101
|
Chen K, Zheng Y, Wei JA, Ouyang H, Huang X, Zhang F, Lai CSW, Ren C, So KF, Zhang L. Exercise training improves motor skill learning via selective activation of mTOR. SCIENCE ADVANCES 2019; 5:eaaw1888. [PMID: 31281888 PMCID: PMC6609215 DOI: 10.1126/sciadv.aaw1888] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/23/2019] [Indexed: 06/01/2023]
Abstract
Physical exercise improves learning and memory, but little in vivo evidence has been provided to illustrate the molecular mechanisms. Here, we show that chronic treadmill exercise activates the mechanistic target of rapamycin (mTOR) pathway in mouse motor cortex. Both ex vivo and in vivo recordings suggest that mTOR activation leads to potentiated postsynaptic excitation and enhanced neuronal activity of layer 5 pyramidal neurons after exercise, in association with increased oligodendrogenesis and axonal myelination. Exercise training also increases dendritic spine formation and motor learning. Together, exercise activates mTOR pathway, which is necessary for spinogenesis, neuronal activation, and axonal myelination leading to improved motor learning. This model provides new insights for neural network adaptations through exercises and supports the intervention of cognitive deficits using exercise training.
Collapse
Affiliation(s)
- Kai Chen
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Yuhan Zheng
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Ji-an Wei
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Huan Ouyang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaodan Huang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Feilong Zhang
- Peking University, Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chaoran Ren
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, P. R. China
| | - Kwok-Fai So
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, P. R. China
| | - Li Zhang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, P. R. China
| |
Collapse
|
102
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
103
|
Payne HL, French RL, Guo CC, Nguyen-Vu TB, Manninen T, Raymond JL. Cerebellar Purkinje cells control eye movements with a rapid rate code that is invariant to spike irregularity. eLife 2019; 8:37102. [PMID: 31050648 PMCID: PMC6499540 DOI: 10.7554/elife.37102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
The rate and temporal pattern of neural spiking each have the potential to influence computation. In the cerebellum, it has been hypothesized that the irregularity of interspike intervals in Purkinje cells affects their ability to transmit information to downstream neurons. Accordingly, during oculomotor behavior in mice and rhesus monkeys, mean irregularity of Purkinje cell spiking varied with mean eye velocity. However, moment-to-moment variations revealed a tight correlation between eye velocity and spike rate, with no additional information conveyed by spike irregularity. Moreover, when spike rate and irregularity were independently controlled using optogenetic stimulation, the eye movements elicited were well-described by a linear population rate code with 3-5 ms temporal precision. Biophysical and random-walk models identified biologically realistic parameter ranges that determine whether spike irregularity influences responses downstream. The results demonstrate cerebellar control of movements through a remarkably rapid rate code, with no evidence for an additional contribution of spike irregularity.
Collapse
Affiliation(s)
- Hannah L Payne
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Ranran L French
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| | - Christine C Guo
- Mental Health Program, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | | | - Tiina Manninen
- Department of Neurobiology, Stanford University, Stanford, United States.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, United States
| |
Collapse
|
104
|
Chung C, Ha S, Kang H, Lee J, Um SM, Yan H, Yoo YE, Yoo T, Jung H, Lee D, Lee E, Lee S, Kim J, Kim R, Kwon Y, Kim W, Kim H, Duffney L, Kim D, Mah W, Won H, Mo S, Kim JY, Lim CS, Kaang BK, Boeckers TM, Chung Y, Kim H, Jiang YH, Kim E. Early Correction of N-Methyl-D-Aspartate Receptor Function Improves Autistic-like Social Behaviors in Adult Shank2 -/- Mice. Biol Psychiatry 2019; 85:534-543. [PMID: 30466882 PMCID: PMC6420362 DOI: 10.1016/j.biopsych.2018.09.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autism spectrum disorder involves neurodevelopmental dysregulations that lead to visible symptoms at early stages of life. Many autism spectrum disorder-related mechanisms suggested by animal studies are supported by demonstrated improvement in autistic-like phenotypes in adult animals following experimental reversal of dysregulated mechanisms. However, whether such mechanisms also act at earlier stages to cause autistic-like phenotypes is unclear. METHODS We used Shank2-/- mice carrying a mutation identified in human autism spectrum disorder (exons 6 and 7 deletion) and combined electrophysiological and behavioral analyses to see whether early pathophysiology at pup stages is different from late pathophysiology at juvenile and adult stages and whether correcting early pathophysiology can normalize late pathophysiology and abnormal behaviors in juvenile and adult mice. RESULTS Early correction of a dysregulated mechanism in young mice prevents manifestation of autistic-like social behaviors in adult mice. Shank2-/- mice, known to display N-methyl-D-aspartate receptor (NMDAR) hypofunction and autistic-like behaviors at postweaning stages after postnatal day 21 (P21), show the opposite synaptic phenotype-NMDAR hyperfunction-at an earlier preweaning stage (∼P14). Moreover, this NMDAR hyperfunction at P14 rapidly shifts to NMDAR hypofunction after weaning (∼P24). Chronic suppression of the early NMDAR hyperfunction by the NMDAR antagonist memantine (P7-P21) prevents NMDAR hypofunction and autistic-like social behaviors from manifesting at later stages (∼P28 and P56). CONCLUSIONS Early NMDAR hyperfunction leads to late NMDAR hypofunction and autistic-like social behaviors in Shank2-/- mice, and early correction of NMDAR dysfunction has the long-lasting effect of preventing autistic-like social behaviors from developing at later stages.
Collapse
Affiliation(s)
- Changuk Chung
- Department of Biological Sciences, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Seungmin Ha
- Department of Biological Sciences, South Korea
| | - Hyojin Kang
- Department of Convergence Technology Research, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | | | - Haidun Yan
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Ye-Eun Yoo
- Department of Biological Sciences, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Dongwon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | | | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, South Korea
| | | | - Woohyun Kim
- Department of Biological Sciences, South Korea
| | - Hyosang Kim
- Department of Biological Sciences, South Korea
| | - Lara Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hyejung Won
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Seojung Mo
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Chae-Seok Lim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute for Science and Technology, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; Cell and Molecular Biology Program, Duke University, Durham, North Carolina; Duke Institute of Brain Science, Duke University, Durham, North Carolina; Genomics and Genetics Program, Duke University, Durham, North Carolina
| | - Eunjoon Kim
- Department of Biological Sciences, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea.
| |
Collapse
|
105
|
Is there an "antisocial" cerebellum? Evidence from disorders other than autism characterized by abnormal social behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:1-8. [PMID: 30153496 DOI: 10.1016/j.pnpbp.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
The cerebellum is a hindbrain structure which involvement in functions not related to motor control and planning is being increasingly recognized in the last decades. Studies on Autism Spectrum Disorders (ASD) have reported cerebellar involvement on these conditions characterized by social deficits and repetitive motor behavior patterns. Although such an involvement hints at a possible cerebellar participation in the social domain, the fact that ASD patients present both social and motor deficits impedes drawing any firm conclusion regarding cerebellar involvement in pathological social behaviours, probably influenced by the classical view of the cerebellum as a purely "motor" brain structure. Here, we suggest the cerebellum can be a key node for the production and control of normal and particularly aberrant social behaviours, as indicated by its involvement in other neuropsychiatric disorders which main symptom is deregulated social behaviour. Therefore, in this work, we briefly review cerebellar involvement in social behavior in rodent models, followed by discussing the findings linking the cerebellum to those other psychiatric conditions characterized by defective social behaviours. Finally, possible commonalities between the studies and putative underlying impaired functions will be discussed and experimental approaches both in patients and experimental animals will also be proposed, aimed at stimulating research on the role of the cerebellum in social behaviours and disorders characterized by social impairments, which, if successful, will definitely help reinforcing the proposed cerebellar involvement in the social domain.
Collapse
|
106
|
Luo T, Liu P, Wang XY, Li LZ, Zhao LP, Huang J, Li YM, Ou JL, Peng XQ. Effect of the autism-associated lncRNA Shank2-AS on architecture and growth of neurons. J Cell Biochem 2019; 120:1754-1762. [PMID: 30160788 DOI: 10.1002/jcb.27471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/19/2018] [Indexed: 01/24/2023]
Abstract
The pathogenic mechanism of autism is complex, and current research has shown that long noncoding RNAs (lncRNAs) may play important roles in this process. The antisense lncRNA of SH3 and multiple ankyrin repeat domains 2 (Shank2-AS) is upregulated in patients with autism spectrum disorder (ASD), whereas the expression of its sense strand gene Shank2 is downregulated. In neuronal cells, Shank2-AS and Shank2 can form a double-stranded RNA and inhibit Shank2 expression. Overexpression of Shank2-AS decreases neurite numbers and lengths, thereby inhibiting the proliferation of neuronal cells and promoting their apoptosis. Overexpression of Shank2 inhibits the abovementioned effects of Shank2-AS, and transfection of a vector containing the 10th intron of Shank2 (Shank2-AS is reverse-transcribed from this region) also blocks the function of Shank2-AS. Shank2 small interfering RNA plays a role similar to Shank2-AS. Therefore, Shank2-AS is abnormally expressed in patients with ASD and may affect the structure and growth of neurons by regulating Shank2 expression, thereby facilitating the development of ASD.
Collapse
Affiliation(s)
- Ting Luo
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China.,School of Public Health, Central South University, Changsha, China
| | - Ping Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Yan Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Le-Zhi Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Ping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin Huang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin-Lan Ou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Qing Peng
- Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha, China
| |
Collapse
|
107
|
Hyperexcitability and Hyperplasticity Disrupt Cerebellar Signal Transfer in the IB2 KO Mouse Model of Autism. J Neurosci 2019; 39:2383-2397. [PMID: 30696733 DOI: 10.1523/jneurosci.1985-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental conditions that often involve mutations affecting synaptic mechanisms. Recently, the involvement of cerebellum in ASDs has been suggested, but the underlying functional alterations remained obscure. We investigated single-neuron and microcircuit properties in IB2 (Islet Brain-2) KO mice of either sex. The IB2 gene (chr22q13.3 terminal region) deletion occurs in virtually all cases of Phelan-McDermid syndrome, causing autistic symptoms and a severe delay in motor skill acquisition. IB2 KO granule cells showed a larger NMDA receptor-mediated current and enhanced intrinsic excitability, raising the excitatory/inhibitory balance. Furthermore, the spatial organization of granular layer responses to mossy fibers shifted from a "Mexican hat" to a "stovepipe hat" profile, with stronger excitation in the core and weaker inhibition in the surround. Finally, the size and extension of long-term synaptic plasticity were remarkably increased. These results show for the first time that hyperexcitability and hyperplasticity disrupt signal transfer in the granular layer of IB2 KO mice, supporting cerebellar involvement in the pathogenesis of ASD.SIGNIFICANCE STATEMENT This article shows for the first time a complex set of alterations in the cerebellum granular layer of a mouse model [IB2 (Islet Brain-2) KO] of autism spectrum disorders. The IB2 KO in mice mimics the deletion of the corresponding gene in the Phelan-McDermid syndrome in humans. The changes reported here are centered on NMDA receptor hyperactivity, hyperplasticity, and hyperexcitability. These, in turn, increase the excitatory/inhibitory balance and alter the shape of center/surround structures that emerge in the granular layer in response to mossy fiber activity. These results support recent theories suggesting the involvement of cerebellum in autism spectrum disorders.
Collapse
|
108
|
Clifford H, Dulneva A, Ponting CP, Haerty W, Becker EBE. A gene expression signature in developing Purkinje cells predicts autism and intellectual disability co-morbidity status. Sci Rep 2019; 9:485. [PMID: 30679692 PMCID: PMC6346046 DOI: 10.1038/s41598-018-37284-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/16/2018] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease whose underpinning molecular mechanisms and neural substrates are subject to intense scrutiny. Interestingly, the cerebellum has emerged as one of the key brain regions affected in ASD. However, the genetic and molecular mechanisms that link the cerebellum to ASD, particularly during development, remain poorly understood. To gain insight into the genetic and molecular mechanisms that might link the cerebellum to ASD, we analysed the transcriptome dynamics of a developing cell population highly enriched for Purkinje cells of the mouse cerebellum across multiple timepoints. We identified a single cluster of genes whose expression is positively correlated with development and which is enriched for genes associated with ASD. This ASD-associated gene cluster was specific to developing Purkinje cells and not detected in the mouse neocortex during the same developmental period, in which we identified a distinct temporally regulated ASD gene module. Furthermore, the composition of ASD risk genes within the two distinct clusters was significantly different in their association with intellectual disability (ID), consistent with the existence of genetically and spatiotemporally distinct endophenotypes of ASD. Together, our findings define a specific cluster of ASD genes that is enriched in developing PCs and predicts co-morbidity status.
Collapse
Affiliation(s)
- Harry Clifford
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Anna Dulneva
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Wilfried Haerty
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UG, United Kingdom.
| | - Esther B E Becker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
109
|
Hansel C. Deregulation of synaptic plasticity in autism. Neurosci Lett 2019; 688:58-61. [DOI: 10.1016/j.neulet.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
|
110
|
Wang R, Tan J, Guo J, Zheng Y, Han Q, So KF, Yu J, Zhang L. Aberrant Development and Synaptic Transmission of Cerebellar Cortex in a VPA Induced Mouse Autism Model. Front Cell Neurosci 2018; 12:500. [PMID: 30622458 PMCID: PMC6308145 DOI: 10.3389/fncel.2018.00500] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Autistic spectral disorder (ASD) is a prevalent neurodevelopmental disease that affects multiple brain regions. Both clinical and animal studies have revealed the possible involvement of the cerebellum in ASD pathology. In this study, we generated a rodent ASD model through a single prenatal administration of valproic acid (VPA) into pregnant mice, followed by cerebellar morphological and functional studies of the offspring. Behavioral studies showed that VPA exposure led to retardation of critical motor reflexes in juveniles and impaired learning in a tone-conditioned complex motor task in adults. These behavioral phenotypes were associated with premature migration and excess apoptosis of the granular cell (GC) precursor in the cerebellar cortex during the early postnatal period, and the decreased cell density and impaired dendritic arborization of the Purkinje neurons. On acute cerebellar slices, suppressed synaptic transmission of the Purkinje cells were reported in the VPA-treated mice. In summary, converging evidence from anatomical, electrophysiological and behavioral abnormalities in the VPA-treated mice suggest cerebellar pathology in ASD and indicate the potential values of motor dysfunction in the early diagnosis of ASD.
Collapse
Affiliation(s)
- Ruanna Wang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiahui Tan
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junxiu Guo
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuhan Zheng
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qing Han
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiandong Yu
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Li Zhang
- Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
111
|
Romano V, De Propris L, Bosman LW, Warnaar P, Ten Brinke MM, Lindeman S, Ju C, Velauthapillai A, Spanke JK, Middendorp Guerra E, Hoogland TM, Negrello M, D'Angelo E, De Zeeuw CI. Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity. eLife 2018; 7:38852. [PMID: 30561331 PMCID: PMC6326726 DOI: 10.7554/elife.38852] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity. Rodents use their whiskers to explore the world around them. When the whiskers touch an object, it triggers involuntary movements of the whiskers called whisker reflexes. Experiencing the same sensory stimulus multiple times enables rodents to fine-tune these reflexes, e.g., by making their movements larger or smaller. This type of learning is often referred to as motor learning. A part of the brain called cerebellum controls motor learning. It contains some of the largest neurons in the nervous system, the Purkinje cells. Each Purkinje cell receives input from thousands of extensions of small neurons, known as parallel fibers. It is thought that decreasing the strength of the connections between parallel fibers and Purkinje cells can help mammals learn new movements. This is the case in a type of learning called Pavlovian conditioning. It takes its name from the Russian scientist, Pavlov, who showed that dogs can learn to salivate in response to a bell signaling food. Pavlovian conditioning enables animals to optimize their responses to sensory stimuli. But Romano et al. now show that increasing the strength of connections between parallel fibers and Purkinje cells can also support learning. To trigger reflexive whisker movements, a machine blew puffs of air onto the whiskers of awake mice. After repeated exposure to the air puffs, the mice increased the size of their whisker reflexes. At the same time, their Purkinje cells became more active and the connections between Purkinje cells and parallel fibers grew stronger. Artificially increasing Purkinje cell activity triggered the same changes in whisker reflexes as the air puffs themselves. Textbooks still report that only weakening of connections within the cerebellum enables animals to learn and modify movements. The data obtained by Romano al. thus paint a new picture of how the cerebellum works in the context of whisker learning. They show that strengthening these connections can also support movement-related learning.
Collapse
Affiliation(s)
- Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Licia De Propris
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Chiheng Ju
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jochen K Spanke
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Tycho M Hoogland
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, Instituto Fondazione C Mondino, Pavia, Italy
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
112
|
Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, Montgomery JM, Garner CC, Huguenard JR, Kim SA. Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Front Mol Neurosci 2018; 11:405. [PMID: 30524232 PMCID: PMC6256285 DOI: 10.3389/fnmol.2018.00405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022] Open
Abstract
During development, pyramidal neurons undergo dynamic regulation of AMPA receptor (AMPAR) subunit composition and density to help drive synaptic plasticity and maturation. These normal developmental changes in AMPARs are particularly vulnerable to risk factors for Autism Spectrum Disorders (ASDs), which include loss or mutations of synaptic proteins and environmental insults, such as dietary zinc deficiency. Here, we show how Shank2 and Shank3 mediate a zinc-dependent regulation of AMPAR function and subunit switch from GluA2-lacking to GluA2-containing AMPARs. Over development, we found a concomitant increase in Shank2 and Shank3 with GluA2 at synapses, implicating these molecules as potential players in AMPAR maturation. Since Shank activation and function require zinc, we next studied whether neuronal activity regulated postsynaptic zinc at glutamatergic synapses. Zinc was found to increase transiently and reversibly with neuronal depolarization at synapses, which could affect Shank and AMPAR localization and activity. Elevated zinc induced multiple functional changes in AMPAR, indicative of a subunit switch. Specifically, zinc lengthened the decay time of AMPAR-mediated synaptic currents and reduced their inward rectification in young hippocampal neurons. Mechanistically, both Shank2 and Shank3 were necessary for the zinc-sensitive enhancement of AMPAR-mediated synaptic transmission and act in concert to promote removal of GluA1 while enhancing recruitment of GluA2 at pre-existing Shank puncta. These findings highlight a cooperative local dynamic regulation of AMPAR subunit switch controlled by zinc signaling through Shank2 and Shank3 to shape the biophysical properties of developing glutamatergic synapses. Given the zinc sensitivity of young neurons and its dependence on Shank2 and Shank3, genetic mutations and/or environmental insults during early development could impair synaptic maturation and circuit formation that underlie ASD etiology.
Collapse
Affiliation(s)
- Huong T T Ha
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States.,Neurosciences Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sergio Leal-Ortiz
- Department of Material Science & Engineering, School of Engineering, Stanford University, Stanford, CA, United States
| | - Kriti Lalwani
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shreesh P Mysore
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John R Huguenard
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally A Kim
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
113
|
Tsai PT, Rudolph S, Guo C, Ellegood J, Gibson JM, Schaeffer SM, Mogavero J, Lerch JP, Regehr W, Sahin M. Sensitive Periods for Cerebellar-Mediated Autistic-like Behaviors. Cell Rep 2018; 25:357-367.e4. [PMID: 30304677 PMCID: PMC6226056 DOI: 10.1016/j.celrep.2018.09.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/06/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Despite a prevalence exceeding 1%, mechanisms underlying autism spectrum disorders (ASDs) are poorly understood, and targeted therapies and guiding parameters are urgently needed. We recently demonstrated that cerebellar dysfunction is sufficient to generate autistic-like behaviors in a mouse model of tuberous sclerosis complex (TSC). Here, using the mechanistic target of rapamycin (mTOR)-specific inhibitor rapamycin, we define distinct sensitive periods for treatment of autistic-like behaviors with sensitive periods extending into adulthood for social behaviors. We identify cellular and electrophysiological parameters that may contribute to behavioral rescue, with rescue of Purkinje cell survival and excitability corresponding to social behavioral rescue. In addition, using anatomic and diffusion-based MRI, we identify structural changes in cerebellar domains implicated in ASD that correlate with sensitive periods of specific autism-like behaviors. These findings thus not only define treatment parameters into adulthood, but also support a mechanistic basis for the targeted rescue of autism-related behaviors.
Collapse
Affiliation(s)
- Peter T Tsai
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.
| | | | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Kids, Toronto, ON, Canada
| | - Jennifer M Gibson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Samantha M Schaeffer
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jazmin Mogavero
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Kids, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
114
|
Ey E, Torquet N, de Chaumont F, Lévi-Strauss J, Ferhat AT, Le Sourd AM, Boeckers TM, Bourgeron T. Shank2 Mutant Mice Display Hyperactivity Insensitive to Methylphenidate and Reduced Flexibility in Social Motivation, but Normal Social Recognition. Front Mol Neurosci 2018; 11:365. [PMID: 30337855 PMCID: PMC6180161 DOI: 10.3389/fnmol.2018.00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Mouse models of autism can be used to study evolutionarily conserved mechanisms underlying behavioral abnormalities in social communication and repetitive behaviors. SHANK genes code for synaptic scaffolding proteins at excitatory synapses and mutations in all SHANK genes have been associated with autism. Here, we present three behavioral aspects of the mutant mice deleted for exon 16 in Shank2. First, we treated Shank2 mutant mice with methylphenidate to rescue the hyperactivity. Our failure to do so suggests that the hyperactivity displayed by Shank2 mutant mice is not related to the one displayed by the typical mouse models of hyperactivity, and might be more closely related to manic-like behaviors. Second, by testing the effect of group housing and social isolation on social interest, we highlighted that Shank2 mutant mice lack the typical flexibility to modulate social interest, in comparison with wild-type littermates. Finally, we established a new protocol to test for social recognition in a social context. We used this protocol to show that Shank2 mutant mice were able to discriminate familiar and unknown conspecifics in free interactions. Altogether, these studies shed some light on specific aspects of the behavioral defects displayed by the Shank2 mouse model. Such information could be used to orient therapeutic strategies and to design more specific tests to characterize the complex behavior of mouse models of autism.
Collapse
Affiliation(s)
- Elodie Ey
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Nicolas Torquet
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | | | - Julie Lévi-Strauss
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | | | - Anne-Marie Le Sourd
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Bourgeron
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| |
Collapse
|
115
|
Canto CB, Broersen R, De Zeeuw CI. Intrinsic excitement in cerebellar nuclei neurons during learning. Proc Natl Acad Sci U S A 2018; 115:9824-9826. [PMID: 30217888 PMCID: PMC6176555 DOI: 10.1073/pnas.1813866115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cathrin B Canto
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands;
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
116
|
Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B, Bakshinskaya DE, Wang SSH. Normal cognitive and social development require posterior cerebellar activity. eLife 2018; 7:36401. [PMID: 30226467 PMCID: PMC6195348 DOI: 10.7554/elife.36401] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/15/2018] [Indexed: 11/14/2022] Open
Abstract
Cognitive and social capacities require postnatal experience, yet the pathways by which experience guides development are unknown. Here we show that the normal development of motor and nonmotor capacities requires cerebellar activity. Using chemogenetic perturbation of molecular layer interneurons to attenuate cerebellar output in mice, we found that activity of posterior regions in juvenile life modulates adult expression of eyeblink conditioning (paravermal lobule VI, crus I), reversal learning (lobule VI), persistive behavior and novelty-seeking (lobule VII), and social preference (crus I/II). Perturbation in adult life altered only a subset of phenotypes. Both adult and juvenile disruption left gait metrics largely unaffected. Contributions to phenotypes increased with the amount of lobule inactivated. Using an anterograde transsynaptic tracer, we found that posterior cerebellum made strong connections with prelimbic, orbitofrontal, and anterior cingulate cortex. These findings provide anatomical substrates for the clinical observation that cerebellar injury increases the risk of autism.
Collapse
Affiliation(s)
- Aleksandra Badura
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Molecular Biology, Princeton University, Princeton, United States.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Jessica L Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Julia W Metzger
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Talmo D Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Thomas J Pisano
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States.,Robert Wood Johnson Medical School, New Brunswick, United States
| | - Ben Deverett
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States.,Robert Wood Johnson Medical School, New Brunswick, United States
| | - Dariya E Bakshinskaya
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
117
|
Trobiani L, Favaloro FL, Di Castro MA, Di Mattia M, Cariello M, Miranda E, Canterini S, De Stefano ME, Comoletti D, Limatola C, De Jaco A. UPR activation specifically modulates glutamate neurotransmission in the cerebellum of a mouse model of autism. Neurobiol Dis 2018; 120:139-150. [PMID: 30201312 DOI: 10.1016/j.nbd.2018.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
An increasing number of rare mutations linked to autism spectrum disorders have been reported in genes encoding for proteins involved in synapse formation and maintenance, such as the post-synaptic cell adhesion proteins neuroligins. Most of the autism-linked mutations in the neuroligin genes map on the extracellular protein domain. The autism-linked substitution R451C in Neuroligin3 (NLGN3) induces a local misfolding of the extracellular domain, causing defective trafficking and retention of the mutant protein in the endoplasmic reticulum (ER). The activation of the unfolded protein response (UPR), due to misfolded proteins accumulating in the ER, has been implicated in pathological and physiological conditions of the nervous system. It was previously shown that the over-expression of R451C NLGN3 in a cellular system leads to the activation of the UPR. Here, we have investigated whether this protective cellular response is detectable in the knock-in mouse model of autism endogenously expressing R451C NLGN3. Our data showed up-regulation of UPR markers uniquely in the cerebellum of the R451C mice compared to WT littermates, at both embryonic and adult stages, but not in other brain regions. Miniature excitatory currents in the Purkinje cells of the R451C mice showed higher frequency than in the WT, which was rescued inhibiting the PERK branch of UPR. Taken together, our data indicate that the R451C mutation in neuroligin3 elicits UPR in vivo, which appears to trigger alterations of synaptic function in the cerebellum of a mouse model expressing the R451C autism-linked mutation.
Collapse
Affiliation(s)
- L Trobiani
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - F L Favaloro
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M A Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - M Di Mattia
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M Cariello
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - E Miranda
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy
| | - S Canterini
- Department of Psychology, Section of Neuroscience, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, 00185 Rome, Italy
| | - M E De Stefano
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - D Comoletti
- Department of Neuroscience and Cell Biology, Department of Pediatrics, Child Health Institute of New Jersey, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - C Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy.; IRCCS Neuromed, Pozzilli (IS), Italy
| | - A De Jaco
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy..
| |
Collapse
|
118
|
Annamneedi A, Caliskan G, Müller S, Montag D, Budinger E, Angenstein F, Fejtova A, Tischmeyer W, Gundelfinger ED, Stork O. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance. Brain Struct Funct 2018; 223:3423-3445. [PMID: 29915867 PMCID: PMC6132633 DOI: 10.1007/s00429-018-1692-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 05/30/2018] [Indexed: 01/05/2023]
Abstract
Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.
Collapse
Affiliation(s)
- Anil Annamneedi
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gürsel Caliskan
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Sabrina Müller
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Eike Budinger
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Frank Angenstein
- Special Laboratory Noninvasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Functional Neuroimaging Group, German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Tischmeyer
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Special Laboratory Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Eckart D. Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Molecular Neuroscience, Medical School, Otto von Guericke University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
119
|
Neonatal brain injury causes cerebellar learning deficits and Purkinje cell dysfunction. Nat Commun 2018; 9:3235. [PMID: 30104642 PMCID: PMC6089917 DOI: 10.1038/s41467-018-05656-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/16/2018] [Indexed: 11/08/2022] Open
Abstract
Premature infants are more likely to develop locomotor disorders than term infants. In a chronic sub-lethal hypoxia (Hx) mouse model of neonatal brain injury, we recently demonstrated the presence of cellular and physiological changes in the cerebellar white matter. We also observed Hx-induced delay in Purkinje cell (PC) arborization. However, the behavioral consequences of these cellular alterations remain unexplored. Using the Erasmus Ladder to study cerebellar behavior, we report the presence of locomotor malperformance and long-term cerebellar learning deficits in Hx mice. Optogenetics experiments in Hx mice reveal a profound reduction in spontaneous and photoevoked PC firing frequency. Finally, treatment with a gamma-aminobutyric acid (GABA) reuptake inhibitor partially rescues locomotor performance and improves PC firing. Our results demonstrate a long-term miscoordination phenotype characterized by locomotor malperformance and cerebellar learning deficits in a mouse model of neonatal brain injury. Our findings also implicate the developing GABA network as a potential therapeutic target for prematurity-related locomotor deficits.
Collapse
|
120
|
Perkins EM, Clarkson YL, Suminaite D, Lyndon AR, Tanaka K, Rothstein JD, Skehel PA, Wyllie DJA, Jackson M. Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Hum Mol Genet 2018; 27:2614-2627. [PMID: 29741614 PMCID: PMC6049029 DOI: 10.1093/hmg/ddy169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Loss of excitatory amino acid transporters (EAATs) has been implicated in a number of human diseases including spinocerebellar ataxias, Alzhiemer's disease and motor neuron disease. EAAT4 and GLAST/EAAT1 are the two predominant EAATs responsible for maintaining low extracellular glutamate levels and preventing neurotoxicity in the cerebellum, the brain region essential for motor control. Here using genetically modified mice we identify new critical roles for EAAT4 and GLAST/EAAT1 as modulators of Purkinje cell (PC) spontaneous firing patterns. We show high EAAT4 levels, by limiting mGluR1 signalling, are essential in constraining inherently heterogeneous firing of zebrin-positive PCs. Moreover mGluR1 antagonists were found to restore regular spontaneous PC activity and motor behaviour in EAAT4 knockout mice. In contrast, GLAST/EAAT1 expression is required to sustain normal spontaneous simple spike activity in low EAAT4 expressing (zebrin-negative) PCs by restricting NMDA receptor activation. Blockade of NMDA receptor activity restores spontaneous activity in zebrin-negative PCs of GLAST knockout mice and furthermore alleviates motor deficits. In addition both transporters have differential effects on PC survival, with zebrin-negative PCs more vulnerable to loss of GLAST/EAAT1 and zebrin-positive PCs more vulnerable to loss of EAAT4. These findings reveal that glutamate transporter dysfunction through elevated extracellular glutamate and the aberrant activation of extrasynaptic receptors can disrupt cerebellar output by altering spontaneous PC firing. This expands our understanding of disease mechanisms in cerebellar ataxias and establishes EAATs as targets for restoring homeostasis in a variety of neurological diseases where altered cerebellar output is now thought to play a key role in pathogenesis.
Collapse
Affiliation(s)
- Emma M Perkins
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Yvonne L Clarkson
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Daumante Suminaite
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Alastair R Lyndon
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, John Muir Building, Riccarton, Edinburgh, UK
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Jeffrey D Rothstein
- Department of Neurology and Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul A Skehel
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - David J A Wyllie
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Mandy Jackson
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| |
Collapse
|
121
|
Eltokhi A, Rappold G, Sprengel R. Distinct Phenotypes of Shank2 Mouse Models Reflect Neuropsychiatric Spectrum Disorders of Human Patients With SHANK2 Variants. Front Mol Neurosci 2018; 11:240. [PMID: 30072871 PMCID: PMC6060255 DOI: 10.3389/fnmol.2018.00240] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022] Open
Abstract
The SHANK scaffolding proteins are important organizers for signaling proteins in the postsynapse of excitatory neurons. The functional significance of SHANK proteins becomes apparent by the wide spectrum of neurodevelopmental and neuropsychiatric disorders associated with SHANK variants in human patients. A similar diversity of neuropsychiatric-like phenotypes is described for numerous Shank2 and Shank3 knockout (KO) mouse lines. In this review, we will focus on and discuss the experimental results obtained from different, but genetically related and therefore comparable, Shank2 mouse models. First, we will describe the distinct SHANK2 variant-mediated neurodevelopmental and neuropsychiatric disorders in human patients. Then we will discuss the current knowledge of the expressed SHANK2 isoforms in the mouse, and we will describe the genetic strategies used for generating three conventional and seven conditional Shank2 mouse lines. The distinct impairments i.e., autistic-like and mania-like behavior and the alterations on the molecular, electrophysiological and behavioral levels will be compared between the different Shank2 mouse models. We will present our view as to why in these mouse models a spectrum of phenotypes can arise from similar Shank2 gene manipulations and how Shank2 mutant mice can be used and should be analyzed on the behavioral level in future research.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Max Planck Research Group "Molecular Neurobiology", Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Research Group "Molecular Neurobiology", Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
122
|
Defective Synapse Maturation and Enhanced Synaptic Plasticity in Shank2 Δex7 -/- Mice. eNeuro 2018; 5:eN-NWR-0398-17. [PMID: 30023428 PMCID: PMC6049608 DOI: 10.1523/eneuro.0398-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders with a strong genetic etiology. Since mutations in human SHANK genes have been found in patients with autism, genetic mouse models are used for a mechanistic understanding of ASDs and the development of therapeutic strategies. SHANKs are scaffold proteins in the postsynaptic density of mammalian excitatory synapses with proposed functions in synaptogenesis, regulation of dendritic spine morphology, and instruction of structural synaptic plasticity. In contrast to all studies so far on the function of SHANK proteins, we have previously observed enhanced synaptic plasticity in Shank2 Δex7−/− mice. In a series of experiments, we now reproduce these results, further explore the synaptic phenotype, and directly compare our model to the independently generated Shank2 Δex6-7−/− mice. Minimal stimulation experiments reveal that Shank2 Δex7−/− mice possess an excessive fraction of silent (i.e., α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, short, AMPA receptor lacking) synapses. The synaptic maturation deficit emerges during the third postnatal week and constitutes a plausible mechanistic explanation for the mutants’ increased capacity for long-term potentiation, both in vivo and in vitro. A direct comparison with Shank2 Δex6-7−/− mice adds weight to the hypothesis that both mouse models show a different set of synaptic phenotypes, possibly due to differences in their genetic background. These findings add to the diversity of synaptic phenotypes in neurodevelopmental disorders and further support the supposed existence of “modifier genes” in the expression and inheritance of ASDs.
Collapse
|
123
|
Tantra M, Guo L, Kim J, Zainolabidin N, Eulenburg V, Augustine GJ, Chen AI. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12466. [PMID: 29446202 PMCID: PMC6635760 DOI: 10.1111/gbb.12466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Inhibitory interneurons mediate the gating of synaptic transmission and modulate the activities of neural circuits. Disruption of the function of inhibitory networks in the forebrain is linked to impairment of social and cognitive behaviors, but the involvement of inhibitory interneurons in the cerebellum has not been assessed. We found that Cadherin 13 (Cdh13), a gene implicated in autism spectrum disorder and attention-deficit hyperactivity disorder, is specifically expressed in Golgi cells within the cerebellar cortex. To assess the function of Cdh13 and utilize the manipulation of Cdh13 expression in Golgi cells as an entry point to examine cerebellar-mediated function, we generated mice carrying Cdh13-floxed alleles and conditionally deleted Cdh13 with GlyT2::Cre mice. Loss of Cdh13 results in a decrease in the expression/localization of GAD67 and reduces spontaneous inhibitory postsynaptic current (IPSC) in cerebellar Golgi cells without disrupting spontaneous excitatory postsynaptic current (EPSC). At the behavioral level, loss of Cdh13 in the cerebellum, piriform cortex and endopiriform claustrum have no impact on gross motor coordination or general locomotor behaviors, but leads to deficits in cognitive and social abilities. Mice lacking Cdh13 exhibit reduced cognitive flexibility and loss of preference for contact region concomitant with increased reciprocal social interactions. Together, our findings show that Cdh13 is critical for inhibitory function of Golgi cells, and that GlyT2::Cre-mediated deletion of Cdh13 in non-executive centers of the brain, such as the cerebellum, may contribute to cognitive and social behavioral deficits linked to neurological disorders.
Collapse
Affiliation(s)
- M. Tantra
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
| | - L. Guo
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
| | - J. Kim
- Lee Kong Chian School of MedicineNanyang Technological University (NTU)Singapore
| | - N. Zainolabidin
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
| | - V. Eulenburg
- Institute of BiochemistryFriedrich‐Alexander University Erlangen‐NurembergErlangenGermany
| | - G. J. Augustine
- Lee Kong Chian School of MedicineNanyang Technological University (NTU)Singapore
- Institute of Molecular and Cell BiologySingapore
| | - A. I. Chen
- School of Biological SciencesNanyang Technological University (NTU)Singapore
- School of Life SciencesUniversity of WarwickCoventryUK
- Institute of Molecular and Cell BiologySingapore
| |
Collapse
|
124
|
Lee S, Lee E, Kim R, Kim J, Lee S, Park H, Yang E, Kim H, Kim E. Shank2 Deletion in Parvalbumin Neurons Leads to Moderate Hyperactivity, Enhanced Self-Grooming and Suppressed Seizure Susceptibility in Mice. Front Mol Neurosci 2018; 11:209. [PMID: 29970987 PMCID: PMC6018407 DOI: 10.3389/fnmol.2018.00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/28/2018] [Indexed: 01/05/2023] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
125
|
Heise C, Preuss JM, Schroeder JC, Battaglia CR, Kolibius J, Schmid R, Kreutz MR, Kas MJH, Burbach JPH, Boeckers TM. Heterogeneity of Cell Surface Glutamate and GABA Receptor Expression in Shank and CNTN4 Autism Mouse Models. Front Mol Neurosci 2018; 11:212. [PMID: 29970989 PMCID: PMC6018460 DOI: 10.3389/fnmol.2018.00212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a large set of neurodevelopmental disorders, which have in common both repetitive behavior and abnormalities in social interactions and communication. Interestingly, most forms of ASD have a strong genetic contribution. However, the molecular underpinnings of this disorder remain elusive. The SHANK3 gene (and to a lesser degree SHANK2) which encode for the postsynaptic density (PSD) proteins SHANK3/SHANK2 and the CONTACTIN 4 gene which encodes for the neuronal glycoprotein CONTACTIN4 (CNTN4) exhibit mutated variants which are associated with ASD. Like many of the other genes associated with ASD, both SHANKs and CNTN4 affect synapse formation and function and are therefore related to the proper development and signaling capability of excitatory and inhibitory neuronal networks in the adult mammal brain. In this study, we used mutant/knock-out mice of Shank2 (Shank2−/−), Shank3 (Shank3αβ−/−), and Cntn4 (Cntn4−/−) as ASD-models to explore whether these mice share a molecular signature in glutamatergic and GABAergic synaptic transmission in ASD-related brain regions. Using a biotinylation assay and subsequent western blotting we focused our analysis on cell surface expression of several ionotropic glutamate and GABA receptor subunits: GluA1, GluA2, and GluN1 were analyzed for excitatory synaptic transmission, and the α1 subunit of the GABAA receptor was analyzed for inhibitory synaptic transmission. We found that both Shank2−/− and Shank3αβ−/− mice exhibit reduced levels of several cell surface glutamate receptors in the analyzed brain regions—especially in the striatum and thalamus—when compared to wildtype controls. Interestingly, even though Cntn4−/− mice also show reduced levels of some cell surface glutamate receptors in the cortex and hippocampus, increased levels of cell surface glutamate receptors were found in the striatum. Moreover, Cntn4−/− mice do not only show brain region-specific alterations in cell surface glutamate receptors but also a downregulation of cell surface GABA receptors in several of the analyzed brain regions. The results of this study suggest that even though mutations in defined genes can be associated with ASD this does not necessarily result in a common molecular phenotype in surface expression of glutamatergic and GABAergic receptor subunits in defined brain regions.
Collapse
Affiliation(s)
- Christopher Heise
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Jonathan M Preuss
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Jan C Schroeder
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Jonas Kolibius
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Rebecca Schmid
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
126
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
127
|
Mossa A, Giona F, Pagano J, Sala C, Verpelli C. SHANK genes in autism: Defining therapeutic targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:416-423. [PMID: 29175319 DOI: 10.1016/j.pnpbp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Adele Mossa
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Giona
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Jessica Pagano
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Sala
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
128
|
Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 2018; 12:101. [PMID: 29765304 PMCID: PMC5938380 DOI: 10.3389/fncel.2018.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
129
|
Cell-Type-Specific Shank2 Deletion in Mice Leads to Differential Synaptic and Behavioral Phenotypes. J Neurosci 2018; 38:4076-4092. [PMID: 29572432 DOI: 10.1523/jneurosci.2684-17.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shank2 is an excitatory postsynaptic scaffolding protein implicated in synaptic regulation and psychiatric disorders including autism spectrum disorders. Conventional Shank2-mutant (Shank2-/-) mice display several autistic-like behaviors, including social deficits, repetitive behaviors, hyperactivity, and anxiety-like behaviors. However, cell-type-specific contributions to these behaviors have remained largely unclear. Here, we deleted Shank2 in specific cell types and found that male mice lacking Shank2 in excitatory neurons (CaMKII-Cre;Shank2fl/fl) show social interaction deficits and mild social communication deficits, hyperactivity, and anxiety-like behaviors. In particular, male mice lacking Shank2 in GABAergic inhibitory neurons (Viaat-Cre;Shank2fl/fl) display social communication deficits, repetitive self-grooming, and mild hyperactivity. These behavioral changes were associated with distinct changes in hippocampal and striatal synaptic transmission in the two mouse lines. These results indicate that cell-type-specific deletions of Shank2 in mice lead to differential synaptic and behavioral abnormalities.SIGNIFICANCE STATEMENT Shank2 is an abundant excitatory postsynaptic scaffolding protein implicated in the regulation of excitatory synapses and diverse psychiatric disorders including autism spectrum disorders. Previous studies have reported in vivo functions of Shank2 mainly using global Shank2-null mice, but it remains largely unclear how individual cell types contribute to Shank2-dependent regulation of neuronal synapses and behaviors. Here, we have characterized conditional Shank2-mutant mice carrying the Shank2 deletion in excitatory and inhibitory neurons. These mouse lines display distinct alterations of synaptic transmission in the hippocampus and striatum that are associated with differential behavioral abnormalities in social, repetitive, locomotor, and anxiety-like domains.
Collapse
|
130
|
Xiao L, Scheiffele P. Local and long-range circuit elements for cerebellar function. Curr Opin Neurobiol 2018; 48:146-152. [PMID: 29316490 DOI: 10.1016/j.conb.2017.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/29/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
The view of cerebellar functions has been extended from controlling sensorimotor processes to processing 'contextual' information and generating predictions for a diverse range of behaviors. These functions rely on the computation of the local cerebellar microcircuits and long-range connectivity that relays cerebellar output to various brain areas. In this review, we discuss recent work on two of the circuit elements, which are thought to be fundamental for a wide range of non-sensorimotor behaviors: The role for cerebellar granule cells in multimodal integration in the cerebellar cortex and the long-range connectivity between the deep cerebellar nuclei and the basal ganglia. Lastly, we discuss how studies on synapses and circuits of the cerebellum in rodent models of autism-spectrum disorders might contribute to our understanding of the pathophysiology of this class of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Le Xiao
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | | |
Collapse
|
131
|
Bruchhage MMK, Bucci MP, Becker EBE. Cerebellar involvement in autism and ADHD. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:61-72. [PMID: 29891077 DOI: 10.1016/b978-0-444-64189-2.00004-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cerebellum has long been known for its importance in motor learning and coordination. However, increasing evidence supports a role for the cerebellum in cognition and emotion. Consistent with a role in cognitive functions, the cerebellum has emerged as one of the key brain regions affected in nonmotor disorders, including autism spectrum disorder and attention deficit-hyperactivity disorder. Here, we discuss behavioral, postmortem, genetic, and neuroimaging studies in humans in order to understand the cerebellar contributions to the pathogenesis of both disorders. We also review relevant animal model findings.
Collapse
Affiliation(s)
- Muriel M K Bruchhage
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Maria-Pia Bucci
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
132
|
Galliano E, Schonewille M, Peter S, Rutteman M, Houtman S, Jaarsma D, Hoebeek FE, De Zeeuw CI. Impact of NMDA Receptor Overexpression on Cerebellar Purkinje Cell Activity and Motor Learning. eNeuro 2018; 5:ENEURO.0270-17.2018. [PMID: 29464191 PMCID: PMC5815660 DOI: 10.1523/eneuro.0270-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/24/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
In many brain regions involved in learning NMDA receptors (NMDARs) act as coincidence detectors of pre- and postsynaptic activity, mediating Hebbian plasticity. Intriguingly, the parallel fiber (PF) to Purkinje cell (PC) input in the cerebellar cortex, which is critical for procedural learning, shows virtually no postsynaptic NMDARs. Why is this? Here, we address this question by generating and testing independent transgenic lines that overexpress NMDAR containing the type 2B subunit (NR2B) specifically in PCs. PCs of the mice that show larger NMDA-mediated currents than controls at their PF input suffer from a blockage of long-term potentiation (LTP) at their PF-PC synapses, while long-term depression (LTD) and baseline transmission are unaffected. Moreover, introducing NMDA-mediated currents affects cerebellar learning in that phase-reversal of the vestibulo-ocular reflex (VOR) is impaired. Our results suggest that under physiological circumstances PC spines lack NMDARs postsynaptically at their PF input so as to allow LTP to contribute to motor learning.
Collapse
Affiliation(s)
- Elisa Galliano
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Mandy Rutteman
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Simone Houtman
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
133
|
Stoodley CJ, D'Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 2017; 20:1744-1751. [PMID: 29184200 PMCID: PMC5867894 DOI: 10.1038/s41593-017-0004-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
Abstract
Cerebellar abnormalities, particularly in Right Crus I (RCrusI), are consistently reported in autism spectrum disorders (ASD). Although RCrusI is functionally connected with ASD-implicated circuits, the contribution of RCrusI dysfunction to ASD remains unclear. Here neuromodulation of RCrusI in neurotypical humans resulted in altered functional connectivity with the inferior parietal lobule, and children with ASD showed atypical functional connectivity in this circuit. Atypical RCrusI-inferior parietal lobule structural connectivity was also evident in the Purkinje neuron (PN) TscI ASD mouse model. Additionally, chemogenetically mediated inhibition of RCrusI PN activity in mice was sufficient to generate ASD-related social, repetitive, and restricted behaviors, while stimulation of RCrusI PNs rescued social impairment in the PN TscI ASD mouse model. Together, these studies reveal important roles for RCrusI in ASD-related behaviors. Further, the rescue of social behaviors in an ASD mouse model suggests that investigation of the therapeutic potential of cerebellar neuromodulation in ASD may be warranted.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA.
| | - Anila M D'Mello
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Jacob Ellegood
- Toronto Mouse Imaging Centre, Hospital for Sick Kids, Toronto, Canada
| | - Vikram Jakkamsetti
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pei Liu
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer M Gibson
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elyza Kelly
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fantao Meng
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher A Cano
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan M Pascual
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jason P Lerch
- Toronto Mouse Imaging Centre, Hospital for Sick Kids, Toronto, Canada
| | - Peter T Tsai
- The Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
134
|
Wang L, Zhang L, Chow BKC. Secretin Modulates the Postnatal Development of Mouse Cerebellar Cortex Via PKA- and ERK-dependent Pathways. Front Cell Neurosci 2017; 11:382. [PMID: 29249942 PMCID: PMC5714926 DOI: 10.3389/fncel.2017.00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Postnatal development of the cerebellum is critical for its intact function such as motor coordination and has been implicated in the pathogenesis of psychiatric disorders. We previously reported that deprivation of secretin (SCT) from cerebellar Purkinje neurons impaired motor coordination and motor learning function, while leaving the potential role of SCT in cerebellar development to be determined. SCT and its receptor (SCTR) were constitutively expressed in the postnatal cerebellum in a temporal and cell-specific manner. Using a SCT knockout mouse model, we provided direct evidence showing altered developmental patterns of Purkinje cells (PCs) and granular cells (GCs). SCT deprivation reduced the PC density, impaired the PC dendritic formation, induced accelerated GC migration and potentiated cerebellar apoptosis. Furthermore, our results indicated the involvement of protein kinase A (PKA) and extracellular signal regulated kinase (ERK) signaling pathways in SCT-mediated protective effects against neuronal apoptosis. Results of this study illustrated a novel function of SCT in the postnatal development of cerebellum, emphasizing the necessary role of SCT in cerebellar-related functions.
Collapse
Affiliation(s)
- Lei Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Billy K. C. Chow
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
135
|
Ablation of TFR1 in Purkinje Cells Inhibits mGlu1 Trafficking and Impairs Motor Coordination, But Not Autistic-Like Behaviors. J Neurosci 2017; 37:11335-11352. [PMID: 29054881 DOI: 10.1523/jneurosci.1223-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (mGlu1/5s) are critical to synapse formation and participate in synaptic LTP and LTD in the brain. mGlu1/5 signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases, but underlying mechanisms for its modulation are not clear. Here, we report that transferrin receptor 1 (TFR1), a transmembrane protein of the clathrin complex, modulates the trafficking of mGlu1 in cerebellar Purkinje cells (PCs) from male mice. We show that conditional knock-out of TFR1 in PCs does not affect the cytoarchitecture of PCs, but reduces mGlu1 expression at synapses. This regulation by TFR1 acts in concert with that by Rab8 and Rab11, which modulate the internalization and recycling of mGlu1, respectively. TFR1 can bind to Rab proteins and facilitate their expression at synapses. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-LTP and PC intrinsic excitability are not affected. Finally, we demonstrate that PC ablation of TFR1 impairs motor coordination, but does not affect social behaviors in mice. Together, these findings underscore the importance of TFR1 in regulating mGlu1 trafficking and suggest that mGlu1- and mGlu1-dependent parallel fiber-LTD are associated with regulation of motor coordination, but not autistic behaviors.SIGNIFICANCE STATEMENT Group 1 metabotropic glutamate receptor (mGlu1/5) signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases. Recent work suggests that altered mGlu1 signaling in Purkinje cells (PCs) may be involved in not only motor learning, but also autistic-like behaviors. We find that conditional knock-out of transferrin receptor 1 (TFR1) in PCs reduces synaptic mGlu1 by tethering Rab8 and Rab11 in the cytosol. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-PC LTP and PC intrinsic excitability are intact. Motor coordination is impaired, but social behaviors are normal in TFR1flox/flox;pCP2-cre mice. Our data reveal a new regulator for trafficking and synaptic expression of mGlu1 and suggest that mGlu1-dependent LTD is associated with motor coordination, but not autistic-like behaviors.
Collapse
|
136
|
Pappas AL, Bey AL, Wang X, Rossi M, Kim YH, Yan H, Porkka F, Duffney LJ, Phillips SM, Cao X, Ding JD, Rodriguiz RM, Yin HH, Weinberg RJ, Ji RR, Wetsel WC, Jiang YH. Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers. JCI Insight 2017; 2:92052. [PMID: 29046483 PMCID: PMC5846902 DOI: 10.1172/jci.insight.92052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24-/- mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted.
Collapse
Affiliation(s)
- Andrea L. Pappas
- Department of Neurobiology
- Cellular and Molecular Biology Program
| | | | | | | | | | | | - Fiona Porkka
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | | | | | | | - Jin-dong Ding
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Henry H. Yin
- Department of Neurobiology
- Department of Psychology and Neuroscience
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ru-Rong Ji
- Department of Neurobiology
- Cellular and Molecular Biology Program
- Department of Anesthesiology, and
| | - William C. Wetsel
- Department of Neurobiology
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Department of Cell Biology
- Duke Institute of Brain Science, and
| | - Yong-hui Jiang
- Department of Neurobiology
- Cellular and Molecular Biology Program
- Department of Pediatrics
- Duke Institute of Brain Science, and
- Genomics and Genetics Graduate Program, Duke University, Durham, North Carolina, USA
| |
Collapse
|
137
|
Cerebellar Shank2 Regulates Excitatory Synapse Density, Motor Coordination, and Specific Repetitive and Anxiety-Like Behaviors. J Neurosci 2017; 36:12129-12143. [PMID: 27903723 DOI: 10.1523/jneurosci.1849-16.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/14/2023] Open
Abstract
Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2-/- mice, remains unexplored. Here we show that Shank2-/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2-/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2-/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. SIGNIFICANCE STATEMENT The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum. We found that Shank2 regulates excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors, but is not associated with autistic-like social deficits or repetitive behaviors.
Collapse
|
138
|
Hoxha E, Lippiello P, Scelfo B, Tempia F, Ghirardi M, Miniaci MC. Maturation, Refinement, and Serotonergic Modulation of Cerebellar Cortical Circuits in Normal Development and in Murine Models of Autism. Neural Plast 2017; 2017:6595740. [PMID: 28894610 PMCID: PMC5574313 DOI: 10.1155/2017/6595740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
| | | | - Bibiana Scelfo
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
- National Institute of Neuroscience (INN), Torino, Italy
| | | | | |
Collapse
|
139
|
STIM1 Regulates Somatic Ca 2+ Signals and Intrinsic Firing Properties of Cerebellar Purkinje Neurons. J Neurosci 2017; 37:8876-8894. [PMID: 28821659 DOI: 10.1523/jneurosci.3973-16.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022] Open
Abstract
Control of Ca2+ flux between the cytosol and intracellular Ca2+ stores is essential for maintaining normal cellular function. It has been well established in both neuronal and non-neuronal cells that stromal interaction molecule 1 (STIM1) initiates and regulates refilling Ca2+ into the ER. Here, we describe a novel, additional role for STIM1, the regulation of free cytosolic Ca2+, and the consequent control of spike firing in neurons. Among central neurons, cerebellar Purkinje neurons express the highest level of STIM1, and they fire continuously in the absence of stimulation, making somatic Ca2+ homeostasis of particular importance. By using Purkinje neuron-specific STIM1 knock-out (STIM1PKO) male mice, we found that the deletion of STIM1 delayed clearance of cytosolic Ca2+ in the soma during ongoing neuronal firing. Deletion of STIM1 also reduced the Purkinje neuronal excitability and impaired intrinsic plasticity without affecting long-term synaptic plasticity. In vestibulo-ocular reflex learning, STIM1PKO male mice showed severe deficits in memory consolidation, whereas they were normal in memory acquisition. Our results suggest that STIM1 is critically involved in the regulation of the neuronal excitability and the intrinsic plasticity of the Purkinje neurons as well as cerebellar memory consolidation.SIGNIFICANCE STATEMENT Stromal interaction molecule 1 (STIM1), which regulates the refilling of ER Ca2+, has been investigated in several systems including the CNS. In addition to a previous study showing that STIM1 regulates dendritic ER Ca2+ refilling and mGluR1-mediated synaptic transmission, we provide compelling evidence describing a novel role of STIM1 in spike firing Purkinje neurons. We found that STIM1 regulates cytosolic Ca2+ clearance of the soma during spike firing, and the interruption of this cytosolic Ca2+ clearing disrupts neuronal excitability and cerebellar memory consolidation. Our results provide new insights into neuronal functions of STIM1 from single neuronal Ca2+ dynamics to behavior level.
Collapse
|
140
|
Gutierrez-Castellanos N, Da Silva-Matos CM, Zhou K, Canto CB, Renner MC, Koene LMC, Ozyildirim O, Sprengel R, Kessels HW, De Zeeuw CI. Motor Learning Requires Purkinje Cell Synaptic Potentiation through Activation of AMPA-Receptor Subunit GluA3. Neuron 2017; 93:409-424. [PMID: 28103481 PMCID: PMC5263704 DOI: 10.1016/j.neuron.2016.11.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that cerebellar long-term potentiation (LTP) is necessary for procedural learning. However, little is known about its underlying molecular mechanisms. Whereas AMPA receptor (AMPAR) subunit rules for synaptic plasticity have been extensively studied in relation to declarative learning, it is unclear whether these rules apply to cerebellum-dependent motor learning. Here we show that LTP at the parallel-fiber-to-Purkinje-cell synapse and adaptation of the vestibulo-ocular reflex depend not on GluA1- but on GluA3-containing AMPARs. In contrast to the classic form of LTP implicated in declarative memory formation, this form of LTP does not require GluA1-AMPAR trafficking but rather requires changes in open-channel probability of GluA3-AMPARs mediated by cAMP signaling and activation of the protein directly activated by cAMP (Epac). We conclude that vestibulo-cerebellar motor learning is the first form of memory acquisition shown to depend on GluA3-dependent synaptic potentiation by increasing single-channel conductance. Cerebellar learning depends on expression of GluA3, but not GluA1, in Purkinje cells GluA3 is required to induce LTP, but not LTD, at PF-PC synapses GluA3-dependent potentiation involves a cAMP-driven change in channel conductance GluA3-mediated LTP and learning are induced via cAMP-mediated Epac activation
Collapse
Affiliation(s)
- Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Carla M Da Silva-Matos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| | - Cathrin B Canto
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Linda M C Koene
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Ozgecan Ozyildirim
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands.
| | - Chris I De Zeeuw
- Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
141
|
Voges K, Wu B, Post L, Schonewille M, De Zeeuw CI. Mechanisms underlying vestibulo-cerebellar motor learning in mice depend on movement direction. J Physiol 2017; 595:5301-5326. [PMID: 28586131 PMCID: PMC5538199 DOI: 10.1113/jp274346] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Directionality, inherent to movements, has behavioural and neuronal correlates. Direction of vestibular stimulation determines motor learning efficiency. Vestibulo-ocular reflex gain-increase correlates with Purkinje cell simple spike potentiation. The locus of neural correlates for vestibulo-ocular reflex adaptation is paradigm specific. ABSTRACT Compensatory eye movements elicited by head rotation, also known as vestibulo-ocular reflex (VOR), can be adapted with the use of visual feedback. The cerebellum is essential for this type of movement adaptation, although its neuronal correlates remain to be clarified. In the present study, we show that the direction of vestibular input determines the magnitude of eye movement adaptation induced by mismatched visual input in mice, with larger changes during contraversive head rotation. Moreover, the location of the neural correlate of this changed behaviour depends on the type of paradigm. Gain-increase paradigms induce increased simple spike (SS) activity in ipsilateral cerebellar Purkinje cells (PC), which is in line with eye movements triggered by optogenetic PC activation. By contrast, gain-decrease paradigms do not induce changes in SS activity, indicating that the murine vestibulo-cerebellar cortical circuitry is optimally designed to enhance ipsiversive eye movements.
Collapse
Affiliation(s)
- Kai Voges
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,SINAPSE, Singapore National University, Singapore
| | - Bin Wu
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands
| |
Collapse
|
142
|
Expression of mutant DISC1 in Purkinje cells increases their spontaneous activity and impairs cognitive and social behaviors in mice. Neurobiol Dis 2017; 103:144-153. [PMID: 28392471 DOI: 10.1016/j.nbd.2017.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
In addition to motor function, the cerebellum has been implicated in cognitive and social behaviors. Various structural and functional abnormalities of Purkinje cells (PCs) have been observed in schizophrenia and autism. As PCs express the gene Disrupted-In-Schizophrenia-1 (DISC1), and DISC1 variants have been associated with neurodevelopmental disorders, we evaluated the role of DISC1 in cerebellar physiology and associated behaviors using a mouse model of inducible and selective expression of a dominant-negative, C-terminus truncated human DISC1 (mutant DISC1) in PCs. Mutant DISC1 male mice demonstrated impaired social and novel placement recognition. No group differences were found in novelty-induced hyperactivity, elevated plus maze test, spontaneous alternation, spatial recognition in Y maze, sociability or accelerated rotarod. Expression of mutant DISC1 was associated with a decreased number of large somata PCs (volume: 3000-5000μm3) and an increased number of smaller somata PCs (volume: 750-1000μm3) without affecting the total number of PCs or the volume of the cerebellum. Compared to control mice, attached loose patch recordings of PCs in mutant DISC1 mice revealed increased spontaneous firing of PCs; and whole cell recordings showed increased amplitude and frequency of mEPSCs without significant changes in either Rinput or parallel fiber EPSC paired-pulse ratio. Our findings indicate that mutant DISC1 alters the physiology of PCs, possibly leading to abnormal recognition memory in mice.
Collapse
|
143
|
Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain. Neurosci Bull 2017; 33:205-218. [PMID: 28271437 PMCID: PMC5360850 DOI: 10.1007/s12264-017-0112-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/12/2017] [Indexed: 01/01/2023] Open
Abstract
Transgenic mice carrying mutations that cause Autism Spectrum Disorders (ASDs) continue to be valuable for determining the molecular underpinnings of the disorders. Recently, researchers have taken advantage of such models combined with Cre-loxP and similar systems to manipulate gene expression over space and time. Thus, a clearer picture is starting to emerge of the cell types, circuits, brain regions, and developmental time periods underlying ASDs. ASD-causing mutations have been restricted to or rescued specifically in excitatory or inhibitory neurons, different neurotransmitter systems, and cells specific to the forebrain or cerebellum. In addition, mutations have been induced or corrected in adult mice, providing some evidence for the plasticity and reversibility of core ASD symptoms. The limited availability of Cre lines that are highly specific to certain cell types or time periods provides a challenge to determining the cellular and circuitry bases of autism, but other technological advances may eventually overcome this obstacle.
Collapse
|
144
|
Abstract
Several large-scale genomic studies have supported an association between cases of autism spectrum disorder and mutations in the genes SH3 and multiple ankyrin repeat domains protein 1 (SHANK1), SHANK2 and SHANK3, which encode a family of postsynaptic scaffolding proteins that are present at glutamatergic synapses in the CNS. An evaluation of human genetic data, as well as of in vitro and in vivo animal model data, may allow us to understand how disruption of SHANK scaffolding proteins affects the structure and function of neural circuits and alters behaviour.
Collapse
|
145
|
Peter S, De Zeeuw CI, Boeckers TM, Schmeisser MJ. Cerebellar and Striatal Pathologies in Mouse Models of Autism Spectrum Disorder. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:103-119. [PMID: 28551753 DOI: 10.1007/978-3-319-52498-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component. To date, several hundred different genetic mutations have been identified to play a role in its aetiology. The heterogeneity of genetic abnormalities combined with the different brain regions where aberrations are found makes the search for causative mechanisms a daunting task. Even within a limited number of brain regions, a myriad of different neural circuit dysfunctions may lead to ASD. Here, we review mouse models that incorporate mutations of ASD risk genes causing pathologies in the cerebellum and striatum and highlight the vulnerability of related circuit dysfunctions within these brain regions in ASD pathophysiology.
Collapse
Affiliation(s)
- Saša Peter
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands. .,Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany. .,Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany. .,Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
146
|
Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse. Front Synaptic Neurosci 2016; 8:35. [PMID: 27857688 PMCID: PMC5093118 DOI: 10.3389/fnsyn.2016.00035] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
The parallel fiber-Purkinje cell (PF-PC) synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fiber activity generates fast postsynaptic currents via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression (LTD) and long-term potentiation (LTP) have been widely described for the PF-PC synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The PF-PC synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the PF-PC synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, PF-PC synapse dysfunctions have been identified in several murine models of spino-cerebellar ataxia (SCA) types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27), while in others the mGlu1 pathway is affected (SCA1, 3, 5). Interestingly, the PF-PC synapse has been shown to be hyper-functional in a mutant mouse model of autism spectrum disorder, with a selective deletion of Pten in Purkinje cells. However, the full range of methodological approaches, that allowed the discovery of the physiological principles of PF-PC synapse function, has not yet been completely exploited to investigate the pathophysiological mechanisms of diseases involving the cerebellum. We, therefore, propose to extend the spectrum of experimental investigations to tackle this problem.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | | | | |
Collapse
|