gd-DTPA and [ 18F]FDG. J Nucl Cardiol 2022; 29:1304-1314. [PMID: 33502694 DOI: 10.1007/s12350-020-02486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aims of this study were to investigate the application of a constant infusion (CI) to mitigate the issue of constantly changing Gd-DTPA contrast levels in a bolus injection for extracellular volume (ECV) measurements by (a) comparing a CI alone to a bolus alone and a bolus followed by CI in healthy myocardium, (b) evaluating the impact of glucose suppression using heparin on ECV. METHODS Five healthy canine subjects were imaged to compare three different protocols for injecting Gd-DTPA and FDG: bolus alone, CI alone, bolus followed by CI. Suppression of myocardial glucose uptake was induced using a continuous infusion of 20% lipid at a rate of 0.25 mL·min-1·kg-1 as well as 2000 units of intravenous heparin injected 20 minutes prior to FDG/Gd-DTPA injection. RESULTS There was no significant effect on ECV measurement when heparin was used for glucose suppression at equilibrium irrespective of infusion protocol). Measurements of ECV in myocardium, regardless of infusion protocol showed no significant difference at all time points (P = 0.21) prior to washout. CONCLUSIONS The suppression of myocardial uptake of [18F]FDG with heparin did not alter the determination of myocardial ECV though a larger sample size may show differences. Further, the infusion protocol (bolus or constant infusion) had no effect on the calculated ECV.
Collapse
Affiliation(s)
- H Smailovic
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| | - B Wilk
- Department of Medical Imaging, Western University, London, Canada.
- Lawson Health Research Institute, London, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| | | | - J Sykes
- Lawson Health Research Institute, London, Canada
| | - J Butler
- Lawson Health Research Institute, London, Canada
| | - J Hicks
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - J D Thiessen
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - F S Prato
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
122
|
Sandahl TD, Gormsen LC, Kjærgaard K, Vendelbo MH, Munk DE, Munk OL, Bender D, Keiding S, Vase KH, Frisch K, Vilstrup H, Ott P. The pathophysiology of Wilson's disease visualized: A human 64 Cu PET study. Hepatology 2022; 75:1461-1470. [PMID: 34773664 PMCID: PMC9305563 DOI: 10.1002/hep.32238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.
Collapse
Affiliation(s)
| | - Lars C. Gormsen
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Ditte Emilie Munk
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Susanne Keiding
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Karina H. Vase
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kim Frisch
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Hendrik Vilstrup
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Peter Ott
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
123
|
Wilk B, Smailovic H, Wisenberg G, Sykes J, Butler J, Kovacs M, Thiessen JD, Prato FS. Tracking the progress of inflammation with PET/MRI in a canine model of myocardial infarction. J Nucl Cardiol 2022; 29:1315-1325. [PMID: 33462785 DOI: 10.1007/s12350-020-02487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Following myocardial infarction, tissue undergoes pathophysiological changes involving inflammation and scar tissue formation. However, little is known about the pathophysiology and prognostic significance of any corresponding changes in remote myocardium. The aim of this study was to investigate the potential application of a combined constant infusion of 18F-FDG and Gd-DTPA to quantitate inflammation and extracellular volume (ECV) from 3 to 40 days after myocardial infarction. METHODS Eight canine subjects were imaged at multiple time points following induction of an MI with a 60-minute concurrent constant infusion of Gd-DTPA and 18F-FDG using a hybrid PET/MRI scanner. RESULTS There was a significant increase in ECV in remote myocardium on day 14 post-MI (P = .034) and day 21 (P = .021) compared to the baseline. ECV was significantly elevated in the infarcted myocardium compared to remote myocardium at all time points post-MI (days 3, 7, 14, 21, and 40) (P < .001) while glucose uptake was also increased within the infarct on days 3, 7, 14, and 21 but not 40. CONCLUSIONS The significant increase in ECV in remote tissue may be due to an ongoing inflammatory process in the early weeks post-infarct.
Collapse
Affiliation(s)
- B Wilk
- Lawson Health Research Institute, London, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada.
| | - H Smailovic
- Lawson Health Research Institute, London, Canada
- Department of Medical Imaging, Western University, London, Canada
| | - G Wisenberg
- Lawson Health Research Institute, London, Canada
- MyHealth Centre, Arva, Canada
| | - J Sykes
- Lawson Health Research Institute, London, Canada
| | - J Butler
- Lawson Health Research Institute, London, Canada
| | - M Kovacs
- Lawson Health Research Institute, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
| | - J D Thiessen
- Lawson Health Research Institute, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - F S Prato
- Lawson Health Research Institute, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| |
Collapse
|
124
|
Montagne A, Barnes SR, Nation DA, Kisler K, Toga AW, Zlokovic BV. Imaging subtle leaks in the blood-brain barrier in the aging human brain: potential pitfalls, challenges, and possible solutions. GeroScience 2022; 44:1339-1351. [PMID: 35469116 PMCID: PMC9213625 DOI: 10.1007/s11357-022-00571-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Recent studies using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium-based contrast agents (GBCA) have demonstrated subtle blood-brain barrier (BBB) leaks in the human brain during normal aging, in individuals with age-related cognitive dysfunction, genetic risk for Alzheimer's disease (AD), mild cognitive impairment, early AD, cerebral small vessel disease (SVD), and other neurodegenerative disorders. In these neurological conditions, the BBB leaks, quantified by the unidirectional BBB GBCA tracer's constant Ktrans maps, are typically orders of magnitude lower than in brain tumors, after stroke and/or during relapsing episodes of multiple sclerosis. This puts extra challenges for the DCE-MRI technique by pushing calculations towards its lower limits of detectability. In addition, presently, there are no standardized multivendor protocols or evidence of repeatability and reproducibility. Nevertheless, subtle BBB leaks may critically contribute to the pathophysiology of cognitive impairment and dementia associated with AD or SVD, and therefore, efforts to improve sensitivity of detection, reliability, and reproducibility are warranted. A larger number of participants scanned by different MR scanners at different clinical sites are sometimes required to detect differences in BBB integrity between control and at-risk groups, which impose additional challenges. Here, we focus on these new challenges and propose some approaches to normalize and harmonize DCE data between different scanners. In brief, we recommend specific regions to be used for the tracer's vascular input function and DCE data processing and how to find and correct negative Ktrans values that are physiologically impossible. We hope this information will prove helpful to new investigators wishing to study subtle BBB damage in neurovascular and neurodegenerative conditions and in the aging human brain.
Collapse
Affiliation(s)
- Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Samuel R Barnes
- Department of Radiology, Loma Linda University, Loma Linda, CA, USA.
| | - Daniel A Nation
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California Irvine, Irvine, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
125
|
Laffon E, Marthan R. Estimation of Cumulative Activity of 177Lu-Cetuximab from a Single Diagnostic 64Cu-Cetuximab Scan. Cancer Biother Radiopharm 2022; 37:403-409. [PMID: 35594295 DOI: 10.1089/cbr.2022.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: This study aimed at investigating whether a single diagnostic 64Cu-cetuximab scan might predict therapeutic 177Lu-cetuximab cumulative activity in a preclinical study. Methods: The framework of the reversible Patlak-Blasberg analysis was used to derive two independent equations of 177Lu-cetuximab cumulative activity that involve the tumor-to-blood standard uptake value ratio (i.e., the SUR) assessed at peak-time of either decay-uncorrected or decay-corrected activity concentration of trapped 64Cu-cetuximab, respectively. Applied to published data in TE-8 tumor-bearing mice, the two peak times and corresponding SUR values were assessed. Two estimates of 177Lu-cetuximab cumulative activity were then computed for comparison with two previously published values obtained from different methods. Results: The two estimates of 177Lu-cetuximab cumulative activity, computed at 14 and 59 h postinjection, were consistent with the previously published values: 4.7 × 1012 and 5.5 × 1012 versus 4.1 × 1012 and 5.3 × 1012 disintegrations/g. Conclusion: Two independent equations are proposed for estimating 177Lu-cetuximab cumulative activity from an initial diagnostic 64Cu-cetuximab scan, when acquired at two relevant injection acquisition times, respectively. Applied to published tumor-bearing mouse data, the 64Cu-cetuximab SUR assessed at either 14 or 59 h postinjection turns out to be key metrics.
Collapse
Affiliation(s)
- Eric Laffon
- CHU de Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Universite de Bordeaux, Bordeaux, France.,INSERM U-1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Roger Marthan
- CHU de Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Universite de Bordeaux, Bordeaux, France.,INSERM U-1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| |
Collapse
|
126
|
Ralli GP, Carter RD, McGowan DR, Cheng WC, Liu D, Teoh EJ, Patel N, Gleeson F, Harris AL, Lord SR, Buffa FM, Fenwick JD. Radiogenomic analysis of primary breast cancer reveals [18F]-fluorodeoxglucose dynamic flux-constants are positively associated with immune pathways and outperform static uptake measures in associating with glucose metabolism. Breast Cancer Res 2022; 24:34. [PMID: 35581637 PMCID: PMC9115966 DOI: 10.1186/s13058-022-01529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND PET imaging of 18F-fluorodeoxygucose (FDG) is used widely for tumour staging and assessment of treatment response, but the biology associated with FDG uptake is still not fully elucidated. We therefore carried out gene set enrichment analyses (GSEA) of RNA sequencing data to find KEGG pathways associated with FDG uptake in primary breast cancers. METHODS Pre-treatment data were analysed from a window-of-opportunity study in which 30 patients underwent static and dynamic FDG-PET and tumour biopsy. Kinetic models were fitted to dynamic images, and GSEA was performed for enrichment scores reflecting Pearson and Spearman coefficients of correlations between gene expression and imaging. RESULTS A total of 38 pathways were associated with kinetic model flux-constants or static measures of FDG uptake, all positively. The associated pathways included glycolysis/gluconeogenesis ('GLYC-GLUC') which mediates FDG uptake and was associated with model flux-constants but not with static uptake measures, and 28 pathways related to immune-response or inflammation. More pathways, 32, were associated with the flux-constant K of the simple Patlak model than with any other imaging index. Numbers of pathways categorised as being associated with individual micro-parameters of the kinetic models were substantially fewer than numbers associated with flux-constants, and lay around levels expected by chance. CONCLUSIONS In pre-treatment images GLYC-GLUC was associated with FDG kinetic flux-constants including Patlak K, but not with static uptake measures. Immune-related pathways were associated with flux-constants and static uptake. Patlak K was associated with more pathways than were the flux-constants of more complex kinetic models. On the basis of these results Patlak analysis of dynamic FDG-PET scans is advantageous, compared to other kinetic analyses or static imaging, in studies seeking to infer tumour-to-tumour differences in biology from differences in imaging. Trial registration NCT01266486, December 24th 2010.
Collapse
Affiliation(s)
- G P Ralli
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - R D Carter
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Doctoral Training Centre, University of Oxford, Keble Road, Oxford, OX1 3NP, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Road, Oxford, OX1 3PT, UK
| | - D R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK.
| | - W-C Cheng
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - D Liu
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - E J Teoh
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - N Patel
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
| | - F Gleeson
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LE, UK
| | - A L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - S R Lord
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - F M Buffa
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - J D Fenwick
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| |
Collapse
|
127
|
Brown RB, Tozer DJ, Loubière L, Hong YT, Fryer TD, Williams GB, Graves MJ, Aigbirhio FI, O’Brien JT, Markus HS. MINocyclinE to Reduce inflammation and blood brain barrier leakage in small Vessel diseAse (MINERVA) trial study protocol. Eur Stroke J 2022; 7:323-330. [PMID: 36082255 PMCID: PMC9445404 DOI: 10.1177/23969873221100338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cerebral small vessel disease (SVD) is a common cause of stroke and cognitive impairment. Recent data has implicated neuroinflammation and increased blood-brain barrier (BBB) permeability in its pathogenesis, but whether such processes are causal and can be therapeutically modified is uncertain. In a rodent model of SVD, minocycline was associated with reduced white matter lesions, inflammation and BBB permeability. Aims: To determine whether blood-brain barrier permeability (measured using dynamic contrast-enhanced MRI) and microglial activation (measured by positron emission tomography using the radioligand 11C-PK11195) can be modified in SVD. Design: Phase II randomised double blind, placebo-controlled trial of minocycline 100 mg twice daily for 3 months in 44 participants with moderate to severe SVD defined as a clinical lacunar stroke and confluent white matter hyperintensities. Outcomes: Primary outcome measures are volume and intensity of focal increases of blood-brain barrier permeability and microglial activation determined using PET-MRI imaging. Secondary outcome measures include inflammatory biomarkers in serum, and change in conventional MRI markers and cognitive performance over 1 year follow up. Discussion: The MINERVA trial aims to test whether minocycline can influence novel pathological processes thought to be involved in SVD progression, and will provide insights into whether central nervous system inflammation in SVD can be therapeutically modulated.
Collapse
Affiliation(s)
- Robin B Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel J Tozer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Laurence Loubière
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
128
|
Janssen E, ter Telgte A, Verburgt E, de Jong JJA, Marques JP, Kessels RPC, Backes WH, Maas MC, Meijer FJA, Deinum J, Riksen NP, Tuladhar AM, de Leeuw FE. The Hyperintense study: Assessing the effects of induced blood pressure increase and decrease on MRI markers of cerebral small vessel disease: Study rationale and protocol. Eur Stroke J 2022; 7:331-338. [PMID: 36082259 PMCID: PMC9446329 DOI: 10.1177/23969873221100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Neuroimaging markers of cerebral small vessel disease (SVD) are common in
older individuals, but the pathophysiological mechanisms causing these
lesions remain poorly understood. Although hypertension is a major risk
factor for SVD, the direct causal effects of increased blood pressure are
unknown. The Hyperintense study is designed to examine cerebrovascular and
structural abnormalities, possibly preceding SVD, in young adults with
hypertension. These patients undergo a diagnostic work-up that requires
patients to temporarily discontinue their antihypertensive agents, often
leading to an increase in blood pressure followed by a decrease once
effective medication is restarted. This allows examination of the effects of
blood pressure increase and decrease on the cerebral small vessels. Methods: Hyperintense is a prospective observational cohort study in 50 hypertensive
adults (18–55 years) who will temporarily discontinue antihypertensive
medication for diagnostic purposes. MRI and clinical data is collected at
four timepoints: before medication withdrawal (baseline), once
antihypertensives are largely or completely withdrawn
(T = 1), when patients have restarted medication
(T = 2) and reached target blood pressure and 1 year
later (T = 3). The 3T MRI protocol includes conventional
structural sequences and advanced techniques to assess various aspects of
microvascular integrity, including blood-brain barrier function using
Dynamic Contrast Enhanced MRI, white matter integrity, and microperfusion.
Clinical assessments include motor and cognitive examinations and blood
sampling. Discussion: The Hyperintense study will improve the understanding of the
pathophysiological mechanisms following hypertension that may cause SVD.
This knowledge can ultimately help to identify new targets for treatment of
SVD, aimed at prevention or limiting disease progression.
Collapse
Affiliation(s)
- Esther Janssen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Esmée Verburgt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost JA de Jong
- School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Roy PC Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Walter H Backes
- School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marnix C Maas
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick JA Meijer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
129
|
Hepatic Positron Emission Tomography: Applications in Metabolism, Haemodynamics and Cancer. Metabolites 2022; 12:metabo12040321. [PMID: 35448508 PMCID: PMC9026326 DOI: 10.3390/metabo12040321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Evaluating in vivo the metabolic rates of the human liver has been a challenge due to its unique perfusion system. Positron emission tomography (PET) represents the current gold standard for assessing non-invasively tissue metabolic rates in vivo. Here, we review the existing literature on the assessment of hepatic metabolism, haemodynamics and cancer with PET. The tracer mainly used in metabolic studies has been [18F]2-fluoro-2-deoxy-D-glucose (18F-FDG). Its application not only enables the evaluation of hepatic glucose uptake in a variety of metabolic conditions and interventions, but based on the kinetics of 18F-FDG, endogenous glucose production can also be assessed. 14(R,S)-[18F]fluoro-6-thia-Heptadecanoic acid (18F-FTHA), 11C-Palmitate and 11C-Acetate have also been applied for the assessment of hepatic fatty acid uptake rates (18F-FTHA and 11C-Palmitate) and blood flow and oxidation (11C-Acetate). Oxygen-15 labelled water (15O-H2O) has been used for the quantification of hepatic perfusion. 18F-FDG is also the most common tracer used for hepatic cancer diagnostics, whereas 11C-Acetate has also shown some promising applications in imaging liver malignancies. The modelling approaches used to analyse PET data and also the challenges in utilizing PET in the assessment of hepatic metabolism are presented.
Collapse
|
130
|
Ciampa CJ, Parent JH, Harrison TM, Fain RM, Betts MJ, Maass A, Winer JR, Baker SL, Janabi M, Furman DJ, D'Esposito M, Jagust WJ, Berry AS. Associations among locus coeruleus catecholamines, tau pathology, and memory in aging. Neuropsychopharmacology 2022; 47:1106-1113. [PMID: 35034099 PMCID: PMC8938463 DOI: 10.1038/s41386-022-01269-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
The locus coeruleus (LC) is the brain's major source of the neuromodulator norepinephrine, and is also profoundly vulnerable to the development of Alzheimer's disease (AD)-related tau pathology. Norepinephrine plays a role in neuroprotective functions that may reduce AD progression, and also underlies optimal memory performance. Successful maintenance of LC neurochemical function represents a candidate mechanism of protection against the propagation of AD-related pathology and may facilitate the preservation of memory performance despite pathology. Using [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure catecholamine synthesis capacity in LC regions of interest, we examined relationships among LC neurochemical function, AD-related pathology, and memory performance in cognitively normal older adults (n = 49). Participants underwent [11C]Pittsburgh compound B and [18F]Flortaucipir PET to quantify β-amyloid (n = 49) and tau burden (n = 42) respectively. In individuals with substantial β-amyloid, higher LC [18F]FMT net tracer influx (Kivis) was associated with lower temporal tau. Longitudinal tau-PET analyses in a subset of our sample (n = 30) support these findings to reveal reduced temporal tau accumulation in the context of higher LC [18F]FMT Kivis. Higher LC catecholamine synthesis capacity was positively correlated with self-reported cognitive engagement and physical activity across the lifespan, established predictors of successful aging measured with the Lifetime Experiences Questionnaire. LC catecholamine synthesis capacity moderated tau's negative effect on memory, such that higher LC catecholamine synthesis capacity was associated with better-than-expected memory performance given an individual's tau burden. These PET findings provide insight into the neurochemical mechanisms of AD vulnerability and cognitive resilience in the living human brain.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rebekah M Fain
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
| | - Joseph R Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Suzanne L Baker
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniella J Furman
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
131
|
Pineda-Pardo JA, Sánchez-Ferro Á, Monje MHG, Pavese N, Obeso JA. Onset pattern of nigrostriatal denervation in early Parkinson's disease. Brain 2022; 145:1018-1028. [PMID: 35349639 DOI: 10.1093/brain/awab378] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The striatal dopaminergic deficit in Parkinson's disease exhibits a typical pattern, extending from the caudal and dorsal putamen at onset to its more rostral region as the disease progresses. Clinically, upper-limb onset of cardinal motor features is the rule. Thus, according to current understanding of striatal somatotopy (i.e. the lower limb is dorsal to the upper limb) the assumed pattern of early dorsal striatal dopaminergic denervation in Parkinson's disease does not fit with an upper-limb onset. We have examined the topography of putaminal denervation in a cohort of 23 recently diagnosed de novo Parkinson's disease patients and 19 age-/gender-matched healthy subjects assessed clinically and by 18F-DOPA PET; 15 patients were re-assessed after 2 years. There was a net upper-limb predominance of motor features at onset. Caudal denervation of the putamen was confirmed in both the more- and less-affected hemispheres and corresponding hemibodies. Spatial covariance analysis of the most affected hemisphere revealed a pattern of 18F-DOPA uptake rate deficit that suggested focal dopamine loss starting in the posterolateral and intermediate putamen. Functional MRI group-activation maps during a self-paced motor task were used to represent the somatotopy of the putamen and were then used to characterize the decline in 18F-DOPA uptake rate in the upper- and lower-limb territories. This showed a predominant decrement in both hemispheres, which correlated significantly with severity of bradykinesia. A more detailed spatial analysis revealed a dorsoventral linear gradient of 18F-DOPA uptake rate in Parkinson's disease patients, with the highest putamen denervation in the caudal intermediate subregion (dorsoventral plane) compared to healthy subjects. The latter area coincides with the functional representation of the upper limb. Clinical motor assessment at 2-year follow-up showed modest worsening of parkinsonism in the primarily affected side and more noticeable increases in the upper limb in the less-affected side. Concomitantly, 18F-DOPA uptake rate in the less-affected putamen mimicked that recognized on the most-affected side. Our findings suggest that early dopaminergic denervation in Parkinson's disease follows a somatotopically related pattern, starting with the upper-limb representation in the putamen and progressing over a 2-year period in the less-affected hemisphere. These changes correlate well with the clinical presentation and evolution of motor features. Recognition of a precise somatotopic onset of nigrostriatal denervation may help to better understand the onset and progression of dopaminergic neurodegeneration in Parkinson's disease and eventually monitor the impact of putative therapies.
Collapse
Affiliation(s)
- José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Sánchez-Ferro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mariana H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nicola Pavese
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
132
|
Normal values for 18F-FDG uptake in organs and tissues measured by dynamic whole body multiparametric FDG PET in 126 patients. EJNMMI Res 2022; 12:15. [PMID: 35254514 PMCID: PMC8901901 DOI: 10.1186/s13550-022-00884-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dynamic whole-body (D-WB) FDG PET/CT is a recently developed technique that allows direct reconstruction of multiparametric images of metabolic rate of FDG uptake (MRFDG) and "free" FDG (DVFDG). Multiparametric images have a markedly different appearance than the conventional SUV images obtained by static PET imaging, and normal values of MRFDG and DVFDG in frequently used reference tissues and organs are lacking. The aim of this study was therefore to: (1) provide an overview of normal MRFDG and DVFDG values and range of variation in organs and tissues; (2) analyse organ time-activity curves (TACs); (3) validate the accuracy of directly reconstructed MRFDG tissue values versus manually calculated Ki (and MRFDG) values; and (4) explore correlations between demographics, blood glucose levels and MRFDG values. D-WB data from 126 prospectively recruited patients (100 without diabetes and 26 with diabetes) were retrospectively analysed. Participants were scanned using a 70-min multiparametric PET acquisition protocol on a Siemens Biograph Vision 600 PET/CT scanner. 13 regions (bone, brain grey and white matter, colon, heart, kidney, liver, lung, skeletal muscle of the back and thigh, pancreas, spleen, and stomach) as well as representative pathological findings were manually delineated, and values of static PET (SUV), D-WB PET (Ki, MRFDG and DVFDG) and individual TACs were extracted. Multiparametric values were compared with manual TAC-based calculations of Ki and MRFDG, and correlations with blood glucose, age, weight, BMI, and injected tracer dose were explored. RESULTS Tissue and organ MRFDG values showed little variation, comparable to corresponding SUV variation. All regional TACs were in line with previously published FDG kinetics, and the multiparametric metrics correlated well with manual TAC-based calculations (r2 = 0.97, p < 0.0001). No correlations were observed between glucose levels and MRFDG in tissues known not to be substrate driven, while tissues with substrate driven glucose uptake had significantly correlated glucose levels and MRFDG values. CONCLUSION The multiparametric D-WB PET scan protocol provides normal MRFDG values with little inter-subject variation and in agreement with manual TAC-based calculations and literature values. The technique therefore facilitates both accurate clinical reports and simpler acquisition of quantitative estimates of whole-body tissue glucose metabolism.
Collapse
|
133
|
Avendaño‐Estrada A, Verdugo‐Díaz L, Ávila‐Rodríguez M. Comparative analysis of striatal [
18
F]FDOPA uptake in a partial lesion model of Parkinson's disease in rats: ratio method versus graphical model. Synapse 2022; 76:e22231. [DOI: 10.1002/syn.22231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Affiliation(s)
- A. Avendaño‐Estrada
- Unidad Radiofarmacia‐Ciclotrón, División de Investigación Facultad de Medicina Universidad Nacional Autónoma de México Cd.Mx. 04510 México
| | - Leticia Verdugo‐Díaz
- Laboratorio de Biomagnetismo Departamento de Fisiología, Facultad de Medicina Universidad Nacional Autónoma de México Cd.Mx. 04510 México
| | - M.A. Ávila‐Rodríguez
- Unidad Radiofarmacia‐Ciclotrón, División de Investigación Facultad de Medicina Universidad Nacional Autónoma de México Cd.Mx. 04510 México
| |
Collapse
|
134
|
Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med 2022; 63:342-352. [PMID: 35232879 DOI: 10.2967/jnumed.121.263518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Learning Objectives: On successful completion of this activity, participants should be able to describe (1) describe principles of PET tracer kinetic analysis for oncologic applications; (2) list methods used for PET kinetic analysis for oncology; and (3) discuss application of kinetic modeling for cancer-specific diagnostic needs.Financial Disclosure: This work was supported by KL2 TR001879, R01 CA211337, R01 CA113941, R33 CA225310, Komen SAC130060, R50 CA211270, and K01 DA040023. Dr. Pantel is a consultant or advisor for Progenics and Blue Earth Diagnostics and is a meeting participant or lecturer for Blue Earth Diagnostics. Dr. Mankoff is on the scientific advisory boards of GE Healthcare, Philips Healthcare, Reflexion, and ImaginAb and is the owner of Trevarx; his wife is the chief executive officer of Trevarx. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest.CME Credit: SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each JNM continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through March 2025PET enables noninvasive imaging of regional in vivo cancer biology. By engineering a radiotracer to target specific biologic processes of relevance to cancer (e.g., cancer metabolism, blood flow, proliferation, and tumor receptor expression or ligand binding), PET can detect cancer spread, characterize the cancer phenotype, and assess its response to treatment. For example, imaging of glucose metabolism using the radiolabeled glucose analog 18F-FDG has widespread applications to all 3 of these tasks and plays an important role in cancer care. However, the current clinical practice of imaging at a single time point remote from tracer injection (i.e., static imaging) does not use all the information that PET cancer imaging can provide, especially to address questions beyond cancer detection. Reliance on tracer measures obtained only from static imaging may also lead to misleading results. In this 2-part continuing education paper, we describe the principles of tracer kinetic analysis for oncologic PET (part 1), followed by examples of specific implementations of kinetic analysis for cancer PET imaging that highlight the added benefits over static imaging (part 2). This review is designed to introduce nuclear medicine clinicians to basic concepts of kinetic analysis in oncologic imaging, with a goal of illustrating how kinetic analysis can augment our understanding of in vivo cancer biology, improve our approach to clinical decision making, and guide the interpretation of quantitative measures derived from static images.
Collapse
Affiliation(s)
- Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Varsha Viswanath
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington
| | - Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
135
|
Eisenberg DP, Lopez G, Gregory MD, Berman KF, Sidransky E. Comparison of Transcranial Sonography and [ 18 F]-Fluorodopa PET Imaging in GBA1 Mutation Carriers. Mov Disord 2022; 37:629-634. [PMID: 34762337 PMCID: PMC8940604 DOI: 10.1002/mds.28852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Mutations in GBA1 are a common genetic risk factor for parkinsonism; however, penetrance is incomplete, and biomarkers of future progression to parkinsonism are needed. Both nigral sonography and striatal [18 F]-FDOPA PET assay dopamine system health, but their utility and coherence in this context are unclear. OBJECTIVE The aim of this study is to evaluate the utility and coherence of these modalities in GBA1-associated parkinsonism. METHODS A total of 34 patients with GBA1 mutations (7 with parkinsonism) underwent both transcranial studies for substantia nigra echogenicity and [18 F]-FDOPA PET to determine striatal tracer-specific uptake (Ki ). RESULTS Larger nigral echogenic areas and reduced striatal Ki were exclusively observed in parkinsonian patients. Sonographic and PET measurements showed strong inverse correlations but only in individuals with clinical parkinsonism. CONCLUSIONS Close correspondence between nigral echogenicity and striatal presynaptic dopamine synthesis capacity observed only in GBA1 carriers with parkinsonism provides validation that these two modalities may conjointly capture aspects of the biology underlying clinical parkinsonism but raises questions about their utility as predictive tools in at-risk subjects. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel P. Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Grisel Lopez
- Medical Genetics Branch, National Institutes of Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Michael D. Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Karen F. Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Ellen Sidransky
- Medical Genetics Branch, National Institutes of Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,Corresponding author: Ellen Sidransky, MD, Chief, Medical Genetics Branch, NIH, Bld 35A, Room 1E623, 35 Convent Drive, MSC3708, Bethesda, MD, 20892-3708, Phone: 301-451-0901,
| |
Collapse
|
136
|
Ivanidze J, Roytman M, Skafida M, Kim S, Glynn S, Osborne JR, Pannullo SC, Nehmeh S, Ramakrishna R, Schwartz TH, Knisely JPS, Lin E, Karakatsanis NA. Dynamic 68Ga-DOTATATE PET/MRI in the Diagnosis and Management of Intracranial Meningiomas. Radiol Imaging Cancer 2022; 4:e210067. [PMID: 35275019 DOI: 10.1148/rycan.210067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose To evaluate dynamic gallium 68 (68Ga) tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) brain PET/MRI as an adjunct modality in meningioma, enabling multiparametric standardized uptake value (SUV) and Patlak net binding rate constant (Ki) imaging, and to optimize static acquisition period. Materials and Methods In this prospective study (ClinicalTrials.gov no. NCT04081701, DOMINO-START), 68Ga-DOTATATE PET/MRI-derived time-activity curves (TACs) were measured in 84 volumes of interest in 19 participants (mean age, 63 years; range, 36-89 years; 13 women; 2019-2021) with meningiomas. Region- and voxel-specific Ki were determined using Patlak analysis with a validated population-based reference tissue TAC model built from an independent data set of nine participants. Mean and maximum absolute and relative-to-superior-sagittal-sinus SUVs were extracted from the entire 50 minutes (SUV50) and last 10 minutes (SUV10) of acquisition. SUV versus Ki Spearman correlation, SUV and Ki meningioma versus posttreatment-change Mann-Whitney U tests, and SUV50 versus SUV10 Wilcoxon matched-pairs signed rank tests were performed. Results Absolute and relative maximum SUV50 demonstrated a strong positive correlation with Patlak Ki in meningioma (r = 0.82, P < .001 and r = 0.85, P < .001, respectively) and posttreatment-change lesions (r = 0.88, P = .007 and r = 0.83, P = .02, respectively). Patlak Ki images yielded higher lesion contrast by mitigating nonspecific background signal. All SUV50 and SUV10 metrics differed between meningioma and posttreatment-change regions (P < .001). Within the meningioma group, SUV10 attained higher mean scores than SUV50 (P < .001). Conclusion Combined SUV and Patlak K i 68Ga-DOTATATE PET/MRI enabled multiparametric evaluation of meningioma, offering the potential to enhance lesion contrast with Ki imaging and optimize the SUV measurement postinjection window. Keywords: Molecular Imaging-Clinical Translation, Neuro-Oncology, PET/MRI, Dynamic, Patlak ClinicalTrials.gov registration no. NCT04081701 © RSNA, 2022.
Collapse
Affiliation(s)
- Jana Ivanidze
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Michelle Roytman
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Myrto Skafida
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Sean Kim
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Shannon Glynn
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Joseph R Osborne
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Susan C Pannullo
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Sadek Nehmeh
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Rohan Ramakrishna
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Theodore H Schwartz
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Jonathan P S Knisely
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Eaton Lin
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| | - Nicolas A Karakatsanis
- From the Departments of Radiology (J.I., M.R., M.S., J.R.O., S.N., E.L., N.A.K.), Neurologic Surgery (S.C.P., R.R., T.H.S.), and Radiation Oncology (J.P.S.K.), NewYork-Presbyterian/Weill Cornell Medical Center, 515 E 71st St, S-120, New York, NY 10021; Weill Cornell Medical College, New York, NY (S.K., S.G.); and Department of Biomedical Engineering, Cornell University, Ithaca, NY (S.C.P.)
| |
Collapse
|
137
|
Rotkopf LT, Zhang KS, Tavakoli AA, Bonekamp D, Ziener CH, Schlemmer HP. Quantitative Analysis of DCE and DSC-MRI: From Kinetic Modeling to Deep Learning. ROFO-FORTSCHR RONTG 2022; 194:975-982. [PMID: 35211930 DOI: 10.1055/a-1762-5854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Perfusion MRI is a well-established imaging modality with a multitude of applications in oncological and cardiovascular imaging. Clinically used processing methods, while stable and robust, have remained largely unchanged in recent years. Despite promising results from novel methods, their relatively minimal improvement compared to established methods did not generally warrant significant changes to clinical perfusion processing. RESULTS AND CONCLUSION Machine learning in general and deep learning in particular, which are currently revolutionizing computer-aided diagnosis, may carry the potential to change this situation and truly capture the potential of perfusion imaging. Recent advances in the training of recurrent neural networks make it possible to predict and classify time series data with high accuracy. Combining physics-based tissue models and deep learning, using either physics-informed neural networks or universal differential equations, simplifies the training process and increases the interpretability of the resulting models. Due to their versatility, these methods will potentially be useful in bridging the gap between microvascular architecture and perfusion parameters, akin to MR fingerprinting in structural MR imaging. Still, further research is urgently needed before these methods may be used in clinical practice. KEY POINTS · Machine learning offers promising methods for processing of perfusion data.. · Recurrent neural networks can classify time series with high accuracy.. · Data augmentation is essentially especially when using small datasets.. CITATION FORMAT · Rotkopf LT, Zhang KS, Tavakoli AA et al. Quantitative Analysis of DCE and DSC-MRI: From Kinetic Modeling to Deep Learning. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1762-5854.
Collapse
Affiliation(s)
- Lukas T Rotkopf
- Department of Radiology, German Cancer Research Centre, Heidelberg, Germany
| | - Kevin Sun Zhang
- Department of Radiology, German Cancer Research Centre, Heidelberg, Germany
| | | | - David Bonekamp
- Department of Radiology, German Cancer Research Centre, Heidelberg, Germany
| | | | | |
Collapse
|
138
|
Clinical correlation but no elevation of striatal dopamine synthesis capacity in two independent cohorts of medication-free individuals with schizophrenia. Mol Psychiatry 2022; 27:1241-1247. [PMID: 34789848 DOI: 10.1038/s41380-021-01337-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of dopamine systems has been considered a foundational driver of pathophysiological processes in schizophrenia, an illness characterized by diverse domains of symptomatology. Prior work observing elevated presynaptic dopamine synthesis capacity in some patient groups has not always identified consistent symptom correlates, and studies of affected individuals in medication-free states have been challenging to obtain. Here we report on two separate cohorts of individuals with schizophrenia spectrum illness who underwent blinded medication withdrawal and medication-free neuroimaging with [18F]-FDOPA PET to assess striatal dopamine synthesis capacity. Consistently in both cohorts, we found no significant differences between patient and matched, healthy comparison groups; however, we did identify and replicate robust inverse relationships between negative symptom severity and tracer-specific uptake widely throughout the striatum: [18F]-FDOPA specific uptake was lower in patients with a greater preponderance of negative symptoms. Complementary voxel-wise and region of interest analyses, both with and without partial volume correction, yielded consistent results. These data suggest that for some individuals, striatal hyperdopaminergia may not be a defining or enduring feature of primary psychotic illness. However, clinical differences across individuals may be significantly linked to variability in striatal dopaminergic tone. These findings call for further experimentation aimed at parsing the heterogeneity of dopaminergic systems function in schizophrenia.
Collapse
|
139
|
Hofmans L, Westbrook A, van den Bosch R, Booij J, Verkes RJ, Cools R. Effects of average reward rate on vigor as a function of individual variation in striatal dopamine. Psychopharmacology (Berl) 2022; 239:465-478. [PMID: 34735591 DOI: 10.1007/s00213-021-06017-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
RATIONALE We constantly need to decide not only which actions to perform, but also how vigorously to perform them. In agreement with an earlier theoretical model, it has been shown that a significant portion of the variance in our action vigor can be explained by the average rate of rewards received for that action. Moreover, this invigorating effect of average reward rate was shown to vary with within-subject changes in dopamine, both in human individuals and experimental rodents. OBJECTIVES Here, we assessed whether individual differences in the effect of average reward rate on vigor are related to individual variation in a stable measure of striatal dopamine function in healthy, unmedicated participants. METHODS Forty-four participants performed a discrimination task to test the effect of average reward rate on response times to index vigor and completed an [18F]-DOPA PET scan to index striatal dopamine synthesis capacity. RESULTS We did not find an interaction between dopamine synthesis capacity and average reward rate across the entire group. However, a post hoc analysis revealed that participants with higher striatal dopamine synthesis capacity, particularly in the nucleus accumbens, exhibited a stronger invigorating effect of average reward rate among the 30 slowest participants. CONCLUSIONS Our findings provide converging evidence for a role of striatal dopamine in average reward rate signaling, thereby extending the current literature on the mechanistic link between average reward rate, vigor, and dopamine.
Collapse
Affiliation(s)
- Lieke Hofmans
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands. .,Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands. .,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Andrew Westbrook
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands.,Department of Cognitive, Linguistics and Psychological Sciences, Brown University, Providence, USA
| | - Ruben van den Bosch
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robbert-Jan Verkes
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands.,Forensic Psychiatric Centre Nijmegen, Pompestichting, Nijmegen, The Netherlands.,Department of Criminal Law, Law School, Radboud Universiteit, Nijmegen, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
140
|
Grattan-Smith JD, Chow J, Kurugol S, Jones RA. Quantitative renal magnetic resonance imaging: magnetic resonance urography. Pediatr Radiol 2022; 52:228-248. [PMID: 35022851 PMCID: PMC9670866 DOI: 10.1007/s00247-021-05264-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The goal of functional renal imaging is to identify and quantitate irreversible renal damage and nephron loss, as well as potentially reversible hemodynamic changes. MR urography has evolved into a comprehensive evaluation of the urinary tract that combines anatomical imaging with functional evaluation in a single test without ionizing radiation. Quantitative functional MR imaging is based on dynamic contrast-enhanced MR acquisitions that provide progressive, visible enhancement of the renal parenchyma and urinary tract. The signal changes related to perfusion, concentration and excretion of the contrast agent can be evaluated using both quantitative and qualitative measures. Functional evaluation with MR has continued to improve as a result of significant technical advances allowing for faster image acquisition as well as the development of new tracer kinetic models of renal function. The most common indications for MR urography in children are the evaluation of congenital anomalies of the kidney and urinary tract including hydronephrosis and renal malformations, and the identification of ectopic ureters in children with incontinence. In this paper, we review the underlying acquisition schemes and techniques used to generate quantitative functional parameters including the differential renal function (DRF), asymmetry index, mean transit time (MTT), signal intensity versus time curves as well as the calculation of individual kidney glomerular filtration rate (GFR). Visual inspection and semi-quantitative assessment using the renal transit time (RTT) and calyceal transit times (CTT) are fundamental to accurate diagnosis and are used as a basis for the interpretation of the quantitative data. The importance of visual assessment of the images cannot be overstated when analyzing the quantitative measures of renal function.
Collapse
Affiliation(s)
| | - Jeanne Chow
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sila Kurugol
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Richard A Jones
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
141
|
Sabaroedin K, Razi A, Chopra S, Tran N, Pozaruk A, Chen Z, Finlay A, Nelson B, Allott K, Alvarez-Jimenez M, Graham J, Yuen HP, Harrigan S, Cropley V, Sharma S, Saluja B, Williams R, Pantelis C, Wood SJ, O’Donoghue B, Francey S, McGorry P, Aquino K, Fornito A. Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum. Brain 2022; 146:372-386. [PMID: 35094052 PMCID: PMC9825436 DOI: 10.1093/brain/awac018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/12/2023] Open
Abstract
Dysfunction of fronto-striato-thalamic (FST) circuits is thought to contribute to dopaminergic dysfunction and symptom onset in psychosis, but it remains unclear whether this dysfunction is driven by aberrant bottom-up subcortical signalling or impaired top-down cortical regulation. We used spectral dynamic causal modelling of resting-state functional MRI to characterize the effective connectivity of dorsal and ventral FST circuits in a sample of 46 antipsychotic-naïve first-episode psychosis patients and 23 controls and an independent sample of 36 patients with established schizophrenia and 100 controls. We also investigated the association between FST effective connectivity and striatal 18F-DOPA uptake in an independent healthy cohort of 33 individuals who underwent concurrent functional MRI and PET. Using a posterior probability threshold of 0.95, we found that midbrain and thalamic connectivity were implicated as dysfunctional across both patient groups. Dysconnectivity in first-episode psychosis patients was mainly restricted to the subcortex, with positive symptom severity being associated with midbrain connectivity. Dysconnectivity between the cortex and subcortical systems was only apparent in established schizophrenia patients. In the healthy 18F-DOPA cohort, we found that striatal dopamine synthesis capacity was associated with the effective connectivity of nigrostriatal and striatothalamic pathways, implicating similar circuits to those associated with psychotic symptom severity in patients. Overall, our findings indicate that subcortical dysconnectivity is evident in the early stages of psychosis, that cortical dysfunction may emerge later in the illness, and that nigrostriatal and striatothalamic signalling are closely related to striatal dopamine synthesis capacity, which is a robust marker for psychosis.
Collapse
Affiliation(s)
- Kristina Sabaroedin
- Correspondence to: Kristina Sabaroedin Turner Institute for Brain and Mental Health 770 Blackburn Road, Clayton, Victoria 3168, Australia E-mail:
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia,Wellcome Centre for Human Neuroimaging, University College, London WC1N 3AR, UK
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nancy Tran
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andrii Pozaruk
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Amy Finlay
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Hok P Yuen
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Susy Harrigan
- Department of Social Work, Monash University, Victoria 3800, Australia,Melbourne School of Population and Global Health, The University of Melbourne, Parkville. Victoria 3010, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria 3010, Australia
| | - Sujit Sharma
- Monash Health, Dandenong, Victoria 3175, Australia
| | | | - Rob Williams
- The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria 3010, Australia,The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stephen J Wood
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia,School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Brian O’Donoghue
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shona Francey
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick McGorry
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kevin Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
142
|
Dynamic whole-body FDG-PET imaging for oncology studies. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Introduction
Recent PET/CT systems have improved sensitivity and spatial resolution by smaller PET detectors and improved reconstruction software. In addition, continuous-bed-motion mode is now available in some PET systems for whole-body PET imaging. In this review, we describe the advantages of dynamic whole-body FDG-PET in oncology studies.
Methods
PET–CT imaging was obtained at 60 min after FDG administration. Dynamic whole-body imaging with continuous bed motion in 3 min each with flow motion was obtained over 400 oncology cases. For routine image analysis, these dynamic phases (usually four phases) were summed as early FDG imaging. The image quality of each serial dynamic imaging was visually evaluated. In addition, changes in FDG uptake were analyzed in consecutive dynamic imaging and also in early delayed (90 min after FDG administration) time point imaging (dual-time-point imaging; DTPI). Image interpretation was performed by consensus of two nuclear medicine physicians.
Result
All consecutive dynamic whole-body PET images of 3 min duration had acceptable image quality. Many of the areas with physiologically high FDG uptake had altered uptake on serial images. On the other hand, most of the benign and malignant lesions did not show visual changes on serial images. In the study of 60 patients with suspected colorectal cancer, unchanged uptake was noted in almost all regions with pathologically proved FDG uptake, indicating high sensitivity with high negative predictive value on both serial dynamic imaging and on DTPI. We proposed another application of serial dynamic imaging for minimizing motion artifacts for patients who may be likely to move during PET studies.
Discussion
Dynamic whole-body imaging has several advantages over the static imaging. Serial assessment of changes in FDG uptake over a short period of time is useful for distinguishing pathological from physiological uptake, especially in the abdominal regions. These dynamic PET studies may minimize the need for DPTI. In addition, continuous dynamic imaging has the potential to reduce motion artifacts in patients who are likely to move during PET imaging. Furthermore, kinetic analysis of the FDG distribution in tumor areas has a potential for precise tissue characterization.
Conclusion
Dynamic whole-body FDG-PET imaging permits assessment of serial FDG uptake change which is particularly useful for differentiation of pathological uptake from physiological uptake with high diagnostic accuracy. This imaging can be applied for minimizing motion artifacts. Wide clinical applications of such serial, dynamic whole-body PET imaging is expected in oncological studies in the near future.
Collapse
|
143
|
Dopaminergic Activity in Antipsychotic-Naïve Patients Assessed With Positron Emission Tomography Before and After Partial Dopamine D 2 Receptor Agonist Treatment: Association With Psychotic Symptoms and Treatment Response. Biol Psychiatry 2022; 91:236-245. [PMID: 34743917 DOI: 10.1016/j.biopsych.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine activity has been associated with the response to antipsychotic treatment. Our study used a four-parameter model to test the association between the striatal decarboxylation rate of 18F-DOPA to 18F-dopamine (k3) and the effect of treatment on psychotic symptoms in antipsychotic-naïve patients with first-episode psychosis. We further explored the effect of treatment with a partial dopamine D2 receptor agonist (aripiprazole) on k3 and dopamine synthesis capacity (DSC) determined by the four-parameter model and by the conventional tissue reference method. METHODS Sixty-two individuals (31 patients and 31 control subjects) underwent 18F-DOPA positron emission tomography at baseline, and 15 patients were re-examined after 6 weeks. Clinical re-examinations were completed after 6 weeks (n = 28) and 6 months (n = 15). Symptoms were evaluated with the Positive and Negative Syndrome Scale. RESULTS High baseline decarboxylation rates (k3) were associated with more positive symptoms at baseline (p < .001) and with symptom improvement after 6 weeks (p = .006). Subregion analyses showed that baseline k3 for the putamen (p = .003) and nucleus accumbens (p = .013) and DSC values for the nucleus accumbens (p = .003) were associated with psychotic symptoms. The tissue reference method yielded no associations between DSC and symptoms or symptom improvement. Neither method revealed any effects of group or treatment on average magnitudes of k3 or DSC, whereas changes in dopamine synthesis were correlated with higher baseline values, implying a potential effect of treatment. CONCLUSIONS Striatal decarboxylation rate at baseline was associated with psychotic symptoms and treatment response. The strong association between k3 and treatment effect potentially implicate on new treatment strategies.
Collapse
|
144
|
Hong L, Hsu TM, Zhang Y, Cheng X. Neuroimaging Prediction of Hemorrhagic Transformation for Acute Ischemic Stroke. Cerebrovasc Dis 2022; 51:542-552. [PMID: 35026765 DOI: 10.1159/000521150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hemorrhagic transformation (HT) is a common complication of acute ischemic stroke, often resulting from reperfusion therapy. Early prediction of HT can enable stroke neurologists to undertake measures to avoid clinical deterioration and make optimal treatment strategies. Moreover, the trend of extending the time window for reperfusion therapy (both for intravenous thrombolysis and endovascular treatment) further requires more precise detection of HT tendency. SUMMARY In this review, we summarized and discussed the neuroimaging markers of HT prediction of acute ischemic stroke patients, mainly focusing on neuroimaging markers of ischemic degree and neuroimaging markers of blood-brain barrier permeability. This review is aimed to provide a concise introduction of HT prediction and to elicit possibilities of future research combining advanced technology to improve the accessibility and accuracy of HT prediction under emergent clinical settings. Key Messages: Substantial studies have utilized neuroimaging, blood biomarkers, and clinical variables to predict HT occurrence. Although huge progress has been made, more individualized and precise HT prediction using simple and robust imaging predictors combining stroke onset time should be the future goal of development.
Collapse
Affiliation(s)
- Lan Hong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China,
| | - Tzu-Ming Hsu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiran Zhang
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
145
|
Sari H, Mingels C, Alberts I, Hu J, Buesser D, Shah V, Schepers R, Caluori P, Panin V, Conti M, Afshar-Oromieh A, Shi K, Eriksson L, Rominger A, Cumming P. First results on kinetic modelling and parametric imaging of dynamic 18F-FDG datasets from a long axial FOV PET scanner in oncological patients. Eur J Nucl Med Mol Imaging 2022; 49:1997-2009. [PMID: 34981164 DOI: 10.1007/s00259-021-05623-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the kinetics of 18F-fluorodeoxyglucose (18F-FDG) by positron emission tomography (PET) in multiple organs and test the feasibility of total-body parametric imaging using an image-derived input function (IDIF). METHODS Twenty-four oncological patients underwent dynamic 18F-FDG scans lasting 65 min using a long axial FOV (LAFOV) PET/CT system. Time activity curves (TAC) were extracted from semi-automated segmentations of multiple organs, cerebral grey and white matter, and from vascular structures. The tissue and tumor lesion TACs were fitted using an irreversible two-tissue compartment (2TC) and a Patlak model. Parametric images were also generated using direct and indirect Patlak methods and their performances were evaluated. RESULTS We report estimates of kinetic parameters and metabolic rate of glucose consumption (MRFDG) for different organs and tumor lesions. In some organs, there were significant differences between MRFDG values estimated using 2TC and Patlak models. No statistically significant difference was seen between MRFDG values estimated using 2TC and Patlak methods in tumor lesions (paired t-test, P = 0.65). Parametric imaging showed that net influx (Ki) images generated using direct and indirect Patlak methods had superior tumor-to-background ratio (TBR) to standard uptake value (SUV) images (3.1- and 3.0-fold mean increases in TBRmean, respectively). Influx images generated using the direct Patlak method had twofold higher contrast-to-noise ratio in tumor lesions compared to images generated using the indirect Patlak method. CONCLUSION We performed pharmacokinetic modelling of multiple organs using linear and non-linear models using dynamic total-body 18F-FDG images. Although parametric images did not reveal more tumors than SUV images, the results confirmed that parametric imaging furnishes improved tumor contrast. We thus demonstrate the feasibility of total-body kinetic modelling and parametric imaging in basic research and oncological studies. LAFOV PET can enhance dynamic imaging capabilities by providing high sensitivity parametric images and allowing total-body pharmacokinetic analysis.
Collapse
Affiliation(s)
- Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Jicun Hu
- Siemens Medical Solutions, USA Inc., Knoxville, TN, USA
| | - Dorothee Buesser
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Vijay Shah
- Siemens Medical Solutions, USA Inc., Knoxville, TN, USA
| | - Robin Schepers
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Patrik Caluori
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | | | | | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Lars Eriksson
- Siemens Medical Solutions, USA Inc., Knoxville, TN, USA
- Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
146
|
Abstract
Positron emission tomography (PET) combined with computed tomography (CT) is used to detect brown adipose tissue (BAT) in humans. Function can be measured using different tracers, most typically with glucose analog 18F-fluoro-deoxyglucose (FDG). CT provides an anatomical reference, but this tool can be utilized for other purposes as well, such as indirect estimate of triglyceride content of the BAT. PET/CT measurements require sophisticated and highly specified devices, and manufacturer-dependent differences exist between different scanners. Therefore, complete device-specific instructions are not given in this article, but rather general guidelines which are important when human BAT is imaged using PET/CT.
Collapse
|
147
|
Schalbroeck R, de Geus-Oei LF, Selten JP, Yaqub M, Schrantee A, van Amelsvoort T, Booij J, van Velden FHP. Cerebral [ 18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits. Diagnostics (Basel) 2021; 11:diagnostics11122404. [PMID: 34943640 PMCID: PMC8700159 DOI: 10.3390/diagnostics11122404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Dopaminergic signaling is believed to be related to autistic traits. We conducted an exploratory 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine positron emission tomography/computed tomography ([18F]-FDOPA PET/CT) study, to examine cerebral [18F]-FDOPA influx constant (kicer min−1), reflecting predominantly striatal dopamine synthesis capacity and a mixed monoaminergic innervation in extrastriatal neurons, in 44 adults diagnosed with autism spectrum disorder (ASD) and 22 controls, aged 18 to 30 years. Autistic traits were assessed with the Autism Spectrum Quotient (AQ). Region-of-interest and voxel-based analyses showed no statistically significant differences in kicer between autistic adults and controls. In autistic adults, striatal kicer was significantly, negatively associated with AQ attention to detail subscale scores, although Bayesian analyses did not support this finding. In conclusion, among autistic adults, specific autistic traits can be associated with reduced striatal dopamine synthesis capacity. However, replication of this finding is necessary.
Collapse
Affiliation(s)
- Rik Schalbroeck
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.-P.S.); (T.v.A.)
- Rivierduinen Institute for Mental Healthcare, 2333 ZZ Leiden, The Netherlands
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.-F.d.G.-O.); (F.H.P.v.V.)
- Correspondence:
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.-F.d.G.-O.); (F.H.P.v.V.)
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jean-Paul Selten
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.-P.S.); (T.v.A.)
- Rivierduinen Institute for Mental Healthcare, 2333 ZZ Leiden, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location VU Medical Center, 1081 HV Amsterdam, The Netherlands;
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (A.S.); (J.B.)
| | - Therese van Amelsvoort
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.-P.S.); (T.v.A.)
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (A.S.); (J.B.)
| | - Floris H. P. van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.-F.d.G.-O.); (F.H.P.v.V.)
| |
Collapse
|
148
|
Indovina L, Scolozzi V, Capotosti A, Sestini S, Taralli S, Cusumano D, Giancipoli RG, Ciasca G, Cardillo G, Calcagni ML. Short 2-[ 18F]Fluoro-2-Deoxy-D-Glucose PET Dynamic Acquisition Protocol to Evaluate the Influx Rate Constant by Regional Patlak Graphical Analysis in Patients With Non-Small-Cell Lung Cancer. Front Med (Lausanne) 2021; 8:725387. [PMID: 34881253 PMCID: PMC8647994 DOI: 10.3389/fmed.2021.725387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: To test a short 2-[18F]Fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET dynamic acquisition protocol to calculate Ki using regional Patlak graphical analysis in patients with non-small-cell lung cancer (NSCLC). Methods: 24 patients with NSCLC who underwent standard dynamic 2-[18F]FDG acquisitions (60 min) were randomly divided into two groups. In group 1 (n = 10), a population-based image-derived input function (pIDIF) was built using a monoexponential trend (10–60 min), and a leave-one-out cross-validation (LOOCV) method was performed to validate the pIDIF model. In group 2 (n = 14), Ki was obtained by standard regional Patlak plot analysis using IDIF (0–60 min) and tissue response (10–60 min) curves from the volume of interests (VOIs) placed on descending thoracic aorta and tumor tissue, respectively. Moreover, with our method, the Patlak analysis was performed to obtain Ki,s using IDIFFitted curve obtained from PET counts (0–10 min) followed by monoexponential coefficients of pIDIF (10–60 min) and tissue response curve obtained from PET counts at 10 min and between 40 and 60 min, simulating two short dynamic acquisitions. Both IDIF and IDIFFitted curves were modeled to assume the value of 2-[18F]FDG plasma activity measured in the venous blood sampling performed at 45 min in each patient. Spearman's rank correlation, coefficient of determination, and Passing–Bablok regression were used for the comparison between Ki and Ki,s. Finally, Ki,s was obtained with our method in a separate group of patients (group 3, n = 8) that perform two short dynamic acquisitions. Results: Population-based image-derived input function (10–60 min) was modeled with a monoexponential curve with the following fitted parameters obtained in group 1: a = 9.684, b = 16.410, and c = 0.068 min−1. The LOOCV error was 0.4%. In patients of group 2, the mean values of Ki and Ki,s were 0.0442 ± 0.0302 and 0.33 ± 0.0298, respectively (R2 = 0.9970). The Passing–Bablok regression for comparison between Ki and Ki,s showed a slope of 0.992 (95% CI: 0.94–1.06) and intercept value of −0.0003 (95% CI: −0.0033–0.0011). Conclusions: Despite several practical limitations, like the need to position the patient twice and to perform two CT scans, our method contemplates two short 2-[18F]FDG dynamic acquisitions, a population-based input function model, and a late venous blood sample to obtain robust and personalized input function and tissue response curves and to provide reliable regional Ki estimation.
Collapse
Affiliation(s)
- Luca Indovina
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Scolozzi
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amedeo Capotosti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Silvia Taralli
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Cusumano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Romina Grazia Giancipoli
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Maria Lucia Calcagni
- Unità Operativa Complessa (UOC) di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
149
|
Puri T, Frost ML, Cook GJ, Blake GM. [ 18F] Sodium Fluoride PET Kinetic Parameters in Bone Imaging. Tomography 2021; 7:843-854. [PMID: 34941643 PMCID: PMC8708178 DOI: 10.3390/tomography7040071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
This report describes the significance of the kinetic parameters (k-values) obtained from the analysis of dynamic positron emission tomography (PET) scans using the Hawkins model describing the pharmacokinetics of sodium fluoride ([18F]NaF) to understand bone physiology. Dynamic [18F]NaF PET scans may be useful as an imaging biomarker in early phase clinical trials of novel drugs in development by permitting early detection of treatment-response signals that may help avoid late-stage attrition.
Collapse
Affiliation(s)
- Tanuj Puri
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Michelle L. Frost
- Institute of Cancer Research Clinical Trials & Statistics Unit (ICR-CTSU), Institute of Cancer Research, Sutton SM2 5NG, UK;
| | - Gary J. Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
| | - Glen M. Blake
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK;
- Correspondence: ; Tel.: +44-7762717295
| |
Collapse
|
150
|
Jahn U, Ilan E, Velikyan I, Fröss-Baron K, Lubberink M, Sundin A. Receptor depletion and recovery in small-intestinal neuroendocrine tumors and normal tissues after administration of a single intravenous dose of octreotide measured by 68Ga-DOTATOC PET/CT. EJNMMI Res 2021; 11:118. [PMID: 34822040 PMCID: PMC8617112 DOI: 10.1186/s13550-021-00860-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Low-grade neuroendocrine tumors (NETs) are characterized by an abundance of somatostatin receptors (SSTR) that can be targeted with somatostatin analogs (SSA). When activated with a single dose of SSA, the receptor-ligand complex is internalized, and the receptor is by default recycled within 24 h. Ongoing medication with long-acting SSAs at 68Ga-DOTA-SSA-PET has been shown to increase the tumor-to-normal organ contrast. This study was performed to investigate the time-dependent extended effect (7 h) of a single intravenous dose of 400 µg short-acting octreotide on the tumor versus normal tissue uptake of 68Ga-DOTATOC. METHODS Patients with small-intestinal NETs received a single intravenous dose of 400 µg octreotide and underwent dynamic abdominal 68Ga-DOTATOC-PET/CT at three sessions (0, 3 and 6 h) plus static whole-body (WB) PET/CT (1, 4 and 7 h), starting each PET/CT session by administering 167 ± 21 MBq, 23.5 ± 4.2 µg (mean ± SD, n = 12) of 68Ga-DOTATOC. A previously acquired clinical whole-body 68Ga-DOTATOC scan was used as baseline. SUV and net uptake rate Ki were calculated in tumors, and SUV in healthy organs. RESULTS Tumor SUV decreased significantly from baseline to 1 h post-injection but subsequently increased over time and became similar to baseline at 4 h and 7 h. The tumor net uptake rate, Ki, similarly increased significantly over time and showed a linear correlation both with SUV and tumor-to-blood ratio. By contrast, the uptake in liver, spleen and pancreas remained significantly below baseline levels also at 7 h and the receptor turn-over in tumors thus exceeded that in the normal tissue, with restitution of tumor 68Ga-DOTATOC uptake mainly completed at 7 h. These results however differed depending on tumor size, with significant increases in Ki and SUV between the 1st and 2nd PET, in large tumors (≥ 4 mL) but not in small (> 1 to < 4 mL) tumors. CONCLUSION SSTR recycling is faster in small-intestinal NETs than in liver, spleen and pancreas. This opens the possibility to protect normal tissues during PRRT by administering a single dose of cold peptide hours before peptide receptor radionuclide therapy (PRRT), and most likely additionally improve the availability and uptake of the therapeutic preparation in the tumors.
Collapse
Affiliation(s)
- Ulrika Jahn
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden. .,Uppsala University Hospital, 75185, Uppsala, Sweden.
| | - Ezgi Ilan
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Velikyan
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Katarzyna Fröss-Baron
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Sundin
- Radiology and Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Uppsala University Hospital, 75185, Uppsala, Sweden.,Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|