101
|
Bensemmane L, Milliat F, Treton X, Linard C. Systemically delivered adipose stromal vascular fraction mitigates radiation-induced gastrointestinal syndrome by immunomodulating the inflammatory response through a CD11b + cell-dependent mechanism. Stem Cell Res Ther 2023; 14:325. [PMID: 37953266 PMCID: PMC10641938 DOI: 10.1186/s13287-023-03562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Stromal vascular fraction (SVF) treatment promoted the regeneration of the intestinal epithelium, limiting lethality in a mouse model of radiation-induced gastrointestinal syndrome (GIS). The SVF has a heterogeneous cell composition; the effects between SVF and the host intestinal immunity are still unknown. The specific role of the different cells contained in the SVF needs to be clarified. Monocytes-macrophages have a crucial role in repair and monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2. METHODS Mice exposed to abdominal radiation (18 Gy) received a single intravenous injection of SVF (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Intestinal immunity and regeneration were evaluated by flow cytometry, RT-PCR and histological analyses. RESULTS Using flow cytometry, we showed that SVF treatment modulated intestinal monocyte differentiation at 7 days post-irradiation by very early increasing the CD11b+Ly6C+CCR2+ population in the intestine ileal mucosa and accelerating the phenotype modification to acquire CX3CR1 in order to finally restore the F4/80+CX3CR1+ macrophage population. In CX3CR1-depleted mice, SVF treatment fails to mature the Ly6C-MCHII+CX3CR1+ population, leading to a macrophage population deficit associated with proinflammatory environment maintenance and defective intestinal repair; this impaired SVF efficiency on survival. Consistent with a CD11b+ being involved in SVF-induced intestinal repair, we showed that SVF-depleted CD11b+ treatment impaired F4/80+CX3CR1+macrophage pool restoration and caused loss of anti-inflammatory properties, abrogating stem cell compartment repair and survival. CONCLUSIONS These data showed that SVF treatment mitigates the GIS-involving immunomodulatory effect. Cooperation between the monocyte in SVF and the host monocyte defining the therapeutic properties of the SVF is necessary to guarantee the effective action of the SVF on the GIS.
Collapse
Affiliation(s)
- Lydia Bensemmane
- PSE-SANTE/SERAMED/LRMed, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260, Fontenay-Aux-Roses, France
| | - Fabien Milliat
- PSE-SANTE/SERAMED/LRMed, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260, Fontenay-Aux-Roses, France
| | | | - Christine Linard
- PSE-SANTE/SERAMED/LRMed, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260, Fontenay-Aux-Roses, France.
| |
Collapse
|
102
|
Moniruzzaman M, Rahman MA, Wang R, Wong KY, Chen ACH, Mueller A, Taylor S, Harding A, Illankoon T, Wiid P, Sajiir H, Schreiber V, Burr LD, McGuckin MA, Phipps S, Hasnain SZ. Interleukin-22 suppresses major histocompatibility complex II in mucosal epithelial cells. J Exp Med 2023; 220:e20230106. [PMID: 37695525 PMCID: PMC10494524 DOI: 10.1084/jem.20230106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Major histocompatibility complex (MHC) II is dynamically expressed on mucosal epithelial cells and is induced in response to inflammation and parasitic infections, upon exposure to microbiota, and is increased in chronic inflammatory diseases. However, the regulation of epithelial cell-specific MHC II during homeostasis is yet to be explored. We discovered a novel role for IL-22 in suppressing epithelial cell MHC II partially via the regulation of endoplasmic reticulum (ER) stress, using animals lacking the interleukin-22-receptor (IL-22RA1), primary human and murine intestinal and respiratory organoids, and murine models of respiratory virus infection or with intestinal epithelial cell defects. IL-22 directly downregulated interferon-γ-induced MHC II on primary epithelial cells by modulating the expression of MHC II antigen A α (H2-Aα) and Class II transactivator (Ciita), a master regulator of MHC II gene expression. IL-22RA1-knockouts have significantly higher MHC II expression on mucosal epithelial cells. Thus, while IL-22-based therapeutics improve pathology in chronic disease, their use may increase susceptibility to viral infections.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - M. Arifur Rahman
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Ran Wang
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Kuan Yau Wong
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Alice C.-H. Chen
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Alexandra Mueller
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Steven Taylor
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alexa Harding
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Thishan Illankoon
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Percival Wiid
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Haressh Sajiir
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Veronika Schreiber
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
| | - Lucy D. Burr
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, Australia
| | - Michael A. McGuckin
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia
| | - Simon Phipps
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sumaira Z. Hasnain
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Immunopathology Group, Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
103
|
Nakatani A, Okumura R, Ishibashi A, Okamoto S, Sakaki K, Ito Y, Okuzaki D, Inohara H, Takeda K. Differential dependence on microbiota of IL-23/IL-22-dependent gene expression between the small- and large-intestinal epithelia. Genes Cells 2023; 28:776-788. [PMID: 37680073 DOI: 10.1111/gtc.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
In the intestine, interleukin (IL)-23 and IL-22 from immune cells in the lamina propria contribute to maintenance of the gut epithelial barrier through the induction of antimicrobial production and the promotion of epithelial cell proliferation. Several previous studies suggested that some of the functions of the IL-23/IL-22 axis on intestinal epithelial cells are shared between the small and large intestines. However, the similarities and differences of the IL-23/IL-22 axis on epithelial cells between these two anatomical sites remain unclear. Here, we comprehensively analyzed the gene expression of intestinal epithelial cells in the ileum and colon of germ-free, Il23-/- , and Il22-/- mice by RNA-sequencing. We found that while the IL-23/IL-22 axis is largely dependent on gut microbiota in the small intestine, it is much less dependent on it in the large intestine. In addition, the negative regulation of lipid metabolism in the epithelial cells by IL-23 and IL-22 in the small intestine was revealed, whereas the positive regulation of epithelial cell proliferation by IL-23 and IL-22 in the large intestine was highlighted. These findings shed light on the intestinal site-specific role of the IL-23/IL-22 axis in maintaining the physiological functions of intestinal epithelial cells.
Collapse
Affiliation(s)
- Ayaka Nakatani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, Japan
| | - Airi Ishibashi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shota Okamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kei Sakaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Ito
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
104
|
Wu D, Li Z, Zhang Y, Zhang Y, Ren G, Zeng Y, Liu H, Guan W, Zhao X, Li P, Hu L, Hou Z, Gong J, Li J, Jin W, Hu Z, Jiang C, Li H, Zhong C. Proline uptake promotes activation of lymphoid tissue inducer cells to maintain gut homeostasis. Nat Metab 2023; 5:1953-1968. [PMID: 37857730 DOI: 10.1038/s42255-023-00908-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Metabolic regulation is integral to the proper functioning of innate lymphoid cells, yet the underlying mechanisms remain elusive. Here, we show that disruption of exogenous proline uptake, either through dietary restriction or by deficiency of the proline transporter Slc6a7, in lymphoid tissue inducer (LTi) cells, impairs LTi activation and aggravates dextran sodium sulfate-induced colitis in mice. With an integrative transcriptomic and metabolomic analysis, we profile the metabolic characteristics of various innate lymphoid cell subsets and reveal a notable enrichment of proline metabolism in LTi cells. Mechanistically, defective proline uptake diminishes the generation of reactive oxygen species, previously known to facilitate LTi activation. Additionally, LTi cells deficient in Slc6a7 display downregulation of Cebpb and Kdm6b, resulting in compromised transcriptional and epigenetic regulation of interleukin-22. Furthermore, our study uncovers the therapeutic potential of proline supplementation in alleviating colitis. Therefore, these findings shed light on the role of proline in facilitating LTi activation and ultimately contributing to gut homeostasis.
Collapse
Affiliation(s)
- Di Wu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zongxian Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yime Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yinlian Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingyu Zhao
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Peng Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Wenfei Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
105
|
Kemter AM, Patry RT, Arnold J, Hesser LA, Campbell E, Ionescu E, Mimee M, Wang S, Nagler CR. Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food. Cell Rep 2023; 42:113153. [PMID: 37742185 PMCID: PMC10697505 DOI: 10.1016/j.celrep.2023.113153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.
Collapse
Affiliation(s)
- Andrea M Kemter
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert T Patry
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Shan Wang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
106
|
Yue R, Wei X, Hao L, Dong H, Guo W, Sun X, Zhao J, Zhou Z, Zhong W. Promoting intestinal antimicrobial defense and microbiome symbiosis contributes to IL-22-mediated protection against alcoholic hepatitis in mice. Front Immunol 2023; 14:1289356. [PMID: 37908362 PMCID: PMC10613651 DOI: 10.3389/fimmu.2023.1289356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background The hepatoprotective effect of interleukin 22 (IL-22) has been reported in several models of liver injuries, including alcohol-associated liver disease (ALD). However, the intestinal role of IL-22 in alcoholic hepatitis remains to be elucidated. Methods Intestinal IL-22 levels were measured in mice fed with alcohol for 8 weeks. IL-22 was then administered to alcohol-fed mice to test its protective effects on alleviating alcoholic hepatitis, focusing on intestinal protection. Acute IL-22 treatment was conducted in mice to further explore the link between IL-22 and the induction of antimicrobial peptide (AMP). Intestinal epithelial cell-specific knockout of signal transducer and activator of transcription 3 (STAT3) mice were generated and used for organoid study to explore its role in IL-22-mediated AMP expression and gut barrier integrity. Results After alcohol feeding for 8 weeks, the intestinal levels of IL-22 were significantly reduced in mice. IL-22 treatment to alcohol-fed mice mitigated liver injury as indicated by normalized serum transaminase levels, improved liver histology, reduced lipid accumulation, and attenuated inflammation. In the intestine, alcohol-reduced Reg3γ and α-defensins levels were reversed by IL-22 treatment. IL-22 also improved gut barrier integrity and decreased endotoxemia in alcohol-fed mice. While alcohol feeding significantly reduced Akkermansia, IL-22 administration dramatically expanded this commensal bacterium in mice. Regardless of alcohol, acute IL-22 treatment induced a fast and robust induction of intestinal AMPs and STAT3 activation. By using in vitro cultured intestinal organoids isolated from WT mice and mice deficient in intestinal epithelial-STAT3, we further demonstrated that STAT3 is required for IL-22-mediated AMP expression. In addition, IL-22 also regulates intestinal epithelium differentiation as indicated by direct regulation of sodium-hydrogen exchanger 3 via STAT3. Conclusion Our study suggests that IL-22 not only targets the liver but also benefits the intestine in many aspects. The intestinal effects of IL-22 include regulating AMP expression, microbiota, and gut barrier function that is pivotal in ameliorating alcohol induced translocation of gut-derived bacterial pathogens and liver inflammation.
Collapse
Affiliation(s)
- Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
107
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
108
|
Beppu AK, Zhao J, Yao C, Carraro G, Israely E, Coelho AL, Drake K, Hogaboam CM, Parks WC, Kolls JK, Stripp BR. Epithelial plasticity and innate immune activation promote lung tissue remodeling following respiratory viral infection. Nat Commun 2023; 14:5814. [PMID: 37726288 PMCID: PMC10509177 DOI: 10.1038/s41467-023-41387-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/02/2023] [Indexed: 09/21/2023] Open
Abstract
Epithelial plasticity has been suggested in lungs of mice following genetic depletion of stem cells but is of unknown physiological relevance. Viral infection and chronic lung disease share similar pathological features of stem cell loss in alveoli, basal cell (BC) hyperplasia in small airways, and innate immune activation, that contribute to epithelial remodeling and loss of lung function. We show that a subset of distal airway secretory cells, intralobar serous (IS) cells, are activated to assume BC fates following influenza virus infection. Injury-induced hyperplastic BC (hBC) differ from pre-existing BC by high expression of IL-22Ra1 and undergo IL-22-dependent expansion for colonization of injured alveoli. Resolution of virus-elicited inflammation results in BC to IS re-differentiation in repopulated alveoli, and increased local expression of protective antimicrobial factors, but fails to restore normal alveolar epithelium responsible for gas exchange.
Collapse
Affiliation(s)
- Andrew K Beppu
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Juanjuan Zhao
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Changfu Yao
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gianni Carraro
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Edo Israely
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anna Lucia Coelho
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Katherine Drake
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cory M Hogaboam
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - William C Parks
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jay K Kolls
- Tulane Center for Translational Research in Infection and Inflammation, School of Medicine, New Orleans, LA, 70112, USA
| | - Barry R Stripp
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
109
|
Wang P, Kljavin N, Nguyen TTT, Storm EE, Marsh B, Jiang J, Lin W, Menon H, Piskol R, de Sauvage FJ. Adrenergic nerves regulate intestinal regeneration through IL-22 signaling from type 3 innate lymphoid cells. Cell Stem Cell 2023; 30:1166-1178.e8. [PMID: 37597516 DOI: 10.1016/j.stem.2023.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
The intestinal epithelium has high intrinsic turnover rate, and the precise renewal of the epithelium is dependent on the microenvironment. The intestine is innervated by a dense network of peripheral nerves that controls various aspects of intestinal physiology. However, the role of neurons in regulating epithelial cell regeneration remains largely unknown. Here, we investigated the effects of gut-innervating adrenergic nerves on epithelial cell repair following irradiation (IR)-induced injury. We observed that adrenergic nerve density in the small intestine increased post IR, while chemical adrenergic denervation impaired epithelial regeneration. Single-cell RNA sequencing experiments revealed a decrease in IL-22 signaling post IR in denervated animals. Combining pharmacologic and genetic tools, we demonstrate that β-adrenergic receptor signaling drives IL-22 production from type 3 innate lymphoid cells (ILC3s) post IR, which in turn promotes epithelial regeneration. These results define an adrenergic-ILC3 axis important for intestinal regeneration.
Collapse
Affiliation(s)
- Putianqi Wang
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Noelyn Kljavin
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thi Thu Thao Nguyen
- Oncology Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elaine E Storm
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bryan Marsh
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jian Jiang
- Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William Lin
- Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hari Menon
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Piskol
- Oncology Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
110
|
Ryu S, Lim M, Kim J, Kim HY. Versatile roles of innate lymphoid cells at the mucosal barrier: from homeostasis to pathological inflammation. Exp Mol Med 2023; 55:1845-1857. [PMID: 37696896 PMCID: PMC10545731 DOI: 10.1038/s12276-023-01022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes that do not express antigen-specific receptors and largely reside and self-renew in mucosal tissues. ILCs can be categorized into three groups (ILC1-3) based on the transcription factors that direct their functions and the cytokines they produce. Their signature transcription factors and cytokines closely mirror those of their Th1, Th2, and Th17 cell counterparts. Accumulating studies show that ILCs are involved in not only the pathogenesis of mucosal tissue diseases, especially respiratory diseases, and colitis, but also the resolution of such diseases. Here, we discuss recent advances regarding our understanding of the biology of ILCs in mucosal tissue health and disease. In addition, we describe the current research on the immune checkpoints by which other cells regulate ILC activities: for example, checkpoint molecules are potential new targets for therapies that aim to control ILCs in mucosal diseases. In addition, we review approved and clinically- trialed drugs and drugs in clinical trials that can target ILCs and therefore have therapeutic potential in ILC-mediated diseases. Finally, since ILCs also play important roles in mucosal tissue homeostasis, we explore the hitherto sparse research on cell therapy with regulatory ILCs. This review highlights various therapeutic approaches that could be used to treat ILC-mediated mucosal diseases and areas of research that could benefit from further investigation.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Jinwoo Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- CIRNO, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
111
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
112
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
113
|
Wagner F, Mansfield JC, Lekkerkerker AN, Wang Y, Keir M, Dash A, Butcher B, Harder B, Orozco LD, Mar JS, Chen H, Rothenberg ME. Dose escalation randomised study of efmarodocokin alfa in healthy volunteers and patients with ulcerative colitis. Gut 2023; 72:1451-1461. [PMID: 36732049 PMCID: PMC10359578 DOI: 10.1136/gutjnl-2022-328387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND The interleukin-22 cytokine (IL-22) has demonstrated efficacy in preclinical colitis models with non-immunosuppressive mechanism of action. Efmarodocokin alfa (UTTR1147A) is a fusion protein agonist that links IL-22 to the crystallisable fragment (Fc) of human IgG4 for improved pharmacokinetic characteristics, but with a mutation to minimise Fc effector functions. METHODS This randomised, phase 1b study evaluated the safety, tolerability, pharmacokinetics and pharmacodynamics of repeat intravenous dosing of efmarodocokin alfa in healthy volunteers (HVs; n=32) and patients with ulcerative colitis (n=24) at 30-90 µg/kg doses given once every 2 weeks or monthly (every 4 weeks) for 12 weeks (6:2 active:placebo per cohort). RESULTS The most common adverse events (AEs) were on-target, reversible, dermatological effects (dry skin, erythema and pruritus). Dose-limiting non-serious dermatological AEs (severe dry skin, erythema, exfoliation and discomfort) were seen at 90 μg/kg once every 2 weeks (HVs, n=2; patients, n=1). Pharmacokinetics were generally dose-proportional across the dose levels, but patients demonstrated lower drug exposures relative to HVs at the same dose. IL-22 serum biomarkers and IL-22-responsive genes in colon biopsies were induced with active treatment, and microbiota composition changed consistent with a reversal in baseline dysbiosis. As a phase 1b study, efficacy endpoints were exploratory only. Clinical response was observed in 7/18 active-treated and 1/6 placebo-treated patients; clinical remission was observed in 5/18 active-treated and 0/6 placebo-treated patients. CONCLUSION Efmarodocokin alfa had an adequate safety and pharmacokinetic profile in HVs and patients. Biomarker data confirmed IL-22R pathway activation in the colonic epithelium. Results support further investigation of this non-immunosuppressive potential inflammatory bowel disease therapeutic. TRIAL REGISTRATION NUMBER NCT02749630.
Collapse
Affiliation(s)
| | - John C Mansfield
- Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Yehong Wang
- Genentech Inc, South San Francisco, California, USA
| | - Mary Keir
- Genentech Inc, South San Francisco, California, USA
| | - Ajit Dash
- Genentech Inc, South San Francisco, California, USA
| | | | | | - Luz D Orozco
- Genentech Inc, South San Francisco, California, USA
| | - Jordan S Mar
- Genentech Inc, South San Francisco, California, USA
| | - Hao Chen
- Genentech Inc, South San Francisco, California, USA
| | | |
Collapse
|
114
|
Shin JH, Bozadjieva-Kramer N, Seeley RJ. Reg3γ: current understanding and future therapeutic opportunities in metabolic disease. Exp Mol Med 2023; 55:1672-1677. [PMID: 37524871 PMCID: PMC10474034 DOI: 10.1038/s12276-023-01054-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 08/02/2023] Open
Abstract
Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides (AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions, and new opportunities for therapeutic strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
115
|
Wada H, Miyoshi J, Kuronuma S, Nishinarita Y, Oguri N, Hibi N, Takeuchi O, Akimoto Y, Lee STM, Matsuura M, Kobayashi T, Hibi T, Hisamatsu T. 5-Aminosalicylic acid alters the gut microbiota and altered microbiota transmitted vertically to offspring have protective effects against colitis. Sci Rep 2023; 13:12241. [PMID: 37507482 PMCID: PMC10382598 DOI: 10.1038/s41598-023-39491-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although many therapeutic options are available for inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA) is still the key medication, particularly for ulcerative colitis (UC). However, the mechanism of action of 5-ASA remains unclear. The intestinal microbiota plays an important role in the pathophysiology of IBD, and we hypothesized that 5-ASA alters the intestinal microbiota, which promotes the anti-inflammatory effect of 5-ASA. Because intestinal inflammation affects the gut microbiota and 5-ASA can change the severity of inflammation, assessing the impact of inflammation and 5-ASA on the gut microbiota is not feasible in a clinical study of patients with UC. Therefore, we undertook a translational study to demonstrate a causal link between 5-ASA administration and alterations of the intestinal microbiota. Furthermore, by rigorously controlling environmental confounders and excluding the effect of 5-ASA itself with a vertical transmission model, we observed that the gut microbiota altered by 5-ASA affected host mucosal immunity and decreased susceptibility to dextran sulfate sodium-induce colitis. Although the potential intergenerational transmission of epigenetic changes needs to be considered in this study, these findings suggested that alterations in the intestinal microbiota induced by 5-ASA directed the host immune system towards an anti-inflammatory state, which underlies the mechanism of 5-ASA efficacy.
Collapse
Affiliation(s)
- Haruka Wada
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Satoshi Kuronuma
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yuu Nishinarita
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noriaki Oguri
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noritaka Hibi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Osamu Takeuchi
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sonny T M Lee
- Division of Biology, Kansas State University, 136 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
116
|
Cremin M, Tay E, Ramirez VT, Murray K, Nichols RK, Brust-Mascher I, Reardon C. TRPV1 controls innate immunity during Citrobacter rodentium enteric infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550772. [PMID: 37546968 PMCID: PMC10402119 DOI: 10.1101/2023.07.26.550772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with the neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of the TRPV1 channel in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Emmy Tay
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Valerie T. Ramirez
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kaitlin Murray
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Rene K. Nichols
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Colin Reardon
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
117
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
118
|
Bonetti L, Horkova V, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Grusdat M, Spath S, Koncina E, Ewen A, Binsfeld C, Verschueren C, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547932. [PMID: 37489135 PMCID: PMC10363291 DOI: 10.1101/2023.07.06.547932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G. Franchina
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, WA 98101, USA
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Anouk Ewen
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isaac S. Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty Heinrich Heine University Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, L-1526, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
119
|
Sah P, Zenewicz LA. Modulation of innate lymphoid cells by enteric bacterial pathogens. Front Immunol 2023; 14:1219072. [PMID: 37483638 PMCID: PMC10358831 DOI: 10.3389/fimmu.2023.1219072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Innate lymphoid cells (ILCs) are key regulators of tissue homeostasis, inflammation, and immunity to infections. ILCs rapidly respond to environmental cues such as cytokines, microbiota and invading pathogens which regulate their function and phenotype. Even though ILCs are rare cells, they are enriched at barrier surfaces such as the gastrointestinal (GI) tract, and they are often critical to the host's immune response to eliminate pathogens. On the other side of host-pathogen interactions, pathogenic bacteria also have the means to modulate these immune responses. Manipulation or evasion of the immune cells is often to the pathogen's benefit and/or to the detriment of competing microbiota. In some instances, specific bacterial virulence factors or toxins have been implicated in how the pathogen modulates immunity. In this review, we discuss the recent progress made towards understanding the role of non-cytotoxic ILCs during enteric bacterial infections, how these pathogens can modulate the immune response, and the implications these have on developing new therapies to combat infection.
Collapse
Affiliation(s)
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
120
|
An H, Liu Y, Shu M, Chen J. Interleukin-22 facilitates the interferon-λ-mediated production of tripartite motif protein 25 to inhibit replication of duck viral hepatitis A virus type 1. Vet Res 2023; 54:53. [PMID: 37391858 PMCID: PMC10314556 DOI: 10.1186/s13567-023-01188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
The innate immune system provides a defense against invading pathogens by inducing various interferon (IFN)-stimulated genes (ISGs). We recently reported that tripartite motif protein 25 (TRIM25), an important ISG, was highly upregulated in duck embryo hepatocyte cells (DEFs) after infection with duck viral hepatitis A virus type 1 (DHAV-1). However, the mechanism of upregulation of TRIM25 remains unknown. Here we reported that interleukin-22 (IL-22), whose expression was highly facilitated in DEFs and various organs of 1-day-old ducklings after DHAV-1 infection, highly enhanced the IFN-λ-induced production of TRIM25. The treatment with IL-22 neutralizing antibody or the overexpression of IL-22 highly suppressed or facilitated TRIM25 expression, respectively. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) was crucial for the process of IL-22 enhancing IFN-λ-induced TRIM25 production, which was suppressed by WP1066, a novel inhibitor of STAT3 phosphorylation. The overexpression of TRIM25 in DEFs resulted in a high production of IFNs and reduced DHAV-1 replication, whereas the attenuated expression of IFNs and facilitated replication of DHAV-1 were observed in the RNAi group, implying that TRIM25 defended the organism against DHAV-1 propagation by inducing the production of IFNs. In summary, we reported that IL-22 activated the phosphorylation of STAT3 to enhance the IFN-λ-mediated TRIM25 expression and provide a defense against DHAV-1 by inducing IFN production.
Collapse
Affiliation(s)
- Hao An
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Ming Shu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Junhao Chen
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China.
| |
Collapse
|
121
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
122
|
Overcast GR, Meibers HE, Eshleman EM, Saha I, Waggoner L, Patel KN, Jain VG, Haslam DB, Alenghat T, VanDussen KL, Pasare C. IEC-intrinsic IL-1R signaling holds dual roles in regulating intestinal homeostasis and inflammation. J Exp Med 2023; 220:e20212523. [PMID: 36976181 PMCID: PMC10067527 DOI: 10.1084/jem.20212523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Intestinal epithelial cells (IECs) constitute a critical first line of defense against microbes. While IECs are known to respond to various microbial signals, the precise upstream cues regulating diverse IEC responses are not clear. Here, we discover a dual role for IEC-intrinsic interleukin-1 receptor (IL-1R) signaling in regulating intestinal homeostasis and inflammation. Absence of IL-1R in epithelial cells abrogates a homeostatic antimicrobial program including production of antimicrobial peptides (AMPs). Mice deficient for IEC-intrinsic IL-1R are unable to clear Citrobacter rodentium (C. rodentium) but are protected from DSS-induced colitis. Mechanistically, IL-1R signaling enhances IL-22R-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in IECs leading to elevated production of AMPs. IL-1R signaling in IECs also directly induces expression of chemokines as well as genes involved in the production of reactive oxygen species. Our findings establish a protective role for IEC-intrinsic IL-1R signaling in combating infections but a detrimental role during colitis induced by epithelial damage.
Collapse
Affiliation(s)
- Garrett R. Overcast
- Immunology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah E. Meibers
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Emily M. Eshleman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Irene Saha
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa Waggoner
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Krupaben N. Patel
- Divisions of Gastroenterology, Hepatology, and Nutrition and of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Viral G. Jain
- Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B. Haslam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelli L. VanDussen
- Divisions of Gastroenterology, Hepatology, and Nutrition and of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
123
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
124
|
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347-360. [PMID: 36539611 PMCID: PMC10249723 DOI: 10.1038/s41579-022-00833-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial-microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
125
|
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, Li M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol 2023; 14:1171680. [PMID: 37304260 PMCID: PMC10249960 DOI: 10.3389/fimmu.2023.1171680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- *Correspondence: Yinhui Liu, ; Ming Li,
| |
Collapse
|
126
|
Wu X, Lin X, Tan J, Liu Z, He J, Hu F, Wang Y, Chen M, Liu F, Mao R. Cellular and Molecular Mechanisms of Intestinal Fibrosis. Gut Liver 2023; 17:360-374. [PMID: 36896620 PMCID: PMC10191785 DOI: 10.5009/gnl220045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 03/11/2023] Open
Abstract
Intestinal fibrosis associated stricture is a common complication of inflammatory bowel disease usually requiring endoscopic or surgical intervention. Effective anti-fibrotic agents aiming to control or reverse intestinal fibrosis are still unavailable. Thus, clarifying the mechanism underpinning intestinal fibrosis is imperative. Fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM) proteins at the injured sites. Multiple cellular types are implicated in fibrosis development. Among these cells, mesenchymal cells are major compartments that are activated and then enhance the production of ECM. Additionally, immune cells contribute to the persistent activation of mesenchymal cells and perpetuation of inflammation. Molecules are messengers of crosstalk between these cellular compartments. Although inflammation is necessary for fibrosis development, purely controlling intestinal inflammation cannot halt the development of fibrosis, suggesting that chronic inflammation is not the unique contributor to fibrogenesis. Several inflammation-independent mechanisms including gut microbiota, creeping fat, ECM interaction, and metabolic reprogramming are involved in the pathogenesis of fibrosis. In the past decades, substantial progress has been made in elucidating the cellular and molecular mechanisms of intestinal fibrosis. Here, we summarized new discoveries and advances of cellular components and major molecular mediators that are associated with intestinal fibrosis, aiming to provide a basis for exploring effective anti-fibrotic therapies in this field.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxuan Lin
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinyu Tan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zishan Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinshen He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fan Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fen Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
127
|
Liu S, Hur YH, Cai X, Cong Q, Yang Y, Xu C, Bilate AM, Gonzales KAU, Parigi SM, Cowley CJ, Hurwitz B, Luo JD, Tseng T, Gur-Cohen S, Sribour M, Omelchenko T, Levorse J, Pasolli HA, Thompson CB, Mucida D, Fuchs E. A tissue injury sensing and repair pathway distinct from host pathogen defense. Cell 2023; 186:2127-2143.e22. [PMID: 37098344 PMCID: PMC10321318 DOI: 10.1016/j.cell.2023.03.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/27/2023]
Abstract
Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.
Collapse
Affiliation(s)
- Siqi Liu
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Yun Ha Hur
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Xin Cai
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qian Cong
- McDermott Center for Human Growth and Development, Department of Biophysics, and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihao Yang
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Chiwei Xu
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kevin Andrew Uy Gonzales
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - S Martina Parigi
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Christopher J Cowley
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Brian Hurwitz
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Tiffany Tseng
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Shiri Gur-Cohen
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Megan Sribour
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Tatiana Omelchenko
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - John Levorse
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
128
|
Kouno T, Zeng S, Wang Y, Duan Y, Lang S, Gao B, Hartmann P, Cabré N, Llorente C, Galbert C, Emond P, Sokol H, James M, Chao CC, Gao JR, Perreault M, Hava DL, Schnabl B. Engineered bacteria producing aryl-hydrocarbon receptor agonists protect against ethanol-induced liver disease in mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:856-867. [PMID: 36871955 PMCID: PMC10795770 DOI: 10.1111/acer.15048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND AND PURPOSE Gut bacteria metabolize tryptophan into indoles. Intestinal levels of the tryptophan metabolite indole-3-acetic acid are reduced in patients with alcohol-associated hepatitis. Supplementation of indole-3-acetic acid protects against ethanol-induced liver disease in mice. The aim of this study was to evaluate the effect of engineered bacteria producing indoles as Aryl-hydrocarbon receptor (Ahr) agonists. METHODS C57BL/6 mice were subjected to chronic-plus-binge ethanol feeding and orally given PBS, control Escherichia coli Nissle 1917 (EcN) or engineered EcN-Ahr. The effects of EcN and EcN-Ahr were also examined in mice lacking Ahr in interleukin 22 (Il22)-producing cells. RESULTS Through the deletion of endogenous genes trpR and tnaA, coupled with overexpression of a feedback-resistant tryptophan biosynthesis operon, EcN-Ahr were engineered to overproduce tryptophan. Additional engineering allowed conversion of this tryptophan to indoles including indole-3-acetic acid and indole-3-lactic acid. EcN-Ahr ameliorated ethanol-induced liver disease in C57BL/6 mice. EcN-Ahr upregulated intestinal gene expression of Cyp1a1, Nrf2, Il22, Reg3b, and Reg3g, and increased Il22-expressing type 3 innate lymphoid cells. In addition, EcN-Ahr reduced translocation of bacteria to the liver. The beneficial effect of EcN-Ahr was abrogated in mice lacking Ahr expression in Il22-producing immune cells. CONCLUSIONS Our findings indicate that tryptophan metabolites locally produced by engineered gut bacteria mitigate liver disease via Ahr-mediated activation in intestinal immune cells.
Collapse
Affiliation(s)
- Tetsuya Kouno
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Suling Zeng
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Noemí Cabré
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chloé Galbert
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Patrick Emond
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France
- CHRU Tours, Medical Biology Center, 37000 Tours, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France
| | | | | | | | | | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, 92093, USA
| |
Collapse
|
129
|
Wang LY, Yang XY, Wu YP, Fan YC. IL-22-producing CD3 + CD8- T cells increase in immune clearance stage of chronic HBV infection and correlate with the response of Peg-interferon treatment. Clin Immunol 2023; 250:109320. [PMID: 37019423 DOI: 10.1016/j.clim.2023.109320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-22 regulates host defense. This study investigated the predominant IL-22-producing cell subsets under HBV associated immune stages. We found circulating IL-22-producing CD3 + CD8- T cells were significantly increased in immune active (IA) stage than those in immunotolerant stage, inactive carrier and healthy controls (HCs). The plasma IL-22 level was higher in IA and HBeAg-negative CHB compared to HCs. Importantly, CD3 + CD8- T cells were identified as the predominant source of plasma IL-22 production. Up-regulated IL-22-producing CD3 + CD8- T cells obviously correlated with the grade of intrahepatic inflammation. The proportions of IL-22-producing CD3 + CD8- T cells were significantly down-regulated after 48 weeks of Peg-interferon treatment, and the differences were of great significance in patients with normalize ALT levels at 48 weeks, rather than those with elevated ALT levels. In conclusion, IL-22 might play a proinflammatory function in. chronic HBV infected patients with active inflammation and Peg-interferon treatment could attenuate the degree of liver inflammation through down-regulating IL-22-producing CD3 + CD8- T cells.
Collapse
Affiliation(s)
- Li-Yuan Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xue-Yan Yang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yin-Ping Wu
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
130
|
Abstract
The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative prowess and continually renew throughout our lifetimes. Owing to their barrier function, these tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration of harmful agents following injury. Researchers now appreciate that epithelial regeneration and repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of clinical and experimental data point to the functional coupling of reparative and inflammatory responses as two sides of the same coin. Here we bring to the fore the immunological signals that underlie homeostatic epithelial regeneration and restitution following damage. We review our current understanding of how immune cells contribute to distinct phases of repair. When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial inflammatory diseases.
Collapse
Affiliation(s)
- Laure Guenin-Mace
- Department of Pathology, NYU Langone Health, New York, NY, USA;
- Immunobiology and Therapy Unit, INSERM U1224, Institut Pasteur, Paris, France
| | - Piotr Konieczny
- Department of Pathology, NYU Langone Health, New York, NY, USA;
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY, USA;
- Department of Medicine, Ronald O. Perelman Department of Dermatology, and Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
131
|
Hoek KL, McClanahan KG, Latour YL, Shealy N, Piazuelo MB, Vallance BA, Byndloss MX, Wilson KT, Olivares-Villagómez D. Turicibacterales protect mice from severe Citrobacter rodentium infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538270. [PMID: 37163036 PMCID: PMC10168287 DOI: 10.1101/2023.04.25.538270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic (EPEC) or enterohemorrhagic (EHEC) forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice, or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against entero-pathogens.
Collapse
Affiliation(s)
- Kristen L. Hoek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathleen G. McClanahan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicolas Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veternas Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
132
|
Liu D, Zhang S, Li S, Zhang Q, Cai Y, Li P, Li H, Shen B, Liao Q, Hong Y, Xie Z. Indoleacrylic acid produced by Parabacteroides distasonis alleviates type 2 diabetes via activation of AhR to repair intestinal barrier. BMC Biol 2023; 21:90. [PMID: 37072819 PMCID: PMC10114473 DOI: 10.1186/s12915-023-01578-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Anti-inflammatory therapy is an effective strategy in the treatment of type 2 diabetes (T2D). Studies found that inflammatory responses in vivo were strongly associated with defects in the mucosal barrier function of the gut epithelium. While some microbial strains could help repair the intestinal mucosa and maintain the integrity of the intestinal barrier, the specific mechanisms remain to be fully elucidated. The present study investigated the effects of Parabacteroides distasonis (P. distasonis) on the intestinal barrier and the inflammation level in T2D rats and explored the specific mechanisms. RESULTS By analyzing the intestinal barrier function, the inflammatory conditions, and the gut microbiome, we found that P. distasonis could attenuate insulin resistance by repairing the intestinal barrier and reducing inflammation caused by the disturbed gut microbiota. We quantitatively profiled the level of tryptophan and indole derivatives (IDs) in rats and fermentation broth of the strain, demonstrating that indoleacrylic acid (IA) was the most significant factor correlated with the microbial alterations among all types of endogenous metabolites. Finally, we used molecular and cell biological techniques to determine that the metabolic benefits of P. distasonis were mainly attributed to its ability to promote IA generation, active the aryl hydrocarbon receptor (AhR) signaling pathway, and increase the expression level of interleukin-22 (IL-22), thus enhancing the expression of intestinal barrier-related proteins. CONCLUSIONS Our study revealed the effects of P. distasonis in the treatment of T2D via intestinal barrier repairment and inflammation reduction and highlighted a host-microbial co-metabolite indoleacrylic acid that could active AhR to perform its physiological effects. Our study provided new therapeutic strategies for metabolic diseases by targeting the gut microbiota and tryptophan metabolism.
Collapse
Affiliation(s)
- Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Siju Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Baochun Shen
- School of Pharmacy, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
133
|
Jiao Y, Yan Z, Yang A. The Roles of Innate Lymphoid Cells in the Gastric Mucosal Immunology and Oncogenesis of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24076652. [PMID: 37047625 PMCID: PMC10095467 DOI: 10.3390/ijms24076652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a group of innate immune cells that have garnered considerable attention due to their critical roles in regulating immunity and tissue homeostasis. They are particularly abundant in the gastrointestinal tract, where they have been shown to interact with commensal bacteria, pathogens, and other components of the local microenvironment to influence host immune responses to infection and oncogenesis. Their tissue-residency properties enable gastric ILCs a localized and rapid response to alert and stress, which indicates their key potential in regulating immunosurveillance. In this review, we discuss the current understanding of the role of ILCs in the gastric mucosa, with a focus on their interactions with the gastric microbiota and Helicobacter pylori and their contributions to tissue homeostasis and inflammation. We also highlight recent findings on the involvement of ILCs in the pathogenesis of gastric cancer and the implications of targeting ILCs as a therapeutic approach. Overall, this review provides an overview of the diverse functions of ILCs in gastric mucosa and highlights their potential as targets for future therapies for gastric cancer.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- 4 + 4 M.D. Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
134
|
Xu Y, Zhang H, Wu S, Liu J, Liu H, Wang D, Zhang Y, Niu H, Su X, Sun J, Shen L. PLZF restricts intestinal ILC3 function in gut defense. Cell Mol Immunol 2023; 20:379-388. [PMID: 36693920 PMCID: PMC10066334 DOI: 10.1038/s41423-023-00975-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/25/2022] [Indexed: 01/26/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play important roles in maintaining intestinal homeostasis by protecting the host from pathogen infections and tissue inflammation. The transcription factor PLZF (promyelocytic leukemia zinc finger), encoded by zinc finger BTB domain containing 16 (Zbtb16), is highly and transiently expressed in ILC precursors (ILCPs). However, the role of PLZF in regulating ILC3 development and function remains unknown. Here, we show that PLZF was specifically expressed in mature intestinal ILC3s compared with other ILC subsets. PLZF was dispensable for ILC3 development. However, PLZF deficiency in ILC3s resulted in increased innate interleukin-22 (IL-22) secretion and protection against gut infection and inflammation. Mechanistically, PLZF negatively regulated IL-22 expression by ILC3s in a cell-intrinsic manner by binding to the IL-22 promoter region for transcriptional repression. Together, our data suggest that PLZF restricts intestinal ILC3 function to regulate gut immune homeostasis.
Collapse
Affiliation(s)
- Yaru Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huasheng Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuai Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianyue Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongdi Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Youqin Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongshen Niu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaohui Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiping Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
135
|
Zhang Y, Feng X, Chen J, Liu J, Wu J, Tan H, Mi Z, Rong P. Controversial role of ILC3s in intestinal diseases: A novelty perspective on immunotherapy. Front Immunol 2023; 14:1134636. [PMID: 37063879 PMCID: PMC10090672 DOI: 10.3389/fimmu.2023.1134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ILC3s have been identified as crucial immune regulators that play a role in maintaining host homeostasis and modulating the antitumor response. Emerging evidence supports the idea that LTi cells play an important role in initiating lymphoid tissue development, while other ILC3s can promote host defense and orchestrate adaptive immunity, mainly through the secretion of specific cytokines and crosstalk with other immune cells or tissues. Additionally, dysregulation of ILC3-mediated overexpression of cytokines, changes in subset abundance, and conversion toward other ILC subsets are closely linked with the occurrence of tumors and inflammatory diseases. Regulation of ILC3 cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for treating tumors and intestinal or extraintestinal inflammatory diseases. Herein, we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the correlation of ILC3s and adaptive immunity, crosstalk with the intestinal microenvironment, controversial roles of ILC3s in intestinal diseases and potential applications for treatment.
Collapse
Affiliation(s)
- Yunshu Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuefei Feng
- Department of Government & Public Administration, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| |
Collapse
|
136
|
Jakob MO, Spari D, Sànchez Taltavull D, Salm L, Yilmaz B, Doucet Ladevèze R, Mooser C, Pereyra D, Ouyang Y, Schmidt T, Mattiola I, Starlinger P, Stroka D, Tschan F, Candinas D, Gasteiger G, Klose CSN, Diefenbach A, Gomez de Agüero M, Beldi G. ILC3s restrict the dissemination of intestinal bacteria to safeguard liver regeneration after surgery. Cell Rep 2023; 42:112269. [PMID: 36933213 PMCID: PMC10066576 DOI: 10.1016/j.celrep.2023.112269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Daniel Spari
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Sànchez Taltavull
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lilian Salm
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Rémi Doucet Ladevèze
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Catherine Mooser
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - David Pereyra
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Ye Ouyang
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Theresa Schmidt
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Franziska Tschan
- Institute for Work and Organizational Psychology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georg Gasteiger
- Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Christoph S N Klose
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland; Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Versbacherst 9, 97078 Würzburg, Germany
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
137
|
Liu J, Zong C, Yu X, Ding Y, Chang B, Wang R, Sang L. Alanyl-Glutamine (Ala-Gln) Ameliorates Dextran Sulfate Sodium (DSS)-Induced Acute Colitis by Regulating the Gut Microbiota, PI3K-Akt/NF-κB/STAT3 Signaling, and Associated Pulmonary Injury. ACS Infect Dis 2023; 9:979-992. [PMID: 36917734 DOI: 10.1021/acsinfecdis.3c00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The aim of this study was to investigate the protective effect of alanyl-glutamine (Ala-Gln) on acute colitis complicated by pulmonary injury induced by dextran sulfate sodium (DSS) in C57BL/6 mice. The results showed that Ala-Gln intervention alleviated weight loss, the disease activity index (DAI), colon shortening, and pathological injury and regulated the absolute number of CD4+T-cell subsets in mesenteric lymph nodes (MLNs). In addition, Ala-Gln intervention significantly ameliorated the composition of the gut microbiota in mice with DSS- induced acute colitis, significantly decreasing the relative abundance of Desulfovibrionaceae and increasing the abundances of Gastranaerophilales, Clostridia-vadinBB60, and Alistipes. Moreover, Ala-Gln treatment significantly inhibited the activation of the PI3K-Akt/NF-κB/STAT3 inflammatory signaling pathways in the colon of mice with DSS-induced acute colitis. Notably, Ala-Gln intervention also alleviated the pulmonary injury as well as the imbalance in levels of CD4+T-cell subsets in pulmonary tissue in mice with DSS-induced acute colitis. In conclusion, Ala-Gln alleviates DSS-induced acute colitis by regulating the gut microflora and PI3K-Akt/NF-κB/STAT3 signaling pathways, as well as by alleviating accompanying pulmonary injury.
Collapse
Affiliation(s)
- Jing Liu
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Chengguo Zong
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Xin Yu
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Yan Ding
- Clinical Laboratory, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006 Liaoning, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang 110001, Liaoning, China
| | - Ruoyu Wang
- Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian 110006, Liaoning, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian 116001, Liaoning, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110022, Liaoning, China
| |
Collapse
|
138
|
Mar JS, Ota N, Pokorzynski ND, Peng Y, Jaochico A, Sangaraju D, Skippington E, Lekkerkerker AN, Rothenberg ME, Tan MW, Yi T, Keir ME. IL-22 alters gut microbiota composition and function to increase aryl hydrocarbon receptor activity in mice and humans. MICROBIOME 2023; 11:47. [PMID: 36894983 PMCID: PMC9997005 DOI: 10.1186/s40168-023-01486-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND IL-22 is induced by aryl hydrocarbon receptor (AhR) signaling and plays a critical role in gastrointestinal barrier function through effects on antimicrobial protein production, mucus secretion, and epithelial cell differentiation and proliferation, giving it the potential to modulate the microbiome through these direct and indirect effects. Furthermore, the microbiome can in turn influence IL-22 production through the synthesis of L-tryptophan (L-Trp)-derived AhR ligands, creating the prospect of a host-microbiome feedback loop. We evaluated the impact IL-22 may have on the gut microbiome and its ability to activate host AhR signaling by observing changes in gut microbiome composition, function, and AhR ligand production following exogenous IL-22 treatment in both mice and humans. RESULTS Microbiome alterations were observed across the gastrointestinal tract of IL-22-treated mice, accompanied by an increased microbial functional capacity for L-Trp metabolism. Bacterially derived indole derivatives were increased in stool from IL-22-treated mice and correlated with increased fecal AhR activity. In humans, reduced fecal concentrations of indole derivatives in ulcerative colitis (UC) patients compared to healthy volunteers were accompanied by a trend towards reduced fecal AhR activity. Following exogenous IL-22 treatment in UC patients, both fecal AhR activity and concentrations of indole derivatives increased over time compared to placebo-treated UC patients. CONCLUSIONS Overall, our findings indicate IL-22 shapes gut microbiome composition and function, which leads to increased AhR signaling and suggests exogenous IL-22 modulation of the microbiome may have functional significance in a disease setting. Video Abstract.
Collapse
Affiliation(s)
- Jordan S. Mar
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| | - Naruhisa Ota
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| | - Nick D. Pokorzynski
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| | - Yutian Peng
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA USA
| | - Allan Jaochico
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA USA
| | - Dewakar Sangaraju
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA USA
| | - Elizabeth Skippington
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Bioinformatics, Genentech Inc., South San Francisco, CA USA
| | - Annemarie N. Lekkerkerker
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA USA
| | - Michael E. Rothenberg
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Early Clinical Development, Genentech Inc., South San Francisco, CA USA
| | - Man-Wah Tan
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA USA
| | - Tangsheng Yi
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Department of Immunology Discovery, Genentech Inc., South San Francisco, CA USA
| | - Mary E. Keir
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
- Present address: Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA USA
| |
Collapse
|
139
|
Peng Q, Pan T, He R, Yi M, Feng L, Cui Z, Gao R, Wang H, Feng X, Li H, Wang Y, Zhang C, Cheng D, Du Y, Wang C. BTNL2 promotes colitis-associated tumorigenesis in mice by regulating IL-22 production. EMBO Rep 2023; 24:e56034. [PMID: 36629012 PMCID: PMC9986825 DOI: 10.15252/embr.202256034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Interleukin 22 (IL-22) has an important role in colorectal tumorigenesis and many colorectal diseases such as inflammatory bowel disease and certain infections. However, the regulation of IL-22 production in the intestinal system is still unclear. Here, we present evidence that butyrophilin-like protein 2 (BTNL2) is required for colorectal IL-22 production, and BTNL2 knockout mice show decreased colonic tumorigenesis and more severe colitis phenotypes than control mice due to defective production of IL-22. Mechanistically, BTNL2 acts on group 3 innate lymphoid cells (ILC3s), CD4+ T cells, and γδ T cells to promote the production of IL-22. Importantly, we find that a monoclonal antibody against BTNL2 attenuates colorectal tumorigenesis in mice and that the mBTNL2-Fc recombinant protein has a therapeutic effect in a dextran sulfate sodium (DSS)-induced colitis model. This study not only identifies a regulatory mechanism of IL-22 production in the colorectal system but also provides a potential therapeutic target for the treatment of human colorectal cancer and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ting Pan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Hui Li
- Shandong PolytechnicJinanChina
| | - Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cun‐jin Zhang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Du Cheng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Medical SchoolUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
140
|
Wang Q, Thiam M, Barreto Sánchez AL, Wang Z, Zhang J, Li Q, Wen J, Zhao G. Gene Co-Expression Network Analysis Reveals the Hub Genes and Key Pathways Associated with Resistance to Salmonella Enteritidis Colonization in Chicken. Int J Mol Sci 2023; 24:ijms24054824. [PMID: 36902251 PMCID: PMC10003191 DOI: 10.3390/ijms24054824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Salmonella negatively impacts the poultry industry and threatens animals' and humans' health. The gastrointestinal microbiota and its metabolites can modulate the host's physiology and immune system. Recent research demonstrated the role of commensal bacteria and short-chain fatty acids (SCFAs) in developing resistance to Salmonella infection and colonization. However, the complex interactions among chicken, Salmonella, host-microbiome, and microbial metabolites remain unelucidated. Therefore, this study aimed to explore these complex interactions by identifying the driver and hub genes highly correlated with factors that confer resistance to Salmonella. Differential gene expression (DEGs) and dynamic developmental genes (DDGs) analyses and weighted gene co-expression network analysis (WGCNA) were performed using transcriptome data from the cecum of Salmonella Enteritidis-infected chicken at 7 and 21 days after infection. Furthermore, we identified the driver and hub genes associated with important traits such as the heterophil/lymphocyte (H/L) ratio, body weight post-infection, bacterial load, propionate and valerate cecal contents, and Firmicutes, Bacteroidetes, and Proteobacteria cecal relative abundance. Among the multiple genes detected in this study, EXFABP, S100A9/12, CEMIP, FKBP5, MAVS, FAM168B, HESX1, EMC6, and others were found as potential candidate gene and transcript (co-) factors for resistance to Salmonella infection. In addition, we found that the PPAR and oxidative phosphorylation (OXPHOS) metabolic pathways were also involved in the host's immune response/defense against Salmonella colonization at the earlier and later stage post-infection, respectively. This study provides a valuable resource of transcriptome profiles from chicken cecum at the earlier and later stage post-infection and mechanistic understanding of the complex interactions among chicken, Salmonella, host-microbiome, and associated metabolites.
Collapse
|
141
|
McMahan RH, Hulsebus HJ, Najarro KM, Giesy LE, Frank DN, Kovacs EJ. Changes in gut microbiome correlate with intestinal barrier dysfunction and inflammation following a 3-day ethanol exposure in aged mice. Alcohol 2023; 107:136-143. [PMID: 36150609 DOI: 10.1016/j.alcohol.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022]
Abstract
Alcohol use among older adults is on the rise. This increase is clinically relevant as older adults are at risk for increased morbidity and mortality from many alcohol-related chronic diseases compared to younger patients. However, little is known regarding the synergistic effects of alcohol and age. There are intriguing data suggesting that aging may lead to impaired intestinal barrier integrity and dysbiosis of the intestinal microbiome, which could increase susceptibility to alcohol's negative effects. To study the effects of alcohol in age we exposed aged and young mice to 3 days of moderate ethanol and evaluated changes in gut parameters. We found that these levels of drinking do not have obvious effects in young mice but cause significant alcohol-induced gut barrier dysfunction and expression of the pro-inflammatory cytokine TNFα in aged mice. Ethanol-induced downregulation of expression of the gut-protective antimicrobial peptides Defa-rs1, Reg3b, and Reg3g was observed in aged, but not young mice. Analysis of the fecal microbiome revealed age-associated shifts in microbial taxa, which correlated with intestinal and hepatic inflammatory gene expression. Taken together, these data demonstrate that age drives microbiome dysbiosis, while ethanol exposure in aged mice induces changes in the expression of antimicrobial genes important for separating these potentially damaging microbes from the intestinal lumen. These changes highlight potential mechanistic targets for prevention of the age-related exacerbation of effects of ethanol on the gut.
Collapse
Affiliation(s)
- Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States; GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States.
| | - Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States; Immunology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Lauren E Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Daniel N Frank
- GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States; GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States; Immunology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
142
|
Zhao N, Liu C, Li N, Zhou S, Guo Y, Yang S, Liu H. Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother 2023; 159:114273. [PMID: 36696801 DOI: 10.1016/j.biopha.2023.114273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Ulcerative Colitis (UC) is a chronic disease, in the progression of which an immune overreaction may play an important role. IL-22 is a member of the IL-10 superfamily of cytokines and is pleiotropic in immune regulation and inflammatory responses. IL-22 can produce protective effects, promote wound healing and tissue regeneration, while it can also induce inflammatory reactions when it is chronically overexpressed. Extensive literatures reported that IL-22 played an essential role in the pathogenic development of UC. IL-22 participates in the whole disease process of UC involving signaling pathways, gene expression regulation, and intestinal flora imbalance, making IL-22 a possible candidate for the treatment of UC. In this paper, the latest knowledge to further elucidate the role of IL-22 in UC was summarized and analyzed.
Collapse
Affiliation(s)
- Nan Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ning Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shuang Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuting Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shihua Yang
- Department of Oncology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Huimin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
143
|
Mattiola I, Diefenbach A. Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Semin Immunol 2023; 66:101724. [PMID: 36758379 DOI: 10.1016/j.smim.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
144
|
Alvik K, Shao P, Hutin D, Baglole C, Grant DM, Matthews J. Increased sensitivity to chemically induced colitis in mice harboring a DNA-binding deficient aryl hydrocarbon receptor. Toxicol Sci 2023; 191:321-331. [PMID: 36519841 PMCID: PMC9936212 DOI: 10.1093/toxsci/kfac132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a transcription factor best known for mediating toxic responses of environmental pollutants, also integrates metabolic signals to promote anti-inflammatory responses, intestinal homeostasis, and maintain barrier integrity. AHR regulates its target genes through direct DNA-binding to aryl hydrocarbon response elements (AHREs) but also through tethering to other transcription factors in a DNA-binding independent manner. However, it is not known if AHR's anti-inflammatory role in the gut requires its ability to bind to AHREs. To test this, we determined the sensitivity of Ahrdbd/dbd mice, a genetically modified mouse line that express an AHR protein incapable of binding to AHREs, to dextran sulfate sodium (DSS)-induced colitis. Ahrdbd/dbd mice exhibited more severe symptoms of intestinal inflammation than Ahr+/+ mice. None of the Ahrdbd/dbd mice survived after the 5-day DSS followed by 7-day washout period. By day 6, the Ahrdbd/dbd mice had severe body weight loss, shortening of the colon, higher disease index scores, enlarged spleens, and increased expression of several inflammation genes, including interleukin 1b (Il-1b), Il-6, Il-17, C-x-c motif chemokine ligand 1 (Cxcl1), Cxcl2, Prostaglandin-endoperoxide synthase (Ptgs2), and lipocalin-2. Our findings show that AHR's DNA-binding domain and ability to bind to AHREs are required to reduce inflammation, maintain a healthy intestinal environment, and protect against DSS-induced colitis.
Collapse
Affiliation(s)
- Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Carolyn Baglole
- Department of Medicine, McGill University, Montreal H4A3J1, Canada.,Department of Pathology, McGill University, Montreal H4A3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| |
Collapse
|
145
|
Gu L, Jiang J, Liu Z, Liu Q, Liao J, Zeng Q, Chen C, Liu Z. Intestinal recruitment of CCR6-expressing Th17 cells by suppressing miR-681 alleviates endotoxemia-induced intestinal injury and reduces mortality. Inflamm Res 2023; 72:715-729. [PMID: 36749385 DOI: 10.1007/s00011-023-01697-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/07/2022] [Accepted: 01/22/2023] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Sepsis or endotoxemia can induce intestinal dysfunction in the epithelial and immune barrier. Th17 cells, a distinct subset of CD4+ T-helper cells, act as "border patrol" in the intestine under pathological condition and in the previous studies, Th17 cells exhibited an ambiguous function in intestinal inflammation. Our study will explore a specific role of Th17 cells and its relevant mechanism in endotoxemia-induced intestinal injury. MATERIALS AND METHODS Lipopolysaccharide was used to establish mouse model of endotoxemia. miR-681 was analyzed by RT-PCR and northern blot analysis and its regulation by HIF-1α was determined by chromatin immunoprecipitation and luciferase reporter assay. Intestinal Th17 cells isolated from endotoxemic mice were quantitatively evaluated by flow cytometry and its recruitment to the intestine controlled by miR-681/CCR6 pathway was assessed by using anti-miRNA treatment and CCR6 knockout mice. Intestinal histopathology, villus length, intestinal inflammation, intestinal permeability, bacterial translocation and survival were investigated, by histology and TUNEL analysis, ELISA, measurement of diamine oxidase, bacterial culture, with or without anti-miR-681 treatment in endotoxemic wild-type and (or) CCR6 knockout mice. RESULTS In this study, we found that miR-681 was significantly promoted in intestinal Th17 cells during endotoxemia, which was dependent on hypoxia-inducible factor-1α (HIF-1α). Interestingly, miR-681 could directly suppress CCR6, which was a critical modulator for Th17 cell recruitment to the intestines. In vivo, anti-miR-681 enhanced survival, increased number of intestinal Th17 cells, reduced crypt and villi apoptosis, decreased intestinal inflammation and bacterial translocation, resulting in protection against endotoxemia-induced intestinal injury in mice. However, CCR6 deficiency could neutralize the beneficial effect of anti-miR-681 on the intestine during endotoxemia, suggesting that the increment of intestinal Th17 cells caused by anti-miR-681 relies on CCR6 expression. CONCLUSION The results of the study indicate that control of intestinal Th17 cells by regulating novel miR-681/CCR6 signaling attenuates endotoxemia-induced intestinal injury.
Collapse
Affiliation(s)
- Liwen Gu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, No.600, Tianhe Road, Guangzhou, 510360, China
| | - Zhigang Liu
- Department of Head and Neck Oncology, The cancer center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Phase 1 Clinical Trial Ward, Zhuhai, 519001, China.,Cancer Cente, Affiliated Dongguan Hospital, Southern Medical University, No.3, Wandao Road, Wanjiang district, Guangzhou, 523058, China
| | - Qiangqiang Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jinli Liao
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Qingli Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Chuanxi Chen
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Zhihao Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
146
|
Balakrishnan B, Kulkarni UP, Pai AA, Illangeswaran RSS, Mohanan E, Mathews V, George B, Balasubramanian P. Biomarkers for early complications post hematopoietic cell transplantation: Insights and challenges. Front Immunol 2023; 14:1100306. [PMID: 36817455 PMCID: PMC9932777 DOI: 10.3389/fimmu.2023.1100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Hematopoietic cell transplantation is an established curative treatment option for various hematological malignant, and non-malignant diseases. However, the success of HCT is still limited by life-threatening early complications post-HCT, such as Graft Versus Host Disease (GVHD), Sinusoidal Obstruction Syndrome (SOS), and transplant-associated microangiopathy, to name a few. A decade of research in the discovery and validation of novel blood-based biomarkers aims to manage these early complications by using them for diagnosis or prognosis. Advances in this field have also led to predictive biomarkers to identify patients' likelihood of response to therapy. Although biomarkers have been extensively evaluated for different complications, these are yet to be used in routine clinical practice. This review provides a detailed summary of various biomarkers for individual early complications post-HCT, their discovery, validation, ongoing clinical trials, and their limitations. Furthermore, this review also provides insights into the biology of biomarkers and the challenge of obtaining a universal cut-off value for biomarkers.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
147
|
Zhang J, Wang W, Liang S, Shao R, Shi W, Gudmundsson GH, Bergman P, Ai Q, Mai K, Wan M. Butyrate-induced IL-22 expression in fish macrophages contributes to bacterial clearance. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108545. [PMID: 36642352 DOI: 10.1016/j.fsi.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
IL-22 has been characterized as a critical cytokine in maintaining barrier integrity and host immunity. So far, it has been known that IL-22 is mainly produced by lymphoid lineage cells. In the present study, we have thoroughly investigated butyrate-induced production and function of IL-22 in fish macrophages. Our results demonstrated that short-chain fatty acids (SCFAs), major microbiota-derived metabolites, promoted the expression of IL-22 in head kidney macrophages (HKMs) of turbot (Scophthalmus maximus L.). Interestingly, butyrate-mediated intracellular bacterial killing in HKMs diminished when IL-22 expression was interfered. Furthermore, the turbot fed the diet containing sodium butyrate (NaB) exhibited significantly lower mortality after bacterial infection, compared to the fish fed a basal diet. At the meantime, a higher level of IL-22 expression and bactericidal activity was detected in HKMs from the turbot fed NaB-supplemented diet. In addition, NaB treatment promoted the expression of antimicrobial peptides (AMPs) β-defensins in zebrafish (Danio rerio). However, butyrate-induced expression of AMPs was reduced in IL-22 mutant zebrafish compared to wild-type (WT) fish. Meanwhile, NaB treatment was incapable to protect IL-22 mutant fish from bacterial infection as it did in WT zebrafish. Importantly, our results demonstrated that IL-22 expression was remarkably suppressed in macrophage-depleted zebrafish, indicating that macrophage might be a cell source of IL-22 production in vivo. In conclusion, all these findings collectively revealed that SCFAs regulated the production and function of IL-22 in fish macrophages, which facilitated host resistance to bacterial invasion.
Collapse
Affiliation(s)
- Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wenkai Shi
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Gudmundur H Gudmundsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Pilot National Laboratory of Marine Science and Technology, Qingdao, China.
| |
Collapse
|
148
|
Okamura T, Hamaguchi M, Hasegawa Y, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Sasano R, Nakanishi Y, Seno H, Takano H, Fukui M. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27006. [PMID: 36821708 PMCID: PMC9945580 DOI: 10.1289/ehp11072] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microplastics (MPs) are small particles of plastic (≤5mm in diameter). In recent years, oral exposure to MPs in living organisms has been a cause of concern. Leaky gut syndrome (LGS), associated with a high-fat diet (HFD) in mice, can increase the entry of foreign substances into the body through the intestinal mucosa. OBJECTIVES We aimed to evaluate the pathophysiology of intestinal outcomes associated with consuming a high-fat diet and simultaneous intake of MPs, focusing on endocrine and metabolic systems. METHODS C57BL6/J mice were fed a normal diet (ND) or HFD with or without polystyrene MP for 4 wk to investigate differences in glucose tolerance, intestinal permeability, gut microbiota, as well as metabolites in serum, feces, and liver. RESULTS In comparison with HFD mice, mice fed the HFD with MPs had higher blood glucose, serum lipid concentrations, and nonalcoholic fatty liver disease (NAFLD) activity scores. Permeability and goblet cell count of the small intestine (SI) in HFD-fed mice were higher and lower, respectively, than in ND-fed mice. There was no obvious difference in the number of inflammatory cells in the SI lamina propria between mice fed the ND and mice fed the ND with MP, but there were more inflammatory cells and fewer anti-inflammatory cells in mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. The expression of genes related to inflammation, long-chain fatty acid transporter, and Na+/glucose cotransporter was significantly higher in mice fed the HFD with MPs than in mice fed the HFD without MPs. Furthermore, the genus Desulfovibrio was significantly more abundant in the intestines of mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. Muc2 gene expression was decreased when palmitic acid and microplastics were added to the murine intestinal epithelial cell line MODE-K cells, and Muc2 gene expression was increased when IL-22 was added. DISCUSSION Our findings suggest that in this study, MP induced metabolic disturbances, such as diabetes and NAFLD, only in mice fed a high-fat diet. These findings suggest that LGS might have been triggered by HFD, causing MPs to be deposited in the intestinal mucosa, resulting in inflammation of the intestinal mucosal intrinsic layer and thereby altering nutrient absorption. These results highlight the need for reducing oral exposure to MPs through remedial environmental measures to improve metabolic disturbance under high-fat diet conditions. https://doi.org/10.1289/EHP11072.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
149
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
150
|
Parrón-Ballesteros J, Gordo RG, López-Rodríguez JC, Olmo N, Villalba M, Batanero E, Turnay J. Beyond allergic progression: From molecules to microbes as barrier modulators in the gut-lung axis functionality. FRONTIERS IN ALLERGY 2023; 4:1093800. [PMID: 36793545 PMCID: PMC9923236 DOI: 10.3389/falgy.2023.1093800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The "epithelial barrier hypothesis" states that a barrier dysfunction can result in allergy development due to tolerance breakdown. This barrier alteration may come from the direct contact of epithelial and immune cells with the allergens, and indirectly, through deleterious effects caused by environmental changes triggered by industrialization, pollution, and changes in the lifestyle. Apart from their protective role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP, provoking the activation of ILC2 cells and a Th2-biased response. Several environmental agents that influence epithelial barrier function, such as allergenic proteases, food additives or certain xenobiotics are reviewed in this paper. In addition, dietary factors that influence the allergenic response in a positive or negative way will be also described here. Finally, we discuss how the gut microbiota, its composition, and microbe-derived metabolites, such as short-chain fatty acids, alter not only the gut but also the integrity of distant epithelial barriers, focusing this review on the gut-lung axis.
Collapse
Affiliation(s)
- Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rubén García Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom
| | - Nieves Olmo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain,Correspondence: Javier Turnay
| |
Collapse
|