101
|
Biophysical and functional characterization of the human TAS1R2 sweet taste receptor overexpressed in a HEK293S inducible cell line. Sci Rep 2021; 11:22238. [PMID: 34782704 PMCID: PMC8593021 DOI: 10.1038/s41598-021-01731-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Sweet taste perception is mediated by a heterodimeric receptor formed by the assembly of the TAS1R2 and TAS1R3 subunits. TAS1R2 and TAS1R3 are class C G-protein-coupled receptors whose members share a common topology, including a large extracellular N-terminal domain (NTD) linked to a seven transmembrane domain (TMD) by a cysteine-rich domain. TAS1R2-NTD contains the primary binding site for sweet compounds, including natural sugars and high-potency sweeteners, whereas the TAS1R2-TMD has been shown to bind a limited number of sweet tasting compounds. To understand the molecular mechanisms governing receptor–ligand interactions, we overexpressed the human TAS1R2 (hTAS1R2) in a stable tetracycline-inducible HEK293S cell line and purified the detergent-solubilized receptor. Circular dichroism spectroscopic studies revealed that hTAS1R2 was properly folded with evidence of secondary structures. Using size exclusion chromatography coupled to light scattering, we found that the hTAS1R2 subunit is a dimer. Ligand binding properties were quantified by intrinsic tryptophan fluorescence. Due to technical limitations, natural sugars have not been tested. However, we showed that hTAS1R2 is capable of binding high potency sweeteners with Kd values that are in agreement with physiological detection. This study offers a new experimental strategy to identify new sweeteners or taste modulators that act on the hTAS1R2 and is a prerequisite for structural query and biophysical studies.
Collapse
|
102
|
Wang P, Gao X, Zhang K, Pei Q, Xu X, Yan F, Dong J, Jing C. Exploring the binding mechanism of positive allosteric modulators in human metabotropic glutamate receptor 2 using molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:24125-24139. [PMID: 34596645 DOI: 10.1039/d1cp02157e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Positive allosteric modulators (PAMs) of human metabotropic glutamate receptor 2 (hmGlu2) are well-known in the treatment of psychiatric disorders for their higher selectivity and lower tolerance risk. A variety of PAMs have been reported over the last decade and two compounds were in Phase II clinical trials for schizophrenia and anxiety. These trials were discontinued on account of the unsatisfactory therapeutic efficacy, but PAMs were explored as novel treatments for addiction and epilepsy. Thus, it is still important to explore novel hmGlu2 PAMs in the near future. Nowadays, the challenges in optimizing drug potency and improving scaffold diversity for PAMs are the noncomprehensive character analyses of multiple scaffolds; the exploration of the binding modes of PAMs in the allosteric binding site have been proposed to reduce this difficulty. However, there has been no comprehensive research about the binding profiles of PAMs in the hmGlu2 receptor. To address this issue, this work explores the binding characters of eight PAMs representing five chemical series by multiple computational methods. As a result, the shared binding modes of the eight studied PAMs interacting with 15 residues in the allosteric binding site were defined. In addition, the reduced hydrophobicity with low electronegativity of R1, increased hydrophobicity with low negative electron density of R2 and the electronegativity of the linker were identified as indicators that regulate the affinity of PAMs. This finding agrees well with the physicochemical properties of reported multiple series PAMs. This comprehensive work sheds additional light on the binding mechanism and physicochemical regularity underlining PAMs affinity and could be further utilized as a structural and energetic blueprint for discovering and assessing novel PAMs for hmGlu2.
Collapse
Affiliation(s)
- Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Xiaonan Gao
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Ke Zhang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Qinglan Pei
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Xiaobo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fengmei Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Jianghong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Chenxi Jing
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| |
Collapse
|
103
|
McCullock TW, Kammermeier PJ. The evidence for and consequences of metabotropic glutamate receptor heterodimerization. Neuropharmacology 2021; 199:108801. [PMID: 34547332 DOI: 10.1016/j.neuropharm.2021.108801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are an essential component of the mammalian central nervous system. These receptors modulate neuronal excitability in response to extracellular glutamate through the activation of intracellular heterotrimeric G proteins. Like most other class C G protein-coupled receptors, mGluRs function as obligate dimer proteins, meaning they need to form dimer complexes before becoming functional receptors. All mGluRs possess the ability to homodimerize, but studies over the past ten years have demonstrated these receptors are also capable of forming heterodimers in specific patterns. These mGluR heterodimers appear to have their own unique biophysical behavior and pharmacology with both native and synthetic compounds with few rules having been identified that allow for prediction of the consequences of any particular mGluR pair forming heterodimers. Here, we review the relevant literature demonstrating the existence and consequences of mGluR heterodimerization. By collecting biophysical and pharmacological data of several mGluR heterodimers we demonstrate the lack of generalizable behavior of these complexes indicating that each individual dimeric pair needs to be investigated independently. Additionally, by combining sequence alignment and structural analysis, we propose that interactions between the β4-A Helix Loop and the D Helix in the extracellular domain of these receptors are the structural components that dictate heterodimerization compatibility. Finally, we discuss the potential implications of mGluR heterodimerization from the viewpoints of further developing our understanding of neuronal physiology and leveraging mGluRs as a therapeutic target for the treatment of pathophysiology.
Collapse
Affiliation(s)
- Tyler W McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| | - Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| |
Collapse
|
104
|
Toda Y, Hayakawa T, Itoigawa A, Kurihara Y, Nakagita T, Hayashi M, Ashino R, Melin AD, Ishimaru Y, Kawamura S, Imai H, Misaka T. Evolution of the primate glutamate taste sensor from a nucleotide sensor. Curr Biol 2021; 31:4641-4649.e5. [PMID: 34450087 DOI: 10.1016/j.cub.2021.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Taste perception plays an essential role in food selection. Umami (savory) tastes are sensed by a taste receptor complex, T1R1/T1R3, that detects proteinogenic amino acids.1 High sensitivity to l-glutamate (l-Glu) is a characteristic of human T1R1/T1R3, but the T1R1/T1R3 of other vertebrates does not consistently show this l-Glu response.1,2 Here, we demonstrate that the l-Glu sensitivity of T1R1/T1R3 is a derived state that has evolved repeatedly in large primates that rely on leaves as protein sources, after their divergence from insectivorous ancestors. Receptor expression experiments show that common amino acid substitutions at ligand binding sites that render T1R1/T1R3 sensitive to l-Glu occur independently at least three times in primate evolution. Meanwhile T1R1/T1R3 senses 5'-ribonucleotides as opposed to l-Glu in several mammalian species, including insectivorous primates. Our chemical analysis reveal that l-Glu is one of the major free amino acids in primate diets and that insects, but not leaves, contain large amounts of free 5'-ribonucleotides. Altering the ligand-binding preference of T1R1/T1R3 from 5'-ribonucleotides to l-Glu might promote leaf consumption, overcoming bitter and aversive tastes. Altogether, our results provide insight into the foraging ecology of a diverse mammalian radiation and help reveal how evolution of sensory genes facilitates invasion of new ecological niches.
Collapse
Affiliation(s)
- Yasuka Toda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Akihiro Itoigawa
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Yosuke Kurihara
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Center for Education and Research in Field Sciences, Faculty of Agriculture, Shizuoka University, Hamamatsu, Shizuoka 431-3532, Japan
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Hayashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Alberta T2N 1N4, Canada; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
105
|
Mafi A, Kim SK, Chou KC, Güthrie B, Goddard WA. Predicted Structure of Fully Activated Tas1R3/1R3' Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. J Am Chem Soc 2021; 143:16824-16838. [PMID: 34585929 DOI: 10.1021/jacs.1c08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tas1R3 G protein-coupled receptor constitutes the main component of sweet taste sensory response in humans via forming a heterodimer with Tas1R2 or a homodimer with Tas1R3. The Tas1R3/1R3' homodimer serves as a low-affinity sweet taste receptor, stimulating gustducin G protein (GGust) signaling in the presence of a high concentration of natural sugars. This provides an additional means to detect the taste of natural sugars, thereby differentiating the flavors between natural sugars and artificial sweeteners. We report here the predicted 3D structure of active state Tas1R3/1R3' homodimer complexed with heterotrimeric GGust and sucrose. We discovered that the GGust makes ionic anchors to intracellular loops 1 and 2 of Tas1R3 while the Gα-α5 helix engages the cytoplasmic region extensively through salt bridge and hydrophobic interactions. We show that in the activation of this complex the Venus flytrap domains of the homodimer undergo a remarkable twist up to ∼100° rotation around the vertical axis to adopt a closed-closed conformation while the intracellular region relaxes to an open-open conformation. We find that binding of sucrose to the homodimer stabilizes a preactivated conformation with a largely open intracellular region that recruits and activates the GGust. Upon activation, the Gα subunit spontaneously opens up the nucleotide-binding site, making nucleotide exchange facile for signaling. This activation of GGust promotes the interdomain twist of the Venus flytrap domains. These structures and transformations could potentially be a basis for the design of new sweeteners with higher activity and less unpleasant flavors.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian Güthrie
- Cargill Global Food Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
106
|
On the human taste perception: Molecular-level understanding empowered by computational methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
107
|
Hofmann CS, Carrington S, Keller AN, Gregory KJ, Niswender CM. Regulation and functional consequences of mGlu 4 RNA editing. RNA (NEW YORK, N.Y.) 2021; 27:1220-1240. [PMID: 34244459 PMCID: PMC8457003 DOI: 10.1261/rna.078729.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Metabotropic glutamate receptor 4 (mGlu4) is one of eight mGlu receptors within the Class C G protein-coupled receptor superfamily. mGlu4 is primarily localized to the presynaptic membrane of neurons where it functions as an auto and heteroreceptor controlling synaptic release of neurotransmitter. mGlu4 is implicated in numerous disorders and is a promising drug target; however, more remains to be understood about its regulation and pharmacology. Using high-throughput sequencing, we have validated and quantified an adenosine-to-inosine (A-to-I) RNA editing event that converts glutamine 124 to arginine in mGlu4; additionally, we have identified a rare but novel K129R site. Using an in vitro editing assay, we then validated the pre-mRNA duplex that allows for editing by ADAR enzymes and predicted its conservation across the mammalian species. Structural modeling of the mGlu4 protein predicts the Q124R substitution to occur in the B helix of the receptor that is critical for receptor dimerization and activation. Interestingly, editing of a receptor homodimer does not disrupt G protein activation in response to the endogenous agonist, glutamate. Using an assay designed to specifically measure heterodimer populations at the surface, however, we found that Q124R substitution decreased the propensity of mGlu4 to heterodimerize with mGlu2 and mGlu7 Our study is the first to extensively describe the extent and regulatory factors of RNA editing of mGlu4 mRNA transcripts. In addition, we have proposed a novel functional consequence of this editing event that provides insights regarding its effects in vivo and expands the regulatory capacity for mGlu receptors.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Amino Acid Sequence
- Animals
- Base Pairing
- Base Sequence
- Birds
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Corpus Striatum/cytology
- Corpus Striatum/metabolism
- HEK293 Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Models, Molecular
- Neurons/cytology
- Neurons/metabolism
- Nucleic Acid Conformation
- Point Mutation
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- RNA Editing
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Reptiles
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Christopher S Hofmann
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Sheridan Carrington
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Andrew N Keller
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
108
|
Zhao F, Wu Y, Zhou F, Xue D, Zhao S, Lu W, Liu X, Hu T, Qiu Y, Li R, Gu T, Xu Y, Xu F, Zhong G, Jiang Z, Zhao S, Tao H. Elucidation of Distinct Modular Assemblies of Smoothened Receptor by Bitopic Ligand Measurement. J Med Chem 2021; 64:13830-13840. [PMID: 34492176 DOI: 10.1021/acs.jmedchem.1c01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Class F G protein-coupled receptors are characterized by a large extracellular domain (ECD) in addition to the common transmembrane domain (TMD) with seven α-helixes. For smoothened receptor (SMO), structural studies revealed dissected ECD and TMD, and their integrated assemblies. However, distinct assemblies were reported under different circumstances. Using an unbiased approach based on four series of cross-conjugated bitopic ligands, we explore the relationship between the active status and receptor assembly. Different activity dependency on the linker length for these bitopic ligands corroborates the various occurrences of SMO assembly. These results reveal a rigid "near" assembly for active SMO, which is in contrast to previous results. Conversely, inactive SMO adopts a free ECD, which would be remotely captured at "far" assembly by cholesterol. Altogether, we propose a mechanism of cholesterol flow-caused SMO activation involving an erection of ECD from far to near assembly.
Collapse
Affiliation(s)
- Fei Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Fang Zhou
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongxiang Xue
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Simeng Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wanglong Lu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Xiaoyan Liu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tao Hu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanli Qiu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rongyan Li
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tangjie Gu
- School of Physics Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhongxing Jiang
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
109
|
Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat Commun 2021; 12:5426. [PMID: 34521824 PMCID: PMC8440590 DOI: 10.1038/s41467-021-25620-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023] Open
Abstract
Much hope in drug development comes from the discovery of positive allosteric modulators (PAM) that display target subtype selectivity and act by increasing agonist potency and efficacy. How such compounds can allosterically influence agonist action remains unclear. Metabotropic glutamate receptors (mGlu) are G protein-coupled receptors that represent promising targets for brain diseases, and for which PAMs acting in the transmembrane domain have been developed. Here, we explore the effect of a PAM on the structural dynamics of mGlu2 in optimized detergent micelles using single molecule FRET at submillisecond timescales. We show that glutamate only partially stabilizes the extracellular domains in the active state. Full activation is only observed in the presence of a PAM or the Gi protein. Our results provide important insights on the role of allosteric modulators in mGlu activation, by stabilizing the active state of a receptor that is otherwise rapidly oscillating between active and inactive states. Here, the authors use smFRET to assess the structural dynamics of metabotropic glutamate receptor mGlu2 and show that a positive allosteric modulator or the Gi protein stabilize mGlu2 in the glutamate-induced active state, leading to the full activation of the receptor.
Collapse
|
110
|
Abd-Elrahman KS, Ferguson SSG. Noncanonical Metabotropic Glutamate Receptor 5 Signaling in Alzheimer's Disease. Annu Rev Pharmacol Toxicol 2021; 62:235-254. [PMID: 34516293 DOI: 10.1146/annurev-pharmtox-021821-091747] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. β-Amyloid 42 (Aβ42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; email
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
111
|
Chen X, Wang L, Cui Q, Ding Z, Han L, Kou Y, Zhang W, Wang H, Jia X, Dai M, Shi Z, Li Y, Li X, Geng Y. Structural insights into the activation of human calcium-sensing receptor. eLife 2021; 10:68578. [PMID: 34467854 PMCID: PMC8476121 DOI: 10.7554/elife.68578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that maintains Ca2+ homeostasis in serum. Here, we present the cryo-electron microscopy structures of the CaSR in the inactive and agonist+PAM bound states. Complemented with previously reported structures of CaSR, we show that in addition to the full inactive and active states, there are multiple intermediate states during the activation of CaSR. We used a negative allosteric nanobody to stabilize the CaSR in the fully inactive state and found a new binding site for Ca2+ ion that acts as a composite agonist with L-amino acid to stabilize the closure of active Venus flytraps. Our data show that agonist binding leads to compaction of the dimer, proximity of the cysteine-rich domains, large-scale transitions of seven-transmembrane domains, and inter- and intrasubunit conformational changes of seven-transmembrane domains to accommodate downstream transducers. Our results reveal the structural basis for activation mechanisms of CaSR and clarify the mode of action of Ca2+ ions and L-amino acid leading to the activation of the receptor.
Collapse
Affiliation(s)
- Xiaochen Chen
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Cui
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhanyu Ding
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Han
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongjun Kou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Zhang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haonan Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Jia
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mei Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhong Shi
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyang Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yong Geng
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
112
|
Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Rep 2021; 36:109648. [PMID: 34469715 PMCID: PMC8424648 DOI: 10.1016/j.celrep.2021.109648] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes. Cryo-EM analysis of thermostabilized mGlu5 receptor bound to inhibitors or activators X-ray structure of trans-Alloswitch-1 bound to thermostable mGlu5 7TMs Photopharmacology provides insight into allosteric regulation of mGlu5 7TMs Multiple conformations of mGlu5 receptor activate G protein
Collapse
|
113
|
A nanobody activating metabotropic glutamate receptor 4 discriminates between homo- and heterodimers. Proc Natl Acad Sci U S A 2021; 118:2105848118. [PMID: 34385321 DOI: 10.1073/pnas.2105848118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is growing interest in developing biologics due to their high target selectivity. The G protein-coupled homo- and heterodimeric metabotropic glutamate (mGlu) receptors regulate many synapses and are promising targets for the treatment of numerous brain diseases. Although subtype-selective allosteric small molecules have been reported, their effects on the recently discovered heterodimeric receptors are often not known. Here, we describe a nanobody that specifically and fully activates homodimeric human mGlu4 receptors. Molecular modeling and mutagenesis studies revealed that the nanobody acts by stabilizing the closed active state of the glutamate binding domain by interacting with both lobes. In contrast, this nanobody does not activate the heterodimeric mGlu2-4 but acts as a pure positive allosteric modulator. These data further reveal how an antibody can fully activate a class C receptor and bring further evidence that nanobodies represent an alternative way to specifically control mGlu receptor subtypes.
Collapse
|
114
|
Pamula F, Tsai CJ. Biochemical Characterization of GPCR-G Protein Complex Formation. Methods Mol Biol 2021; 2302:37-48. [PMID: 33877621 DOI: 10.1007/978-1-0716-1394-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The complex of G protein-coupled receptors (GPCR) and G proteins is the core assembly in GPCR signaling in eukaryotes. With the recent development of cryo-electron microscopy, there has been a rapid growth in structures of GPCR-G protein complexes solved to near-atomic resolution, giving important insights into this signaling complex. Here we describe the biochemical protocol to study the interaction between GPCRs and G proteins before preparation of GPCR-G protein complexes for structural studies. We use gel filtration to analyze the binding properties between GPCR and G protein with the presence of agonist or antagonist, as well as the complex dissociation in the presence of GTP analogue. Methods used in the protocol are affinity purification and gel filtration, which are also commonly used in protein sample preparation for structural work. Therefore, the protocol can be easily adapted for large-scale sample preparation.
Collapse
Affiliation(s)
- Filip Pamula
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Ching-Ju Tsai
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
115
|
Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol Sin 2021; 42:1354-1367. [PMID: 33122823 PMCID: PMC8285414 DOI: 10.1038/s41401-020-00541-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are promising targets for multiple psychiatric and neurodegenerative disorders. Understanding the subtype selectivity of mGlu1 and mGlu5 allosteric sites is essential for the rational design of novel modulators with single- or dual-target mechanism of action. In this study, starting from the deposited mGlu1 and mGlu5 crystal structures, we utilized computational modeling approaches integrating docking, molecular dynamics simulation, and efficient post-trajectory analysis to reveal the subtype-selective mechanism of mGlu1 and mGlu5 to 10 diverse drug scaffolds representing known negative allosteric modulators (NAMs) in the literature. The results of modeling identified six pairs of non-conserved residues and four pairs of conserved ones as critical features to distinguish the selective NAMs binding to the corresponding receptors. In addition, nine pairs of residues are beneficial to the development of novel dual-target NAMs of group I metabotropic glutamate receptors. Furthermore, the binding modes of a reported dual-target NAM (VU0467558) in mGlu1 and mGlu5 were predicted to verify the identified residues that play key roles in the receptor selectivity and the dual-target binding. The results of this study can guide rational structure-based design of novel NAMs, and the approach can be generally applicable to characterize the features of selectivity for other G-protein-coupled receptors.
Collapse
|
116
|
|
117
|
Toda Y, Ko MC, Liang Q, Miller ET, Rico-Guevara A, Nakagita T, Sakakibara A, Uemura K, Sackton T, Hayakawa T, Sin SYW, Ishimaru Y, Misaka T, Oteiza P, Crall J, Edwards SV, Buttemer W, Matsumura S, Baldwin MW. Early origin of sweet perception in the songbird radiation. Science 2021; 373:226-231. [PMID: 34244416 DOI: 10.1126/science.abf6505] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.
Collapse
Affiliation(s)
- Yasuka Toda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Meng-Ching Ko
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Qiaoyi Liang
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Tomoya Nakagita
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ayano Sakakibara
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kana Uemura
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | | | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.,Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen Germany
| | - James Crall
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA.,Department of Entomology, University of Wisconsin-Madison, WI, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | - William Buttemer
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.,School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Shuichi Matsumura
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany. .,Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| |
Collapse
|
118
|
Danev R, Belousoff M, Liang YL, Zhang X, Eisenstein F, Wootten D, Sexton PM. Routine sub-2.5 Å cryo-EM structure determination of GPCRs. Nat Commun 2021; 12:4333. [PMID: 34267200 PMCID: PMC8282782 DOI: 10.1038/s41467-021-24650-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) of small membrane proteins, such as G protein-coupled receptors (GPCRs), remains challenging. Pushing the performance boundaries of the technique requires quantitative knowledge about the contribution of multiple factors. Here, we present an in-depth analysis and optimization of the main experimental parameters in cryo-EM. We combined actual structural studies with methods development to quantify the effects of the Volta phase plate, zero-loss energy filtering, objective lens aperture, defocus magnitude, total exposure, and grid type. By using this information to carefully maximize the experimental performance, it is now possible to routinely determine GPCR structures at resolutions better than 2.5 Å. The improved fidelity of such maps enables the building of better atomic models and will be crucial for the future expansion of cryo-EM into the structure-based drug design domain. The optimization guidelines given here are not limited to GPCRs and can be applied directly to other small proteins.
Collapse
Affiliation(s)
- Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Matthew Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Confo Therapeutics, Ghent (Zwijnaarde), Belgium
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
119
|
Seven AB, Barros-Álvarez X, de Lapeyrière M, Papasergi-Scott MM, Robertson MJ, Zhang C, Nwokonko RM, Gao Y, Meyerowitz JG, Rocher JP, Schelshorn D, Kobilka BK, Mathiesen JM, Skiniotis G. G-protein activation by a metabotropic glutamate receptor. Nature 2021; 595:450-454. [PMID: 34194039 DOI: 10.1038/s41586-021-03680-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 01/14/2023]
Abstract
Family C G-protein-coupled receptors (GPCRs) operate as obligate dimers with extracellular domains that recognize small ligands, leading to G-protein activation on the transmembrane (TM) domains of these receptors by an unknown mechanism1. Here we show structures of homodimers of the family C metabotropic glutamate receptor 2 (mGlu2) in distinct functional states and in complex with heterotrimeric Gi. Upon activation of the extracellular domain, the two transmembrane domains undergo extensive rearrangement in relative orientation to establish an asymmetric TM6-TM6 interface that promotes conformational changes in the cytoplasmic domain of one protomer. Nucleotide-bound Gi can be observed pre-coupled to inactive mGlu2, but its transition to the nucleotide-free form seems to depend on establishing the active-state TM6-TM6 interface. In contrast to family A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6 but is facilitated through the coordination of intracellular loops 2 and 3, as well as a critical contribution from the C terminus of the receptor. The findings highlight the synergy of global and local conformational transitions to facilitate a new mode of G-protein activation.
Collapse
Affiliation(s)
- Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chensong Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert M Nwokonko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Gao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
120
|
Asymmetric activation of the calcium-sensing receptor homodimer. Nature 2021; 595:455-459. [PMID: 34194040 DOI: 10.1038/s41586-021-03691-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The calcium-sensing receptor (CaSR), a cell-surface sensor for Ca2+, is the master regulator of calcium homeostasis in humans and is the target of calcimimetic drugs for the treatment of parathyroid disorders1. CaSR is a family C G-protein-coupled receptor2 that functions as an obligate homodimer, with each protomer composed of a Ca2+-binding extracellular domain and a seven-transmembrane-helix domain (7TM) that activates heterotrimeric G proteins. Here we present cryo-electron microscopy structures of near-full-length human CaSR in inactive or active states bound to Ca2+ and various calcilytic or calcimimetic drug molecules. We show that, upon activation, the CaSR homodimer adopts an asymmetric 7TM configuration that primes one protomer for G-protein coupling. This asymmetry is stabilized by 7TM-targeting calcimimetic drugs adopting distinctly different poses in the two protomers, whereas the binding of a calcilytic drug locks CaSR 7TMs in an inactive symmetric configuration. These results provide a detailed structural framework for CaSR activation and the rational design of therapeutics targeting this receptor.
Collapse
|
121
|
Green MN, Gangwar SP, Michard E, Simon AA, Portes MT, Barbosa-Caro J, Wudick MM, Lizzio MA, Klykov O, Yelshanskaya MV, Feijó JA, Sobolevsky AI. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4. Mol Cell 2021; 81:3216-3226.e8. [PMID: 34161757 DOI: 10.1016/j.molcel.2021.05.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.
Collapse
Affiliation(s)
- Marriah N Green
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Training Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Erwan Michard
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA; Instituto de Ciencias Biológicas, 2 Norte 685, Universidad de Talca, 3460000 Talca, Chile
| | - Alexander A Simon
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Maria Teresa Portes
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Juan Barbosa-Caro
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Michael M Wudick
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA; Institute for Molecular Physiology, Heinrich Heine Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Michael A Lizzio
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Oleg Klykov
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - José A Feijó
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
122
|
Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature 2021; 594:589-593. [PMID: 34135509 DOI: 10.1038/s41586-021-03641-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.
Collapse
|
123
|
Lin S, Han S, Cai X, Tan Q, Zhou K, Wang D, Wang X, Du J, Yi C, Chu X, Dai A, Zhou Y, Chen Y, Zhou Y, Liu H, Liu J, Yang D, Wang MW, Zhao Q, Wu B. Structures of G i-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature 2021; 594:583-588. [PMID: 34135510 DOI: 10.1038/s41586-021-03495-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/25/2021] [Indexed: 01/15/2023]
Abstract
The metabotropic glutamate receptors (mGlus) have key roles in modulating cell excitability and synaptic transmission in response to glutamate (the main excitatory neurotransmitter in the central nervous system)1. It has previously been suggested that only one receptor subunit within an mGlu homodimer is responsible for coupling to G protein during receptor activation2. However, the molecular mechanism that underlies the asymmetric signalling of mGlus remains unknown. Here we report two cryo-electron microscopy structures of human mGlu2 and mGlu4 bound to heterotrimeric Gi protein. The structures reveal a G-protein-binding site formed by three intracellular loops and helices III and IV that is distinct from the corresponding binding site in all of the other G-protein-coupled receptor (GPCR) structures. Furthermore, we observed an asymmetric dimer interface of the transmembrane domain of the receptor in the two mGlu-Gi structures. We confirmed that the asymmetric dimerization is crucial for receptor activation, which was supported by functional data; this dimerization may provide a molecular basis for the asymmetric signal transduction of mGlus. These findings offer insights into receptor signalling of class C GPCRs.
Collapse
Affiliation(s)
- Shuling Lin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiuxiang Tan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kexiu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dejian Wang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinwei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Cuiying Yi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Chu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Zhou
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Liu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dehua Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Wei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Pharmacy, Fudan University, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Qiang Zhao
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,Zhongshan Branch, Institute of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China.
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
124
|
Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021; 195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
125
|
Su LD, Wang N, Han J, Shen Y. Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. Neuroscientist 2021; 28:453-468. [PMID: 34088252 PMCID: PMC9449437 DOI: 10.1177/10738584211021018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors
that are activated by glutamate in the central nervous system (CNS).
Basically, mGluRs contribute to fine-tuning of synaptic efficacy and
control the accuracy and sharpness of neurotransmission. Among eight
subtypes, mGluR1 and mGluR5 belong to group 1 (Gp1) family, and are
implicated in multiple CNS disorders, such as Alzheimer’s disease,
autism, Parkinson’s disease, and so on. In the present review, we
systematically discussed underlying mechanisms and prospective of Gp1
mGluRs in a group of neurological and psychiatric diseases, including
Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,
epilepsy, Huntington’s disease, intellectual disability, Down’s
syndrome, Rett syndrome, attention-deficit hyperactivity disorder,
addiction, anxiety, nociception, schizophrenia, and depression, in
order to provide more insights into the therapeutic potential of Gp1
mGluRs.
Collapse
Affiliation(s)
- Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
126
|
Defining the Homo- and Heterodimerization Propensities of Metabotropic Glutamate Receptors. Cell Rep 2021; 31:107605. [PMID: 32375054 PMCID: PMC7271767 DOI: 10.1016/j.celrep.2020.107605] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 04/10/2020] [Indexed: 01/02/2023] Open
Abstract
The eight metabotropic glutamate receptors (mGluRs) serve critical modulatory roles throughout the nervous system. The molecular diversity of mGluRs is thought to be further expanded by the formation of heterodimers, but the co-expression of mGluR subtypes at the cellular level and the relative propensities of heterodimer formation are not well known. Here, we analyze single-cell RNA sequencing data and find that cortical pyramidal cells express multiple mGluR subtypes with distinct profiles for different receptor combinations. We then develop quantitative, fluorescence-based assays to define the relative homo- and heterodimer propensities across group-I, -II, and -III mGluRs. We find a strong preference for heterodimerization in a number of cases, including mGluR2 with mGluR3, which we confirm in frontal cortex using in situ RNA hybridization and co-immunoprecipitation. Together, our findings support the biological relevance of mGluR heterodimerization and highlight the complex landscape of mGluR populations in the brain.
Collapse
|
127
|
Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, Yang X. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. SCIENCE ADVANCES 2021; 7:7/23/eabg1483. [PMID: 34088669 PMCID: PMC8177707 DOI: 10.1126/sciadv.abg1483] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) that plays an important role in calcium homeostasis and parathyroid hormone secretion. Here, we present multiple cryo-electron microscopy structures of full-length CaSR in distinct ligand-bound states. Ligands (Ca2+ and l-tryptophan) bind to the extracellular domain of CaSR and induce large-scale conformational changes, leading to the closure of two heptahelical transmembrane domains (7TMDs) for activation. The positive modulator (evocalcet) and the negative allosteric modulator (NPS-2143) occupy the similar binding pocket in 7TMD. The binding of NPS-2143 causes a considerable rearrangement of two 7TMDs, forming an inactivated TM6/TM6 interface. Moreover, a total of 305 disease-causing missense mutations of CaSR have been mapped to the structure in the active state, creating hotspot maps of five clinical endocrine disorders. Our results provide a structural framework for understanding the activation, allosteric modulation mechanism, and disease therapy for class C GPCRs.
Collapse
Affiliation(s)
- Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Ziyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xiaozhe Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yangfei Xing
- State Key Laboratory of Medical Genomics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
- Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| |
Collapse
|
128
|
Abstract
GPCRs remain the most important drug target comprising ~ 34% of the Food and Drug Administration (FDA)-approved drugs. In modern pharmacology of GPCRs, modulating receptor signaling based on requirement of a specific disorder is of immense interest. Classical drugs targeting orthosteric sites in GPCRs completely block the binding of endogenous ligand and consequently inhibit all important signals from a GPCR. Some of many signals elicited by the endogenous ligands may play vital role and inhibiting these may also cause severe side effects in the long run. However, allosteric drugs can modulate GPCR signaling without blocking the endogenous ligand binding. Therefore, allosteric drugs can maintain beneficial signaling of the receptor and prevent unwanted side effects. In this chapter, we will discuss GPCR crystal structures solved with allosteric ligands, advantages of allosteric drugs, and allosteric drugs which are in clinical use or trials.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
129
|
Zhou Y, Meng J, Xu C, Liu J. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Front Cell Dev Biol 2021; 9:611443. [PMID: 34041234 PMCID: PMC8141573 DOI: 10.3389/fcell.2021.611443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the largest membrane protein families that participate in various physiological and pathological activities. Accumulating structural evidences have revealed how GPCR activation induces conformational changes to accommodate the downstream G protein or β-arrestin. Multiple GPCR functional assays have been developed based on Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors to monitor the conformational changes in GPCRs, GPCR/G proteins, or GPCR/β-arrestin, especially over the past two decades. Here, we will summarize how these sensors have been optimized to increase the sensitivity and compatibility for application in different GPCR classes using various labeling strategies, meanwhile provide multiple solutions in functional assays for high-throughput drug screening.
Collapse
Affiliation(s)
- Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiyong Meng
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
130
|
Thibado JK, Tano JY, Lee J, Salas-Estrada L, Provasi D, Strauss A, Marcelo Lamim Ribeiro J, Xiang G, Broichhagen J, Filizola M, Lohse MJ, Levitz J. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021; 10:e67027. [PMID: 33880992 PMCID: PMC8102066 DOI: 10.7554/elife.67027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G-protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. Although numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here, we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric, and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.
Collapse
Affiliation(s)
- Jordana K Thibado
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Alexa Strauss
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| | | | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | | | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Martin J Lohse
- Max Delbrück Center for Molecular MedicineBerlinGermany
- ISAR Bioscience InstitutePlanegg-MunichGermany
| | - Joshua Levitz
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| |
Collapse
|
131
|
Hilger D. The role of structural dynamics in GPCR‐mediated signaling. FEBS J 2021; 288:2461-2489. [DOI: 10.1111/febs.15841] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Hilger
- Department of Pharmaceutical Chemistry Philipps‐University Marburg Germany
| |
Collapse
|
132
|
Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca 2+ ions and L-tryptophan. Cell Res 2021; 31:383-394. [PMID: 33603117 PMCID: PMC8115157 DOI: 10.1038/s41422-021-00474-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The human calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) responsible for maintaining Ca2+ homeostasis in the blood. The general consensus is that extracellular Ca2+ is the principal agonist of CaSR. Aliphatic and aromatic L-amino acids, such as L-Phe and L-Trp, increase the sensitivity of CaSR towards Ca2+ and are considered allosteric activators. Crystal structures of the extracellular domain (ECD) of CaSR dimer have demonstrated Ca2+ and L-Trp binding sites and conformational changes of the ECD upon Ca2+/L-Trp binding. However, it remains to be understood at the structural level how Ca2+/L-Trp binding to the ECD leads to conformational changes in transmembrane domains (TMDs) and consequent CaSR activation. Here, we determined the structures of full-length human CaSR in the inactive state, Ca2+- or L-Trp-bound states, and Ca2+/L-Trp-bound active state using single-particle cryo-electron microscopy. Structural studies demonstrate that L-Trp binding induces the closure of the Venus flytrap (VFT) domain of CaSR, bringing the receptor into an intermediate active state. Ca2+ binding relays the conformational changes from the VFT domains to the TMDs, consequently inducing close contact between the two TMDs of dimeric CaSR, activating the receptor. Importantly, our structural and functional studies reveal that Ca2+ ions and L-Trp activate CaSR cooperatively. Amino acids are not able to activate CaSR alone, but can promote the receptor activation in the presence of Ca2+. Our data provide complementary insights into the activation of class C GPCRs and may aid in the development of novel drugs targeting CaSR.
Collapse
|
133
|
Franco R, Cordomí A, Llinas Del Torrent C, Lillo A, Serrano-Marín J, Navarro G, Pardo L. Structure and function of adenosine receptor heteromers. Cell Mol Life Sci 2021; 78:3957-3968. [PMID: 33580270 PMCID: PMC11072997 DOI: 10.1007/s00018-021-03761-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Catalonia, 08028, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain.
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| | - Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Catalonia, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Catalonia, 08028, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Catalonia, Barcelona, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| |
Collapse
|
134
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
135
|
Abstract
Opioids such as morphine and oxycodone are analgesics frequently prescribed for the treatment of moderate or severe pain. Unfortunately, these medications are associated with exceptionally high abuse potentials and often cause fatal side effects, mainly through the μ-opioid receptor (MOR). Efforts to discover novel, safer, and more efficacious analgesics targeting MOR have encountered challenges. In this review, we summarize alternative strategies and targets that could be used to develop safer nonopioid analgesics. A molecular understanding of G protein-coupled receptor activation and signaling has illuminated not only the complexities of receptor pharmacology but also the potential for pathway-selective agonists and allosteric modulators as safer medications. The availability of structures of pain-related receptors, in combination with high-throughput computational tools, has accelerated the discovery of multitarget ligands with promising pharmacological profiles. Emerging clinical evidence also supports the notion that drugs targeting peripheral opioid receptors have potential as improved analgesic agents.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
136
|
Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 2021; 22:ijms22063241. [PMID: 33810175 PMCID: PMC8005122 DOI: 10.3390/ijms22063241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein-protein interactions (PPI).
Collapse
|
137
|
D’Arrigo G, Gianquinto E, Rossetti G, Cruciani G, Lorenzetti S, Spyrakis F. Binding of Androgen- and Estrogen-Like Flavonoids to Their Cognate (Non)Nuclear Receptors: A Comparison by Computational Prediction. Molecules 2021; 26:1613. [PMID: 33799482 PMCID: PMC8001607 DOI: 10.3390/molecules26061613] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17β-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause. We performed comparative computational docking simulations to predict their capability of binding nuclear receptors ERα, ERβ, ERRβ, ERRγ, androgen receptor (AR), and its variant ART877A and membrane receptors for androgens, i.e., ZIP9, GPRC6A, OXER1, TRPM8, and estrogens, i.e., G Protein-Coupled Estrogen Receptor (GPER). In agreement with data reported in literature, our results suggest that these flavonoids show a relevant degree of complementarity with both estrogen and androgen NR binding sites, likely triggering genomic-mediated effects. It is noteworthy that reliable protein-ligand complexes and estimated interaction energies were also obtained for some suggested estrogen and androgen membrane receptors, indicating that flavonoids could also exert non-genomic actions. Further investigations are needed to clarify flavonoid multiple genomic and non-genomic effects. Caution in their administration could be necessary, until the safe assumption of these natural molecules that are largely present in food is assured.
Collapse
Affiliation(s)
- Giulia D’Arrigo
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational Biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH, Aachen University, 52074 Aachen, Germany;
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Stefano Lorenzetti
- Istituto Superiore di Sanità (ISS), Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (G.D.); (E.G.)
| |
Collapse
|
138
|
Abstract
Methamphetamine abuse leads to devastating consequences, including addiction, crime, and death. Despite decades of research, no medication has been approved by the U.S. Food and Drug Administration for the treatment of Methamphetamine Use Disorder. Thus, there is a need for new therapeutic approaches. Animal studies demonstrate that methamphetamine exposure dysregulates forebrain function involving the Group-I metabotropic glutamate receptor subtype 5 (mGlu5), which is predominantly localized to postsynaptic sites. Allosteric modulators of mGlu5 offer a unique opportunity to modulate glutamatergic neurotransmission selectively, thereby potentially ameliorating methamphetamine-induced disruptions. Negative allosteric modulators of mGlu5 attenuate the effects of methamphetamine, including rewarding/reinforcing properties of the drug across animal models, and have shown promising effects in clinical trials for Anxiety Disorder and Major Depressive Disorder. Preclinical studies have also sparked great interest in mGlu5 positive allosteric modulators, which exhibit antipsychotic and anxiolytic properties, and facilitate extinction learning when access to methamphetamine is removed, possibly via the amelioration of methamphetamine-induced cognitive deficits. Clinical research is now needed to elucidate the mechanisms underlying the mGlu5 receptor-related effects of methamphetamine and the contributions of these effects to addictive behaviors. The growing array of mGlu5 allosteric modulators provides excellent tools for this purpose and may offer the prospect of developing tailored and effective medications for Methamphetamine Use Disorder.
Collapse
|
139
|
Fisher NM, AlHashim A, Buch AB, Badivuku H, Samman MM, Weiss KM, Cestero GI, Does MD, Rook JM, Lindsley CW, Conn PJ, Gogliotti RG, Niswender CM. A GRM7 mutation associated with developmental delay reduces mGlu7 expression and produces neurological phenotypes. JCI Insight 2021; 6:143324. [PMID: 33476302 PMCID: PMC7934925 DOI: 10.1172/jci.insight.143324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
The metabotropic glutamate receptor 7 (mGlu7) is a G protein–coupled receptor that has been recently linked to neurodevelopmental disorders. This association is supported by the identification of GRM7 variants in patients with autism spectrum disorder, attention deficit hyperactivity disorder, and severe developmental delay. One GRM7 mutation previously reported in 2 patients results in a single amino acid change, I154T, within the mGlu7 ligand-binding domain. Here, we report 2 new patients with this mutation who present with severe developmental delay and epilepsy. Functional studies of the mGlu7-I154T mutant reveal that this substitution resulted in significant loss of mGlu7 protein expression in HEK293A cells and in mice. We show that this occurred posttranscriptionally at the level of protein expression and trafficking. Similar to mGlu7–global KO mice, mGlu7-I154T animals exhibited reduced motor coordination, deficits in contextual fear learning, and seizures. This provides functional evidence that a disease-associated mutation affecting the mGlu7 receptor was sufficient to cause neurological dysfunction in mice and further validates GRM7 as a disease-causing gene in the human population.
Collapse
Affiliation(s)
- Nicole M Fisher
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Aditi B Buch
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Hana Badivuku
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Kelly M Weiss
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Gabriela I Cestero
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jerri M Rook
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig W Lindsley
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Department of Chemistry and.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - P Jeffrey Conn
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Rocco G Gogliotti
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois, USA
| | - Colleen M Niswender
- Department of Pharmacology and.,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee USA
| |
Collapse
|
140
|
Abstract
Umami, the fifth taste, has been recognized as a legitimate taste modality only recently relative to the other tastes. Dozens of compounds from vastly different chemical classes elicit a savory (also called umami) taste. The prototypical umami substance glutamic acid or its salt monosodium glutamate (MSG) is present in numerous savory food sources or ingredients such as kombu (edible kelp), beans, soy sauce, tomatoes, cheeses, mushrooms, and certain meats and fish. Derivatives of glutamate (Glu), other amino acids, nucleotides, and small peptides can also elicit or modulate umami taste. In addition, many potent umami tasting compounds structurally unrelated to amino acids, nucleotides, and MSG have been either synthesized or discovered as naturally occurring in plants and other substances. Over the last 20 years several receptors have been suggested to mediate umami taste, including members of the metabotropic and ionotropic Glu receptor families, and more recently, the heterodimeric G protein-coupled receptor, T1R1/T1R3. Careful assessment of representative umami tasting molecules from several different chemical classes shows activation of T1R1/T1R3 with the expected rank order of potency in cell-based assays. Moreover, 5'-ribonucleotides, molecules known to enhance the savory note of Glu, considerably enhance the effect of MSG on T1R1/T1R3 in vitro. Binding sites are found on at least 4 distinct locations on T1R1/T1R3, explaining the propensity of the receptor to being activated or modulated by many structurally distinct compounds and these binding sites allosterically interact to modulate receptor activity. Activation of T1R1/T1R3 by all known umami substances evaluated and the receptor's pharmacological properties are sufficient to explain the basic human sensory experience of savory taste and it is therefore unlikely that other receptors are involved.
Collapse
|
141
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
142
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
143
|
Liauw BWH, Afsari HS, Vafabakhsh R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat Chem Biol 2021; 17:291-297. [PMID: 33398167 PMCID: PMC7904630 DOI: 10.1038/s41589-020-00702-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET (smFRET) and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.
Collapse
Affiliation(s)
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
144
|
Skiba MA, Kruse AC. Autoantibodies as Endogenous Modulators of GPCR Signaling. Trends Pharmacol Sci 2020; 42:135-150. [PMID: 33358695 DOI: 10.1016/j.tips.2020.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Endogenous self-reactive autoantibodies (AAs) recognize a range of G-protein-coupled receptors (GPCRs). They are frequently associated with cardiovascular, neurological, and autoimmune disorders, and in some cases directly impact disease progression. Many GPCR AAs modulate receptor signaling, but molecular details of their modulatory activity are not well understood. Technological advances have provided insight into GPCR biology, which now facilitates deeper understanding of GPCR AA function at the molecular level. Most GPCR AAs are allosteric modulators and exhibit a broad range of pharmacological properties, altering both receptor signaling and trafficking. Understanding GPCR AAs is not only important for defining how these unusual GPCR modulators function in disease, but also provides insight into the potential use and limitations of using therapeutic antibodies to modulate GPCR signaling.
Collapse
Affiliation(s)
- Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
145
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
146
|
Burada AP, Vinnakota R, Bharti P, Dutta P, Dubey N, Kumar J. Emerging insights into the structure and function of ionotropic glutamate delta receptors. Br J Pharmacol 2020; 179:3612-3627. [DOI: 10.1111/bph.15313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ananth Prasad Burada
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Pratibha Bharti
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Priyanka Dutta
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Neelima Dubey
- Molecular Neuroscience Research Lab Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Tathawade Pune 411033 India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| |
Collapse
|
147
|
Zhang J, Qu L, Wu L, Tang X, Luo F, Xu W, Xu Y, Liu ZJ, Hua T. Structural insights into the activation initiation of full-length mGlu1. Protein Cell 2020; 12:662-667. [PMID: 33278019 PMCID: PMC8310541 DOI: 10.1007/s13238-020-00808-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Qu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaomeng Tang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Weixiu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
148
|
Werthmann RC, Tzouros M, Lamerz J, Augustin A, Fritzius T, Trovò L, Stawarski M, Raveh A, Diener C, Fischer C, Gassmann M, Lindemann L, Bettler B. Symmetric signal transduction and negative allosteric modulation of heterodimeric mGlu1/5 receptors. Neuropharmacology 2020; 190:108426. [PMID: 33279506 DOI: 10.1016/j.neuropharm.2020.108426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
For a long time metabotropic glutamate receptors (mGluRs) were thought to regulate neuronal functions as obligatory homodimers. Recent reports, however, indicate the existence of heterodimers between group-II and -III mGluRs in the brain, which differ from the homodimers in their signal transduction and sensitivity to negative allosteric modulators (NAMs). Whether the group-I mGluRs, mGlu1 and mGlu5, form functional heterodimers in the brain is still a matter of debate. We now show that mGlu1 and mGlu5 co-purify from brain membranes and hippocampal tissue and co-localize in cultured hippocampal neurons. Complementation assays with mutants deficient in agonist-binding or G protein-coupling reveal that mGlu1/5 heterodimers are functional in heterologous cells and transfected cultured hippocampal neurons. In contrast to heterodimers between group-II and -III mGluRs, mGlu1/5 receptors exhibit a symmetric signal transduction, with both protomers activating G proteins to a similar extent. NAMs of either protomer in mGlu1/5 receptors partially inhibit signaling, showing that both protomers need to be able to reach an active conformation for full receptor activity. Complete heterodimer inhibition is observed when both protomers are locked in their inactive state by a NAM. In summary, our data show that mGlu1/5 heterodimers exhibit a symmetric signal transduction and thus intermediate signaling efficacy and kinetic properties. Our data support the existence of mGlu1/5 heterodimers in neurons and highlight differences in the signaling transduction of heterodimeric mGluRs that influence allosteric modulation.
Collapse
Affiliation(s)
- Ruth C Werthmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Manuel Tzouros
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Jens Lamerz
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Angélique Augustin
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Thorsten Fritzius
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Adi Raveh
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Catherine Diener
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christophe Fischer
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
149
|
Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Trends Biochem Sci 2020; 45:1049-1064. [PMID: 32861513 PMCID: PMC7642020 DOI: 10.1016/j.tibs.2020.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Groundbreaking structural and spectroscopic studies of class A G protein-coupled receptors (GPCRs), such as rhodopsin and the β2 adrenergic receptor, have provided a picture of how structural rearrangements between transmembrane helices control ligand binding, receptor activation, and effector coupling. However, the activation mechanism of other GPCR classes remains more elusive, in large part due to complexity in their domain assembly and quaternary structure. In this review, we focus on the class C GPCRs, which include metabotropic glutamate receptors (mGluRs) and gamma-aminobutyric acid B (GABAB) receptors (GABABRs) most prominently. We discuss the unique biophysical questions raised by the presence of large extracellular ligand-binding domains (LBDs) and constitutive homo/heterodimerization. Furthermore, we discuss how recent studies have begun to unravel how these fundamental class C GPCR features impact the processes of ligand binding, receptor activation, signal transduction, regulation by accessory proteins, and crosstalk with other GPCRs.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Diomedes A Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, College of Science and Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
150
|
Lavington S, Watts A. Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Biophys Rev 2020; 12:10.1007/s12551-020-00775-5. [PMID: 33215301 PMCID: PMC7755959 DOI: 10.1007/s12551-020-00775-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins which conduct a wide range of biological roles and represent significant drug targets. Most biophysical and structural studies of GPCRs have been conducted on detergent-solubilised receptors, and it is clear that detergents can have detrimental effects on GPCR function. Simultaneously, there is increasing appreciation of roles for specific lipids in modulation of GPCR function. Lipid nanoparticles such as nanodiscs and styrene maleic acid lipid particles (SMALPs) offer opportunities to study integral membrane proteins in lipid environments, in a form that is soluble and amenable to structural and biophysical experiments. Here, we review the application of lipid nanoparticle technologies to the study of GPCRs, assessing the relative merits and limitations of each system. We highlight how these technologies can provide superior platforms to detergents for structural and biophysical studies of GPCRs and inform on roles for protein-lipid interactions in GPCR function.
Collapse
Affiliation(s)
- Steven Lavington
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|