101
|
Scionti F, Arbitrio M, Caracciolo D, Pensabene L, Tassone P, Tagliaferri P, Di Martino MT. Integration of DNA Microarray with Clinical and Genomic Data. Methods Mol Biol 2022; 2401:239-248. [PMID: 34902132 DOI: 10.1007/978-1-0716-1839-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA microarrays have been widely employed to understand cancer development. This technology is able to measure expression levels of a large numbers of genes or to genotype multiple regions of a genome in a massively parallel experiment. In addition, the detection of methylation patterns and gene copy number variations are also performed. Clinicians began to apply these findings in personalized medicine for the selection of cancer therapy according to the individual's cancer genomic profile. Because cancer is a complex disease it is of great value to integrate microarray data with genomic and clinical data. Here, we presented an overview of DNA microarray technology and discuss about benefits and challenging of microarray data integration.
Collapse
Affiliation(s)
- Francesca Scionti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Messina, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB-CNR), Section of Catanzaro, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, Magna Græcia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
| |
Collapse
|
102
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
103
|
Nayak S, Zaveri A, Serrano PH, Dumontier M. Experience: Automated Prediction of Experimental Metadata from Scientific Publications. ACM JOURNAL OF DATA AND INFORMATION QUALITY 2021. [DOI: 10.1145/3451219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While there exists an abundance of open biomedical data, the lack of high-quality metadata makes it challenging for others to find relevant datasets and to reuse them for another purpose. In particular, metadata are useful to understand the nature and provenance of the data. A common approach to improving the quality of metadata relies on expensive human curation, which itself is time-consuming and also prone to error. Towards improving the quality of metadata, we use scientific publications to automatically predict metadata key:value pairs. For prediction, we use a Convolutional Neural Network (CNN) and a Bidirectional Long-short term memory network (BiLSTM). We focus our attention on the NCBI Disease Corpus, which is used for training the CNN and BiLSTM. We perform two different kinds of experiments with these two architectures: (1) we predict the disease names by using their unique ID in the MeSH ontology and (2) we use the tree structures of MeSH ontology to move up in the hierarchy of these disease terms, which reduces the number of labels. We also perform various multi-label classification techniques for the above-mentioned experiments. We find that in both cases CNN achieves the best results in predicting the superclasses for disease with an accuracy of 83%.
Collapse
Affiliation(s)
- Stuti Nayak
- Institute of Data Science, Maastricht University, Maastricht, The Netherlands
| | - Amrapali Zaveri
- Institute of Data Science, Maastricht University, Maastricht, The Netherlands
| | | | - Michel Dumontier
- Institute of Data Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
104
|
Ma F, Li CC, Zhang CY. Nucleic acid amplification-integrated single-molecule fluorescence imaging for in vitro and in vivo biosensing. Chem Commun (Camb) 2021; 57:13415-13428. [PMID: 34796887 DOI: 10.1039/d1cc04799j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule fluorescence imaging is among the most advanced analytical technologies and has been widely adopted for biosensing due to its distinct advantages of simplicity, rapidity, high sensitivity, low sample consumption, and visualization capability. Recently, a variety of nucleic acid amplification approaches have been developed to provide a straightforward and highly efficient way for amplifying low abundance target signals. The integration of single-molecule fluorescence imaging with nucleic acid amplification has greatly facilitated the construction of various fluorescent biosensors for in vitro and in vivo detection of DNAs, RNAs, enzymes, and live cells with high sensitivity and good selectivity. Herein, we review the advances in the development of fluorescent biosensors by integrating single-molecule fluorescence imaging with nucleic acid amplification based on enzyme (e.g., DNA polymerase, RNA polymerase, exonuclease, and endonuclease)-assisted and enzyme-free (e.g., catalytic hairpin assembly, entropy-driven DNA amplification, ligation chain reaction, and hybridization chain reaction) strategies, and summarize the principles, features, and in vitro and in vivo applications of the emerging biosensors. Moreover, we discuss the remaining challenges and future directions in this area. This review may inspire the development of new signal-amplified single-molecule biosensors and promote their practical applications in fundamental and clinical research.
Collapse
Affiliation(s)
- Fei Ma
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chen-Chen Li
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China. .,Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chun-Yang Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
105
|
Ali M, Hussain H, Hussain A, Rauf A, Hussain W, Ullah M, Abbas S, Al-Awthan YS, Bahattab O, Khan M, Olatunde A, Almarhoon ZM, Mabkhot YN, Alshehri MM, Daştan SD, Ramadan MF, Sharifi-Rad J. Hepatoprotective Screening of Seriphidium kurramense (Qazilb.) Y.R. Ling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9026731. [PMID: 34912897 PMCID: PMC8668277 DOI: 10.1155/2021/9026731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Investigation on medicinal plants' therapeutic potential has gained substantial importance in the discovery of novel effective and safe therapeutic agents. The present study is aimed at investigating the hepatoprotective potential of Seriphidium kurramense methanolic extract (SKM) against carbon tetrachloride- (CCl4-) induced hepatotoxicity in rats. S. kurramense is one of the most imperative plants for its various pharmacological activities. Therefore, this study was aimed at evaluating the hepatoprotective potential against CCl4-induced liver toxicity. The serum samples were analyzed for alanine aminotransferase (ALT) and aspartate aminotransferase (AST) together with the oxidative stress mediator levels as nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), reduced glutathione (GSH), and superoxide dismutase (SOD) as well as peroxidation and H2O2 activity. CCl4 administration resulted in an elevated free radical generation, altered liver marker (AST and ALT) enzymes, reduced antioxidant enzyme, and increased DNA damage. Methanolic extract of S. kurramense decreased CCl4-induced hepatotoxicity by increasing the antioxidant status and reducing H2O2 and nitrate content generation as well as reducing DNA damage. Additionally, SKM reversed the morphological alterations induced by CCl4 in the SKM-treated groups. These results demonstrated that SKM displayed hepatoprotective activity against CCl4-induced hepatic damage in experimental rats.
Collapse
Affiliation(s)
- Maroof Ali
- College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, D-06120 Halle (Saale), Germany
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar KPK, Pakistan
| | - Wahid Hussain
- Department of Botany, Government Post Graduate College Parachinar, Kurram 26000, Pakistan
| | - Manzoor Ullah
- Department of Botany, University of Science & Technology Bannu, Pakistan
| | - Safdar Abbas
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yahia N. Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed M. Alshehri
- Department of Pharmaceutical Care, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mohamed Fawzy Ramadan
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | | |
Collapse
|
106
|
Sarkans U, Chiu W, Collinson L, Darrow MC, Ellenberg J, Grunwald D, Hériché JK, Iudin A, Martins GG, Meehan T, Narayan K, Patwardhan A, Russell MRG, Saibil HR, Strambio-De-Castillia C, Swedlow JR, Tischer C, Uhlmann V, Verkade P, Barlow M, Bayraktar O, Birney E, Catavitello C, Cawthorne C, Wagner-Conrad S, Duke E, Paul-Gilloteaux P, Gustin E, Harkiolaki M, Kankaanpää P, Lemberger T, McEntyre J, Moore J, Nicholls AW, Onami S, Parkinson H, Parsons M, Romanchikova M, Sofroniew N, Swoger J, Utz N, Voortman LM, Wong F, Zhang P, Kleywegt GJ, Brazma A. REMBI: Recommended Metadata for Biological Images-enabling reuse of microscopy data in biology. Nat Methods 2021; 18:1418-1422. [PMID: 34021280 PMCID: PMC8606015 DOI: 10.1038/s41592-021-01166-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bioimaging data have significant potential for reuse, but unlocking this potential requires systematic archiving of data and metadata in public databases. We propose draft metadata guidelines to begin addressing the needs of diverse communities within light and electron microscopy. We hope this publication and the proposed Recommended Metadata for Biological Images (REMBI) will stimulate discussions about their implementation and future extension.
Collapse
Affiliation(s)
- Ugis Sarkans
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford and SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jean-Karim Hériché
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrii Iudin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | - Terry Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ardan Patwardhan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | | | - Jason R Swedlow
- Division of Computational Biology and Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Christian Tischer
- Centre for Bioimage Analysis, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Virginie Uhlmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Mary Barlow
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Cesare Catavitello
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
- Ebury UK, London, UK
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Elizabeth Duke
- Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Perrine Paul-Gilloteaux
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Emmanuel Gustin
- Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | - Pasi Kankaanpää
- Turku BioImaging, University of Turku and Åbo Akademi University, Turku, Finland
- Euro-BioImaging ERIC, Turku, Finland
| | | | - Jo McEntyre
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Josh Moore
- Division of Computational Biology and Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | | | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | - Jim Swoger
- European Molecular Biology Laboratory, Barcelona, Spain
| | - Nadine Utz
- German BioImaging e.V., University of Konstanz, Konstanz, Germany
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frances Wong
- Division of Computational Biology and Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gerard J Kleywegt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
| |
Collapse
|
107
|
Vogt L. FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example. J Biomed Semantics 2021; 12:20. [PMID: 34823588 PMCID: PMC8613519 DOI: 10.1186/s13326-021-00254-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible, interoperable, and reusable (FAIR). This can be achieved by using ontologies and through representing them as semantic graphs. Here, we discuss two different semantic graph approaches of representing empirical data and metadata in a knowledge graph, with phenotype descriptions as an example. Almost all phenotype descriptions are still being published as unstructured natural language texts, with far-reaching consequences for their FAIRness, substantially impeding their overall usability within the life sciences. However, with an increasing amount of anatomy ontologies becoming available and semantic applications emerging, a solution to this problem becomes available. Researchers are starting to document and communicate phenotype descriptions through the Web in the form of highly formalized and structured semantic graphs that use ontology terms and Uniform Resource Identifiers (URIs) to circumvent the problems connected with unstructured texts. RESULTS Using phenotype descriptions as an example, we compare and evaluate two basic representations of empirical data and their accompanying metadata in the form of semantic graphs: the class-based TBox semantic graph approach called Semantic Phenotype and the instance-based ABox semantic graph approach called Phenotype Knowledge Graph. Their main difference is that only the ABox approach allows for identifying every individual part and property mentioned in the description in a knowledge graph. This technical difference results in substantial practical consequences that significantly affect the overall usability of empirical data. The consequences affect findability, accessibility, and explorability of empirical data as well as their comparability, expandability, universal usability and reusability, and overall machine-actionability. Moreover, TBox semantic graphs often require querying under entailment regimes, which is computationally more complex. CONCLUSIONS We conclude that, from a conceptual point of view, the advantages of the instance-based ABox semantic graph approach outweigh its shortcomings and outweigh the advantages of the class-based TBox semantic graph approach. Therefore, we recommend the instance-based ABox approach as a FAIR approach for documenting and communicating empirical data and metadata in a knowledge graph.
Collapse
Affiliation(s)
- Lars Vogt
- TIB Leibniz Information Centre for Science and Technology, Welfengarten 1B, 30167, Hanover, Germany.
| |
Collapse
|
108
|
Hwang S, Kong HJ. Sharing Biomedical Data Obtained Through Government-Funded Research and Development Projects in Korea. Healthc Inform Res 2021; 27:265-266. [PMID: 34788906 PMCID: PMC8654333 DOI: 10.4258/hir.2021.27.4.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Seungwoo Hwang
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyoun-Joong Kong
- Medical Big Data Research Center, Seoul National University College of Medicine, Seoul, Korea.,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea.,AI Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
109
|
Shen J, Shi H, Zhao Y, Fent K, Zhang K. Large-Scale Transcriptional Profiling of Molecular Perturbations Reveals Cell Line Specific Responses and Implications for Environmental Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15266-15275. [PMID: 34714046 DOI: 10.1021/acs.est.1c04965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-based bioassays represent nearly half of all high-throughput screens currently conducted for risk assessment of environmental chemicals. However, there has long been a concern about the sensitivity and heterogeneity among cell lines, which were explored only in a limited manner. Here, we address this question by conducting a large-scale transcriptome analysis of the responses of discrete cell lines to specific molecules. We report the collections of >223 300 gene expression profiles from a wide array of cell lines exposed to 2243 compounds. Our results demonstrate distinct responses among cell lines at both the gene and the pathway levels. Temporal variations for a very large proportion of compounds occur as well. High sensitivity and/or heterogeneity is either cell line-specific or universal depending on the modes of action of the compounds. Among 12 representative pathways analyzed, distinct cell-chemical interactions exist. On one hand, lung carcinoma cells are always best suited for glucocorticoid receptor agonist identification, while on the other hand, high sensitivity and heterogenic features are universal for histone deacetylase inhibitors and ATPase inhibitors. Our data provide novel insights into the understanding of cell-specific responses and interactions between cells and xenobiotics. The findings have substantial implications for the design, execution, and interpretation of high-throughput screening assays in (eco)toxicology.
Collapse
Affiliation(s)
- Jing Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
110
|
Leipold MD, Olsen LR. A literature study and public survey on mass cytometry dataset release and reuse. Cytometry A 2021; 101:109-113. [PMID: 34757690 DOI: 10.1002/cyto.a.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Michael D Leipold
- Human Immune Monitoring Center, Stanford University, Stanford, California, USA
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
111
|
Forero DA, Curioso WH, Patrinos GP. The importance of adherence to international standards for depositing open data in public repositories. BMC Res Notes 2021; 14:405. [PMID: 34727971 PMCID: PMC8561348 DOI: 10.1186/s13104-021-05817-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
There has been an important global interest in Open Science, which include open data and methods, in addition to open access publications. It has been proposed that public availability of raw data increases the value and the possibility of confirmation of scientific findings, in addition to the potential of reducing research waste. Availability of raw data in open repositories facilitates the adequate development of meta-analysis and the cumulative evaluation of evidence for specific topics. In this commentary, we discuss key elements about data sharing in open repositories and we invite researchers around the world to deposit their data in them.
Collapse
Affiliation(s)
- Diego A Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia. .,Professional Program in Respiratory Therapy, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia.
| | - Walter H Curioso
- Vicerrectorado de Investigación, Universidad Continental, Lima, Peru
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
112
|
Reporting Policies in Neurosurgical Journals: A Meta-Science Study of the Current State and Case for Standardization. World Neurosurg 2021; 158:11-23. [PMID: 34715370 DOI: 10.1016/j.wneu.2021.10.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reporting quality within the neurosurgical literature is low, limiting the ability of journals to act as gatekeepers for evidence-based neurosurgical care. Journal policies during article submission aim to improve reporting quality. We conducted a meta-science study characterizing the reporting policies of neurosurgical journals and other related peer-reviewed publications. METHODS Journals were retrieved in 7 searches using Journal Citation Reports and Google Scholar. Characteristics, impact metrics, and submission policies were extracted. RESULTS Of 486 results, 54 journals were included, including 27 neurosurgical and 27 related topical journals. Thirty-eight (70.4%) adopted authorship guidelines and 20 (37.0%) disclosure standards of the International Council of Medical Journal Editors. Twenty-six (48.1%) required data availability statement and 33 (61.1%) clinical trials registration. Twenty-one (38.9%) required and 11 (20.4%) recommended adherence to reporting guidelines. Twenty (37.0%) endorsed EQUATOR network guidelines. PRISMA was mentioned by 30 (55.6%) journals, CONSORT by 28 (51.9%), and STROBE by 18 (33.3%). Among neurosurgical journals, factors associated with a requirement or recommendation to follow reporting guidelines among neurosurgical journals included impact factor (P = 0.0013), Article Influence Score (P = 0.0236), SCImago h-index (P = 0.0152), SCImago journal rank (P = 0.002), and CiteScore (P = 0.0023), as well as recommendations pertaining to International Council of Medical Journal Editors authorship guidelines (P = 0.0085), ORCID (P = 0.014), clinical trials registration (P = 0.0369), or data availability statement (P = 0.0047). CONSORT, PRISMA, or STROBE delineations were significantly associated with the mention of another guideline (P < 0.01). CONCLUSIONS Neurosurgical journal submission policies are inconsistent. Frameworks to improve reporting quality are uncommonly used. Increasing rigor and standardization of reporting policies across journals publishers may improve quality.
Collapse
|
113
|
Peter KT, Phillips AL, Knolhoff AM, Gardinali PR, Manzano CA, Miller KE, Pristner M, Sabourin L, Sumarah MW, Warth B, Sobus JR. Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal Chem 2021; 93:13870-13879. [PMID: 34618419 PMCID: PMC9408805 DOI: 10.1021/acs.analchem.1c02621] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-targeted analysis (NTA) workflows using mass spectrometry are gaining popularity in many disciplines, but universally accepted reporting standards are nonexistent. Current guidance addresses limited elements of NTA reporting-most notably, identification confidence-and is insufficient to ensure scientific transparency and reproducibility given the complexity of these methods. This lack of reporting standards hinders researchers' development of thorough study protocols and reviewers' ability to efficiently assess grant and manuscript submissions. To overcome these challenges, we developed the NTA Study Reporting Tool (SRT), an easy-to-use, interdisciplinary framework for comprehensive NTA methods and results reporting. Eleven NTA practitioners reviewed eight published articles covering environmental, food, and health-based exposomic applications with the SRT. Overall, our analysis demonstrated that the SRT provides a valid structure to guide study design and manuscript writing, as well as to evaluate NTA reporting quality. Scores self-assigned by authors fell within the range of peer-reviewer scores, indicating that SRT use for self-evaluation will strengthen reporting practices. The results also highlighted NTA reporting areas that need immediate improvement, such as analytical sequence and quality assurance/quality control information. Although scores intentionally do not correspond to data/results quality, widespread implementation of the SRT could improve study design and standardize reporting practices, ultimately leading to broader use and acceptance of NTA data.
Collapse
Affiliation(s)
- Katherine T Peter
- U.S. National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Allison L Phillips
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Ann M Knolhoff
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, HFS-707, College Park, Maryland 20740, United States
| | - Piero R Gardinali
- Institute of Environment and Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, Florida 33181, United States
| | - Carlos A Manzano
- Faculty of Science, University of Chile, 3425 Las Palmeras, 7750000 Nunoa RM, Chile
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Kelsey E Miller
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Manuel Pristner
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Lyne Sabourin
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Jon R Sobus
- U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, North Carolina 27709, United States
| |
Collapse
|
114
|
Tsopra R, Fernandez X, Luchinat C, Alberghina L, Lehrach H, Vanoni M, Dreher F, Sezerman OU, Cuggia M, de Tayrac M, Miklasevics E, Itu LM, Geanta M, Ogilvie L, Godey F, Boldisor CN, Campillo-Gimenez B, Cioroboiu C, Ciusdel CF, Coman S, Hijano Cubelos O, Itu A, Lange B, Le Gallo M, Lespagnol A, Mauri G, Soykam HO, Rance B, Turano P, Tenori L, Vignoli A, Wierling C, Benhabiles N, Burgun A. A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. BMC Med Inform Decis Mak 2021; 21:274. [PMID: 34600518 PMCID: PMC8487519 DOI: 10.1186/s12911-021-01634-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI technologies based on machine learning approaches should play a key role in clinical decision-making in the future. However, their implementation in health care settings remains limited, mostly due to a lack of robust validation procedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world data and molecular -omics data from clinical data warehouses and biobanks. METHODS The European "ITFoC (Information Technology for the Future Of Cancer)" consortium designed a framework for the clinical validation of AI technologies for predicting treatment response in oncology. RESULTS This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, (3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety (including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building for the "ITFoC Challenge". This community-wide competition will make it possible to assess and compare AI algorithms for predicting the response to TNBC treatments with external real-world datasets. CONCLUSIONS The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and transparent manner before their implementation in healthcare settings. We believe that the consideration of the ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of precision oncology and personalized care.
Collapse
Affiliation(s)
- Rosy Tsopra
- Centre de Recherche Des Cordeliers, Inserm, Université de Paris, Sorbonne Université, 75006, Paris, France. .,Inria, HeKA, Inria Paris, France. .,Department of Medical Informatics, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France. .,Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, 35000, Rennes, France.
| | | | - Claudio Luchinat
- Centro Risonanze Magnetiche - CERM/CIRMMP and Department of Chemistry, University of Florence, 50019, Sesto Fiorentino (Florence), Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano Bicocca and ISBE-Italy/SYSBIO - Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano Bicocca and ISBE-Italy/SYSBIO - Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | | | - O Ugur Sezerman
- School of Medicine Biostatistics and Medical Informatics Dept., Acibadem University, Istanbul, Turkey
| | - Marc Cuggia
- Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, 35000, Rennes, France
| | - Marie de Tayrac
- Univ Rennes, Department of Molecular Genetics and Genomics, CHU Rennes, IGDR-UMR6290, CNRS, 35000, Rennes, France
| | | | | | - Marius Geanta
- Centre for Innovation in Medicine, Bucharest, Romania
| | - Lesley Ogilvie
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Florence Godey
- INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, 35042, CEDEX, Rennes, France.,Centre de Lutte Contre Le Cancer Eugène Marquis, CRB Santé (BRIF Number: BB-0033-00056), 35042, CEDEX, Rennes, France
| | | | | | | | | | - Simona Coman
- Transilvania University of Brasov, Brasov, Romania
| | | | - Alina Itu
- Transilvania University of Brasov, Brasov, Romania
| | - Bodo Lange
- Alacris Theranostics GmbH, Berlin, Germany
| | - Matthieu Le Gallo
- INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, 35042, CEDEX, Rennes, France.,Centre de Lutte Contre Le Cancer Eugène Marquis, CRB Santé (BRIF Number: BB-0033-00056), 35042, CEDEX, Rennes, France
| | - Alexandra Lespagnol
- Department of Molecular Genetics and Genomics, CHU Rennes, 35000, Rennes, France
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milano Bicocca and ISBE-Italy/SYSBIO - Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, Milan, Italy
| | | | - Bastien Rance
- Centre de Recherche Des Cordeliers, Inserm, Université de Paris, Sorbonne Université, 75006, Paris, France.,Inria, HeKA, Inria Paris, France.,Department of Medical Informatics, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France
| | - Paola Turano
- Centro Risonanze Magnetiche - CERM/CIRMMP and Department of Chemistry, University of Florence, 50019, Sesto Fiorentino (Florence), Italy
| | - Leonardo Tenori
- Centro Risonanze Magnetiche - CERM/CIRMMP and Department of Chemistry, University of Florence, 50019, Sesto Fiorentino (Florence), Italy
| | - Alessia Vignoli
- Centro Risonanze Magnetiche - CERM/CIRMMP and Department of Chemistry, University of Florence, 50019, Sesto Fiorentino (Florence), Italy
| | | | - Nora Benhabiles
- Direction de La Recherche Fondamentale (DRF), CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Anita Burgun
- Centre de Recherche Des Cordeliers, Inserm, Université de Paris, Sorbonne Université, 75006, Paris, France.,Inria, HeKA, Inria Paris, France.,Department of Medical Informatics, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France.,PaRis Artificial Intelligence Research InstitutE (Prairie), Paris, France
| |
Collapse
|
115
|
|
116
|
Santiago-Rodriguez TM, Hollister EB. Multi 'omic data integration: A review of concepts, considerations, and approaches. Semin Perinatol 2021; 45:151456. [PMID: 34256961 DOI: 10.1016/j.semperi.2021.151456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of 'omic techniques including, but not limited to genomics/metagenomics, transcriptomics/meta-transcriptomics, proteomics/meta-proteomics, and metabolomics to generate multiple datasets from a single sample have facilitated hypothesis generation leading to the identification of biological, molecular and ecological functions and mechanisms, as well as associations and correlations. Despite their power and promise, a variety of challenges must be considered in the successful design and execution of a multi-omics study. In this review, various 'omic technologies applicable to single- and meta-organisms (i.e., host + microbiome) are described, and considerations for sample collection, storage and processing prior to data generation and analysis, as well as approaches to data storage, dissemination and analysis are discussed. Finally, case studies are included as examples of multi-omic applications providing novel insights and a more holistic understanding of biological processes.
Collapse
Affiliation(s)
| | - Emily B Hollister
- Diversigen, Inc, 3 Greenway Plaza, Suite 1575, Houston, TX 77046, USA.
| |
Collapse
|
117
|
Fadlelmola FM, Zass L, Chaouch M, Samtal C, Ras V, Kumuthini J, Panji S, Mulder N. Data Management Plans in the genomics research revolution of Africa: Challenges and recommendations. J Biomed Inform 2021; 122:103900. [PMID: 34506960 PMCID: PMC9123155 DOI: 10.1016/j.jbi.2021.103900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
Drafting and writing a data management plan (DMP) is increasingly seen as a key part of the academic research process. A DMP is a document that describes how a researcher will collect, document, describe, share, and preserve the data that will be generated as part of a research project. The DMP illustrates the importance of utilizing best practices through all stages of working with data while ensuring accessibility, quality, and longevity of the data. The benefits of writing a DMP include compliance with funder and institutional mandates; making research more transparent (for reproduction and validation purposes); and FAIR (findable, accessible, interoperable, reusable); protecting data subjects and compliance with the General Data Protection Regulation (GDPR) and/or local data protection policies. In this review, we highlight the importance of a DMP in modern biomedical research, explaining both the rationale and current best practices associated with DMPs. In addition, we outline various funders’ requirements concerning DMPs and discuss open-source tools that facilitate the development and implementation of a DMP. Finally, we discuss DMPs in the context of African research, and the considerations that need to be made in this regard.
Collapse
Affiliation(s)
- Faisal M Fadlelmola
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Al-Gamaa Ave, Khartoum 11115, Sudan.
| | - Lyndon Zass
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| | - Melek Chaouch
- Laboratory of Bioinformatics Biomathematics and Biostatistics (LR16IPT09), Institut Pasteur de Tunis, 13 Place Pasteur, B.P. 74 1002 Tunis, Belvédère, Tunisia
| | - Chaimae Samtal
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz-Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Verena Ras
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| | - Judit Kumuthini
- South African Bioinformatics Institute (SANBI), University of Western Cape (UWC), Life Sciences Building, Bellville, Cape Town, South Africa
| | - Sumir Panji
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| |
Collapse
|
118
|
Leipzig J, Nüst D, Hoyt CT, Ram K, Greenberg J. The role of metadata in reproducible computational research. PATTERNS (NEW YORK, N.Y.) 2021; 2:100322. [PMID: 34553169 PMCID: PMC8441584 DOI: 10.1016/j.patter.2021.100322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reproducible computational research (RCR) is the keystone of the scientific method for in silico analyses, packaging the transformation of raw data to published results. In addition to its role in research integrity, improving the reproducibility of scientific studies can accelerate evaluation and reuse. This potential and wide support for the FAIR principles have motivated interest in metadata standards supporting reproducibility. Metadata provide context and provenance to raw data and methods and are essential to both discovery and validation. Despite this shared connection with scientific data, few studies have explicitly described how metadata enable reproducible computational research. This review employs a functional content analysis to identify metadata standards that support reproducibility across an analytic stack consisting of input data, tools, notebooks, pipelines, and publications. Our review provides background context, explores gaps, and discovers component trends of embeddedness and methodology weight from which we derive recommendations for future work.
Collapse
Affiliation(s)
- Jeremy Leipzig
- Metadata Research Center, College of Computing and Informatics, Drexel University, Philadelphia, PA, USA
| | - Daniel Nüst
- Institute for Geoinformatics, University of Münster, Münster, Germany
| | | | - Karthik Ram
- Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, USA
| | - Jane Greenberg
- Metadata Research Center, College of Computing and Informatics, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
119
|
Zogopoulos VL, Saxami G, Malatras A, Angelopoulou A, Jen CH, Duddy WJ, Daras G, Hatzopoulos P, Westhead DR, Michalopoulos I. Arabidopsis Coexpression Tool: a tool for gene coexpression analysis in Arabidopsis thaliana. iScience 2021; 24:102848. [PMID: 34381973 PMCID: PMC8334378 DOI: 10.1016/j.isci.2021.102848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Gene coexpression analysis refers to the discovery of sets of genes which exhibit similar expression patterns across multiple transcriptomic data sets, such as microarray experiment data of public repositories. Arabidopsis Coexpression Tool (ACT), a gene coexpression analysis web tool for Arabidopsis thaliana, identifies genes which are correlated to a driver gene. Primary microarray data from ATH1 Affymetrix platform were processed with Single-Channel Array Normalization algorithm and combined to produce a coexpression tree which contains ∼21,000 A. thaliana genes. ACT was developed to present subclades of coexpressed genes, as well as to perform gene set enrichment analysis, being unique in revealing enriched transcription factors targeting coexpressed genes. ACT offers a simple and user-friendly interface producing working hypotheses which can be experimentally verified for the discovery of gene partnership, pathway membership, and transcriptional regulation. ACT analyses have been successful in identifying not only genes with coordinated ubiquitous expressions but also genes with tissue-specific expressions.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Georgia Saxami
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Apostolos Malatras
- Center for Research in Myology, Sorbonne Université, Paris 75013, France
| | - Antonia Angelopoulou
- Department of Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Chih-Hung Jen
- Cold Spring Biotech Corp, Da Hu Science Park, New Taipei City, Taiwan
| | - William J. Duddy
- Center for Research in Myology, Sorbonne Université, Paris 75013, France
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry BT52 1SJ, UK
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | | | - David R. Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
120
|
Malato J, Sotzny F, Bauer S, Freitag H, Fonseca A, Grabowska AD, Graça L, Cordeiro C, Nacul L, Lacerda EM, Castro-Marrero J, Scheibenbogen C, Westermeier F, Sepúlveda N. The SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) in myalgic encephalomyelitis/chronic fatigue syndrome: A meta-analysis of public DNA methylation and gene expression data. Heliyon 2021; 7:e07665. [PMID: 34341773 PMCID: PMC8320404 DOI: 10.1016/j.heliyon.2021.e07665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
People with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often report a high frequency of viral infections and flu-like symptoms during their disease course. Given that this reporting agrees with different immunological abnormalities and altered gene expression profiles observed in the disease, we aimed at answering whether the expression of the human angiotensin-converting enzyme 2 (ACE2), the major cell entry receptor for SARS-CoV-2, is also altered in these patients. In particular, a low expression of ACE2 could be indicative of a high risk of developing COVID-19. We then performed a meta-analysis of public data on CpG DNA methylation and gene expression of this enzyme and its homologous ACE protein in peripheral blood mononuclear cells and related subsets. We found that patients with ME/CFS have decreased methylation levels of four CpG probes in the ACE locus (cg09920557, cg19802564, cg21094739, and cg10468385) and of another probe in the promoter region of the ACE2 gene (cg08559914). We also found a decreased expression of ACE2 but not of ACE in patients when compared to healthy controls. Accordingly, in newly collected data, there was evidence for a significant higher proportion of samples with an ACE2 expression below the limit of detection in patients than healthy controls. Altogether, patients with ME/CFS can be at a higher COVID-19 risk and, if so, they should be considered a priority group for vaccination by public health authorities. To further support this conclusion, similar research is recommended for other human cell entry receptors and cell types, namely, those cells targeted by the virus.
Collapse
Affiliation(s)
- João Malato
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Franziska Sotzny
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Sandra Bauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Helma Freitag
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - André Fonseca
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Anna D. Grabowska
- Department of Biophysics, Physiology, and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Luís Graça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Clara Cordeiro
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Luís Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Complex Chronic Diseases Program, British Columbia Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Eliana M. Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jesus Castro-Marrero
- Vall d’Hebron Hospital Research Institute, Division of Rheumatology, ME/CFS Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Scheibenbogen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O´Higgins, Santiago, Chile
| | - Nuno Sepúlveda
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
121
|
Harrill JA, Viant MR, Yauk CL, Sachana M, Gant TW, Auerbach SS, Beger RD, Bouhifd M, O'Brien J, Burgoon L, Caiment F, Carpi D, Chen T, Chorley BN, Colbourne J, Corvi R, Debrauwer L, O'Donovan C, Ebbels TMD, Ekman DR, Faulhammer F, Gribaldo L, Hilton GM, Jones SP, Kende A, Lawson TN, Leite SB, Leonards PEG, Luijten M, Martin A, Moussa L, Rudaz S, Schmitz O, Sobanski T, Strauss V, Vaccari M, Vijay V, Weber RJM, Williams AJ, Williams A, Thomas RS, Whelan M. Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regul Toxicol Pharmacol 2021; 125:105020. [PMID: 34333066 DOI: 10.1016/j.yrtph.2021.105020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States.
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom.
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, Paris, France
| | - Timothy W Gant
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England (PHE), Harwell Science Campus, Oxfordshire, United Kingdom
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Richard D Beger
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | | | - Jason O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Lyle Burgoon
- US Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Tao Chen
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Brian N Chorley
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - John Colbourne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France; MetaToul-AXIOM Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Claire O'Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Timothy M D Ebbels
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW7 2AZ, United Kingdom
| | - Drew R Ekman
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, 30605, United States
| | | | - Laura Gribaldo
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Gina M Hilton
- PETA Science Consortium International e.V., Friolzheimer Str. 3, 70499, Stuttgart, Germany
| | - Stephanie P Jones
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Aniko Kende
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, United Kingdom
| | - Thomas N Lawson
- Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom
| | - Sofia B Leite
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| | - Pim E G Leonards
- Department of Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Laura Moussa
- US Food and Drug Administration, Center for Veterinary Medicine, Rockville, MD, United States
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Oliver Schmitz
- BASF Metabolome Solutions, Metabolome Data Science, Tegeler Weg 33, 10589, Berlin, Germany
| | | | - Volker Strauss
- BASF SE, Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Monica Vaccari
- Center for Environmental Health and Prevention, Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Bologna, Italy
| | - Vikrant Vijay
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Michabo Health Science, University of Birmingham Enterprise, Birmingham Research Park, Vincent Drive, Birmingham, B15 2SQ, United Kingdom
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), 21027, Ispra, Italy
| |
Collapse
|
122
|
Skinnider MA, Squair JW, Courtine G. Enabling reproducible re-analysis of single-cell data. Genome Biol 2021; 22:215. [PMID: 34311752 PMCID: PMC8311938 DOI: 10.1186/s13059-021-02422-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Michael A Skinnider
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jordan W Squair
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Grégoire Courtine
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroRestore Center, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Center for Neuroprosthetics, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
123
|
Wilson SL, Way GP, Bittremieux W, Armache JP, Haendel MA, Hoffman MM. Sharing biological data: why, when, and how. FEBS Lett 2021; 595:847-863. [PMID: 33843054 PMCID: PMC10390076 DOI: 10.1002/1873-3468.14067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samantha L Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gregory P Way
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Computer Science, University of Antwerp, Antwerpen, Belgium
| | - Jean-Paul Armache
- Department of Biochemistry & Molecular Biology, The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Vector Institute, Toronto, ON, Canada
| |
Collapse
|
124
|
Alfonso F, Torp-Pedersen C, Carter RE, Crea F. European Heart Journal quality standards. Eur Heart J 2021; 42:2729-2736. [PMID: 34289494 DOI: 10.1093/eurheartj/ehab324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the European Heart Journal (EHJ) is to attract innovative, methodologically sound, and clinically relevant research manuscripts able to change clinical practice and/or substantially advance knowledge on cardiovascular diseases. As the reference journal in cardiovascular medicine, the EHJ is committed to publishing only the best cardiovascular science adhering to the highest ethical principles. EHJ uses highly rigorous peer-review, critical statistical review and the highest quality editorial process, to ensure the novelty, accuracy, quality, and relevance of all accepted manuscripts with the aim of inspiring the clinical practice of EHJ readers and reducing the global burden of cardiovascular diseases. This review article summarizes the quality standards pursued by the EHJ to fulfill its mission.
Collapse
Affiliation(s)
- Fernando Alfonso
- Department of Cardiology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria IIS-IP, Universidad Autónoma de Madrid, CIBER-CV, C/Diego de León 62, Madrid 28006, Spain
| | - Christian Torp-Pedersen
- Department of Cardiology, Nordsjaelland Hospital and Alborg University Hospital, Department of Public Health, Copenhagen University, Denmark
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Filipo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
125
|
Nelson G, Boehm U, Bagley S, Bajcsy P, Bischof J, Brown CM, Dauphin A, Dobbie IM, Eriksson JE, Faklaris O, Fernandez-Rodriguez J, Ferrand A, Gelman L, Gheisari A, Hartmann H, Kukat C, Laude A, Mitkovski M, Munck S, North AJ, Rasse TM, Resch-Genger U, Schuetz LC, Seitz A, Strambio-De-Castillia C, Swedlow JR, Alexopoulos I, Aumayr K, Avilov S, Bakker GJ, Bammann RR, Bassi A, Beckert H, Beer S, Belyaev Y, Bierwagen J, Birngruber KA, Bosch M, Breitlow J, Cameron LA, Chalfoun J, Chambers JJ, Chen CL, Conde-Sousa E, Corbett AD, Cordelieres FP, Nery ED, Dietzel R, Eismann F, Fazeli E, Felscher A, Fried H, Gaudreault N, Goh WI, Guilbert T, Hadleigh R, Hemmerich P, Holst GA, Itano MS, Jaffe CB, Jambor HK, Jarvis SC, Keppler A, Kirchenbuechler D, Kirchner M, Kobayashi N, Krens G, Kunis S, Lacoste J, Marcello M, Martins GG, Metcalf DJ, Mitchell CA, Moore J, Mueller T, Nelson MS, Ogg S, Onami S, Palmer AL, Paul-Gilloteaux P, Pimentel JA, Plantard L, Podder S, Rexhepaj E, Royon A, Saari MA, Schapman D, Schoonderwoert V, Schroth-Diez B, Schwartz S, Shaw M, Spitaler M, Stoeckl MT, Sudar D, Teillon J, Terjung S, Thuenauer R, Wilms CD, Wright GD, Nitschke R. QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy. J Microsc 2021; 284:56-73. [PMID: 34214188 PMCID: PMC10388377 DOI: 10.1111/jmi.13041] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
Collapse
Affiliation(s)
- Glyn Nelson
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Ulrike Boehm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Steve Bagley
- Visualisation, Irradiation & Analysis, Cancer Research UK Manchester Institute, Alderley Park, Macclesfield, UK
| | - Peter Bajcsy
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | | | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | - Aurélien Dauphin
- Unité Génétique et Biologie du Développement U934, PICT-IBiSA, Institut Curie/Inserm/CNRS/PSL Research University, Paris, France
| | - Ian M Dobbie
- Department of Biochemistry, University of Oxford, Oxford, Oxon, UK
| | - John E Eriksson
- Turku Bioscience Centre, Euro-Bioimaging ERIC, Turku, Finland
| | | | | | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ali Gheisari
- Light Microscopy Facility, CMCB Technology Platform, TU Dresden, Dresden, Germany
| | - Hella Hartmann
- Light Microscopy Facility, CMCB Technology Platform, TU Dresden, Dresden, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Alex Laude
- Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Sebastian Munck
- VIB BioImaging Core & VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department for Neuroscience, Leuven, Flanders, Belgium
| | | | - Tobias M Rasse
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Lucas C Schuetz
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Arne Seitz
- Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland
| | | | - Jason R Swedlow
- Divisions of Computational Biology and Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ioannis Alexopoulos
- General Instrumentation - Light Microscopy Facility, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Karin Aumayr
- BioOptics Facility, IMP - Research Institute of Molecular Pathology, Vienna, Austria
| | - Sergiy Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gert-Jan Bakker
- Department of Cell Biology (route 283), Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Hannes Beckert
- Microscopy Core Facility, Medizinische Fakultät, Universität Bonn, Bonn, Germany
| | | | - Yury Belyaev
- Microscopy Imaging Center, University of Bern, Bern, Switzerland
| | | | | | - Manel Bosch
- Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Lisa A Cameron
- Light Microscopy Core Facility, Department of Biology, Duke University, Durham, North Carolina, USA
| | - Joe Chalfoun
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Eduardo Conde-Sousa
- i3S - Instituto de InvestigaÇão e InovaÇão em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | | | - Elaine Del Nery
- BioPhenics High-Content Screening Laboratory (PICT-IBiSA), Translational Research Department, Institut Curie - PSL Research University, Paris, France
| | - Ralf Dietzel
- Omicron-Laserage Laserprodukte GmbH, Rodgau, Germany
| | | | | | | | - Hans Fried
- Light Microscope Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Wah Ing Goh
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thomas Guilbert
- Institut Cochin, INSERM (U1016), CNRS (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | | | - Peter Hemmerich
- Core Facility Imaging, Leibniz Institute on Aging, Jena, Germany
| | | | - Michelle S Itano
- Neuroscience Microscopy Core, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Helena K Jambor
- Mildred-Scheel Nachwuchszentrum, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stuart C Jarvis
- Prior Scientific Instruments Limited, Cambridge, Cambridgeshire, UK
| | - Antje Keppler
- EMBL Heidelberg, Global BioImaging, Heidelberg, Germany
| | | | - Marcel Kirchner
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Gabriel Krens
- Bioimaging Facility, Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Susanne Kunis
- University Osnabrueck, Biology/Chemistry, Osnabrueck, Germany
| | | | - Marco Marcello
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, Merseyside, UK
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciencia & Faculdade de Ciencias, University of Lisboa, Oeiras, Portugal
| | | | - Claire A Mitchell
- Warwick Medical School, University of Warwick, Coventry, West Midlands, UK
| | - Joshua Moore
- Divisions of Computational Biology and Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tobias Mueller
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Vienna, Austria
| | | | - Stephen Ogg
- Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | | | - Perrine Paul-Gilloteaux
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Jaime A Pimentel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laure Plantard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Santosh Podder
- Microscopy Facility, Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | | | | | - Markku A Saari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Damien Schapman
- UNIROUEN, INSERM, PRIMACEN, Normandie University, Rouen, France
| | | | - Britta Schroth-Diez
- Light Microscopy Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Michael Shaw
- National Physical Laboratory, Teddington, Middlesex, UK
| | - Martin Spitaler
- Imaging Facility, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | | | - Damir Sudar
- Quantitative Imaging Systems, Portland, Oregon, USA
| | - Jeremie Teillon
- Bordeaux Imaging Center, Université de Bordeaux, Bordeaux, Gironde, France
| | - Stefan Terjung
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Roland Thuenauer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Graham D Wright
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore, Singapore
| | - Roland Nitschke
- Life Imaging Center and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
126
|
Kehelpannala C, Rupasinghe T, Pasha A, Esteban E, Hennessy T, Bradley D, Ebert B, Provart NJ, Roessner U. An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:287-302. [PMID: 33866624 PMCID: PMC8361726 DOI: 10.1111/tpj.15278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 05/24/2023]
Abstract
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.
Collapse
Affiliation(s)
- Cheka Kehelpannala
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| | | | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Thomas Hennessy
- Agilent Technologies Australia Pty Ltd679 Springvale RoadMulgraveVIC3170Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd679 Springvale RoadMulgraveVIC3170Australia
| | - Berit Ebert
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Ute Roessner
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
127
|
van Strien J, Haupt A, Schulte U, Braun HP, Cabrera-Orefice A, Choudhary JS, Evers F, Fernandez-Vizarra E, Guerrero-Castillo S, Kooij TWA, Páleníková P, Pardo M, Ugalde C, Wittig I, Wöhlbrand L, Brandt U, Arnold S, Huynen MA. CEDAR, an online resource for the reporting and exploration of complexome profiling data. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148411. [PMID: 33722514 DOI: 10.1016/j.bbabio.2021.148411] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Complexome profiling is an emerging 'omics' approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse. Therefore, we established the ComplexomE profiling DAta Resource (CEDAR, www3.cmbi.umcn.nl/cedar/), an openly accessible database for depositing and exploring mass spectrometry data from complexome profiling studies. Compatibility and reusability of the data is ensured by a standardized data and reporting format containing the "minimum information required for a complexome profiling experiment" (MIACE). The data can be accessed through a user-friendly web interface, as well as programmatically using the REST API portal. Additionally, all complexome profiles available on CEDAR can be inspected directly on the website with the profile viewer tool that allows the detection of correlated profiles and inference of potential complexes. In conclusion, CEDAR is a unique, growing and invaluable resource for the study of protein complex composition and dynamics across biological systems.
Collapse
Affiliation(s)
- Joeri van Strien
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Center for Biological Signalling Studies (BIOSS) and Center for Integrative Signalling Studies (CIBSS), 79104 Freiburg, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jyoti S Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Felix Evers
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Taco W A Kooij
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Cristina Ugalde
- Hospital 12 de Octubre Research Institute, Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain
| | - Ilka Wittig
- Functional Proteomics, Medical School, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ulrich Brandt
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Arnold
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
128
|
Kabir MA, Zilouchian H, Younas MA, Asghar W. Dengue Detection: Advances in Diagnostic Tools from Conventional Technology to Point of Care. BIOSENSORS 2021; 11:206. [PMID: 34201849 PMCID: PMC8301808 DOI: 10.3390/bios11070206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 06/02/2023]
Abstract
The dengue virus (DENV) is a vector-borne flavivirus that infects around 390 million individuals each year with 2.5 billion being in danger. Having access to testing is paramount in preventing future infections and receiving adequate treatment. Currently, there are numerous conventional methods for DENV testing, such as NS1 based antigen testing, IgM/IgG antibody testing, and Polymerase Chain Reaction (PCR). In addition, novel methods are emerging that can cut both cost and time. Such methods can be effective in rural and low-income areas throughout the world. In this paper, we discuss the structural evolution of the virus followed by a comprehensive review of current dengue detection strategies and methods that are being developed or commercialized. We also discuss the state of art biosensing technologies, evaluated their performance and outline strategies to address challenges posed by the disease. Further, we outline future guidelines for the improved usage of diagnostic tools during recurrence or future outbreaks of DENV.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; (M.A.K.); (H.Z.)
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; (M.A.K.); (H.Z.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; (M.A.K.); (H.Z.)
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
129
|
Valentino SA, Chézeau L, Seidel C, Sébillaud S, Lorcin M, Chalansonnet M, Cosnier F, Gaté L. Exposure to TiO 2 Nanostructured Aerosol Induces Specific Gene Expression Profile Modifications in the Lungs of Young and Elderly Rats. NANOMATERIALS 2021; 11:nano11061466. [PMID: 34206090 PMCID: PMC8230065 DOI: 10.3390/nano11061466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Although aging is associated with a higher risk of developing respiratory pathologies, very few studies have assessed the impact of age on the adverse effects of inhaled nanoparticles. Using conventional and transcriptomic approaches, this study aimed to compare in young (12–13-week-old) and elderly (19-month-old) fisher F344 rats the pulmonary toxicity of an inhaled nanostructured aerosol of titanium dioxide (TiO2). Animals were nose-only exposed to this aerosol at a concentration of 10 mg/m3 for 6 h per day, 5 days per week for 4 weeks. Tissues were collected immediately (D0), and 28 days after exposure (D28). A pulmonary influx of neutrophilic granulocytes was observed in exposed rats at D0, but diminished with time while remaining significant until D28. Similarly, an increased expression of several genes involved in inflammation at the two post-exposure time-points was seen. Apart from an age-specific pulmonary influx of lymphocyte, only slight differences in physio-pathological responses following TiO2 exposure between young and elderly animals were noticed. Conversely, marked age-related differences in gene expression profiles were observed making possible to establish lists of genes specific to each age group and post-exposure times. These results highlight different signaling pathways that were disrupted in rats according to their age.
Collapse
|
130
|
Bond KM, McCarthy MM, Rubin JB, Swanson KR. Molecular omics resources should require sex annotation: a call for action. Nat Methods 2021; 18:585-588. [PMID: 34099934 PMCID: PMC8764747 DOI: 10.1038/s41592-021-01168-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The most commonly-used omics databases are a compilation of results from primarily male-only and sex-agnostic studies. The pervasive use of these databases critically hinders progress towards fully accounting for the biology of sex differences.
Collapse
Affiliation(s)
- Kamila M Bond
- Mathematical Neuro-Oncology Lab, Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ, USA
- Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua B Rubin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin R Swanson
- Mathematical Neuro-Oncology Lab, Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
131
|
Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells. Int J Mol Sci 2021; 22:ijms22105089. [PMID: 34064989 PMCID: PMC8151056 DOI: 10.3390/ijms22105089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
SGLT2 inhibitor-related nephroprotection is—at least partially—mediated by anti-inflammatory drug effects, as previously demonstrated in diabetic animal and human studies, as well as hyperglycemic cell culture models. We recently presented first evidence for anti-inflammatory potential of empagliflozin (Empa) under normoglycemic conditions in human proximal tubular cells (HPTC) by demonstrating Empa-mediated inhibition of IL-1β-induced MCP-1/CCL2 and ET-1 expression on the mRNA and protein level. We now add corroborating evidence on a genome-wide level by demonstrating that Empa attenuates the expression of several inflammatory response genes in IL-1β-induced (10 ng/mL) normoglycemic HPTCs. Using microarray-hybridization analysis, 19 inflammatory response genes out of >30.000 human genes presented a consistent expression pattern, that is, inhibition of IL-1β (10 ng/mL)-stimulated gene expression by Empa (500 nM), in both HK-2 and RPTEC/TERT1 cells. Pathway enrichment analysis demonstrated statistically significant clustering of annotated pathways (enrichment score 3.64). Our transcriptomic approach reveals novel genes such as CXCL8/IL8, LOX, NOV, PTX3, and SGK1 that might be causally involved in glycemia-independent nephroprotection by SGLT2i.
Collapse
|
132
|
Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep 2021; 11:9195. [PMID: 33911161 PMCID: PMC8080623 DOI: 10.1038/s41598-021-88695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
The geomagnetic field (GMF) is one of the environmental stimuli that plants experience continuously on Earth; however, the actions of the GMF on plants are poorly understood. Here, we carried out a time-course microarray experiment to identify genes that are differentially regulated by the GMF in shoot and roots. We also used qPCR to validate the activity of some genes selected from the microarray analysis in a dose-dependent magnetic field experiment. We found that the GMF regulated genes in both shoot and roots, suggesting that both organs can sense the GMF. However, 49% of the genes were regulated in a reverse direction in these organs, meaning that the resident signaling networks define the up- or downregulation of specific genes. The set of GMF-regulated genes strongly overlapped with various stress-responsive genes, implicating the involvement of one or more common signals, such as reactive oxygen species, in these responses. The biphasic dose response of GMF-responsive genes indicates a hormetic response of plants to the GMF. At present, no evidence exists to indicate any evolutionary advantage of plant adaptation to the GMF; however, plants can sense and respond to the GMF using the signaling networks involved in stress responses.
Collapse
Affiliation(s)
- Ivan A Paponov
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
133
|
Touré V, Vercruysse S, Acencio ML, Lovering RC, Orchard S, Bradley G, Casals-Casas C, Chaouiya C, Del-Toro N, Flobak Å, Gaudet P, Hermjakob H, Hoyt CT, Licata L, Lægreid A, Mungall CJ, Niknejad A, Panni S, Perfetto L, Porras P, Pratt D, Saez-Rodriguez J, Thieffry D, Thomas PD, Türei D, Kuiper M. The Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST). Bioinformatics 2021; 36:5712-5718. [PMID: 32637990 PMCID: PMC8023674 DOI: 10.1093/bioinformatics/btaa622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Motivation A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called ‘causal interaction’ takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells. These causal interactions and the biological processes they enable (e.g. gene regulation) need to be described with a careful appreciation of the underlying molecular reactions. A proper description of this information enables archiving, sharing and reuse by humans and for automated computational processing. Various representations of causal relationships between biological components are currently used in a variety of resources. Results Here, we propose a checklist that accommodates current representations, called the Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST). This checklist defines both the required core information, as well as a comprehensive set of other contextual details valuable to the end user and relevant for reusing and reproducing causal molecular interaction information. The MI2CAST checklist can be used as reporting guidelines when annotating and curating causal statements, while fostering uniformity and interoperability of the data across resources. Availability and implementation The checklist together with examples is accessible at https://github.com/MI2CAST/MI2CAST Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vasundra Touré
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Steven Vercruysse
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Marcio Luis Acencio
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, UCL, University College London, London WC1E 6JF, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Glyn Bradley
- Computational Biology, Functional Genomics, GSK, Stevenage SG1 2NY, UK
| | | | - Claudine Chaouiya
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M Marseille 13331, France
| | - Noemi Del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.,The Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, Trondheim 7030, Norway
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Geneva 1211, Switzerland
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Christopher J Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne Niknejad
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, Amphipole Building, 1015 Lausanne, Switzerland
| | - Simona Panni
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Ecology and Earth Science, Via Pietro Bucci Cubo 6/C, Rende 87036, CS, Italy
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, 69120 Heidelberg, Germany.,Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen 52062, Germany
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Dénes Türei
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen 52062, Germany
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
134
|
Favara DM, Liebscher I, Jazayeri A, Nambiar M, Sheldon H, Banham AH, Harris AL. Elevated expression of the adhesion GPCR ADGRL4/ELTD1 promotes endothelial sprouting angiogenesis without activating canonical GPCR signalling. Sci Rep 2021; 11:8870. [PMID: 33893326 PMCID: PMC8065136 DOI: 10.1038/s41598-021-85408-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
ADGRL4/ELTD1 is an orphan adhesion GPCR (aGPCR) expressed in endothelial cells that regulates tumour angiogenesis. The majority of aGPCRs are orphan receptors. The Stachel Hypothesis proposes a mechanism for aGPCR activation, in which aGPCRs contain a tethered agonist (termed Stachel) C-terminal to the GPCR-proteolytic site (GPS) cleavage point which, when exposed, initiates canonical GPCR signalling. This has been shown in a growing number of aGPCRs. We tested this hypothesis on ADGRL4/ELTD1 by designing full length (FL) and C-terminal fragment (CTF) ADGRL4/ELTD1 constructs, and a range of potential Stachel peptides. Constructs were transfected into HEK293T cells and HTRF FRET, luciferase-reporter and Alphascreen GPCR signalling assays were performed. A stable ADGRL4/ELTD1 overexpressing HUVEC line was additionally generated and angiogenesis assays, signalling assays and transcriptional profiling were performed. ADGRL4/ELTD1 has the lowest GC content in the aGPCR family and codon optimisation significantly increased its expression. FL and CTF ADGRL4/ELTD1 constructs, as well as Stachel peptides, did not activate canonical GPCR signalling. Furthermore, stable overexpression of ADGRL4/ELTD1 in HUVECs induced sprouting angiogenesis, lowered in vitro anastomoses, and decreased proliferation, without activating canonical GPCR signalling or MAPK/ERK, PI3K/AKT, JNK, JAK/HIF-1α, beta catenin or STAT3 pathways. Overexpression upregulated ANTXR1, SLC39A6, HBB, CHRNA, ELMOD1, JAG1 and downregulated DLL4, KIT, CCL15, CYP26B1. ADGRL4/ELTD1 specifically regulates the endothelial tip-cell phenotype through yet undefined signalling pathways.
Collapse
Affiliation(s)
- David M Favara
- Balliol College, University of Oxford, Oxford, OX1 3BJ, UK.
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Cambridge University Hospitals NHS Foundation Trust and Department of Oncology, Cambridge University, Cambridge, CB2 0XZ, UK.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Department of Molecular Biochemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Ali Jazayeri
- Heptares Therapeutics Ltd, Welwyn Garden City, AL7 3AX, UK
- OMass Therapeutics, Oxford, OX4 4GE, UK
| | - Madhulika Nambiar
- Heptares Therapeutics Ltd, Welwyn Garden City, AL7 3AX, UK
- Sosei Heptares, Cambridge, CB21 6DG, UK
| | - Helen Sheldon
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Adrian L Harris
- Department of Oncology and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
135
|
Speirs V. Quality Considerations When Using Tissue Samples for Biomarker Studies in Cancer Research. Biomark Insights 2021; 16:11772719211009513. [PMID: 33958852 PMCID: PMC8060748 DOI: 10.1177/11772719211009513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue obtained from biobanks is frequently employed in biomarker studies. Biomarkers define objective, measurable characteristics of biological and biomedical procedures and have been used as indicators of clinical outcome. This article outlines some of the steps scientists should consider when embarking on biomarker research in cancer research using samples from biobanks and the importance and challenges of linking clinical data to biological samples.
Collapse
Affiliation(s)
- Valerie Speirs
- Institute of Medical Sciences, School of Medicine,
Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland,
UK
| |
Collapse
|
136
|
Beemelmanns A, Zanuzzo FS, Xue X, Sandrelli RM, Rise ML, Gamperl AK. The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia. BMC Genomics 2021; 22:261. [PMID: 33845767 PMCID: PMC8042886 DOI: 10.1186/s12864-021-07464-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Increases in ocean temperatures and in the frequency and severity of hypoxic events are expected with climate change, and may become a challenge for cultured Atlantic salmon and negatively affect their growth, immunology and welfare. Thus, we examined how an incremental temperature increase alone (Warm & Normoxic-WN: 12 → 20 °C; 1 °C week- 1), and in combination with moderate hypoxia (Warm & Hypoxic-WH: ~ 70% air saturation), impacted the salmon's hepatic transcriptome expr\ession compared to control fish (CT: 12 °C, normoxic) using 44 K microarrays and qPCR. RESULTS Overall, we identified 2894 differentially expressed probes (DEPs, FDR < 5%), that included 1111 shared DEPs, while 789 and 994 DEPs were specific to WN and WH fish, respectively. Pathway analysis indicated that the cellular mechanisms affected by the two experimental conditions were quite similar, with up-regulated genes functionally associated with the heat shock response, ER-stress, apoptosis and immune defence, while genes connected with general metabolic processes, proteolysis and oxidation-reduction were largely suppressed. The qPCR assessment of 41 microarray-identified genes validated that the heat shock response (hsp90aa1, serpinh1), apoptosis (casp8, jund, jak2) and immune responses (apod, c1ql2, epx) were up-regulated in WN and WH fish, while oxidative stress and hypoxia sensitive genes were down-regulated (cirbp, cyp1a1, egln2, gstt1, hif1α, prdx6, rraga, ucp2). However, the additional challenge of hypoxia resulted in more pronounced effects on heat shock and immune-related processes, including a stronger influence on the expression of 14 immune-related genes. Finally, robust correlations between the transcription of 19 genes and several phenotypic traits in WH fish suggest that changes in gene expression were related to impaired physiological and growth performance. CONCLUSION Increasing temperature to 20 °C alone, and in combination with hypoxia, resulted in the differential expression of genes involved in similar pathways in Atlantic salmon. However, the expression responses of heat shock and immune-relevant genes in fish exposed to 20 °C and hypoxia were more affected, and strongly related to phenotypic characteristics (e.g., growth). This study provides valuable information on how these two environmental challenges affect the expression of stress-, metabolic- and immune-related genes and pathways, and identifies potential biomarker genes for improving our understanding of fish health and welfare.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
- Current Address: Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, G1V 0A6, Canada.
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
137
|
MicroRNA biomarkers of type 2 diabetes: A protocol for corroborating evidence by computational genomics and meta-analyses. PLoS One 2021; 16:e0247556. [PMID: 33822793 PMCID: PMC8023490 DOI: 10.1371/journal.pone.0247556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background Few microRNAs were found consistently dysregulated in type 2 diabetes (T2D) that would gain confidence from Big Pharma to develop diagnostic or therapeutic biomarkers. This study aimed to corroborate evidence from eligible microRNAs-T2D association studies according to stringent quality criteria covering both biological and statistical significance in T2D for biomarker development. Methods and analyses Controlled microRNA expression profiling studies on human with T2D will be retrieved from PubMed, ScienceDirect, and Embase for selecting the statistically significant microRNAs according to pre-specified search strategies and inclusion criteria. Multiple meta-analyses with restricted maximum-likelihood estimation and empirical Bayes estimation under the random-effects model will be conducted by metafor package in R. Subgroup and sensitivity analyses further examine the microRNA candidates for their disease specificity, tissue specificity, blood fraction specificity, and statistical robustness of evidence. Biologically relevant microRNAs will then be selected through genomic database corroboration. Their association with T2D is further measured by area under the curve (AUC) of receive operating characteristic (ROC). Meta-analysis of AUC of potential biomarkers will also be conducted. Enrichment analysis on potential microRNA biomarkers and their target genes will be performed by iPathwayGuide and clusterProfiler, respectively. The corresponding reporting guidelines will be used to assess the quality of included studies according to their profiling methods (microarray, RT-PCR, and RNA-Seq). Ethics and dissemination No ethics approval is required since this study does not include identifiable personal patient data. Protocol registration number CRD42017081659.
Collapse
|
138
|
Giurgea LT, Park JK, Walters KA, Scherler K, Cervantes-Medina A, Freeman A, Rosas LA, Kash JC, Taubenberger JK, Memoli MJ. The effect of calcium and magnesium on activity, immunogenicity, and efficacy of a recombinant N1/N2 neuraminidase vaccine. NPJ Vaccines 2021; 6:48. [PMID: 33824333 PMCID: PMC8024250 DOI: 10.1038/s41541-021-00310-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/07/2021] [Indexed: 12/26/2022] Open
Abstract
Despite the importance of immunity against neuraminidase (NA), NA content and immunogenicity are neglected in current influenza vaccines. To address this, a recombinant N1/N2 NA vaccine (NAV) was developed. Stability assays were used to determine optimal temperature and buffer conditions for vaccine storage. The effect of divalent cation-related enhancement of NA stability and activity on N1 and N2 immunogenicity and efficacy against viral challenge was assessed. Differences in activity between N1 and N2 and cation-related activity enhancement did not translate into differences in immunogenicity or efficacy. NAV-vaccinated mice showed robust antibody titers against N1 and N2, and after challenge with influenza A (H1N1) virus, decreased viral titers and decreased antiviral and inflammatory responses by transcriptomic analysis. These findings provide guidance for optimal storage and assessment of NA-based vaccines and confirm the importance of NA in influenza vaccination strategies in attenuating viral replication and limiting inflammatory responses necessary to clear infection.
Collapse
Affiliation(s)
- Luca T Giurgea
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jae-Keun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
139
|
Grillari J, Mäkitie RE, Kocijan R, Haschka J, Vázquez DC, Semmelrock E, Hackl M. Circulating miRNAs in bone health and disease. Bone 2021; 145:115787. [PMID: 33301964 DOI: 10.1016/j.bone.2020.115787] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
microRNAs have evolved as important regulators of multiple biological pathways essential for bone homeostasis, and microRNA research has furthered our understanding of the mechanisms underlying bone health and disease. This knowledge, together with the finding that active or passive release of microRNAs from cells into the extracellular space enables minimal-invasive detection in biofluids (circulating miRNAs), motivated researchers to explore microRNAs as biomarkers in several pathologic conditions, including bone diseases. Thus, exploratory studies in cohorts representing different types of bone diseases have been performed. In this review, we first summarize important molecular basics of microRNA function and release and provide recommendations for best (pre-)analytical practices and documentation standards for circulating microRNA research required for generating high quality data and ensuring reproducibility of results. Secondly, we review how the genesis of bone-derived circulating microRNAs via release from osteoblasts and osteoclasts could contribute to the communication between these cells. Lastly, we summarize evidence from clinical research studies that have investigated the clinical utility of microRNAs as biomarkers in musculoskeletal disorders. While previous reviews have mainly focused on diagnosis of primary osteoporosis, we have also included studies exploring the utility of circulating microRNAs in monitoring anti-osteoporotic treatment and for diagnosis of other types of bone diseases, such as diabetic osteopathy, bone degradation in inflammatory diseases, and monogenetic bone diseases.
Collapse
Affiliation(s)
- Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria; Institute for Molecular Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London, United Kingdom
| | - Roland Kocijan
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Sigmund Freud University Vienna, School of Medicine, Metabolic Bone Diseases Unit, Austria
| | - Judith Haschka
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Karl Landsteiner Institute for Rheumatology and Gastroenterology, Vienna, Austria
| | | | | | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Austria; TAmiRNA GmbH, Vienna, Austria.
| |
Collapse
|
140
|
Flynn E, Chang A, Altman RB. Large-scale labeling and assessment of sex bias in publicly available expression data. BMC Bioinformatics 2021; 22:168. [PMID: 33784977 PMCID: PMC8011224 DOI: 10.1186/s12859-021-04070-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Women are at more than 1.5-fold higher risk for clinically relevant adverse drug events. While this higher prevalence is partially due to gender-related effects, biological sex differences likely also impact drug response. Publicly available gene expression databases provide a unique opportunity for examining drug response at a cellular level. However, missingness and heterogeneity of metadata prevent large-scale identification of drug exposure studies and limit assessments of sex bias. To address this, we trained organism-specific models to infer sample sex from gene expression data, and used entity normalization to map metadata cell line and drug mentions to existing ontologies. Using this method, we inferred sex labels for 450,371 human and 245,107 mouse microarray and RNA-seq samples from refine.bio. RESULTS Overall, we find slight female bias (52.1%) in human samples and (62.5%) male bias in mouse samples; this corresponds to a majority of mixed sex studies in humans and single sex studies in mice, split between female-only and male-only (25.8% vs. 18.9% in human and 21.6% vs. 31.1% in mouse, respectively). In drug studies, we find limited evidence for sex-sampling bias overall; however, specific categories of drugs, including human cancer and mouse nervous system drugs, are enriched in female-only and male-only studies, respectively. We leverage our expression-based sex labels to further examine the complexity of cell line sex and assess the frequency of metadata sex label misannotations (2-5%). CONCLUSIONS Our results demonstrate limited overall sex bias, while highlighting high bias in specific subfields and underscoring the importance of including sex labels to better understand the underlying biology. We make our inferred and normalized labels, along with flags for misannotated samples, publicly available to catalyze the routine use of sex as a study variable in future analyses.
Collapse
Affiliation(s)
- Emily Flynn
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | - Annie Chang
- Program in Human Biology, Stanford University, Stanford, CA, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
141
|
Allaeys I, Ribeiro de Vargas F, Bourgoin SG, Poubelle PE. Human Inflammatory Neutrophils Express Genes Encoding Peptidase Inhibitors: Production of Elafin Mediated by NF-κB and CCAAT/Enhancer-Binding Protein β. THE JOURNAL OF IMMUNOLOGY 2021; 206:1943-1956. [PMID: 33762327 DOI: 10.4049/jimmunol.2000852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 11/19/2022]
Abstract
The concept of plasticity of neutrophils is highlighted by studies showing their ability to transdifferentiate into APCs. In this regard, transdifferentiated neutrophils were found at inflammatory sites of autoimmune arthritis (AIA). Exposure of neutrophils to inflammatory stimuli prolongs their survival, thereby favoring the acquisition of pathophysiologically relevant phenotypes and functions. By using microarrays, quantitative RT-PCR, and ELISAs, we showed that long-lived (LL) neutrophils obtained after 48 h of culture in the presence of GM-CSF, TNF, and IL-4 differentially expressed genes related to apoptosis, MHC class II, immune response, and inflammation. The expression of anti-inflammatory genes mainly of peptidase inhibitor families is upregulated in LL neutrophils. Among these, the PI3 gene encoding elafin was the most highly expressed. The de novo production of elafin by LL neutrophils depended on a synergism between GM-CSF and TNF via the activation and cooperativity of C/EBPβ and NF-κB pathways, respectively. Elafin concentrations were higher in synovial fluids (SF) of patients with AIA than in SF of osteoarthritis. SF neutrophils produced more elafin than blood counterparts. These results are discussed with respect to implications of neutrophils in chronic inflammation and the potential influence of elafin in AIA.
Collapse
Affiliation(s)
- Isabelle Allaeys
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Flavia Ribeiro de Vargas
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Patrice E Poubelle
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|
142
|
Hochheiser H, Jing X, Garcia EA, Ayvaz S, Sahay R, Dumontier M, Banda JM, Beyan O, Brochhausen M, Draper E, Habiel S, Hassanzadeh O, Herrero-Zazo M, Hocum B, Horn J, LeBaron B, Malone DC, Nytrø Ø, Reese T, Romagnoli K, Schneider J, Zhang L(Y, Boyce RD. A Minimal Information Model for Potential Drug-Drug Interactions. Front Pharmacol 2021; 11:608068. [PMID: 33762928 PMCID: PMC7982727 DOI: 10.3389/fphar.2020.608068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/29/2020] [Indexed: 01/22/2023] Open
Abstract
Despite the significant health impacts of adverse events associated with drug-drug interactions, no standard models exist for managing and sharing evidence describing potential interactions between medications. Minimal information models have been used in other communities to establish community consensus around simple models capable of communicating useful information. This paper reports on a new minimal information model for describing potential drug-drug interactions. A task force of the Semantic Web in Health Care and Life Sciences Community Group of the World-Wide Web consortium engaged informaticians and drug-drug interaction experts in in-depth examination of recent literature and specific potential interactions. A consensus set of information items was identified, along with example descriptions of selected potential drug-drug interactions (PDDIs). User profiles and use cases were developed to demonstrate the applicability of the model. Ten core information items were identified: drugs involved, clinical consequences, seriousness, operational classification statement, recommended action, mechanism of interaction, contextual information/modifying factors, evidence about a suspected drug-drug interaction, frequency of exposure, and frequency of harm to exposed persons. Eight best practice recommendations suggest how PDDI knowledge artifact creators can best use the 10 information items when synthesizing drug interaction evidence into artifacts intended to aid clinicians. This model has been included in a proposed implementation guide developed by the HL7 Clinical Decision Support Workgroup and in PDDIs published in the CDS Connect repository. The complete description of the model can be found at https://w3id.org/hclscg/pddi.
Collapse
Affiliation(s)
- Harry Hochheiser
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xia Jing
- Department of Public Health Sciences, Clemson University, Clemson, SC, United States
| | | | - Serkan Ayvaz
- Department of Software Engineering, Bahçeşehir University, Istanbul, Turkey
| | - Ratnesh Sahay
- Clinical Data Science, AstraZeneca, Cambridge, United Kingdom
| | - Michel Dumontier
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Juan M. Banda
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Oya Beyan
- Fraunhofer Institute for Applied Information Technology, RWTH Aachen University, Aachen, Germany
| | - Mathias Brochhausen
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | | | - Sam Habiel
- Open Source Electronic Health Record Alliance, Washington, DC, United States
| | | | - Maria Herrero-Zazo
- The European Bioinformatics Institute, Birney Research Group, London, United Kingdom
| | - Brian Hocum
- Genelex Corporation, Seattle, WA, United States
| | - John Horn
- School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Brian LeBaron
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Daniel C. Malone
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, United States
| | - Øystein Nytrø
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Reese
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | - Katrina Romagnoli
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jodi Schneider
- School of Information Science, University of Illinois, Champaign, IL, United States
| | - Louisa (Yu) Zhang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard D. Boyce
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
143
|
Sakalli-Tecim E, Uyar-Arpaci P, Guray NT. Identification of Potential Therapeutic Genes and Pathways in Phytoestrogen Emodin Treated Breast Cancer Cell Lines via Network Biology Approaches. Nutr Cancer 2021; 74:592-604. [PMID: 33645356 DOI: 10.1080/01635581.2021.1889622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytoestrogens have been investigated for their potential anti-tumorigenic effects in various cancers including breast cancer. Emodin being a phytoestrogen shows anti-carcinogenic properties especially in estrogen receptor positive (ER+) breast cancers. The aim of this study is to identify the molecular mechanism and related biological pathways in both (ER+) MCF-7 and (ER-) MDA-MB-231 breast cancer cell lines upon Emodin treatment via microarray analysis in order to find out therapeutic biomarkers. In both cell lines, first differentially expressed genes were identified, then gene ontology and functional pathway enrichment analyses were performed. Genes regulated through multiple pathways were studied together with literature and a gene cluster was determined for each cell line. Further GeneMANIA and STRING databases were used to study the interactions within the related gene clusters. The results showed that, the genes which are related to cell cycle were significantly regulated in both cell lines. Also, Forkhead Box O1-related genes were found to be prominent in MCF-7 cells. In MDA-MB-231 cells, spindle attachment checkpoint mechanism-related genes were regulated, remarkably. As a result, novel gene regulations reported in this study in response to Emodin will give more information about its metabolism and antiproliferative effect, especially in ER + cells.
Collapse
Affiliation(s)
- Elif Sakalli-Tecim
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | | | - N Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
144
|
Drobne D. Adding Toxicological Context to Nanotoxicity Study Reporting Using the NanoTox Metadata List. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005622. [PMID: 33605049 DOI: 10.1002/smll.202005622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
This paper proposes a list of specifications (NanoTox metadata list) to be reported about nanotoxicity experiments (metadata) together with resultant data to add toxicological context to reported studies. In areas involving nanomaterials (NMs), existing metadata reporting standards include the reporting of experimental conditions and protocols (MIRIBEL) and material characteristics (MINChar and MIAN), as well as reporting focused on specific experiments (MINBE). NanoCRED is a similarly transparent and structured framework, however, it is developed to guide risk assessors in evaluating the reliability and relevance of NM ecotoxicity studies. There is no reporting standard which would include interpretation of the aims and outcomes of nanotoxicity studies beyond regulatory purposes. The proposed NanoTox metadata reporting checklist is elaborated to extend reporting toward describing nanotoxicological context and thus is a logical complement to technology/material-assay focused reporting checklists. It is further designed to allow for NM toxicity data and knowledge integration, reuse, and communication. Its ultimate goal is to adhere to the basic rules of toxicology when taking a stand on the toxicity of NMs and to limit speculations on safety. As nanotoxicology becomes more interdisciplinary with the advent of new tools and new materials to be tested, reporting standards will contribute to cross-disciplinary communication.
Collapse
Affiliation(s)
- Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| |
Collapse
|
145
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
146
|
Lim N, Tesar S, Belmadani M, Poirier-Morency G, Mancarci BO, Sicherman J, Jacobson M, Leong J, Tan P, Pavlidis P. Curation of over 10 000 transcriptomic studies to enable data reuse. Database (Oxford) 2021; 2021:6143045. [PMID: 33599246 PMCID: PMC7904053 DOI: 10.1093/database/baab006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
Vast amounts of transcriptomic data reside in public repositories, but effective reuse remains challenging. Issues include unstructured dataset metadata, inconsistent data processing and quality control, and inconsistent probe-gene mappings across microarray technologies. Thus, extensive curation and data reprocessing are necessary prior to any reuse. The Gemma bioinformatics system was created to help address these issues. Gemma consists of a database of curated transcriptomic datasets, analytical software, a web interface and web services. Here we present an update on Gemma's holdings, data processing and analysis pipelines, our curation guidelines, and software features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic platforms (both microarray and RNA sequencing). Dataset topics were represented with 10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean topics/dataset = 5.2). While Gemma has broad coverage of conditions and tissues, it captures a large majority of available brain-related datasets, accounting for 34% of its holdings. Users can access the curated data and differential expression analyses through the Gemma website, RESTful service and an R package. Database URL: https://gemma.msl.ubc.ca/home.html.
Collapse
Affiliation(s)
- Nathaniel Lim
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada,Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Stepan Tesar
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Manuel Belmadani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Guillaume Poirier-Morency
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Burak Ogan Mancarci
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Jordan Sicherman
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Matthew Jacobson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Justin Leong
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Patrick Tan
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | | |
Collapse
|
147
|
Wright A, Arthaud-Day ML, Weiss ML. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front Cell Dev Biol 2021; 9:632717. [PMID: 33665190 PMCID: PMC7921162 DOI: 10.3389/fcell.2021.632717] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Following their discovery over 50 years ago, mesenchymal stromal cells (MSCs) have become one of the most studied cellular therapeutic products by both academia and industry due to their regenerative potential and immunomodulatory properties. The promise of MSCs as a therapeutic modality has been demonstrated by preclinical data yet has not translated to consistent, successful clinical trial results in humans. Despite the disparities across the field, MSC shareholders are unified under one common goal-to use MSCs as a therapeutic modality to improve the quality of life for those suffering from a malady in which the standard of care is suboptimal or no longer effective. Currently, there is no Food and Drug Administration (FDA)-approved MSC therapy on the market in the United States although several MSC products have been granted regulatory approval in other countries. In this review, we intend to identify hurdles that are impeding therapeutic progress and discuss strategies that may aid in accomplishing this universal goal of widespread therapeutic use.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Marne L Arthaud-Day
- Department of Management, Kansas State University, Manhattan, KS, United States
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States.,Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
148
|
Hoos A, Janetzki S, Britten CM. Advancing the field of cancer immunotherapy: MIATA consensus guidelines become available to improve data reporting and interpretation for T-cell immune monitoring. Oncoimmunology 2021; 1:1457-1459. [PMID: 23264891 PMCID: PMC3525600 DOI: 10.4161/onci.22308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Axel Hoos
- Glaxo Smith Kline, Collegeville, PA USA ; Cancer Immunotherapy Consortium; Cancer Research Institute; New York, NY USA
| | | | | |
Collapse
|
149
|
de Paula Junior DE, de Oliveira MT, Bruscadin JJ, Pinheiro DG, Bomtorin AD, Coelho Júnior VG, Moda LMR, Simões ZLP, Barchuk AR. Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera. INSECT MOLECULAR BIOLOGY 2021; 30:42-56. [PMID: 33044766 DOI: 10.1111/imb.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Apis mellifera adult workers feature more developed key brain regions than queens, which allows them to cope with the broad range of duties they need to perform in a colony. However, at the end of larval development, the brain of queens is largely more developed than that of workers. Major morphogenetic changes take place after metamorphosis that shift caste-specific brain development. Here, we tested the hypothesis that this phenomenon is hormonally governed and involves differential gene expression. Our molecular screening approach revealed a set of differentially expressed genes in Pp (first pharate-adult phase) brains between castes mainly coding for tissue remodelling and energy-converting proteins (e.g. hex 70a and ATPsynβ). An in-depth qPCR analysis of the transcriptional behaviour during pupal and pharate-adult developmental stage in both castes and in response to artificially augmented hormone titres of 18 genes/variants revealed that: i. subtle differences in hormone titres between castes might be responsible for the differential expression of the EcR and insulin/insulin-like signalling (IIS) pathway genes; ii. the morphogenetic activity of the IIS in brain development must be mediated by ILP-2, iii. which together with the tum, mnb and caspase system, can constitute the molecular effectors of the caste-specific opposing brain developmental trajectories.
Collapse
Affiliation(s)
- D E de Paula Junior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - M T de Oliveira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - J J Bruscadin
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - D G Pinheiro
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Universidade Estadual Paulista, São Paulo, Brazil
| | - A D Bomtorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - V G Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - L M R Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - Z L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A R Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| |
Collapse
|
150
|
Cree IA, Indave Ruiz BI, Zavadil J, McKay J, Olivier M, Kozlakidis Z, Lazar AJ, Hyde C, Holdenrieder S, Hastings R, Rajpoot N, de la Fouchardiere A, Rous B, Zenklusen JC, Normanno N, Schilsky RL. The International Collaboration for Cancer Classification and Research. Int J Cancer 2021; 148:560-571. [PMID: 32818326 PMCID: PMC7756795 DOI: 10.1002/ijc.33260] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Gaps in the translation of research findings to clinical management have been recognized for decades. They exist for the diagnosis as well as the management of cancer. The international standards for cancer diagnosis are contained within the World Health Organization (WHO) Classification of Tumours, published by the International Agency for Research on Cancer (IARC) and known worldwide as the WHO Blue Books. In addition to their relevance to individual patients, these volumes provide a valuable contribution to cancer research and surveillance, fulfilling an important role in scientific evidence synthesis and international standard setting. However, the multidimensional nature of cancer classification, the way in which the WHO Classification of Tumours is constructed, and the scientific information overload in the field pose important challenges for the translation of research findings to tumour classification and hence cancer diagnosis. To help address these challenges, we have established the International Collaboration for Cancer Classification and Research (IC3 R) to provide a forum for the coordination of efforts in evidence generation, standard setting and best practice recommendations in the field of tumour classification. The first IC3 R meeting, held in Lyon, France, in February 2019, gathered representatives of major institutions involved in tumour classification and related fields to identify and discuss translational challenges in data comparability, standard setting, quality management, evidence evaluation and copyright, as well as to develop a collaborative plan for addressing these challenges.
Collapse
Affiliation(s)
- Ian A. Cree
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | | | - Jiri Zavadil
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - James McKay
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - Magali Olivier
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance
| | - Alexander J. Lazar
- Departments of Pathology, Genomic Medicine, and Translational Molecular PathologyThe University of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Chris Hyde
- Exeter Test GroupCollege of Medicine and Health, University of ExeterExeterUK
| | | | - Ros Hastings
- GenQA (Genomics External Quality Assessment)Women's Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Nasir Rajpoot
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Alan Turing InstituteLondonUK
- Department of PathologyUniversity Hospitals Coventry & Warwickshire NHS TrustCoventryUK
| | | | - Brian Rous
- National Cancer Registration Service (Eastern Office), Public Health England, Victoria HouseCambridgeUK
| | - Jean Claude Zenklusen
- Center for Cancer GenomicsNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Nicola Normanno
- Cell Biology and Biotherapy UnitIstituto Nazionale Tumori—IRCCS—“Fondazione G. Pascale,” Via M. SemmolaNaplesItaly
| | | | | |
Collapse
|