101
|
Barnekow E, Hasslow J, Liu W, Bryant P, Thutkawkorapin J, Wendt C, Czene K, Hall P, Margolin S, Lindblom A. A Swedish Familial Genome-Wide Haplotype Analysis Identified Five Novel Breast Cancer Susceptibility Loci on 9p24.3, 11q22.3, 15q11.2, 16q24.1 and Xq21.31. Int J Mol Sci 2023; 24:ijms24054468. [PMID: 36901898 PMCID: PMC10003706 DOI: 10.3390/ijms24054468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Most breast cancer heritability is unexplained. We hypothesized that analysis of unrelated familial cases in a GWAS context could enable the identification of novel susceptibility loci. In order to examine the association of a haplotype with breast cancer risk, we performed a genome-wide haplotype association study using a sliding window analysis of window sizes 1-25 SNPs in 650 familial invasive breast cancer cases and 5021 controls. We identified five novel risk loci on 9p24.3 (OR 3.4; p 4.9 × 10-11), 11q22.3 (OR 2.4; p 5.2 × 10-9), 15q11.2 (OR 3.6; p 2.3 × 10-8), 16q24.1 (OR 3; p 3 × 10-8) and Xq21.31 (OR 3.3; p 1.7 × 10-8) and confirmed three well-known loci on 10q25.13, 11q13.3, and 16q12.1. In total, 1593 significant risk haplotypes and 39 risk SNPs were distributed on the eight loci. In comparison with unselected breast cancer cases from a previous study, the OR was increased in the familial analysis in all eight loci. Analyzing familial cancer cases and controls enabled the identification of novel breast cancer susceptibility loci.
Collapse
Affiliation(s)
- Elin Barnekow
- Department of Clinical Science and Education, Karolinska Institutet, 11883 Stockholm, Sweden
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden
- Correspondence: (E.B.); (A.L.)
| | - Johan Hasslow
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Neuroscience, Uppsala University, 75237 Uppsala, Sweden
| | - Patrick Bryant
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, 17165 Stockholm, Sweden
- Science for Life Laboratory, 17165 Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, 11883 Stockholm, Sweden
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Per Hall
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sara Margolin
- Department of Clinical Science and Education, Karolinska Institutet, 11883 Stockholm, Sweden
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
- Correspondence: (E.B.); (A.L.)
| |
Collapse
|
102
|
Tshiaba PT, Ratman DK, Sun JM, Tunstall TS, Levy B, Shah PS, Weitzel JN, Rabinowitz M, Kumar A, Im KM. Integration of a Cross-Ancestry Polygenic Model With Clinical Risk Factors Improves Breast Cancer Risk Stratification. JCO Precis Oncol 2023; 7:e2200447. [PMID: 36809055 DOI: 10.1200/po.22.00447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To develop and validate a cross-ancestry integrated risk score (caIRS) that combines a cross-ancestry polygenic risk score (caPRS) with a clinical estimator for breast cancer (BC) risk. We hypothesized that the caIRS is a better predictor of BC risk than clinical risk factors across diverse ancestry groups. METHODS We used diverse retrospective cohort data with longitudinal follow-up to develop a caPRS and integrate it with the Tyrer-Cuzick (T-C) clinical model. We tested the association between the caIRS and BC risk in two validation cohorts including > 130,000 women. We compared model discrimination for 5-year and remaining lifetime BC risk between the caIRS and T-C and assessed how the caIRS would affect screening in the clinic. RESULTS The caIRS outperformed T-C alone for all populations tested in both validation cohorts and contributed significantly to risk prediction beyond T-C. The area under the receiver operating characteristic curve improved from 0.57 to 0.65, and the odds ratio per standard deviation increased from 1.35 (95% CI, 1.27 to 1.43) to 1.79 (95% CI, 1.70 to 1.88) in validation cohort 1 with similar improvements observed in validation cohort 2. We observed the largest gain in positive predictive value using the caIRS in Black/African American women across both validation cohorts, with an approximately two-fold increase and an equivalent negative predictive value as the T-C. In a multivariate, age-adjusted logistic regression model including both caIRS and T-C, caIRS remained significant, indicating that caIRS provides information over T-C alone. CONCLUSION Adding a caPRS to the T-C model improves BC risk stratification for women of multiple ancestries, which could have implications for screening recommendations and prevention.
Collapse
Affiliation(s)
| | | | | | | | - Brynn Levy
- MyOme Inc, Menlo Park, CA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | | | | | | | | |
Collapse
|
103
|
Roberts E, Howell S, Evans DG. Polygenic risk scores and breast cancer risk prediction. Breast 2023; 67:71-77. [PMID: 36646003 PMCID: PMC9982311 DOI: 10.1016/j.breast.2023.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Polygenic Risk Scores (PRS) are a major component of accurate breast cancer risk prediction and have the potential to improve screening and prevention strategies. PRS combine the risk from Single nucleotide polymorphisms (SNPs) associated with breast cancer in Genome Wide Association Studies (GWAS) and explain over 30% of breast cancer heritability. When incorporated into risk models, the more personalised risk assessment derived from PRS, help identify women at higher risk of breast cancer development and enables the implementation of stratified screening and prevention approaches. This review describes the role of PRS in breast cancer risk prediction including the development of PRS and their clinical application. We have also examined the role of PRS within more well-established risk prediction models which incorporate known classic risk factors and discuss the interaction of PRS with these factors and their capacity to predict breast cancer subtypes. Before PRS can be implemented on a population-wide scale, there are several challenges that must be addressed. Perhaps the most pressing of these is the use of PRS in women of non-White European origin, where PRS have been shown to have attenuated risk prediction both in discrimination and calibration. We discuss progress in developing and applying PRS in non-white European populations. PRS represent a significant advance in breast cancer risk prediction and their further development will undoubtedly enhance personalisation.
Collapse
Affiliation(s)
- Eleanor Roberts
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sacha Howell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Nightingale/Prevent Breast Cancer Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Manchester Breast Centre, Manchester Cancer Research Centre, The Christie Hospital, Manchester, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Nightingale/Prevent Breast Cancer Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK; Manchester Breast Centre, Manchester Cancer Research Centre, The Christie Hospital, Manchester, UK.
| |
Collapse
|
104
|
Chen J, Zhou J, Jiang Y, Wang Y, Chen C, Jiang T, Du J. Inositol 1,4,5-trisphosphate receptor gene variants are related to the risk of breast cancer in a Chinese population. J Gene Med 2023; 25:e3463. [PMID: 36350267 DOI: 10.1002/jgm.3463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mammalian inositol 1,4,5-trisphosphate receptor (ITPR) genes encode ubiquitously expressed endoplasmic reticulum Ca2+ channels that have recently been shown to be closely linked to the pathogenesis of several cancers. However, few studies to date have explored associations between ITPR gene family single nucleotide polymorphisms (SNPs) and breast cancer risk. METHODS In the present case-control study, 12 SNPs in the potential functional regions of the ITPR1, ITPR2, and ITPR3 genes were genotyped using an Illumina Infinium® Beadchip in 2095 Chinese women (1032 cases and 1063 controls). RESULTS Multivariate logistic regression analyses indicated that a missense SNP in the ITPR3 coding region (rs2229642) was significantly related to breast cancer risk when using an additive model in this study (rs2229642-adjusted odds ratio = 1.40, 95% confidence interval = 1.12-1.74, p = 2.97 × 10-3 ). Expression quantitative trait loci analyses indicated that the SNP rs2229642 was associated with reduced ITPR3 expression levels (p = 3.2 × 10-7 ) and with marked reductions in the expressions of several proximal genes, including BAK1, GRM4, HLA-DOB, and UQCC2 (p = 0.013, 0.018, 3.4 × 10-3 , 3.8 × 10-5 ), suggesting that it may further regulate other genes associated with oncogenic susceptibility. Kaplan-Meier analyses indicated that the patients with higher ITPR3 expression exhibited significantly poorer outcomes compared to the patients with lower expression of this gene (hazard ratio = 1.11, 95% confidence interval = 1-1.23, p = 0.046). CONCLUSIONS The results indicated that genetic variant in the coding region of ITPR3 gene may regulate the expressions of its host and some other cancer-related genes, as well as act as potential predictive biomarker for susceptibility to breast cancer in the Chinese population.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
105
|
Ding YC, Adamson AW, Bakhtiari M, Patrick C, Park J, Laitman Y, Weitzel JN, Bafna V, Friedman E, Neuhausen SL. Variable number tandem repeats (VNTRs) as modifiers of breast cancer risk in carriers of BRCA1 185delAG. Eur J Hum Genet 2023; 31:216-222. [PMID: 36434258 PMCID: PMC9905572 DOI: 10.1038/s41431-022-01238-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Despite substantial efforts in identifying both rare and common variants affecting disease risk, in the majority of diseases, a large proportion of unexplained genetic risk remains. We propose that variable number tandem repeats (VNTRs) may explain a proportion of the missing genetic risk. Herein, in a pilot study with a retrospective cohort design, we tested whether VNTRs are causal modifiers of breast cancer risk in 347 female carriers of the BRCA1 185delAG pathogenic variant, an important group given their high risk of developing breast cancer. We performed targeted-capture to sequence VNTRs, called genotypes with adVNTR, tested the association of VNTRs and breast cancer risk using Cox regression models, and estimated the effect size using a retrospective likelihood approach. Of 303 VNTRs that passed quality control checks, 4 VNTRs were significantly associated with risk to develop breast cancer at false discovery rate [FDR] < 0.05 and an additional 4 VNTRs had FDR < 0.25. After determining the specific risk alleles, there was a significantly earlier age at diagnosis of breast cancer in carriers of the risk alleles compared to those without the risk alleles for seven of eight VNTRs. One example is a VNTR in exon 2 of LINC01973 with a per-allele hazard ratio of 1.58 (1.07-2.33) and 5.28 (2.79-9.99) for the homozygous risk-allele genotype. Results from this first systematic study of VNTRs demonstrate that VNTRs may explain a proportion of the unexplained genetic risk for breast cancer.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Carmina Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yael Laitman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Jeffrey N Weitzel
- Latin American School of Oncology, Tuxla Gutierrez, Chiapas, MX and Natera, San Carlos, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Eitan Friedman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Preventive Personalized Medicine, Assuta Medical Center, Tel Aviv, Israel
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
106
|
Mueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, Dennis J, Lush M, Abu-Ful Z, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Baert T, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Brenner H, Brucker SY, Buys SS, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Chung WK, Colonna SV, Cornelissen S, Couch FJ, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Evans DG, Fasching PA, Fletcher O, Flyger H, Gago-Dominguez M, Gao YT, García-Closas M, García-Sáenz JA, Genkinger J, Gentry-Maharaj A, Grassmann F, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Harkness EF, Harrington PA, Hartikainen JM, Hartman M, Hein A, Ho WK, Hooning MJ, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jones ME, Jung A, Kaaks R, Kang D, Khusnutdinova EK, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Le Marchand L, et alMueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, Dennis J, Lush M, Abu-Ful Z, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Baert T, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bogdanova NV, Bojesen SE, Bonanni B, Brenner H, Brucker SY, Buys SS, Castelao JE, Chan TL, Chang-Claude J, Chanock SJ, Choi JY, Chung WK, Colonna SV, Cornelissen S, Couch FJ, Czene K, Daly MB, Devilee P, Dörk T, Dossus L, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Engel C, Evans DG, Fasching PA, Fletcher O, Flyger H, Gago-Dominguez M, Gao YT, García-Closas M, García-Sáenz JA, Genkinger J, Gentry-Maharaj A, Grassmann F, Guénel P, Gündert M, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Harkness EF, Harrington PA, Hartikainen JM, Hartman M, Hein A, Ho WK, Hooning MJ, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Huo D, Ito H, Iwasaki M, Jakubowska A, Janni W, John EM, Jones ME, Jung A, Kaaks R, Kang D, Khusnutdinova EK, Kim SW, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Kwong A, Lacey JV, Lambrechts D, Le Marchand L, Li J, Linet M, Lo WY, Long J, Lophatananon A, Mannermaa A, Manoochehri M, Margolin S, Matsuo K, Mavroudis D, Menon U, Muir K, Murphy RA, Nevanlinna H, Newman WG, Niederacher D, O'Brien KM, Obi N, Offit K, Olopade OI, Olshan AF, Olsson H, Park SK, Patel AV, Patel A, Perou CM, Peto J, Pharoah PDP, Plaseska-Karanfilska D, Presneau N, Rack B, Radice P, Ramachandran D, Rashid MU, Rennert G, Romero A, Ruddy KJ, Ruebner M, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneider MO, Scott C, Shah M, Sharma P, Shen CY, Shu XO, Simard J, Surowy H, Tamimi RM, Tapper WJ, Taylor JA, Teo SH, Teras LR, Toland AE, Tollenaar RAEM, Torres D, Torres-Mejía G, Troester MA, Truong T, Vachon CM, Vijai J, Weinberg CR, Wendt C, Winqvist R, Wolk A, Wu AH, Yamaji T, Yang XR, Yu JC, Zheng W, Ziogas A, Ziv E, Dunning AM, Easton DF, Hemingway H, Hamann U, Kuchenbaecker KB. Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry. Genome Med 2023; 15:7. [PMID: 36703164 PMCID: PMC9878779 DOI: 10.1186/s13073-022-01152-5] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. METHODS We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. RESULTS In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. CONCLUSIONS Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts.
Collapse
Affiliation(s)
| | - Alvina G Lai
- Institute of Health Informatics, University College London, London, UK
| | | | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Zomoruda Abu-Ful
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, 35254, Haifa, Israel
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, 92617, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, 222 42, Lund, Sweden
| | - Thais Baert
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000, Louvain, Belgium
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Javier Benitez
- Biomedical Network On Rare Diseases (CIBERER), 28029, Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, 70185, Örebro, Sweden
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, 72076, Tübingen, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312, Vigo, Spain
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, 10032, USA
| | - Sarah V Colonna
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), 69372, Lyon, France
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Arif B Ekici
- Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107, Leipzig, Germany
- LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, 04103, Leipzig, Germany
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Fundación Pœblica Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, 15706, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 20032, China
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - José A García-Sáenz
- Medical Oncology Department, Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jeanine Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Health and Medical University, 14471, Potsdam, Germany
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805, Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C08069120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lothar Haeberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Department of Oncology, 118 83, Sšdersjukhuset, Stockholm, Sweden
| | - Elaine F Harkness
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Nightingale and Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Jaana M Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore, 119077, Singapore
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Weang-Kee Ho
- Department of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, 3015 GD, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Dezheng Huo
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center Institute for Cancer Control, Tokyo, 104-0045, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, 89075, Ulm, Germany
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Daehee Kang
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, 07442, Korea
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379, Oslo, Norway
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje, 1000, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, 91010, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, 3001, Louvain, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, 3000, Louvain, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, 118 83, Sšdersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Keitaro Matsuo
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10, Heraklion, Greece
| | - Usha Menon
- Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, 222 42, Lund, Sweden
| | - Sue K Park
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Achal Patel
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", MASA, Skopje, 1000, Republic of North Macedonia
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, 89075, Ulm, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133, Milan, Italy
| | - Dhanya Ramachandran
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, 54000, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, 35254, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, SE1 9RT, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Michael O Schneider
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, 66205, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
- School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, G1V 4G2, Canada
| | - Harald Surowy
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C08069120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - William J Tapper
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, 30303, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, 110231, Bogota, Colombia
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805, Villejuif, France
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joseph Vijai
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, 90570, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, 90570, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, 751 05, Uppsala, Sweden
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center Institute for Cancer Control, Tokyo, 104-0045, Japan
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, 92617, USA
| | - Elad Ziv
- Department of Medicine, Diller Family Comprehensive Cancer Center, Institute for Human Genetics, UCSF Helen, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
- University College London Hospitals Biomedical Research Centre (UCLH BRC), London, UK
- The Alan Turing Institute, London, UK
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karoline B Kuchenbaecker
- Division of Psychiatry, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| |
Collapse
|
107
|
Song X, Ji J, Rothstein JH, Alexeeff SE, Sakoda LC, Sistig A, Achacoso N, Jorgenson E, Whittemore AS, Klein RJ, Habel LA, Wang P, Sieh W. MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer. Nat Commun 2023; 14:377. [PMID: 36690614 PMCID: PMC9871010 DOI: 10.1038/s41467-023-35888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.
Collapse
Affiliation(s)
- Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Adriana Sistig
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert J Klein
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Pei Wang
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weiva Sieh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
108
|
Jiao Y, Truong T, Eon-Marchais S, Mebirouk N, Caputo SM, Dondon MG, Karimi M, Le Gal D, Beauvallet J, Le Floch É, Dandine-Roulland C, Bacq-Daian D, Olaso R, Albuisson J, Audebert-Bellanger S, Berthet P, Bonadona V, Buecher B, Caron O, Cavaillé M, Chiesa J, Colas C, Collonge-Rame MA, Coupier I, Delnatte C, De Pauw A, Dreyfus H, Fert-Ferrer S, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Golmard L, Lasset C, Lejeune-Dumoulin S, Léoné M, Limacher JM, Lortholary A, Luporsi É, Mari V, Maugard CM, Mortemousque I, Mouret-Fourme E, Nambot S, Noguès C, Popovici C, Prieur F, Pujol P, Sevenet N, Sobol H, Toulas C, Uhrhammer N, Vaur D, Venat L, Boland-Augé A, Guénel P, Deleuze JF, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Association and performance of polygenic risk scores for breast cancer among French women presenting or not a familial predisposition to the disease. Eur J Cancer 2023; 179:76-86. [PMID: 36509001 DOI: 10.1016/j.ejca.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Three partially overlapping breast cancer polygenic risk scores (PRS) comprising 77, 179 and 313 SNPs have been proposed for European-ancestry women by the Breast Cancer Association Consortium (BCAC) for improving risk prediction in the general population. However, the effect of these SNPs may vary from one country to another and within a country because of other factors. OBJECTIVE To assess their associated risk and predictive performance in French women from (1) the CECILE population-based case-control study, (2) BRCA1 or BRCA2 (BRCA1/2) pathogenic variant (PV) carriers from the GEMO study, and (3) familial breast cancer cases with no BRCA1/2 PV and unrelated controls from the GENESIS study. RESULTS All three PRS were associated with breast cancer in all studies, with odds ratios per standard deviation varying from 1.7 to 2.0 in CECILE and GENESIS, and hazard ratios varying from 1.1 to 1.4 in GEMO. The predictive performance of PRS313 in CECILE was similar to that reported in BCAC but lower than that in GENESIS (area under the receiver operating characteristic curve (AUC) = 0.67 and 0.75, respectively). PRS were less performant in BRCA2 and BRCA1 PV carriers (AUC = 0.58 and 0.54 respectively). CONCLUSION Our results are in line with previous validation studies in the general population and in BRCA1/2 PV carriers. Additionally, we showed that PRS may be of clinical utility for women with a strong family history of breast cancer and no BRCA1/2 PV, and for those carrying a predicted PV in a moderate-risk gene like ATM, CHEK2 or PALB2.
Collapse
Affiliation(s)
- Yue Jiao
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France
| | - Thérèse Truong
- Université Paris-Saclay, UVSQ, INSERM, U1018, Gustave Roussy, CESP, Team Exposome and Heredity, Villejuif, France
| | - Séverine Eon-Marchais
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France
| | - Noura Mebirouk
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France
| | - Sandrine M Caputo
- PSL Research University, Paris, France; Department of Genetics, Institut Curie, Paris, France
| | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France
| | - Mojgan Karimi
- Université Paris-Saclay, UVSQ, INSERM, U1018, Gustave Roussy, CESP, Team Exposome and Heredity, Villejuif, France
| | - Dorothée Le Gal
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France
| | - Juana Beauvallet
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France
| | - Édith Le Floch
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Claire Dandine-Roulland
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Delphine Bacq-Daian
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Juliette Albuisson
- Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France
| | | | - Pascaline Berthet
- Département de Biopathologie, Centre François Baclesse, Caen, France; INSERM, U1245, Rouen, France
| | - Valérie Bonadona
- Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS UMR 5558, Centre Léon Bérard, Unité de Prévention et épidémiologie Génétique, Lyon, France
| | - Bruno Buecher
- PSL Research University, Paris, France; Department of Genetics, Institut Curie, Paris, France
| | - Olivier Caron
- Gustave Roussy, Département de Médecine Oncologique, Villejuif, France
| | - Mathias Cavaillé
- Université Clermont Auvergne, UMR INSERM, U1240, Clermont Ferrand, France; Département d'Oncogénétique, Centre Jean Perrin, Clermont Ferrand, France
| | - Jean Chiesa
- UF de Génétique Médicale et Cytogénétique, CHRU Caremeau, Nîmes, France
| | - Chrystelle Colas
- PSL Research University, Paris, France; Department of Genetics, Institut Curie, Paris, France; INSERM, U830, Paris, France
| | - Marie-Agnès Collonge-Rame
- Service Génétique et Biologie du Développement - Histologie, CHU Hôpital Saint-Jacques, Besançon, France
| | - Isabelle Coupier
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique Médicale et Oncogénétique, Montpellier, France; INSERM, U896, CRCM Val d'Aurelle, Montpellier, France
| | - Capucine Delnatte
- Institut de Cancérologie de l'Ouest, Unité d'Oncogénétique, Saint Herblain, France
| | - Antoine De Pauw
- PSL Research University, Paris, France; Department of Genetics, Institut Curie, Paris, France
| | - Hélène Dreyfus
- Clinique Sainte Catherine, Avignon, CHU de Grenoble, Grenoble, France; Hôpital Couple-Enfant, Département de Génétique, Grenoble, France
| | | | - Marion Gauthier-Villars
- PSL Research University, Paris, France; Department of Genetics, Institut Curie, Paris, France
| | - Paul Gesta
- CH Georges Renon, Service d'Oncogénétique Régional Poitou-Charentes, Niort, France
| | - Sophie Giraud
- Hospices Civils de Lyon, Service de Génétique, Groupement Hospitalier Est, Bron, France
| | - Laurence Gladieff
- Institut Claudius Regaud - IUCT-Oncopole, Service d'Oncologie Médicale, Toulouse, France
| | - Lisa Golmard
- PSL Research University, Paris, France; Department of Genetics, Institut Curie, Paris, France
| | - Christine Lasset
- Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS UMR 5558, Centre Léon Bérard, Unité de Prévention et épidémiologie Génétique, Lyon, France
| | | | - Mélanie Léoné
- Hospices Civils de Lyon, Service de Génétique, Groupement Hospitalier Est, Bron, France
| | | | - Alain Lortholary
- Service d'Oncologie Médicale, Centre Catherine de Sienne, Nantes, France; Hôpital Privé du Confluent, Nantes, France
| | - Élisabeth Luporsi
- Service de Génétique UF4128 CHR Metz-Thionville, Hôpital de Mercy, Metz, France
| | - Véronique Mari
- Unité d'Oncogénétique, Centre Antoine Lacassagne, Nice, France
| | - Christine M Maugard
- Génétique Oncologique Moléculaire, UF1422, Département d'Oncobiologie, LBBM, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; UF6948 Génétique Oncologique Clinique, évaluation Familiale et Suivi, Strasbourg, France
| | | | | | - Sophie Nambot
- Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France; Institut GIMI, CHU de Dijon, Hôpital d'Enfants, France; Oncogénétique, Dijon, France
| | - Catherine Noguès
- Département d'Anticipation et de Suivi des Cancers, Oncogénétique Clinique, Institut Paoli-Calmettes, Marseille, France; Aix Marseille Université, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Département d'Anticipation et de Suivi des Cancers, Oncogénétique Clinique, Institut Paoli-Calmettes, Marseille, France
| | - Fabienne Prieur
- CHU de Saint-Etienne; Hôpital Nord, Service de Génétique, Saint-Etienne, France
| | - Pascal Pujol
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Service de Génétique Médicale et Oncogénétique, Montpellier, France; INSERM, U896, CRCM Val d'Aurelle, Montpellier, France
| | | | - Hagay Sobol
- Département d'Anticipation et de Suivi des Cancers, Oncogénétique Clinique, Institut Paoli-Calmettes, Marseille, France
| | - Christine Toulas
- Institut Claudius Regaud - IUCT-Oncopole, Service d'Oncologie Médicale, Toulouse, France
| | - Nancy Uhrhammer
- Centre Jean Perrin, LBM OncoGenAuvergne, Clermont Ferrand, France
| | - Dominique Vaur
- Département de Biopathologie, Centre François Baclesse, Caen, France; INSERM, U1245, Rouen, France
| | - Laurence Venat
- Hôpital Universitaire Dupuytren, Service d'Oncologie Médicale, Limoges, France
| | - Anne Boland-Augé
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Pascal Guénel
- Université Paris-Saclay, UVSQ, INSERM, U1018, Gustave Roussy, CESP, Team Exposome and Heredity, Villejuif, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France; Département d'Oncogénétique, Centre Jean Perrin, Clermont Ferrand, France; Université Paris-Cité, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France
| | - Fabienne Lesueur
- INSERM, U900, Paris, France; Institut Curie, Paris, France; Mines ParisTech, Fontainebleau, France; PSL Research University, Paris, France.
| |
Collapse
|
109
|
Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. Histopathology 2023; 82:70-82. [PMID: 36468211 PMCID: PMC10953374 DOI: 10.1111/his.14808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Hereditary factors account for a significant proportion of breast cancer risk. Approximately 20% of hereditary breast cancers are attributable to pathogenic variants in the highly penetrant BRCA1 and BRCA2 genes. A proportion of the genetic risk is also explained by pathogenic variants in other breast cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C, RAD51D and BARD1, as well as genes associated with breast cancer predisposition syndromes - TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome), CDH1 (hereditary diffuse gastric cancer), STK11 (Peutz-Jeghers syndrome) and NF1 (neurofibromatosis type 1). Polygenic risk, the cumulative risk from carrying multiple low-penetrance breast cancer susceptibility alleles, is also a well-recognised contributor to risk. This review provides an overview of the established breast cancer susceptibility genes as well as breast cancer predisposition syndromes, highlights distinct genotype-phenotype correlations associated with germline mutation status and discusses molecular testing and therapeutic implications in the context of hereditary breast cancer.
Collapse
Affiliation(s)
- A Sokolova
- Sullivan and Nicolaides PathologyBrisbane
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - K J Johnstone
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - A E McCart Reed
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - P T Simpson
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - S R Lakhani
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| |
Collapse
|
110
|
Sun Y, Li Y, Zhang J. The causal relationship between psoriasis, psoriatic arthritis, and inflammatory bowel diseases. Sci Rep 2022; 12:20526. [PMID: 36443384 PMCID: PMC9705442 DOI: 10.1038/s41598-022-24872-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Psoriasis is more common in patients with inflammatory bowel disease (IBD) than in the general population. Similarly, patients with psoriasis or psoriatic arthritis (PsA) have a higher incidence of IBD. However, whether this association is causal remains unknown. Therefore, we used a two-sample bidirectional Mendelian randomization (MR) analysis to identify this relationship. According to MR analysis, psoriasis and PsA causally increased the odds of developing Crohn's disease (OR = 1.350 (1.066-1.709) P = 0.013; OR = 1.319 (1.166-1.492) P < 0.001). In contrast, MR estimates gave little support to a possible causal effect of psoriasis, PsA, on ulcerative colitis (OR = 1.101 (0.905-1.340) P = 0.335; OR = 1.007 (0.941-1.078) P = 0.831). Similarly, the reverse analysis suggested the Crohn's disease causally increased the odds of psoriasis and PsA (OR = 1.425 (1.174-1.731) P < 0.001; OR = 1.448 (1.156-1.182) P = 0.001), whereas there are no causal association between ulcerative colitis and psoriasis, PsA (OR = 1.192 (0.921-1.542) P = 0.182; OR = 1.166 (0.818-1.664) P = 0.396). In summary, our MR analysis strengthens the evidence for the bidirectional dual causality between psoriasis (including PsA) and Crohn's disease.
Collapse
Affiliation(s)
- Yang Sun
- grid.430605.40000 0004 1758 4110Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin China
| | - Yue Li
- grid.410737.60000 0000 8653 1072Department of Social Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Jiting Zhang
- grid.430605.40000 0004 1758 4110Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
111
|
Shu X, Zhou Q, Sun X, Flesaker M, Guo X, Long J, Robson ME, Shu XO, Zheng W, Bernstein JL. Associations between circulating proteins and risk of breast cancer by intrinsic subtypes: a Mendelian randomisation analysis. Br J Cancer 2022; 127:1507-1514. [PMID: 35882941 PMCID: PMC9553869 DOI: 10.1038/s41416-022-01923-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aetiologic role of circulating proteins in the development of breast cancer subtypes is not clear. We aimed to examine the potential causal effects of circulating proteins on the risk of breast cancer by intrinsic-like subtypes within the Mendelian randomisation (MR) framework. METHODS MR was performed using summary statistics from two sources: the INTERVAL protein quantitative trait loci (pQTL) Study (1890 circulating proteins and 3301 healthy individuals) and the Breast Cancer Association Consortium (BCAC; 106,278 invasive cases and 91,477 controls). The inverse-variance (IVW)-weighted method was used as the main analysis to evaluate the associations between genetically predicted proteins and the risk of five different intrinsic-like breast cancer subtypes and the weighted median MR method, the Egger regression, the MR-PRESSO, and the MRLocus method were performed as secondary analysis. RESULTS We identified 98 unique proteins significantly associated with the risk of one or more subtypes (Benjamini-Hochberg false discovery rate < 0.05). Among them, 51 were potentially specific to luminal A-like subtype, 14 to luminal B/Her2-negative-like, 11 to triple negative, 3 to luminal B-like, and 2 to Her2-enriched-like breast cancer (ntotal = 81). Associations for three proteins (ICAM1, PLA2R1 and TXNDC12) showed evident heterogeneity across the subtypes. For example, higher levels of genetically predicted ICAM1 (per unit of increase) were associated with an increased risk of luminal B/HER2-negative-like cancer (OR = 1.06, 95% CI = 1.03-1.08, BH-FDR = 2.43 × 10-4) while inversely associated with triple-negative breast cancer with borderline significance (OR = 0.97, 95% CI = 0.95-0.99, BH-FDR = 0.065, Pheterogeneity < 0.005). CONCLUSIONS Our study found potential causal associations with the risk of subtypes of breast cancer for 98 proteins. Associations of ICAM1, PLA2R1 and TXNDC12 varied substantially across the subtypes. The identified proteins may partly explain the heterogeneity in the aetiology of distinct subtypes of breast cancer and facilitate the personalised risk assessment of the malignancy.
Collapse
Affiliation(s)
- Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Michelle Flesaker
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Statistical & Data Sciences, Smith College, Northampton, MA, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
112
|
Jian Q, Wu Y, Zhang F. Metabolomics in Diabetic Retinopathy: From Potential Biomarkers to Molecular Basis of Oxidative Stress. Cells 2022; 11:cells11193005. [PMID: 36230967 PMCID: PMC9563658 DOI: 10.3390/cells11193005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR), the leading cause of blindness in working-age adults, is one of the most common complications of diabetes mellitus (DM) featured by metabolic disorders. With the global prevalence of diabetes, the incidence of DR is expected to increase. Prompt detection and the targeting of anti-oxidative stress intervention could effectively reduce visual impairment caused by DR. However, the diagnosis and treatment of DR is often delayed due to the absence of obvious signs of retina imaging. Research progress supports that metabolomics is a powerful tool to discover potential diagnostic biomarkers and therapeutic targets for the causes of oxidative stress through profiling metabolites in diseases, which provides great opportunities for DR with metabolic heterogeneity. Thus, this review summarizes the latest advances in metabolomics in DR, as well as potential diagnostic biomarkers, and predicts molecular targets through the integration of genome-wide association studies (GWAS) with metabolomics. Metabolomics provides potential biomarkers, molecular targets and therapeutic strategies for controlling the progress of DR, especially the interventions at early stages and precise treatments based on individual patient variations.
Collapse
Affiliation(s)
- Qizhi Jian
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Laboratory of Genome Engineered Animal Models, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Correspondence: (Y.W.); (F.Z.)
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (Y.W.); (F.Z.)
| |
Collapse
|
113
|
Breast cancer polygenic risk scores are associated with short-term risk of poor prognosis breast cancer. Breast Cancer Res Treat 2022; 196:389-398. [PMID: 36138293 DOI: 10.1007/s10549-022-06739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/04/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Polygenic risk scores (PRS) for breast cancer may help guide screening decisions. However, few studies have examined whether PRS are associated with risk of short-term or poor prognosis breast cancers. The study purpose was to evaluate the association of the 313 SNP breast cancer PRS with 2-year risk of poor prognosis breast cancer. METHODS We evaluated the association of breast cancer PRS with breast cancer overall, ER + and ER- breast cancer, and poor prognosis breast cancer diagnosed within 2 years of a negative mammogram among a cohort of 3657 women using logistic regression adjusted for age, breast density, race/ethnicity, year of screening, and genetic ancestry principal components. Breast cancers were considered poor prognosis if they were metastatic, positive lymph nodes, ER/PR + HER2- and > 2 cm, ER/PR/HER2-, or HER2 + and > 1 cm. RESULTS Of the 308 breast cancers, 137 (44%) were poor prognosis. The overall breast cancer PRS was significantly associated with breast cancer diagnosis within 2 years (OR 1.39, 95% CI 1.23-1.57, p < 0.001). The breast cancer PRS was also associated specifically with diagnosis of poor prognosis disease (OR 1.24, 95% CI 1.03-1.49, p = 0.018), but was more strongly associated with good prognosis cancer (OR 1.52 95% CI 1.29-1.80 p = 3.60 × 10-7) The ER + PRS was significantly associated with ER/PR + breast cancer (OR 1.41, 95% CI 1.24-1.61, p < 0.001) and the ER- PRS was significantly associated with ER- breast cancer (OR 1.48, 95% CI 1.08-2.02, p = 0.015). CONCLUSION Breast cancer PRS was independently and significantly associated with diagnosis of both breast cancer overall and poor prognosis breast cancer within 2 years of a negative mammogram, suggesting PRS may help guide decisions about screening intervals and supplemental screening.
Collapse
|
114
|
Gao G, Zhao F, Ahearn TU, Lunetta KL, Troester MA, Du Z, Ogundiran TO, Ojengbede O, Blot W, Nathanson KL, Domchek SM, Nemesure B, Hennis A, Ambs S, McClellan J, Nie M, Bertrand K, Zirpoli G, Yao S, Olshan AF, Bensen JT, Bandera EV, Nyante S, Conti DV, Press MF, Ingles SA, John EM, Bernstein L, Hu JJ, Deming-Halverson SL, Chanock SJ, Ziegler RG, Rodriguez-Gil JL, Sucheston-Campbell LE, Sandler DP, Taylor JA, Kitahara CM, O’Brien KM, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Wang Q, Figueroa J, Biritwum R, Adjei E, Wiafe S, GBHS Study Team, Ambrosone CB, Zheng W, Olopade OI, García-Closas M, Palmer JR, Haiman CA, Huo D. Polygenic risk scores for prediction of breast cancer risk in women of African ancestry: a cross-ancestry approach. Hum Mol Genet 2022; 31:3133-3143. [PMID: 35554533 PMCID: PMC9476624 DOI: 10.1093/hmg/ddac102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polygenic risk scores (PRSs) are useful for predicting breast cancer risk, but the prediction accuracy of existing PRSs in women of African ancestry (AA) remains relatively low. We aim to develop optimal PRSs for the prediction of overall and estrogen receptor (ER) subtype-specific breast cancer risk in AA women. The AA dataset comprised 9235 cases and 10 184 controls from four genome-wide association study (GWAS) consortia and a GWAS study in Ghana. We randomly divided samples into training and validation sets. We built PRSs using individual-level AA data by a forward stepwise logistic regression and then developed joint PRSs that combined (1) the PRSs built in the AA training dataset and (2) a 313-variant PRS previously developed in women of European ancestry. PRSs were evaluated in the AA validation set. For overall breast cancer, the odds ratio per standard deviation of the joint PRS in the validation set was 1.34 [95% confidence interval (CI): 1.27-1.42] with the area under receiver operating characteristic curve (AUC) of 0.581. Compared with women with average risk (40th-60th PRS percentile), women in the top decile of the PRS had a 1.98-fold increased risk (95% CI: 1.63-2.39). For PRSs of ER-positive and ER-negative breast cancer, the AUCs were 0.608 and 0.576, respectively. Compared with existing methods, the proposed joint PRSs can improve prediction of breast cancer risk in AA women.
Collapse
Affiliation(s)
- Guimin Gao
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Fangyuan Zhao
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhaohui Du
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbede
- Centre for Population & Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine L Nathanson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan M Domchek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anselm Hennis
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- University of the West Indies, Bridgetown, Bardados
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Julian McClellan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Nie
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA 02215, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Sarah Nyante
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sue A Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Esther M John
- Departments of Epidemiology & Population Health and of Medicine (Oncology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leslie Bernstein
- Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra L Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Lara E Sucheston-Campbell
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katie M O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh EH16 5TJ, UK
- Cancer Research UK Edinburgh Centre, Edinburgh EH4 2XR, UK
| | | | | | - Seth Wiafe
- School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | | | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics & Global Health, The University of Chicago, Chicago, IL 60637, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA 02215, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dezheng Huo
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637, USA
- Center for Clinical Cancer Genetics & Global Health, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
115
|
Genetic Causal Association between Iron Status and Osteoarthritis: A Two-Sample Mendelian Randomization. Nutrients 2022; 14:nu14183683. [PMID: 36145059 PMCID: PMC9501024 DOI: 10.3390/nu14183683] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Observational studies have shown the association between iron status and osteoarthritis (OA). However, due to difficulties of determining sequential temporality, their causal association is still elusive. Based on the summary data of genome-wide association studies (GWASs) of a large-scale population, this study explored the genetic causal association between iron status and OA. Methods: First, we took a series of quality control steps to select eligible instrumental SNPs which were strongly associated with exposure. The genetic causal association between iron status and OA was analyzed using the two-sample Mendelian randomization (MR). Inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods were used for analysis. The results were mainly based on IVW (random effects), followed by sensitivity analysis. IVW and MR-Egger were used for heterogeneity testing. MR-Egger was also used for pleiotropy testing. Leave-one-SNP-out analysis was used to identify single nucleotide polymorphisms (SNPs) with potential impact. Maximum likelihood, penalized weighted median, and IVW (fixed effects) were performed to further validate the reliability of results. Results: IVW results showed that transferrin saturation had a positive causal association with knee osteoarthritis (KOA), hip osteoarthritis (HOA) and KOA or HOA (p < 0.05, OR > 1), and there was a negative causal association between transferrin and HOA and KOA or HOA (p < 0.05, OR < 1). The results of heterogeneity test showed that our IVW analysis results were basically free of heterogeneity (p > 0.05). The results of the pleiotropy test showed that there was no pleiotropy in our IVW analysis (p > 0.05). The analysis results of maximum likelihood, penalized weighted median and IVW (fixed effects) were consistent with our IVW results. No genetic causal association was found between serum iron and ferritin and OA. Conclusions: This study provides evidence of the causal association between iron status and OA, which provides novel insights to the genetic research of OA.
Collapse
|
116
|
Liu Y, Gan Y, AiErken N, Chen W, Zhang S, Ouyang J, Zeng L, Tang D. Combining Organoid Models with Next-Generation Sequencing to Reveal Tumor Heterogeneity and Predict Therapeutic Response in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9390912. [PMID: 36046364 PMCID: PMC9423951 DOI: 10.1155/2022/9390912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer (BC) is a common subtype of BC with a relatively good prognosis. However, recurrence and death from ER+ BC occur because of tumor heterogeneity. This study aimed to explore tumor heterogeneity using next-generation sequencing (NGS) and tumor-organoid models to promote BC precise therapy. We collected needle biopsy, surgical excision, and cerebrospinal fluid (CSF) samples to establish tumor organoids. We found that the histological characteristics of organoids were consistent with original lesions and recapitulated their heterogenicity. In addition, the NGS results showed that PIK3CA and TP53 genes had detrimental mutations. BAP1, RET, AXIN2, and PPP2R2A genes had mutations with unknown function. The score for homologous recombination deficiency (HRD) of genome was 56, indicating that the tumor was likely sensitive to PARPi. The mutant-allele tumor heterogeneity (MATH) value of the tumor genome was 68.03, indicating high tumor heterogeneity. At last, we performed a drug screening on organoids. The toxicity of different drugs toward BC organoids originated from needle biopsy and surgical excision was tested, respectively. The IC50 values in the needle biopsy groups were paclitaxel 2.83 μM, carboplatin 61.47 μM, neratinib 0.8 μM, lapatinib >100 μM; in the surgical excision groups: trastuzumab >100 μM, docetaxel 0.036 μM, tamoxifen 20.54 μM, olaparib 5.478 μM, BYL719 < 0.1 μM. The toxicity data showed that the BC organoids could show dynamic characteristics of tumor progression and reflect the heterogeneity of BC. Our study demonstrates that the combined use of tumor organoids and NGS is a potential way to test tumor heterogeneity and predict drug response in ER + BC, which contributes to the development of personalized therapy.
Collapse
Affiliation(s)
- Yuhong Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| | - Yixiang Gan
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - NiJiati AiErken
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| | - Wei Chen
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Shiwei Zhang
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan 518107, China
| | - Leli Zeng
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Di Tang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| |
Collapse
|
117
|
Wu X, Xiao C, Han Z, Zhang L, Zhao X, Hao Y, Xiao J, Gallagher CS, Kraft P, Morton CC, Li J, Jiang X. Investigating the shared genetic architecture of uterine leiomyoma and breast cancer: A genome-wide cross-trait analysis. Am J Hum Genet 2022; 109:1272-1285. [PMID: 35803233 PMCID: PMC9300879 DOI: 10.1016/j.ajhg.2022.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Little is known regarding the shared genetic architecture or causality underlying the phenotypic association observed for uterine leiomyoma (UL) and breast cancer (BC). Leveraging summary statistics from the hitherto largest genome-wide association study (GWAS) conducted in each trait, we investigated the genetic overlap and causal associations of UL with BC overall, as well as with its subtypes defined by the status of estrogen receptor (ER). We observed a positive genetic correlation between UL and BC overall (rg = 0.09, p = 6.00 × 10-3), which was consistent in ER+ subtype (rg = 0.06, p = 0.01) but not in ER- subtype (rg = 0.06, p = 0.08). Partitioning the whole genome into 1,703 independent regions, local genetic correlation was identified at 22q13.1 for UL with BC overall and with ER+ subtype. Significant genetic correlation was further discovered in 9 out of 14 functional categories, with the highest estimates observed in coding, H3K9ac, and repressed regions. Cross-trait meta-analysis identified 9 novel loci shared between UL and BC. Mendelian randomization demonstrated a significantly increased risk of BC overall (OR = 1.09, 95% CI = 1.01-1.18) and ER+ subtype (OR = 1.09, 95% CI = 1.01-1.17) for genetic liability to UL. No reverse causality was found. Our comprehensive genome-wide cross-trait analysis demonstrates a shared genetic basis, pleiotropic loci, as well as a putative causal relationship between UL and BC, highlighting an intrinsic link underlying these two complex female diseases.
Collapse
Affiliation(s)
- Xueyao Wu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenghan Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhitong Han
- Department of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xunying Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Hao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinyu Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - C Scott Gallagher
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PL, UK
| | - Jiayuan Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xia Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Program in Genetic Epidemiology and Statistical Genetics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
118
|
Yang H, Ting X, Geng YH, Xie Y, Nierenberg JL, Huo YF, Zhou YT, Huang Y, Yu YQ, Yu XY, Li XF, Ziv E, Zhang H, Fang WG, Shen Y, Tian XX. The risk variant rs11836367 contributes to breast cancer onset and metastasis by attenuating Wnt signaling via regulating NTN4 expression. SCIENCE ADVANCES 2022; 8:eabn3509. [PMID: 35687692 PMCID: PMC9187238 DOI: 10.1126/sciadv.abn3509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Most genome-wide association study (GWAS)-identified breast cancer-associated causal variants remain uncharacterized. To provide a framework of understanding GWAS-identified variants to function, we performed a comprehensive study of noncoding regulatory variants at the NTN4 locus (12q22) and NTN4 gene in breast cancer etiology. We find that rs11836367 is the more likely causal variant, disrupting enhancer activity in both enhancer reporter assays and endogenous genome editing experiments. The protective T allele of rs11837367 increases the binding of GATA3 to the distal enhancer and up-regulates NTN4 expression. In addition, we demonstrate that loss of NTN4 gene in mice leads to tumor earlier onset, progression, and metastasis. We discover that NTN4, as a tumor suppressor, can attenuate the Wnt signaling pathway by directly binding to Wnt ligands. Our findings bridge the gaps among breast cancer-associated single-nucleotide polymorphisms, transcriptional regulation of NTN4, and breast cancer biology, which provides previously unidentified insights into breast cancer prediction and prevention.
Collapse
Affiliation(s)
- Han Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Xia Ting
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yue-Hang Geng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yuntao Xie
- Breast Center, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing 100142, China
| | - Jovia L. Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Yan-Fei Huo
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yan-Ting Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yang Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Qing Yu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Xin-Yao Yu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Xiao-Fei Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
119
|
Bychkovsky BL, Li T, Sotelo J, Tayob N, Mercado J, Gomy I, Chittenden A, Kane S, Stokes S, Hughes ME, Kim JS, Umeton R, Awad MM, Konstantinopoulos PA, Yurgelun MB, Wolpin BM, Taplin ME, Newmark RE, Johnson BE, Lindeman NI, MacConaill LE, Garber JE, Lin NU. Identification and Management of Pathogenic Variants in BRCA1, BRCA2, and PALB2 in a Tumor-Only Genomic Testing Program. Clin Cancer Res 2022; 28:2349-2360. [PMID: 35363308 PMCID: PMC9167798 DOI: 10.1158/1078-0432.ccr-21-2861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor-only genomic testing can uncover somatic and germline pathogenic variants [pathogenic/likely pathogenic (P/LP)] in cancer predisposition genes. We describe the prevalence of P/LPs in BRCA1/2 and PALB2 (B1B2P2) across malignancies and the frequency of clinical germline testing (CGT) in patients with P/LPs in B1B2P2 identified on tumor-only testing. EXPERIMENTAL DESIGN Among 7,575 patients with cancer tested between 2016 and 2018 with the OncoPanel tumor-only sequencing assay, we characterized P/LP frequencies by tumor type, receipt of CGT prior to or within 12 months after OncoPanel, and factors associated with CGT. RESULTS 272 (3.6%) patients had OncoPanel-detected P/LPs in B1B2P2: 37.5% of P/LPs were in BRCA-related cancers; the remainder were in non-BRCA tumors. P/LPs were detected in ≥5% of breast, pancreatic, prostate, ovarian, nonmelanoma skin, endometrial, small cell lung, and colorectal cancers. 37.9% of patients with P/LPs received CGT prior to OncoPanel; an additional 10.7% underwent CGT within 12 months of OncoPanel. Among 132 with CGT, 88.6% had ≥1 clinical factor for CGT compared with 47.1% who did not undergo CGT. Patients with BRCA tumors were more likely to have CGT compared with those without (81.4% vs. 29.0%, P < 0.0001). Among patients with CGT, 70.5% (93/132) of P/LPs were germline. CONCLUSIONS Tumor-only genomic testing identified P/LPs in B1B2P2 in 3.6% of patients. 52.9% of patients with tumor-detected P/LPs and without CGT did not meet personal or family history criteria for CGT. In addition, some patients with tumor-detected P/LPs were not referred for CGT, especially those with non-BRCA tumors. Given implications for treatment selection and familial cancer risk, processes to reliably trigger CGT from tumor-genomic findings are needed.
Collapse
Affiliation(s)
- Brittany L. Bychkovsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Tianyu Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jilliane Sotelo
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
- Thermo Fisher Scientific, Waltham, Massachusetts
| | - Nabihah Tayob
- Harvard Medical School, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joanna Mercado
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
- Genome Medical, South San Francisco, California
| | - Israel Gomy
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anu Chittenden
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Kane
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
- Memorial Sloan Kettering Cancer Center, Clinical Genetics Service, New York, New York
| | - Samantha Stokes
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Melissa E. Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ji Seok Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
- Dewpoint Therapeutics, Boston, Massachusetts
| | - Renato Umeton
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M. Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Panagiotis A. Konstantinopoulos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Matthew B. Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Randall E. Newmark
- Massachusetts General Hospital Research Institute, Partners HealthCare, Boston, Massachusetts
| | - Bruce E. Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Neal I. Lindeman
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Laura E. MacConaill
- Harvard Medical School, Boston, Massachusetts
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Judy E. Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
120
|
Yadav S, Virk R, Chung CH, Eduardo MB, VanDerway D, Chen D, Burdett K, Gao H, Zeng Z, Ranjan M, Cottone G, Xuei X, Chandrasekaran S, Backman V, Chatterton R, Khan SA, Clare SE. Lipid exposure activates gene expression changes associated with estrogen receptor negative breast cancer. NPJ Breast Cancer 2022; 8:59. [PMID: 35508495 PMCID: PMC9068822 DOI: 10.1038/s41523-022-00422-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
Improved understanding of local breast biology that favors the development of estrogen receptor negative (ER-) breast cancer (BC) would foster better prevention strategies. We have previously shown that overexpression of specific lipid metabolism genes is associated with the development of ER- BC. We now report results of exposure of MCF-10A and MCF-12A cells, and mammary organoids to representative medium- and long-chain polyunsaturated fatty acids. This exposure caused a dynamic and profound change in gene expression, accompanied by changes in chromatin packing density, chromatin accessibility, and histone posttranslational modifications (PTMs). We identified 38 metabolic reactions that showed significantly increased activity, including reactions related to one-carbon metabolism. Among these reactions are those that produce S-adenosyl-L-methionine for histone PTMs. Utilizing both an in-vitro model and samples from women at high risk for ER- BC, we show that lipid exposure engenders gene expression, signaling pathway activation, and histone marks associated with the development of ER- BC.
Collapse
Affiliation(s)
- Shivangi Yadav
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ranya Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208-2850, USA
| | - Carolina H Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - David VanDerway
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208-2850, USA
| | - Duojiao Chen
- Center of for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kirsten Burdett
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hongyu Gao
- Center of for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Zexian Zeng
- Department of Data Sciences, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Manish Ranjan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Gannon Cottone
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaoling Xuei
- Center of for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208-2850, USA
| | - Robert Chatterton
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Seema Ahsan Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
121
|
He Z, Ghorayeb R, Tan S, Chen K, Lorentzian AC, Bottyan J, Aalam SMM, Pujana MA, Lange PF, Kannan N, Eaves CJ, Maxwell CA. Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation. Nat Commun 2022; 13:2200. [PMID: 35459234 PMCID: PMC9033786 DOI: 10.1038/s41467-022-29885-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Chen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda C Lorentzian
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack Bottyan
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Syed Mohammed Musheer Aalam
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Miguel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
122
|
El Hadi C, Ayoub G, Bachir Y, Haykal M, Jalkh N, Kourie HR. Polygenic and Network-Based Studies in Risk Identification and Demystification of cancer. Expert Rev Mol Diagn 2022; 22:427-438. [PMID: 35400274 DOI: 10.1080/14737159.2022.2065195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diseases were initially thought to be the consequence of a single gene mutation. Advances in DNA sequencing tools and our understanding of gene behavior have revealed that complex diseases, such as cancer, are the product of genes cooperating with each other and with their environment in orchestrated communication networks. Seeing that the function of individual genes is still used to analyze cancer, the shift to using functionally interacting groups of genes as a new unit of study holds promise for demystifying cancer. AREAS COVERED The literature search focused on three types of cancer, namely breast, lung, and prostate, but arguments from other cancers were also included. The aim was to prove that multigene analyses can accurately predict and prognosticate cancer risk, subtype cancer for more personalized and effective treatments, and discover anti-cancer therapies. Computational intelligence is being harnessed to analyze this type of data and is proving indispensable to scientific progress. EXPERT OPINION In the future, comprehensive profiling of all kinds of patient data (e.g., serum molecules, environmental exposures) can be used to build universal networks that should help us elucidate the molecular mechanisms underlying diseases and provide appropriate preventive measures, ensuring lifelong health and longevity.
Collapse
Affiliation(s)
| | - George Ayoub
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Yara Bachir
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Michèle Haykal
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Technology and Health division, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Hampig Raphael Kourie
- Department of Hematology-Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
123
|
Modification of BRCA1-associated breast cancer risk by HMMR overexpression. Nat Commun 2022; 13:1895. [PMID: 35393420 PMCID: PMC8989921 DOI: 10.1038/s41467-022-29335-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-κB signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer.
Collapse
|
124
|
Mendoza-Fandiño G, Lyra PCM, Nepomuceno TC, Harro CM, Woods NT, Li X, Rangel LB, Carvalho MA, Couch FJ, Monteiro ANA. Two distinct mechanisms underlie estrogen-receptor-negative breast cancer susceptibility at the 2p23.2 locus. Eur J Hum Genet 2022; 30:465-473. [PMID: 34803163 PMCID: PMC8990004 DOI: 10.1038/s41431-021-01005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Genome wide-association studies (GWAS) have established over 400 breast cancer risk loci defined by common single nucleotide polymorphisms (SNPs), including several associated with estrogen-receptor (ER)-negative disease. Most of these loci have not been studied systematically and the mechanistic underpinnings of risk are largely unknown. Here we explored the landscape of genomic features at an ER-negative breast cancer susceptibility locus at chromosome 2p23.2 and assessed the functionality of 81 SNPs with strong evidence of association from previous fine mapping. Five candidate regulatory regions containing risk-associated SNPs were identified. Regulatory Region 1 in the first intron of WDR43 contains SNP rs4407214, which showed allele-specific interaction with the transcription factor USF1 in in vitro assays. CRISPR-mediated disruption of Regulatory Region 1 led to expression changes in the neighboring PLB1 gene, suggesting that the region acts as a distal enhancer. Regulatory Regions 2, 4, and 5 did not provide sufficient evidence for functionality in in silico and experimental analyses. Two SNPs (rs11680458 and rs1131880) in Regulatory Region 3, mapping to the seed region for miRNA-recognition sites in the 3' untranslated region of WDR43, showed allele-specific effects of ectopic expression of miR-376 on WDR43 expression levels. Taken together, our data suggest that risk of ER-negative breast cancer associated with the 2p23.2 locus is likely driven by a combinatorial effect on the regulation of WDR43 and PLB1.
Collapse
Affiliation(s)
- Gustavo Mendoza-Fandiño
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Corporación Universitaria Remington, Medellin, Colombia
| | | | - Thales C Nepomuceno
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, 20231-050, Brazil
| | - Carly M Harro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida Tampa, Tampa, FL, 33612, USA
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xueli Li
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leticia B Rangel
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, 20231-050, Brazil
- Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro, 20270-021, Brazil
| | | | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
125
|
Functional annotation of breast cancer risk loci: current progress and future directions. Br J Cancer 2022; 126:981-993. [PMID: 34741135 PMCID: PMC8980003 DOI: 10.1038/s41416-021-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Genome-wide association studies coupled with large-scale replication and fine-scale mapping studies have identified more than 150 genomic regions that are associated with breast cancer risk. Here, we review efforts to translate these findings into a greater understanding of disease mechanism. Our review comes in the context of a recently published fine-scale mapping analysis of these regions, which reported 352 independent signals and a total of 13,367 credible causal variants. The vast majority of credible causal variants map to noncoding DNA, implicating regulation of gene expression as the mechanism by which functional variants influence risk. Accordingly, we review methods for defining candidate-regulatory sequences, methods for identifying putative target genes and methods for linking candidate-regulatory sequences to putative target genes. We provide a summary of available data resources and identify gaps in these resources. We conclude that while much work has been done, there is still much to do. There are, however, grounds for optimism; combining statistical data from fine-scale mapping with functional data that are more representative of the normal "at risk" breast, generated using new technologies, should lead to a greater understanding of the mechanisms that influence an individual woman's risk of breast cancer.
Collapse
|
126
|
Zhu GL, Xu C, Yang KB, Tang SQ, Tang LL, Chen L, Li WF, Mao YP, Ma J. Causal relationship between genetically predicted depression and cancer risk: a two-sample bi-directional mendelian randomization. BMC Cancer 2022; 22:353. [PMID: 35361153 PMCID: PMC8973550 DOI: 10.1186/s12885-022-09457-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Depression has been reported to be associated with some types of cancer in observational studies. However, the direction and magnitude of the causal relationships between depression and different types of cancer remain unclear. METHODS We performed the two-sample bi-directional mendelian randomization with the publicly available GWAS summary statistics to investigate the causal relationship between the genetically predicted depression and the risk of multiple types of cancers, including ovarian cancer, breast cancer, lung cancer, glioma, pancreatic cancer, lymphoma, colorectal cancer, thyroid cancer, bladder cancer, and kidney cancer. The total sample size varies from 504,034 to 729,150. Causal estimate was calculated by inverse variance weighted method. We also performed additional sensitivity tests to evaluate the validity of the causal relationship. RESULTS After correction for heterogeneity and horizontal pleiotropy, we only detected suggestive evidence for the causality of genetically predicted depression on breast cancer (OR = 1.09, 95% CI: 1.03-1.15, P = 0.0022). The causal effect of depression on breast cancer was consistent in direction and magnitude in the sensitivity analysis. No evidence of causal effects of depression on other types of cancer and reverse causality was detected. CONCLUSIONS The result of this study suggests a causative effect of genetically predicted depression on specific type of cancer. Our findings emphasize the importance of depression in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Guang-Li Zhu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Cheng Xu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Kai-Bin Yang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Si-Qi Tang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Lei Chen
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Wen-Fei Li
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 510060, Guangzhou, PR China.
| |
Collapse
|
127
|
Morales Berstein F, McCartney DL, Lu AT, Tsilidis KK, Bouras E, Haycock P, Burrows K, Phipps AI, Buchanan DD, Cheng I, Martin RM, Davey Smith G, Relton CL, Horvath S, Marioni RE, Richardson TG, Richmond RC. Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study. eLife 2022; 11:e75374. [PMID: 35346416 PMCID: PMC9049976 DOI: 10.7554/elife.75374] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.
Collapse
Affiliation(s)
- Fernanda Morales Berstein
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College LondonLondonUnited Kingdom
- Department of Hygiene and Epidemiology, School of Medicine, University of IoanninaIoanninaGreece
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, School of Medicine, University of IoanninaIoanninaGreece
| | - Philip Haycock
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Epidemiology, School of Public Health, University of WashingtonSeattleUnited States
| | - Daniel D Buchanan
- Department of Clinical Pathology, Melbourne Medical School, University of MelbourneParkvilleAustralia
| | - Iona Cheng
- Cancer Prevention Institute of CaliforniaFremontUnited States
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and the University of BristolBristolUnited Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Biostatistics, Fielding School of Public Health, University of California, Los AngelesLos AngelesUnited States
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
- Novo Nordisk Research CentreOxfordUnited Kingdom
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical SchoolBristolUnited Kingdom
| |
Collapse
|
128
|
Ho WK, Tai MC, Dennis J, Shu X, Li J, Ho PJ, Millwood IY, Lin K, Jee YH, Lee SH, Mavaddat N, Bolla MK, Wang Q, Michailidou K, Long J, Wijaya EA, Hassan T, Rahmat K, Tan VKM, Tan BKT, Tan SM, Tan EY, Lim SH, Gao YT, Zheng Y, Kang D, Choi JY, Han W, Lee HB, Kubo M, Okada Y, Namba S, Park SK, Kim SW, Shen CY, Wu PE, Park B, Muir KR, Lophatananon A, Wu AH, Tseng CC, Matsuo K, Ito H, Kwong A, Chan TL, John EM, Kurian AW, Iwasaki M, Yamaji T, Kweon SS, Aronson KJ, Murphy RA, Koh WP, Khor CC, Yuan JM, Dorajoo R, Walters RG, Chen Z, Li L, Lv J, Jung KJ, Kraft P, Pharoah PDB, Dunning AM, Simard J, Shu XO, Yip CH, Taib NAM, Antoniou AC, Zheng W, Hartman M, Easton DF, Teo SH. Polygenic risk scores for prediction of breast cancer risk in Asian populations. Genet Med 2022; 24:586-600. [PMID: 34906514 PMCID: PMC7612481 DOI: 10.1016/j.gim.2021.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry.
Collapse
Affiliation(s)
- Weang-Kee Ho
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia; Cancer Research Malaysia, Selangor, Malaysia.
| | | | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN; Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jingmei Li
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore; Genome Institute of Singapore, Laboratory of Women's Health and Genetics, Singapore, Singapore
| | - Peh Joo Ho
- Genome Institute of Singapore, Laboratory of Women's Health and Genetics, Singapore, Singapore
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; MRC Population Health Research Unit, University of Oxford, Oxford, United Kingdom
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yon-Ho Jee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Su-Hyun Lee
- Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Cyprus; Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Cyprus
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
| | | | | | - Kartini Rahmat
- Biomedical Imaging Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Veronique Kiak Mien Tan
- Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore; Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Benita Kiat Tee Tan
- Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore; Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore; Department of General Surgery, Sengkang General Hospital, Singapore, Singapore
| | - Su Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Swee Ho Lim
- KK Breast Department, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Ji-Yeob Choi
- Cancer Research Institute, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Institute of Health Policy and Management, Medical Research Center, Seoul National University, Seoul, Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul, Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Michiki Kubo
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita, Japan
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, Korea
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Boyoung Park
- Department of Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Centre, Happy Valley, Hong Kong; Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hong Kong; Department of Surgery, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Centre, Happy Valley, Hong Kong; Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Esther M John
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA; Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA
| | - Allison W Kurian
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA; Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea; Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rachel A Murphy
- Cancer Control Research, BC Cancer, Vancouver, British Columbia, Canada; School of Population and Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; MRC Population Health Research Unit, University of Oxford, Oxford, United Kingdom
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; MRC Population Health Research Unit, University of Oxford, Oxford, United Kingdom
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Keum-Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Paul D B Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Jacques Simard
- Genomics Center, CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
| | | | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, University of Malaya Centre, UM Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN
| | - Mikael Hartman
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya Centre, UM Cancer Research Institute, Kuala Lumpur, Malaysia.
| |
Collapse
|
129
|
Barnekow E, Liu W, Helgadottir HT, Michailidou K, Dennis J, Bryant P, Thutkawkorapin J, Wendt C, Czene K, Hall P, Margolin S, Lindblom A. A Swedish Genome-Wide Haplotype Association Analysis Identifies a Novel Breast Cancer Susceptibility Locus in 8p21.2 and Characterizes Three Loci on Chromosomes 10, 11 and 16. Cancers (Basel) 2022; 14:cancers14051206. [PMID: 35267517 PMCID: PMC8909613 DOI: 10.3390/cancers14051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: The heritability of breast cancer is partly explained but much of the genetic contribution remains to be identified. Haplotypes are often used as markers of ethnicity as they are preserved through generations. We have previously demonstrated that haplotype analysis, in addition to standard SNP association studies, could give novel and more detailed information on genetic cancer susceptibility. (2) Methods: In order to examine the association of a SNP or a haplotype to breast cancer risk, we performed a genome wide haplotype association study, using sliding window analysis of window sizes 1−25 and 50 SNPs, in 3200 Swedish breast cancer cases and 5021 controls. (3) Results: We identified a novel breast cancer susceptibility locus in 8p21.1 (OR 2.08; p 3.92 × 10−8), confirmed three known loci in 10q26.13, 11q13.3, 16q12.1-2 and further identified novel subloci within these three loci. Altogether 76 risk SNPs, 3302 risk haplotypes of window size 2−25 and 113 risk haplotypes of window size 50 at p < 5 × 10−8 on chromosomes 8, 10, 11 and 16 were identified. In the known loci haplotype analysis reached an OR of 1.48 in overall breast cancer and in familial cases OR 1.68. (4) Conclusions: Analyzing haplotypes, rather than single variants, could detect novel susceptibility loci even in small study populations but the method requires a fairly homogenous study population.
Collapse
Affiliation(s)
- Elin Barnekow
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden; (C.W.); (S.M.)
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
- Correspondence: (E.B.); (A.L.); Tel.: +46-736-565-798 (E.B.); +46-852-485-248 (A.L.)
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Neuroscience, Uppsala University, 75237 Uppsala, Sweden
| | - Hafdis T. Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Kyriaki Michailidou
- The Cyprus Institute of Neurology & Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus;
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB18RN, UK;
| | - Patrick Bryant
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Biochemistry and Biophysics, Stockholm University, 17165 Stockholm, Sweden
- Science for Life Laboratory, 17165 Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden; (C.W.); (S.M.)
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Per Hall
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Sara Margolin
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden; (C.W.); (S.M.)
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
- Correspondence: (E.B.); (A.L.); Tel.: +46-736-565-798 (E.B.); +46-852-485-248 (A.L.)
| |
Collapse
|
130
|
Li C, Niu M, Guo Z, Liu P, Zheng Y, Liu D, Yang S, Wang W, Li Y, Hou H. A Mild Causal Relationship Between Tea Consumption and Obesity in General Population: A Two-Sample Mendelian Randomization Study. Front Genet 2022; 13:795049. [PMID: 35281810 PMCID: PMC8907656 DOI: 10.3389/fgene.2022.795049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/25/2022] [Indexed: 12/08/2022] Open
Abstract
Evidence from observational studies for the effect of tea consumption on obesity is inconclusive. This study aimed to verify the causal association between tea consumption and obesity through a two-sample Mendelian randomization (MR) analysis in general population-based datasets. The genetic instruments, single nucleotide polymorphisms (SNPs) associated with tea consumption habits, were obtained from genome-wide association studies (GWAS): UK Biobank, Nurses' Health Study, Health Professionals Follow-up Study, and Women's Genome Health Study. The effect of the genetic instruments on obesity was analyzed using the UK Biobank dataset (among ∼500,000 participants). The causal relationship between tea consumption and obesity was analyzed by five methods of MR analyses: inverse variance weighted (IVW) method, MR-Egger regression method, weighted median estimator (WME), weighted mode, and simple mode. Ninety-one SNPs were identified as genetic instruments in our study. A mild causation was found by IVW (odds ratio [OR] = 0.998, 95% confidence interval [CI] = 0.996 to 1.000, p = 0.049]), which is commonly used in two-sample MR analysis, indicating that tea consumption has a statistically significant but medically weak effect on obesity control. However, the other four approaches did not show significance. Since there was no heterogeneity and pleiotropy in this study, the IVW approach has the priority of recommendation. Further studies are needed to clarify the effects of tea consumption on obesity-related health problems in detail.
Collapse
Affiliation(s)
- Cancan Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Mingyun Niu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Zheng Guo
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Pengcheng Liu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yulu Zheng
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Song Yang
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Yuanmin Li
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
131
|
Liu Y, Gusev A, Heng YJ, Alexandrov LB, Kraft P. Somatic mutational profiles and germline polygenic risk scores in human cancer. Genome Med 2022; 14:14. [PMID: 35144655 PMCID: PMC8832866 DOI: 10.1186/s13073-022-01016-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The mutational profile of cancer reflects the activity of the mutagenic processes which have been operative throughout the lineage of the cancer cell. These processes leave characteristic profiles of somatic mutations called mutational signatures. Mutational signatures, including single-base substitution (SBS) signatures, may reflect the effects of exogenous or endogenous exposures. METHODS We used polygenic risk scores (PRS) to summarize common germline variation associated with cancer risk and other cancer-related traits and examined the association between somatic mutational profiles and germline PRS in 12 cancer types from The Cancer Genome Atlas. Somatic mutational profiles were constructed from whole-exome sequencing data of primary tumors. PRS were calculated for the 12 selected cancer types and 9 non-cancer traits, including cancer risk determinants, hormonal factors, and immune-mediated inflammatory diseases, using germline genetic data and published summary statistics from genome-wide association studies. RESULTS We found 17 statistically significant associations between somatic mutational profiles and germline PRS after Bonferroni correction (p < 3.15 × 10-5), including positive associations between germline inflammatory bowel disease PRS and number of somatic mutations attributed to signature SBS1 in prostate cancer and APOBEC-related signatures in breast cancer. Positive associations were also found between age at menarche PRS and mutation counts of SBS1 in overall and estrogen receptor-positive breast cancer. Consistent with prior studies that found an inverse association between the pubertal development PRS and risk of prostate cancer, likely reflecting hormone-related mechanisms, we found an inverse association between age at menarche PRS and mutation counts of SBS1 in prostate cancer. Inverse associations were also found between several cancer PRS and tumor mutation counts. CONCLUSIONS Our analysis suggests that there are robust associations between tumor somatic mutational profiles and germline PRS. These may reflect the mechanisms through hormone regulation and immune responses that contribute to cancer etiology and drive cancer progression.
Collapse
Affiliation(s)
- Yuxi Liu
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115 USA
| | - Alexander Gusev
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215 USA
| | - Yujing J. Heng
- grid.38142.3c000000041936754XDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Ludmil B. Alexandrov
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Peter Kraft
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
132
|
Marino N, German R, Podicheti R, Rusch DB, Rockey P, Huang J, Sandusky GE, Temm CJ, Althouse S, Nephew KP, Nakshatri H, Liu J, Vode A, Cao S, Storniolo AMV. Aberrant epigenetic and transcriptional events associated with breast cancer risk. Clin Epigenetics 2022; 14:21. [PMID: 35139887 PMCID: PMC8830042 DOI: 10.1186/s13148-022-01239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. RESULTS Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. CONCLUSIONS Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.
Collapse
Affiliation(s)
- Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA. .,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Rana German
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Pam Rockey
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Jie Huang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - George E Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Constance J Temm
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kenneth P Nephew
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Bloomington, IN, 47405, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Liu
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Ashley Vode
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
133
|
Xu J, Li Z, Zuo X, Li G, Zhang X, Zhang B, Cui Y. Knockdown of NAA25 Suppresses Breast Cancer Progression by Regulating Apoptosis and Cell Cycle. Front Oncol 2022; 11:755267. [PMID: 35096568 PMCID: PMC8792228 DOI: 10.3389/fonc.2021.755267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
NAA25 gene variants were reported as risk factors for type 1 diabetes, rheumatoid arthritis and acute arterial stroke. But it’s unknown whether it could contribute to breast cancer. We identified rs11066150 in lncHSAT164, which contributes to breast cancer, in our earlier genome-wide long non-coding RNA association study on Han Chinese women. However, rs11066150 A/G variant is also located in NAA25 intron. Based on the public database, such as TCGA and Curtis dataset, NAA25 gene is highly expressed in breast cancer tissues and this result has also been proved in our samples and cell lines through RT-qPCR and western blot analysis. To better understand the function of NAA25 in breast cancer, we knocked down the expression of NAA25 in breast cancer cell lines, FACS was used to detect cell apoptosis and cell cycle and colony formation assay was used to detect cell proliferation. We found that NAA25-deficient cells could increase cell apoptosis, delay G2/M phase cell and decrease cell clone formation. RNA sequencing was then applied to analyze the molecular profiles of NAA25−deficient cells, and compared to the control group, NAA25 knockdown could activate apoptosis-related pathways, reduce the activation of tumor-associated signaling pathways and decrease immune response-associated pathways. Additionally, RT-qPCR was employed to validate these results. Taken together, our results revealed that NAA25 was highly expressed in breast cancer, and NAA25 knockdown might serve as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Jingkai Xu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Zhi Li
- Department of Dermatology, Jiangsu Province Hospital, Nanjing, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Guozheng Li
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
134
|
Alcina A, Fedetz M, Vidal-Cobo I, Andrés-León E, García-Sánchez MI, Barroso-Del-Jesus A, Eichau S, Gil-Varea E, Villar LM, Saiz A, Leyva L, Vandenbroeck K, Otaegui D, Izquierdo G, Comabella M, Urcelay E, Matesanz F. Identification of the genetic mechanism that associates L3MBTL3 to multiple sclerosis. Hum Mol Genet 2022; 31:2155-2163. [PMID: 35088080 PMCID: PMC9262392 DOI: 10.1093/hmg/ddac009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a complex and demyelinating disease of the central nervous system. One of the challenges of the post-GWAS era is to understand the molecular basis of statistical associations to reveal gene networks and potential therapeutic targets. The L3MBTL3 locus has been associated with MS risk by GWAS. To identify the causal variant of the locus, we performed fine mapping in a cohort of 3440 MS patients and 1688 healthy controls. The variant that best explained the association was rs6569648 (P = 4.13E-10, OR = 0.71, 95% CI = 0.64-0.79), which tagged rs7740107, located in intron 7 of L3MBTL3. The rs7740107 (A/T) variant has been reported to be the best expression and splice quantitative trait locus (eQTL and sQTL) of the region in up to 35 human GTEx tissues. By sequencing RNA from blood of 17 MS patients and quantification by digital qPCR, we determined that this eQTL/sQTL originated from the expression of a novel short transcript starting in intron 7 near rs7740107. The short transcript was translated into three proteins starting at different translation initiation codons. These N-terminal truncated proteins lacked the region where L3MBTL3 interacts with the transcriptional regulator RBPJ (Recombination Signal Binding Protein for Immunoglobulin Kappa J Region) which, in turn, regulates the Notch signaling pathway. Our data and other functional studies suggest that the genetic mechanism underlying the MS association of rs7740107 affects not only the expression of L3MBTL3 isoforms, but might also involve the Notch signaling pathway.
Collapse
Affiliation(s)
- Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC) 18016 Granada, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC) 18016 Granada, Spain
| | - Isabel Vidal-Cobo
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC) 18016 Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatic Unit, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Granada, Spain
| | - Maria-Isabel García-Sánchez
- UGC Neurología. Nodo Hospital Universitario Virgen Macarena, Biobanco del Sistema Sanitario Público de Andalucía, Sevilla, (Spain)
| | - Alicia Barroso-Del-Jesus
- Genomics Unit, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Granada, Spain
| | - Sara Eichau
- UGC Neurología. Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Elia Gil-Varea
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Luisa-Maria Villar
- Departments of Immunology, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Albert Saiz
- Servicio de Neurología, Hospital Clinic and Institut d'Investigació Biomèdica Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Laura Leyva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Koen Vandenbroeck
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David Otaegui
- Neurosciences Area, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Guillermo Izquierdo
- Multiple Sclerosis Unit, Neurology Service, Vithas Nisa Hospital, 41950 Seville, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Elena Urcelay
- Lab. of Genetics of Complex Diseases, Hospital Clinico San Carlos, Instituto de Investigacion Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC) 18016 Granada, Spain
| |
Collapse
|
135
|
Dennis J, Tyrer JP, Walker LC, Michailidou K, Dorling L, Bolla MK, Wang Q, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Brenner H, Castelao JE, Chang-Claude J, Chenevix-Trench G, Clarke CL, Collée JM, Couch FJ, Cox A, Cross SS, Czene K, Devilee P, Dörk T, Dossus L, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Figueroa J, Fletcher O, Flyger H, Fritschi L, Gabrielson M, Gago-Dominguez M, García-Closas M, Giles GG, González-Neira A, Guénel P, Hahnen E, Haiman CA, Hall P, Hollestelle A, Hoppe R, Hopper JL, Howell A, Jager A, Jakubowska A, John EM, Johnson N, Jones ME, Jung A, Kaaks R, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Kosma VM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Lacey JV, Lambrechts D, Larson NL, Linet M, Ogrodniczak A, Mannermaa A, Manoukian S, Margolin S, Mavroudis D, Milne RL, Muranen TA, Murphy RA, Nevanlinna H, Olson JE, Olsson H, Park-Simon TW, Perou CM, Peterlongo P, Plaseska-Karanfilska D, Pylkäs K, Rennert G, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Shibli R, Smeets A, Soucy P, et alDennis J, Tyrer JP, Walker LC, Michailidou K, Dorling L, Bolla MK, Wang Q, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Freeman LEB, Beckmann MW, Behrens S, Benitez J, Bermisheva M, Bogdanova NV, Bojesen SE, Brenner H, Castelao JE, Chang-Claude J, Chenevix-Trench G, Clarke CL, Collée JM, Couch FJ, Cox A, Cross SS, Czene K, Devilee P, Dörk T, Dossus L, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Figueroa J, Fletcher O, Flyger H, Fritschi L, Gabrielson M, Gago-Dominguez M, García-Closas M, Giles GG, González-Neira A, Guénel P, Hahnen E, Haiman CA, Hall P, Hollestelle A, Hoppe R, Hopper JL, Howell A, Jager A, Jakubowska A, John EM, Johnson N, Jones ME, Jung A, Kaaks R, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Kosma VM, Koutros S, Kraft P, Kristensen VN, Kubelka-Sabit K, Kurian AW, Lacey JV, Lambrechts D, Larson NL, Linet M, Ogrodniczak A, Mannermaa A, Manoukian S, Margolin S, Mavroudis D, Milne RL, Muranen TA, Murphy RA, Nevanlinna H, Olson JE, Olsson H, Park-Simon TW, Perou CM, Peterlongo P, Plaseska-Karanfilska D, Pylkäs K, Rennert G, Saloustros E, Sandler DP, Sawyer EJ, Schmidt MK, Schmutzler RK, Shibli R, Smeets A, Soucy P, Southey MC, Swerdlow AJ, Tamimi RM, Taylor JA, Teras LR, Terry MB, Tomlinson I, Troester MA, Truong T, Vachon CM, Wendt C, Winqvist R, Wolk A, Yang XR, Zheng W, Ziogas A, Simard J, Dunning AM, Pharoah PDP, Easton DF. Rare germline copy number variants (CNVs) and breast cancer risk. Commun Biol 2022; 5:65. [PMID: 35042965 PMCID: PMC8766486 DOI: 10.1038/s42003-021-02990-6] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Germline copy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data. Gene burden tests detected the strongest association for deletions in BRCA1 (P = 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P = 0.0008), ATM (P = 0.002) and BRCA2 (P = 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci. To the best of our knowledge, this is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance.
Collapse
Affiliation(s)
- Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Javier Benitez
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, WA, Australia
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif, France
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nichola Johnson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | - Veli-Matti Kosma
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Nicole L Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alicja Ogrodniczak
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, Canada
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje, Republic of North Macedonia
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rana Shibli
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif, France
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
136
|
Choi J, Jia G, Wen W, Tao R, Long J, Shu XO, Zheng W. Associations of genetic susceptibility to 16 cancers with risk of breast cancer overall and by intrinsic subtypes. HGG ADVANCES 2022; 3:100077. [PMID: 35047862 PMCID: PMC8756518 DOI: 10.1016/j.xhgg.2021.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Certain genetic variants are associated with risks of multiple cancers. We investigated breast cancer risk with overall genetic susceptibility to each of 16 other cancers. We constructed polygenic risk scores (PRS) for 16 cancers using risk variants identified by genome-wide association studies. We evaluated the associations of these PRSs with breast cancer risk (overall and by subtypes) using Breast Cancer Association Consortium data, including 106,278 cases and 91,477 controls of European ancestry. Odds ratios (OR) and 95% confidence intervals (CIs) were estimated to measure the association of each PRS with breast cancer risk. Data from the UK Biobank, including 4,337 cases and 209,983 non-cases, were used to replicate the findings. A 5%-8% significantly elevated risk of overall breast cancer was associated with per unit increase of the PRS for glioma and cancers of the corpus uteri, stomach, or colorectum. Analyses by subtype revealed that the PRS for corpus uteri cancer (OR = 1.09; 95% CI, 1.03-1.15) and stomach cancer (OR = 1.07; 95% CI, 1.03-1.12) were associated with estrogen receptor-positive breast cancer, while ovarian cancer PRS was associated with triple-negative breast cancer (OR = 1.25; 95% CI, 1.01-1.55). UK Biobank data supported the positive associations of overall breast cancer risk with PRS for melanoma and cancers of the stomach, colorectum, and ovary. Our study provides strong evidence for shared genetic susceptibility of breast cancer with several other cancers. Results from our study help uncover the genetic basis for breast and other cancers and identify individuals at high risk for multiple cancers.
Collapse
Affiliation(s)
- Jungyoon Choi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
137
|
Parrish RL, Gibson GC, Epstein MP, Yang J. TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8. HGG ADVANCES 2022; 3:100068. [PMID: 35047855 PMCID: PMC8756507 DOI: 10.1016/j.xhgg.2021.100068] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 01/12/2023] Open
Abstract
Standard transcriptome-wide association study (TWAS) methods first train gene expression prediction models using reference transcriptomic data and then test the association between the predicted genetically regulated gene expression and phenotype of interest. Most existing TWAS tools require cumbersome preparation of genotype input files and extra coding to enable parallel computation. To improve the efficiency of TWAS tools, we developed Transcriptome-Integrated Genetic Association Resource V2 (TIGAR-V2), which directly reads Variant Call Format (VCF) files, enables parallel computation, and reduces up to 90% of computation cost (mainly due to loading genotype data) compared to the original version. TIGAR-V2 can train gene expression imputation models using either nonparametric Bayesian Dirichlet process regression (DPR) or Elastic-Net (as used by PrediXcan), perform TWASs using either individual-level or summary-level genome-wide association study (GWAS) data, and implement both burden and variance-component statistics for gene-based association tests. We trained gene expression prediction models by DPR for 49 tissues using Genotype-Tissue Expression (GTEx) V8 by TIGAR-V2 and illustrated the usefulness of these Bayesian cis-expression quantitative trait locus (eQTL) weights through TWASs of breast and ovarian cancer utilizing public GWAS summary statistics. We identified 88 and 37 risk genes, respectively, for breast and ovarian cancer, most of which are either known or near previously identified GWAS (∼95%) or TWAS (∼40%) risk genes and three novel independent TWAS risk genes with known functions in carcinogenesis. These findings suggest that TWASs can provide biological insight into the transcriptional regulation of complex diseases. The TIGAR-V2 tool, trained Bayesian cis-eQTL weights, and linkage disequilibrium (LD) information from GTEx V8 are publicly available, providing a useful resource for mapping risk genes of complex diseases.
Collapse
Affiliation(s)
- Randy L. Parrish
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Greg C. Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michael P. Epstein
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
138
|
Barnes DR, Silvestri V, Leslie G, McGuffog L, Dennis J, Yang X, Adlard J, Agnarsson BA, Ahmed M, Aittomäki K, Andrulis IL, Arason A, Arnold N, Auber B, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Barwell J, Belotti M, Benitez J, Berthet P, Boonen SE, Borg Å, Bozsik A, Brady AF, Brennan P, Brewer C, Brunet J, Bucalo A, Buys SS, Caldés T, Caligo MA, Campbell I, Cassingham H, Christensen LL, Cini G, Claes KBM, GEMO Study Collaborators, EMBRACE Collaborators, Cook J, Coppa A, Cortesi L, Damante G, Darder E, Davidson R, de la Hoya M, De Leeneer K, de Putter R, Del Valle J, Diez O, Ding YC, Domchek SM, Donaldson A, Eason J, Eeles R, Engel C, Evans DG, Feliubadaló L, Fostira F, Frone M, Frost D, Gallagher D, Gehrig A, Giraud S, Glendon G, Godwin AK, Goldgar DE, Greene MH, Gregory H, Gross E, Hahnen E, Hamann U, Hansen TVO, Hanson H, Hentschel J, Horvath J, KConFab Investigators, HEBON Investigators, Izatt L, Izquierdo A, James PA, Janavicius R, Jensen UB, Johannsson OT, John EM, Kramer G, Kroeldrup L, Kruse TA, Lautrup C, Lazaro C, Lesueur F, Lopez-Fernández A, Mai PL, Manoukian S, Matrai Z, Matricardi L, Maxwell KN, Mebirouk N, Meindl A, et alBarnes DR, Silvestri V, Leslie G, McGuffog L, Dennis J, Yang X, Adlard J, Agnarsson BA, Ahmed M, Aittomäki K, Andrulis IL, Arason A, Arnold N, Auber B, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Barwell J, Belotti M, Benitez J, Berthet P, Boonen SE, Borg Å, Bozsik A, Brady AF, Brennan P, Brewer C, Brunet J, Bucalo A, Buys SS, Caldés T, Caligo MA, Campbell I, Cassingham H, Christensen LL, Cini G, Claes KBM, GEMO Study Collaborators, EMBRACE Collaborators, Cook J, Coppa A, Cortesi L, Damante G, Darder E, Davidson R, de la Hoya M, De Leeneer K, de Putter R, Del Valle J, Diez O, Ding YC, Domchek SM, Donaldson A, Eason J, Eeles R, Engel C, Evans DG, Feliubadaló L, Fostira F, Frone M, Frost D, Gallagher D, Gehrig A, Giraud S, Glendon G, Godwin AK, Goldgar DE, Greene MH, Gregory H, Gross E, Hahnen E, Hamann U, Hansen TVO, Hanson H, Hentschel J, Horvath J, KConFab Investigators, HEBON Investigators, Izatt L, Izquierdo A, James PA, Janavicius R, Jensen UB, Johannsson OT, John EM, Kramer G, Kroeldrup L, Kruse TA, Lautrup C, Lazaro C, Lesueur F, Lopez-Fernández A, Mai PL, Manoukian S, Matrai Z, Matricardi L, Maxwell KN, Mebirouk N, Meindl A, Montagna M, Monteiro AN, Morrison PJ, Muranen TA, Murray A, Nathanson KL, Neuhausen SL, Nevanlinna H, Nguyen-Dumont T, Niederacher D, Olah E, Olopade OI, Palli D, Parsons MT, Pedersen IS, Peissel B, Perez-Segura P, Peterlongo P, Petersen AH, Pinto P, Porteous ME, Pottinger C, Pujana MA, Radice P, Ramser J, Rantala J, Robson M, Rogers MT, Rønlund K, Rump A, Sánchez de Abajo AM, Shah PD, Sharif S, Side LE, Singer CF, Stadler Z, Steele L, Stoppa-Lyonnet D, Sutter C, Tan YY, Teixeira MR, Teulé A, Thull DL, Tischkowitz M, Toland AE, Tommasi S, Toss A, Trainer AH, Tripathi V, Valentini V, van Asperen CJ, Venturelli M, Viel A, Vijai J, Walker L, Wang-Gohrke S, Wappenschmidt B, Whaite A, Zanna I, Offit K, Thomassen M, Couch FJ, Schmutzler RK, Simard J, Easton DF, Chenevix-Trench G, Antoniou AC, Ottini L, the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores. J Natl Cancer Inst 2022; 114:109-122. [PMID: 34320204 PMCID: PMC8755508 DOI: 10.1093/jnci/djab147] [Show More Authors] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. METHODS 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)-negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. RESULTS PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. CONCLUSIONS Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.
Collapse
Affiliation(s)
- Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian Adlard
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Bjarni A Agnarsson
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- School of Medicine, University of Iceland, Reykjavik, Iceland
| | - Munaza Ahmed
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Adalgeir Arason
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rosa B Barkardottir
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian Barwell
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Javier Benitez
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pascaline Berthet
- Département de Biopathologie, Centre François Baclesse, Caen, France
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Aniko Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Angela F Brady
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
| | - Paul Brennan
- Northern Genetics Service, Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | - Carole Brewer
- Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, UK
| | - Joan Brunet
- Hereditary Cancer Program, Oncobell-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saundra S Buys
- Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Trinidad Caldés
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Ian Campbell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hayley Cassingham
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Giulia Cini
- Division of Functional Onco-Genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | | | - GEMO Study Collaborators
- Department of Tumour Biology, INSERM U830, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - EMBRACE Collaborators
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jackie Cook
- Sheffield Clinical Genetics Service, Sheffield Children’s Hospital, Sheffield, UK
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Esther Darder
- Hereditary Cancer Program, Oncobell-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Rosemarie Davidson
- Department of Clinical Genetics, South Glasgow University Hospitals, Glasgow, UK
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Kim De Leeneer
- Centre for Medical Genetics, Ghent University, Gent, Belgium
| | - Robin de Putter
- Centre for Medical Genetics, Ghent University, Gent, Belgium
| | - Jesús Del Valle
- Hereditary Cancer Program, Oncobell-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Donaldson
- Clinical Genetics Department, St Michael’s Hospital, Bristol, UK
| | - Jacqueline Eason
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ros Eeles
- Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE—Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Oncobell-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Megan Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - David Gallagher
- Academic Unit of Clinical and Molecular Oncology, Trinity College Dublin and St James’s Hospital, Dublin, Eire
| | - Andrea Gehrig
- Department of Human Genetics, University Würzburg, Würzburg, Germany
| | - Sophie Giraud
- Service de Génétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas, Medical Center, Kansas City, KS, USA
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Helen Gregory
- North of Scotland Regional Genetics Service, NHS Grampian & University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Eva Gross
- Department of Gynecology and Obstetrics, University of Munich, Munich, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helen Hanson
- Southwest Thames Regional Genetics Service, St George’s Hospital, London, UK
| | - Julia Hentschel
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Judit Horvath
- Institute of Human Genetics, University of Münster, Münster, Germany
| | | | - HEBON Investigators
- The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON), Coordinating Center: The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Angel Izquierdo
- Hereditary Cancer Program, Oncobell-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Ramunas Janavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Human and Medical Genetics, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Lone Kroeldrup
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Conxi Lazaro
- Hereditary Cancer Program, Oncobell-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Fabienne Lesueur
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
| | - Adria Lopez-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Phuong L Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Zoltan Matrai
- Department of Surgery, National Institute of Oncology, Budapest, Hungary
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV—IRCCS, Padua, Italy
| | - Kara N Maxwell
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Noura Mebirouk
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Munich, Germany
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV—IRCCS, Padua, Italy
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Alex Murray
- All Wales Medical Genetics Services, University Hospital of Wales, Cardiff, UK
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Inge Sokilde Pedersen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Pedro Perez-Segura
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM—the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Pedro Pinto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Mary E Porteous
- South East of Scotland Regional Genetics Service, Western General Hospital, Edinburgh, UK
| | - Caroline Pottinger
- All Wales Medical Genetics Services, University Hospital of Wales, Cardiff, UK
| | - Miquel Angel Pujana
- Translational Research Laboratory, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Mark Robson
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T Rogers
- All Wales Medical Genetics Services, University Hospital of Wales, Cardiff, UK
| | - Karina Rønlund
- Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ana María Sánchez de Abajo
- Servicio de Análisis Clínicos y Bioquímica Clínica, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria , Las Palmas de Gran Canaría, Spain
| | - Payal D Shah
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Saba Sharif
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital Healthcare NHS Trust, Birmingham, UK
| | | | - Christian F Singer
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Zsofia Stadler
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Yen Yen Tan
- Dept of OB/GYN, Medical University of Vienna, Vienna, Austria
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Alex Teulé
- Hereditary Cancer Program, Oncobell-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Darcy L Thull
- Department of Medicine, Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | | | - Angela Toss
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alison H Trainer
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Vishakha Tripathi
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marta Venturelli
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Viel
- Division of Functional Onco-Genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Walker
- Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK
| | - Shan Wang-Gohrke
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Whaite
- Liverpool Centre for Genomic Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
| | - Ines Zanna
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec—Université Laval Research Center, Québec City, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
139
|
Ahearn TU, Zhang H, Michailidou K, Milne RL, Bolla MK, Dennis J, Dunning AM, Lush M, Wang Q, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Augustinsson A, Baten A, Becher H, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Clarke CL, Collée JM, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dwek M, Eccles DM, Evans DG, Fasching PA, Figueroa J, Floris G, Gago-Dominguez M, Gapstur SM, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haiman CA, Hall P, Hamann U, Harkness EF, Heemskerk-Gerritsen BAM, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Jakimovska M, Jakubowska A, John EM, Jones ME, Jung A, Kaaks R, Kauppila S, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Koutros S, Kristensen VN, Krüger U, Kubelka-Sabit K, Kurian AW, Kyriacou K, Lambrechts D, Lee DG, Lindblom A, Linet M, Lissowska J, Llaneza A, Lo WY, MacInnis RJ, Mannermaa A, Manoochehri M, Margolin S, Martinez ME, McLean C, et alAhearn TU, Zhang H, Michailidou K, Milne RL, Bolla MK, Dennis J, Dunning AM, Lush M, Wang Q, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Augustinsson A, Baten A, Becher H, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Clarke CL, Collée JM, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dwek M, Eccles DM, Evans DG, Fasching PA, Figueroa J, Floris G, Gago-Dominguez M, Gapstur SM, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haiman CA, Hall P, Hamann U, Harkness EF, Heemskerk-Gerritsen BAM, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Jakimovska M, Jakubowska A, John EM, Jones ME, Jung A, Kaaks R, Kauppila S, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Koutros S, Kristensen VN, Krüger U, Kubelka-Sabit K, Kurian AW, Kyriacou K, Lambrechts D, Lee DG, Lindblom A, Linet M, Lissowska J, Llaneza A, Lo WY, MacInnis RJ, Mannermaa A, Manoochehri M, Margolin S, Martinez ME, McLean C, Meindl A, Menon U, Nevanlinna H, Newman WG, Nodora J, Offit K, Olsson H, Orr N, Park-Simon TW, Patel AV, Peto J, Pita G, Plaseska-Karanfilska D, Prentice R, Punie K, Pylkäs K, Radice P, Rennert G, Romero A, Rüdiger T, Saloustros E, Sampson S, Sandler DP, Sawyer EJ, Schmutzler RK, Schoemaker MJ, Schöttker B, Sherman ME, Shu XO, Smichkoska S, Southey MC, Spinelli JJ, Swerdlow AJ, Tamimi RM, Tapper WJ, Taylor JA, Teras LR, Terry MB, Torres D, Troester MA, Vachon CM, van Deurzen CHM, van Veen EM, Wagner P, Weinberg CR, Wendt C, Wesseling J, Winqvist R, Wolk A, Yang XR, Zheng W, Couch FJ, Simard J, Kraft P, Easton DF, Pharoah PDP, Schmidt MK, García-Closas M, Chatterjee N. Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Res 2022; 24:2. [PMID: 34983606 PMCID: PMC8725568 DOI: 10.1186/s13058-021-01484-x] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
Collapse
Affiliation(s)
- Thomas U Ahearn
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kyriaki Michailidou
- Institute of Neurology & Genetics, Biostatistics Unit, Nicosia, Cyprus
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cyprus School of Molecular Medicine, Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Paul L Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Adinda Baten
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Biomedical Network On Rare Diseases (CIBERER), Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Saint Petersburg State University, Saint-Petersburg, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - Stig E Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Angela Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute, Ruhr University Bochum (IPA), Bochum, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), C080, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Angela Cox
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Department of Neuroscience, Academic Unit of Pathology, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - D Gareth Evans
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Giuseppe Floris
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - José A García-Sáenz
- Medical Oncology Department, Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Mark S Goldberg
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Grethe I Grenaker Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elaine F Harkness
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | | | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert N Hoover
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Milena Jakimovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", MASA, Skopje, Republic of North Macedonia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter Kliniken Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Stella Koutros
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ute Krüger
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Katerina Kubelka-Sabit
- Department of Histopathology and Cytology, Clinical Hospital Acibadem Sistina, Skopje, Republic of North Macedonia
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyriacos Kyriacou
- Cyprus School of Molecular Medicine, Institute of Neurology & Genetics, Nicosia, Cyprus
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Derrick G Lee
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ana Llaneza
- General and Gastroenterology Surgery Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Wing-Yee Lo
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset Stockholm, Sweden
| | | | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich, Germany
| | - Usha Menon
- Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William G Newman
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jesse Nodora
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland, UK
| | | | - Alpa V Patel
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, School of Hygiene and Tropical Medicine, London, UK
| | - Guillermo Pita
- Human Genotyping-CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", MASA, Skopje, Republic of North Macedonia
| | - Ross Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Center, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, University of Oulu, Biocenter Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Technion Faculty of Medicine, Clalit National Cancer Control Center, Carmel Medical Center, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Thomas Rüdiger
- Institute of Pathology, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Sarah Sampson
- Prevent Breast Cancer Centre and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Rita K Schmutzler
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Snezhana Smichkoska
- Medical Faculty, Ss. Cyril and Methodius University in Skopje, University Clinic of Radiotherapy and Oncology, Skopje, Republic of North Macedonia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | | | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Lauren R Teras
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | | | - Elke M van Veen
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Philippe Wagner
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Camilla Wendt
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset Stockholm, Sweden
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, University of Oulu, Biocenter Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Genomics Center, Department of Molecular Medicine, Centre Hospitalier Universitaire de Québec, Université Laval Research Center, Université Laval, Québec City, QC, Canada
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and GeneticsDepartment of Health and Human Services, Medical Center Drive, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
140
|
Van Asselt AJ, Ehli EA. Whole-Genome Genotyping Using DNA Microarrays for Population Genetics. Methods Mol Biol 2022; 2418:269-287. [PMID: 35119671 DOI: 10.1007/978-1-0716-1920-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of population genetics has exploded in the last two decades following the sequencing of the human genome in 2001 (Green et al. Nature 526:29-31, 2015). Tools to measure genetic variation have matured significantly throughout this advancement in knowledge (Lenoir and Giannella. J Biomed Discov Collab 1:11, 2006; Marzancola et al. Methods Mol Biol 1368:161-178, 2016). In this chapter, the focus is on the laboratory methods developed to perform genome-wide genotyping utilizing DNA microarrays, which is one of the most commonly used molecular techniques to assess global genetic variation (Heller MJ, Annu Rev Biomed Eng 4:129-153, 2002). DNA microarrays allow for the interrogation of hundreds of thousands of SNPs (single nucleotide polymorphisms) at once utilizing array-based technology in conjunction with fluorescent molecular labels in a process referred to as genotyping (Marzancola et al. Methods Mol Biol 1368:161-178, 2016). Genotype data can be utilized to associate certain phenotypes in relation with specific genetic variants within a population in a process known as genome-wide association studies or GWAS (Charlesworth and Charlesworth. Heredity (Edinb) 118(1):2-9, 2017; Casillas and Barbadilla. Genetics 205(3):1003-1035, 2017). This experimental technique is a multiple-day process involving the combination of DNA extraction, amplification, fragmentation, binding, and staining (Illumina Infinium HTS Assay Protocol Guide, 2013). Many vendors supply platforms and products to assess global genetic variation using DNA microarrays (Illumina Infinium HTS Assay Protocol Guide, 2013). In this chapter, the focus is on the methods utilized to generate high-quality genotype data with the Illumina® Infinium Global Screening Array. Although data analysis and quality control are not the focus for this chapter, they are also briefly addressed.
Collapse
Affiliation(s)
- Austin J Van Asselt
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA.
- Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
141
|
Long Non-Coding RNAs at the Chromosomal Risk Loci Identified by Prostate and Breast Cancer GWAS. Genes (Basel) 2021; 12:genes12122028. [PMID: 34946977 PMCID: PMC8701176 DOI: 10.3390/genes12122028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key players in a variety of cellular processes. Deregulation of the lncRNAs has been implicated in prostate and breast cancers. Recently, germline genetic variations associated with cancer risk have been correlated with lncRNA expression and/or function. In addition, single nucleotide polymorphisms (SNPs) at well-characterized cancer-associated lncRNAs have been analyzed for their association with cancer risk. These SNPs may occur within the lncRNA transcripts or spanning regions that may alter the structure, function, and expression of these lncRNA molecules and contribute to cancer progression and may have potential as therapeutic targets for cancer treatment. Additionally, some of these lncRNA have a tissue-specific expression profile, suggesting them as biomarkers for specific cancers. In this review, we highlight some of the cancer risk-associated SNPs that modulated lncRNAs with a potential role in prostate and breast cancers and speculate on how these lncRNAs may contribute to cancer development.
Collapse
|
142
|
Wang Y, Zhu M, Ma H, Shen H. Polygenic risk scores: the future of cancer risk prediction, screening, and precision prevention. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:129-149. [PMID: 37724297 PMCID: PMC10471106 DOI: 10.1515/mr-2021-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 09/20/2023]
Abstract
Genome-wide association studies (GWASs) have shown that the genetic architecture of cancers are highly polygenic and enabled researchers to identify genetic risk loci for cancers. The genetic variants associated with a cancer can be combined into a polygenic risk score (PRS), which captures part of an individual's genetic susceptibility to cancer. Recently, PRSs have been widely used in cancer risk prediction and are shown to be capable of identifying groups of individuals who could benefit from the knowledge of their probabilistic susceptibility to cancer, which leads to an increased interest in understanding the potential utility of PRSs that might further refine the assessment and management of cancer risk. In this context, we provide an overview of the major discoveries from cancer GWASs. We then review the methodologies used for PRS construction, and describe steps for the development and evaluation of risk prediction models that include PRS and/or conventional risk factors. Potential utility of PRSs in cancer risk prediction, screening, and precision prevention are illustrated. Challenges and practical considerations relevant to the implementation of PRSs in health care settings are discussed.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
143
|
Exploring Implementation of Personal Breast Cancer Risk Assessments. J Pers Med 2021; 11:jpm11100992. [PMID: 34683136 PMCID: PMC8541275 DOI: 10.3390/jpm11100992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Personal Breast Cancer (BC) Risk Assessments (PBCRA) have potential to stratify women into clinically-actionable BC risk categories. As this could involve population-wide genomic testing, women's attitudes to PBCRA and views on acceptable implementation platforms must be considered to ensure optimal population participation. We explored these issues with 31 women with different BC risk profiles through semi-structured focus group discussions or interviews. Inductive thematic coding of transcripts was performed. Subsequently, women listed factors that would impact on their decision to participate. Participants' attitudes to PBCRA were positive. Identified themes included that PBCRA acceptance hinges on result actionability. Women value the ability to inform decision-making. Participants reported anxiety, stress, and genetic discrimination as potential barriers. The age at which PBCRA was offered, ease of access, and how results are returned held importance. Most women value the opportunity for PBCRA to inform increased surveillance, while highlighting hesitance to accept reduced surveillance as they find reassurance in regular screening. Women with BRCA pathogenic variants value the potential for PBCRA to identify a lower cancer risk and potentially inform delayed prophylactic surgery. This study highlights complexities in adopting advances in BC early detection, especially for current users who value existing processes as a social good.
Collapse
|
144
|
Yu P, Zhu L, Cui K, Du Y, Zhang C, Ma W, Guo J. B4GALNT2 Gene Promotes Proliferation, and Invasiveness and Migration Abilities of Model Triple Negative Breast Cancer (TNBC) Cells by Interacting With HLA-B Protein. Front Oncol 2021; 11:722828. [PMID: 34589428 PMCID: PMC8473878 DOI: 10.3389/fonc.2021.722828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
B4GALNT2 gene encodes the enzyme β1,4-N-acetylgalactosaminyltransferase 2 that biosynthesizes the histo-blood group antigen Sda, which is expressed on the surface of erythrocytes and in body secretions. Analysis of The Cancer Genome Atlas (TCGA) database revealed that this gene was highly expressed in breast cancer tissues in comparison with adjacent healthy ones. In-vitro lentivirus-assisted B4GALNT2 gene knockdown experiments in model triple negative breast cancer (TNBC) cell lines (HCC1937 and MDA-MB-231) showed inhibition in cell proliferation, decrease in cell viability, promotion of cell apoptosis and inhibitions in cell migration and invasiveness abilities in comparison with empty lentivirus transfectant controls. Also, in cell cycle tests, the number of cells in the G1 phase increased, in the S phase decreased and did not change in the G2/M phase (indicative of the presence of a block in the G1 phase). In-vivo tumor formation experiments in mice revealed that knockdown of the B4GALNT2 gene in MDA-MB-231 cells inhibited their proliferation. Using co-immunoprecipitation (Co-IP) mass spectroscopy-assisted analysis, it was found that HLA-B protein [a product of the human leukocyte antigen (HLA) class I gene] interacts with B4GALNT2 protein. In-vitro overexpression of HLA-B in B4GALNT2-knocked down MDA-MB-231 cell lines significantly recovered the cell proliferation, viability and migration ability of B4GALNT2 gene. These indicate that HLA-B is one of the interaction proteins in the downstream pathway of the B4GALNT2 gene.
Collapse
Affiliation(s)
- Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Zhu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaojie Zhang
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
145
|
Du Z, Gao G, Adedokun B, Ahearn T, Lunetta KL, Zirpoli G, Troester MA, Ruiz-Narváez EA, Haddad SA, PalChoudhury P, Figueroa J, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Mancuso N, Press MF, Deming SL, Rodriguez-Gil JL, Yao S, Ogundiran TO, Ojengbe O, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Sandler DP, Taylor JA, Wang Q, Weinberg CR, Kitahara CM, Blot W, Nathanson KL, Hennis A, Nemesure B, Ambs S, Sucheston-Campbell LE, Bensen JT, Chanock SJ, Olshan AF, Ambrosone CB, Olopade OI, Yarney J, Awuah B, Wiafe-Addai B, Conti DV, the GBHS Study Team, Palmer JR, Garcia-Closas M, Huo D, Haiman CA. Evaluating Polygenic Risk Scores for Breast Cancer in Women of African Ancestry. J Natl Cancer Inst 2021; 113:1168-1176. [PMID: 33769540 PMCID: PMC8418423 DOI: 10.1093/jnci/djab050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polygenic risk scores (PRSs) have been demonstrated to identify women of European, Asian, and Latino ancestry at elevated risk of developing breast cancer (BC). We evaluated the performance of existing PRSs trained in European ancestry populations among women of African ancestry. METHODS We assembled genotype data for women of African ancestry, including 9241 case subjects and 10 193 control subjects. We evaluated associations of 179- and 313-variant PRSs with overall and subtype-specific BC risk. PRS discriminatory accuracy was assessed using area under the receiver operating characteristic curve. We also evaluated a recalibrated PRS, replacing the index variant with variants in each region that better captured risk in women of African ancestry and estimated lifetime absolute risk of BC in African Americans by PRS category. RESULTS For overall BC, the odds ratio per SD of the 313-variant PRS (PRS313) was 1.27 (95% confidence interval [CI] = 1.23 to 1.31), with an area under the receiver operating characteristic curve of 0.571 (95% CI = 0.562 to 0.579). Compared with women with average risk (40th-60th PRS percentile), women in the top decile of PRS313 had a 1.54-fold increased risk (95% CI = 1.38-fold to 1.72-fold). By age 85 years, the absolute risk of overall BC was 19.6% for African American women in the top 1% of PRS313 and 6.7% for those in the lowest 1%. The recalibrated PRS did not improve BC risk prediction. CONCLUSION The PRSs stratify BC risk in women of African ancestry, with attenuated performance compared with that reported in European, Asian, and Latina populations. Future work is needed to improve BC risk stratification for women of African ancestry.
Collapse
Affiliation(s)
- Zhaohui Du
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Babatunde Adedokun
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Melissa A Troester
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Parichoy PalChoudhury
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
| | - Leslie Bernstein
- Division of Biomarkers of Early Detection and Prevention Department of Population Sciences, Beckman Research Institute of the City of Hope, City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Nyante
- Department of Epidemiology, Gillings School of Global Public Health and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa V Bandera
- Department of Population Science, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Sue A Ingles
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Sandra L Deming
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbe
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Katherine L Nathanson
- Department of Medicine, Abramson Cancer Center, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anselm Hennis
- Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Bridgetown, Barbados
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Lara E Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
146
|
Ruiz de Garibay G, Fernandez-Garcia I, Mazoyer S, Leme de Calais F, Ameri P, Vijayakumar S, Martinez-Ruiz H, Damiola F, Barjhoux L, Thomassen M, Andersen LVB, Herranz C, Mateo F, Palomero L, Espín R, Gómez A, García N, Jimenez D, Bonifaci N, Extremera AI, Castaño J, Raya A, Eyras E, Puente XS, Brunet J, Lázaro C, Radice P, Barnes DR, Antoniou AC, Spurdle AB, de la Hoya M, Baralle D, Barcellos-Hoff MH, Pujana MA. Altered regulation of BRCA1 exon 11 splicing is associated with breast cancer risk in carriers of BRCA1 pathogenic variants. Hum Mutat 2021; 42:1488-1502. [PMID: 34420246 DOI: 10.1002/humu.24276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ignacio Fernandez-Garcia
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sylvie Mazoyer
- Equipe GENDEV, INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Université St Etienne, Lyon, France
| | - Flavia Leme de Calais
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pietro Ameri
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sangeetha Vijayakumar
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Francesca Damiola
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Laure Barjhoux
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Lars V B Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Carmen Herranz
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Francesca Mateo
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Luis Palomero
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Roderic Espín
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Antonio Gómez
- Gene Regulation, Stem Cells and Cancer, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - Nadia García
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Daniel Jimenez
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Núria Bonifaci
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ana I Extremera
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Julio Castaño
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain.,Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Eduardo Eyras
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain.,Department of Genome Sciences, The John Curtin School of Medical Research, EMBL Australia Partner Laboratory Network, Australian National University, Canberra, Australia
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, University Institute of Oncology, University of Oviedo, Oviedo, Spain.,Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Conxi Lázaro
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | -
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | -
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Miguel de la Hoya
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Molecular Oncology Laboratory, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, Southampton University Hospital NHS Trust, Southampton, UK
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Miquel A Pujana
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
147
|
De Rosa MC, Glover HJ, Stratigopoulos G, LeDuc CA, Su Q, Shen Y, Sleeman MW, Chung WK, Leibel RL, Altarejos JY, Doege CA. Gene expression atlas of energy balance brain regions. JCI Insight 2021; 6:e149137. [PMID: 34283813 PMCID: PMC8409984 DOI: 10.1172/jci.insight.149137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct “modules” of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance–relevant brain regions.
Collapse
Affiliation(s)
- Maria Caterina De Rosa
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - Hannah J Glover
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - George Stratigopoulos
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons
| | - Charles A LeDuc
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Qi Su
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Yufeng Shen
- Department of Systems Biology.,Department of Biomedical Informatics
| | - Mark W Sleeman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wendy K Chung
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Department of Medicine.,Herbert Irving Comprehensive Cancer Center.,Institute of Human Nutrition
| | - Rudolph L Leibel
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Institute of Human Nutrition
| | | | - Claudia A Doege
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
148
|
Coding variants in the PCNT and CEP295 genes contribute to breast cancer risk in Chinese women. Pathol Res Pract 2021; 225:153581. [PMID: 34418690 DOI: 10.1016/j.prp.2021.153581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Centrioles play pivotal roles in the assembly of centrosomes, their dysfunction is associated with multiple inherited diseases or cancers. To date, few studies have focused on the associations between coding single nucleotide polymorphisms (SNPs) in the centriole duplication cycle genes and the risk of breast cancer in Chinese women. METHODS Twenty-one SNPs were selected from the coding regions of 10 critical centriole genes. The associations between the selected SNPs and breast cancer susceptibility were assessed in a case-control study of Chinese women, which included 1032 cases and 1063 controls. Potential biological functions in the influence of protein stability and the profile of expression quantitative trait loci (eQTL) of the identified SNPs were further evaluated using in silico databases. RESULTS Multivariate logistic regression analyses revealed that a missense SNP rs7279204 in PCNT was significantly associated with an increased risk of breast cancer (additive model: adjusted OR=1.19, 95% CI: 1.02-1.38), while a missense SNP rs77922978 in CEP295 was significantly associated with a decreased risk of breast cancer (additive model: adjusted OR=0.74, 95% CI: 0.56-0.97). Stratification analyses suggested that rs7279204 and rs77922978 exhibited different effects among later first live birth, ER-negative and PR-negative women (P<0.05). Moreover, rs77922978 showed significant differences for ER and PR status strata (heterogeneity test P=0.028, P=0.046). In addition, bioinformatic analyses indicated that the two variants may possess potential functions of reducing the protein stability of their host genes. Further eQTL analysis showed that the rs7279204 was not only correlated with the expression of its host gene PCNT, but also correlated with the expression of its nearby genes, implying its potential roles in regulation of some cancer susceptibility genes. CONCLUSIONS The SNPs rs7279204 and rs77922978 within the coding region of the PCNT and CEP295 genes may contribute to the susceptibility of breast cancer in Han Chinese population.
Collapse
|
149
|
Zhang L, Wei XT, Niu JJ, Lin ZX, Xu Q, Ni JJ, Zhang WL, Han BX, Yan SS, Feng GJ, Zhang H, Yang XL, Zhang ZJ, Hai R, Ren HG, Zhang F, Pei YF. Joint Genome-Wide Association Analyses Identified 49 Novel Loci For Age at Natural Menopause. J Clin Endocrinol Metab 2021; 106:2574-2591. [PMID: 34050765 DOI: 10.1210/clinem/dgab377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Age at natural menopause (ANM) is an important index for women's health. Either early or late ANM is associated with a series of adverse outcomes later in life. Despite being an inheritable trait, its genetic determinant has not yet been fully understood. METHODS Aiming to better characterize the genetic architecture of ANM, we conducted genome-wide association study (GWAS) meta-analyses in European-specific as well as trans-ancestry samples by using GWAS summary statistics from the following 3 large studies: the Reproductive Genetics Consortium (ReproGen; N = 69 626), the UK Biobank cohort (UKBB; N = 111 593) and the BioBank Japan Project (BBJ; N = 43 861), followed by a series of bioinformatical assessments and functional annotations. RESULTS By integrating the summary statistics from the 3 GWAS of up to 225 200 participants, this largest meta-analysis identified 49 novel loci and 3 secondary signals that were associated with ANM at the genome-wide significance level (P < 5 × 10-8). No population specificity or heterogeneity was observed at most of the associated loci. Functional annotations prioritized 90 candidate genes at the newly identified loci. Among the 26 traits that were genetically correlated with ANM, hormone replacement therapy (HRT) exerted a causal relationship, implying a causal pattern by which HRT was determined by ANM. CONCLUSION Our findings improved our understanding of the etiology of female menopause, as well as shed light on potential new therapies for abnormal menopause.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Xin-Tong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Jun-Jie Niu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
| | - Zi-Xuan Lin
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qian Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Jing-Jing Ni
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Wan-Lin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Bai-Xue Han
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Shan-Shan Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Gui-Juan Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Xiao-Lin Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, Yangzhou, China
| | - Zi-Jia Zhang
- Health Commission of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Rong Hai
- Health Commission of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Hai-Gang Ren
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
150
|
Morra A, Escala-Garcia M, Beesley J, Keeman R, Canisius S, Ahearn TU, Andrulis IL, Anton-Culver H, Arndt V, Auer PL, Augustinsson A, Beane Freeman LE, Becher H, Beckmann MW, Behrens S, Bojesen SE, Bolla MK, Brenner H, Brüning T, Buys SS, Caan B, Campa D, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Cheng TYD, Clarke CL, Colonna SV, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Dörk T, Dossus L, Dunning AM, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Flyger H, Fritschi L, Gago-Dominguez M, García-Sáenz JA, Giles GG, Grip M, Guénel P, Gündert M, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Hart SN, Hartikainen JM, Hartmann A, He W, Hooning MJ, Hoppe R, Hopper JL, Howell A, Hunter DJ, kConFab Investigators, Jager A, Jakubowska A, Janni W, John EM, Jung AY, Kaaks R, Keupers M, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kurian AW, Lacey JV, Lambrechts D, Le Marchand L, Lindblom A, Linet M, Luben RN, Lubiński J, Lush M, Mannermaa A, Manoochehri M, Margolin S, Martens JWM, Martinez ME, Mavroudis D, Michailidou K, Milne RL, Mulligan AM, Muranen TA, Nevanlinna H, Newman WG, et alMorra A, Escala-Garcia M, Beesley J, Keeman R, Canisius S, Ahearn TU, Andrulis IL, Anton-Culver H, Arndt V, Auer PL, Augustinsson A, Beane Freeman LE, Becher H, Beckmann MW, Behrens S, Bojesen SE, Bolla MK, Brenner H, Brüning T, Buys SS, Caan B, Campa D, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Cheng TYD, Clarke CL, Colonna SV, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Dörk T, Dossus L, Dunning AM, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Flyger H, Fritschi L, Gago-Dominguez M, García-Sáenz JA, Giles GG, Grip M, Guénel P, Gündert M, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Hart SN, Hartikainen JM, Hartmann A, He W, Hooning MJ, Hoppe R, Hopper JL, Howell A, Hunter DJ, kConFab Investigators, Jager A, Jakubowska A, Janni W, John EM, Jung AY, Kaaks R, Keupers M, Kitahara CM, Koutros S, Kraft P, Kristensen VN, Kurian AW, Lacey JV, Lambrechts D, Le Marchand L, Lindblom A, Linet M, Luben RN, Lubiński J, Lush M, Mannermaa A, Manoochehri M, Margolin S, Martens JWM, Martinez ME, Mavroudis D, Michailidou K, Milne RL, Mulligan AM, Muranen TA, Nevanlinna H, Newman WG, Nielsen SF, Nordestgaard BG, Olshan AF, Olsson H, Orr N, Park-Simon TW, Patel AV, Peissel B, Peterlongo P, Plaseska-Karanfilska D, Prajzendanc K, Prentice R, Presneau N, Rack B, Rennert G, Rennert HS, Rhenius V, Romero A, Roylance R, Ruebner M, Saloustros E, Sawyer EJ, Schmutzler RK, Schneeweiss A, Scott C, Shah M, Smichkoska S, Southey MC, Stone J, Surowy H, Swerdlow AJ, Tamimi RM, Tapper WJ, Teras LR, Terry MB, Tollenaar RAEM, Tomlinson I, Troester MA, Truong T, Vachon CM, Wang Q, Hurson AN, Winqvist R, Wolk A, Ziogas A, Brauch H, García-Closas M, Pharoah PDP, Easton DF, Chenevix-Trench G, Schmidt MK. Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Res 2021; 23:86. [PMID: 34407845 PMCID: PMC8371820 DOI: 10.1186/s13058-021-01450-7] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Given the high heterogeneity among breast tumors, associations between common germline genetic variants and survival that may exist within specific subgroups could go undetected in an unstratified set of breast cancer patients. METHODS We performed genome-wide association analyses within 15 subgroups of breast cancer patients based on prognostic factors, including hormone receptors, tumor grade, age, and type of systemic treatment. Analyses were based on 91,686 female patients of European ancestry from the Breast Cancer Association Consortium, including 7531 breast cancer-specific deaths over a median follow-up of 8.1 years. Cox regression was used to assess associations of common germline variants with 15-year and 5-year breast cancer-specific survival. We assessed the probability of these associations being true positives via the Bayesian false discovery probability (BFDP < 0.15). RESULTS Evidence of associations with breast cancer-specific survival was observed in three patient subgroups, with variant rs5934618 in patients with grade 3 tumors (15-year-hazard ratio (HR) [95% confidence interval (CI)] 1.32 [1.20, 1.45], P = 1.4E-08, BFDP = 0.01, per G allele); variant rs4679741 in patients with ER-positive tumors treated with endocrine therapy (15-year-HR [95% CI] 1.18 [1.11, 1.26], P = 1.6E-07, BFDP = 0.09, per G allele); variants rs1106333 (15-year-HR [95% CI] 1.68 [1.39,2.03], P = 5.6E-08, BFDP = 0.12, per A allele) and rs78754389 (5-year-HR [95% CI] 1.79 [1.46,2.20], P = 1.7E-08, BFDP = 0.07, per A allele), in patients with ER-negative tumors treated with chemotherapy. CONCLUSIONS We found evidence of four loci associated with breast cancer-specific survival within three patient subgroups. There was limited evidence for the existence of associations in other patient subgroups. However, the power for many subgroups is limited due to the low number of events. Even so, our results suggest that the impact of common germline genetic variants on breast cancer-specific survival might be limited.
Collapse
Affiliation(s)
- Anna Morra
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
| | - Maria Escala-Garcia
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland Australia
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
| | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Thomas U. Ahearn
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul L. Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Laura E. Beane Freeman
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stig E. Bojesen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K. Bolla
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Brüning
- Institute of the Ruhr University Bochum (IPA), Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Bochum, Germany
| | - Saundra S. Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT USA
| | - Bette Caan
- Division of Research, Kaiser Permanente, Oakland, CA USA
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- German Cancer Research Center (DKFZ), Genomic Epidemiology Group, Heidelberg, Germany
| | - Jose E. Castelao
- Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J. Chanock
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Ting-Yuan David Cheng
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Christine L. Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales Australia
| | - Sarah V. Colonna
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield Institute for Nucleic Acids (SInFoNiA), Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA USA
| | - Joe Dennis
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Diana M. Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Arif B. Ekici
- Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - A. Heather Eliassen
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Channing Division of Network Medicine, Boston, MA USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
- Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA USA
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, Western Australia Australia
| | - Manuela Gago-Dominguez
- Galician Public Foundation of Genomic Medicine (FPGMX), Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA USA
| | - José A. García-Sáenz
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria Australia
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pascal Guénel
- Team Exposome and Heredity, INSERM, University Paris-Saclay, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
- German Research Center for Environmental Health, Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, Center for Familial Breast and Ovarian Cancer, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology (CIO), University of Cologne, Cologne, Germany
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven N. Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Jaana M. Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen Nuremberg, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - David J. Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - kConFab Investigators
- Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria Australia
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Janni
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Esther M. John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Audrey Y. Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Machteld Keupers
- Department of Radiation Oncology, University Hospitals Leuven, , University of Leuven, Leuven, Belgium
| | - Cari M. Kitahara
- Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD USA
| | - Stella Koutros
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Vessela N. Kristensen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Allison W. Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - James V. Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA USA
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Martha Linet
- Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD USA
| | - Robert N. Luben
- Clinical Gerontology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michael Lush
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Biobank of Eastern Finland, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Maria Elena Martinez
- University of California San Diego, Moores Cancer Center, La Jolla, CA USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- The Cyprus Institute of Neurology & Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria Australia
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- University Health Network, Laboratory Medicine Program, Toronto, ON Canada
| | - Taru A. Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William G. Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Sune F. Nielsen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G. Nordestgaard
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | | | - Alpa V. Patel
- Department of Population Science, American Cancer Society, Atlanta, GA USA
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dijana Plaseska-Karanfilska
- MASA, Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of North Macedonia
| | - Karolina Prajzendanc
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Ross Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Nadege Presneau
- School of Life Sciences, University of Westminster, London, UK
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Hedy S. Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Valerie Rhenius
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | - Elinor J. Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy’s Campus, King’s College London, London, UK
| | - Rita K. Schmutzler
- Faculty of Medicine and University Hospital Cologne, Center for Familial Breast and Ovarian Cancer, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology (CIO), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Andreas Schneeweiss
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
- University Hospital and German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Mitul Shah
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Snezhana Smichkoska
- Medical Faculty, University Clinic of Radiotherapy and Oncology, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, Western Australia Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M. Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY USA
| | | | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY USA
| | | | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Oxford, Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Melissa A. Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Thérèse Truong
- Team Exposome and Heredity, INSERM, University Paris-Saclay, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Celine M. Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN USA
| | - Qin Wang
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Amber N. Hurson
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA USA
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) Partner Site Tübingen, Tübingen, Germany
| | - Montserrat García-Closas
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Paul D. P. Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Douglas F. Easton
- Department of Public Health and Primary Care, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
- Department of Oncology, University of Cambridge, Centre for Cancer Genetic Epidemiology, Cambridge, UK
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland Australia
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, 1066 CX The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|