101
|
Nwokoye PN, Abilez OJ. Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids. Front Cardiovasc Med 2024; 11:1336910. [PMID: 38938652 PMCID: PMC11210405 DOI: 10.3389/fcvm.2024.1336910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024] Open
Abstract
Vascular pathologies are prevalent in a broad spectrum of diseases, necessitating a deeper understanding of vascular biology, particularly in overcoming the oxygen and nutrient diffusion limit in tissue constructs. The evolution of vascularized tissues signifies a convergence of multiple scientific disciplines, encompassing the differentiation of human pluripotent stem cells (hPSCs) into vascular cells, the development of advanced three-dimensional (3D) bioprinting techniques, and the refinement of bioinks. These technologies are instrumental in creating intricate vascular networks essential for tissue viability, especially in thick, complex constructs. This review provides broad perspectives on the past, current state, and advancements in key areas, including the differentiation of hPSCs into specific vascular lineages, the potential and challenges of 3D bioprinting methods, and the role of innovative bioinks mimicking the native extracellular matrix. We also explore the integration of biophysical cues in vascularized tissues in vitro, highlighting their importance in stimulating vessel maturation and functionality. In this review, we aim to synthesize these diverse yet interconnected domains, offering a broad, multidisciplinary perspective on tissue vascularization. Advancements in this field will help address the global organ shortage and transform patient care.
Collapse
Affiliation(s)
- Peter N. Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Oscar J. Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Division of Pediatric CT Surgery, Stanford University, Stanford, CA, United States
- Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, United States
- Bio-X Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
102
|
Dao L, You Z, Lu L, Xu T, Sarkar AK, Zhu H, Liu M, Calandrelli R, Yoshida G, Lin P, Miao Y, Mierke S, Kalva S, Zhu H, Gu M, Vadivelu S, Zhong S, Huang LF, Guo Z. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024; 31:818-833.e11. [PMID: 38754427 PMCID: PMC11162335 DOI: 10.1016/j.stem.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.
Collapse
Affiliation(s)
- Lan Dao
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhen You
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lu Lu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tianyang Xu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avijite Kumer Sarkar
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hui Zhu
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Miao Liu
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Riccardo Calandrelli
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Yoshida
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pei Lin
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yifei Miao
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Mierke
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Srijan Kalva
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sudhakar Vadivelu
- Divisions of Pediatric Neurosurgery and Interventional Neuroradiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - L Frank Huang
- Department of Pediatric and Adolescent Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
103
|
Mecca R, Tang S, Jones C, Coward K. The limitations of testicular organoids: are they truly as promising as we believe? Reprod Fertil Dev 2024; 36:RD23216. [PMID: 38935835 DOI: 10.1071/rd23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Organoid systems have revolutionised various facets of biological research by offering a three-dimensional (3D), physiologically relevant in vitro model to study complex organ systems. Over recent years, testicular organoids have been publicised as promising platforms for reproductive studies, disease modelling, drug screening, and fertility preservation. However, the full potential of these systems has yet to be realised due to inherent limitations. This paper offers a comprehensive analysis of the current challenges associated with testicular organoid models. Firstly, we address the inability of current organoid systems to fully replicate the intricate spatial organisation and cellular diversity of the in vivo testis. Secondly, we scrutinise the fidelity of germ cell maturation within the organoids, highlighting incomplete spermatogenesis and epigenetic inconsistencies. Thirdly, we consider the technical challenges faced during organoid culture, including nutrient diffusion limits, lack of vasculature, and the need for specialised growth factors. Finally, we discuss the ethical considerations surrounding the use of organoids for human reproduction research. Addressing these limitations in combination with integrating complementary approaches, will be essential if we are to advance our understanding of testicular biology and develop novel strategies for addressing reproductive health issues in males.
Collapse
Affiliation(s)
- R Mecca
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - S Tang
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - C Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - K Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
104
|
Galpayage Dona KNU, Benmassaoud MM, Gipson CD, McLaughlin JP, Ramirez SH, Andrews AM. Something to talk about; crosstalk disruption at the neurovascular unit during HIV infection of the CNS. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:97-111. [PMID: 39958876 PMCID: PMC11823645 DOI: 10.1515/nipt-2024-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 02/18/2025]
Abstract
Although treatable with antiretroviral therapy, HIV infection persists in people living with HIV (PLWH). It is well known that the HIV virus finds refuge in places for which antiretroviral medications do not reach therapeutic levels, mainly the CNS. It is clear that as PLWH age, the likelihood of developing HIV-associated neurological deficits increases. At the biochemical level neurological dysfunction is the manifestation of altered cellular function and ineffective intercellular communication. In this review, we examine how intercellular signaling in the brain is disrupted in the context of HIV. Specifically, the concept of how the blood-brain barrier can be a convergence point for crosstalk, is explored. Crosstalk between the cells of the neurovascular unit (NVU) (endothelium, pericytes, astrocytes, microglia and neurons) is critical for maintaining proper brain function. In fact, the NVU allows for rapid matching of neuronal metabolic needs, regulation of blood-brain barrier (BBB) dynamics for nutrient transport and changes to the level of immunosurveillance. This review invites the reader to conceptually consider the BBB as a router or convergence point for NVU crosstalk, to facilitate a better understanding of the intricate signaling events that underpin the function of the NVU during HIV associated neuropathology.
Collapse
Affiliation(s)
- Kalpani N. Udeni Galpayage Dona
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohammed M. Benmassaoud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cassandra D. Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Servio H. Ramirez
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Allison M. Andrews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
105
|
Tamada A, Muguruma K. Recapitulation and investigation of human brain development with neural organoids. IBRO Neurosci Rep 2024; 16:106-117. [PMID: 39007085 PMCID: PMC11240300 DOI: 10.1016/j.ibneur.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Organoids are 3D cultured tissues derived from stem cells that resemble the structure of living organs. Based on the accumulated knowledge of neural development, neural organoids that recapitulate neural tissue have been created by inducing self-organized neural differentiation of stem cells. Neural organoid techniques have been applied to human pluripotent stem cells to differentiate 3D human neural tissues in culture. Various methods have been developed to generate neural tissues of different regions. Currently, neural organoid technology has several significant limitations, which are being overcome in an attempt to create neural organoids that more faithfully recapitulate the living brain. The rapidly advancing neural organoid technology enables the use of living human neural tissue as research material and contributes to our understanding of the development, structure and function of the human nervous system, and is expected to be used to overcome neurological diseases and for regenerative medicine.
Collapse
Affiliation(s)
- Atsushi Tamada
- Department of iPS Cell Applied Medicine, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
106
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
107
|
Shen Q, Zhou YH, Zhou YQ. A prospects tool in virus research: Analyzing the applications of organoids in virus studies. Acta Trop 2024; 254:107182. [PMID: 38479469 DOI: 10.1016/j.actatropica.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024]
Abstract
Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China
| | - Yu-Han Zhou
- College of Public Health, Jilin University, Changchun 130021, China
| | - Yan-Qiu Zhou
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China.
| |
Collapse
|
108
|
Suong DNA, Imamura K, Kato Y, Inoue H. Design of neural organoids engineered by mechanical forces. IBRO Neurosci Rep 2024; 16:190-195. [PMID: 38328799 PMCID: PMC10847990 DOI: 10.1016/j.ibneur.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Neural organoids consist of three-dimensional tissue derived from pluripotent stem cells that could recapitulate key features of the human brain. During the past decade, organoid technology has evolved in the field of human brain science by increasing the quality and applicability of its products. Among them, a novel approach involving the design of neural organoids engineered by mechanical forces has emerged. This review describes previous approaches for the generation of neural organoids, the engineering of neural organoids by mechanical forces, and future challenges for the application of mechanical forces in the design of neural organoids.
Collapse
Affiliation(s)
- Dang Ngoc Anh Suong
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiko Imamura
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yoshikazu Kato
- Mixing Technology Laboratory, SATAKE MultiMix Corporation, Saitama, Japan
| | - Haruhisa Inoue
- iPSC‑Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical‑Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
109
|
Barry-Carroll L, Gomez-Nicola D. The molecular determinants of microglial developmental dynamics. Nat Rev Neurosci 2024; 25:414-427. [PMID: 38658739 DOI: 10.1038/s41583-024-00813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Microglia constitute the largest population of parenchymal macrophages in the brain and are considered a unique subset of central nervous system glial cells owing to their extra-embryonic origins in the yolk sac. During development, microglial progenitors readily proliferate and eventually colonize the entire brain. In this Review, we highlight the origins of microglial progenitors and their entry routes into the brain and discuss the various molecular and non-molecular determinants of their fate, which may inform their specific functions. Specifically, we explore recently identified mechanisms that regulate microglial colonization of the brain, including the availability of space, and describe how the expansion of highly proliferative microglial progenitors facilitates the occupation of the microglial niche. Finally, we shed light on the factors involved in establishing microglial identity in the brain.
Collapse
Affiliation(s)
- Liam Barry-Carroll
- Nutrineuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Bordeaux, France
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
110
|
Boylin K, Aquino GV, Purdon M, Abedi K, Kasendra M, Barrile R. Basic models to advanced systems: harnessing the power of organoids-based microphysiological models of the human brain. Biofabrication 2024; 16:032007. [PMID: 38749420 DOI: 10.1088/1758-5090/ad4c08] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Understanding the complexities of the human brain's function in health and disease is a formidable challenge in neuroscience. While traditional models like animals offer valuable insights, they often fall short in accurately mirroring human biology and drug responses. Moreover, recent legislation has underscored the need for more predictive models that more accurately represent human physiology. To address this requirement, human-derived cell cultures have emerged as a crucial alternative for biomedical research. However, traditional static cell culture models lack the dynamic tissue microenvironment that governs human tissue function. Advancedin vitrosystems, such as organoids and microphysiological systems (MPSs), bridge this gap by offering more accurate representations of human biology. Organoids, which are three-dimensional miniaturized organ-like structures derived from stem cells, exhibit physiological responses akin to native tissues, but lack essential tissue-specific components such as functional vascular structures and immune cells. Recent endeavors have focused on incorporating endothelial cells and immune cells into organoids to enhance vascularization, maturation, and disease modeling. MPS, including organ-on-chip technologies, integrate diverse cell types and vascularization under dynamic culture conditions, revolutionizing brain research by bridging the gap betweenin vitroandin vivomodels. In this review, we delve into the evolution of MPS, with a particular focus on highlighting the significance of vascularization in enhancing the viability, functionality, and disease modeling potential of organoids. By examining the interplay of vasculature and neuronal cells within organoids, we can uncover novel therapeutic targets and gain valuable insights into disease mechanisms, offering the promise of significant advancements in neuroscience and improved patient outcomes.
Collapse
Affiliation(s)
- Katherine Boylin
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Grace V Aquino
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Michael Purdon
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kimia Abedi
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Magdalena Kasendra
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
111
|
Babu HWS, Kumar SM, Kaur H, Iyer M, Vellingiri B. Midbrain organoids for Parkinson's disease (PD) - A powerful tool to understand the disease pathogenesis. Life Sci 2024; 345:122610. [PMID: 38580194 DOI: 10.1016/j.lfs.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Brain Organiods (BOs) are a promising technique for researching disease progression in the human brain. These organoids, which are produced from human induced pluripotent stem cells (HiPSCs), can construct themselves into structured frameworks. In the context of Parkinson's disease (PD), recent advancements have been made in the development of Midbrain organoids (MBOs) models that consider key pathophysiological mechanisms such as alpha-synuclein (α-Syn), Lewy bodies, dopamine loss, and microglia activation. However, there are limitations to the current use of BOs in disease modelling and drug discovery, such as the lack of vascularization, long-term differentiation, and absence of glial cells. To address these limitations, researchers have proposed the use of spinning bioreactors to improve oxygen and nutrient perfusion. Modelling PD utilising modern experimental in vitro models is a valuable tool for studying disease mechanisms and elucidating previously unknown features of PD. In this paper, we exclusively review the unique methods available for cultivating MBOs using a pumping system that mimics the circulatory system. This mechanism may aid in delivering the required amount of oxygen and nutrients to all areas of the organoids, preventing cell death, and allowing for long-term culture and using co-culturing techniques for developing glial cell in BOs. Furthermore, we emphasise some of the significant discoveries about the BOs and the potential challenges of using BOs will be discussed.
Collapse
Affiliation(s)
- Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sindduja Muthu Kumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Harsimrat Kaur
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India; Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
112
|
Cao Z, Kong F, Ding J, Chen C, He F, Deng W. Promoting Alzheimer's disease research and therapy with stem cell technology. Stem Cell Res Ther 2024; 15:136. [PMID: 38715083 PMCID: PMC11077895 DOI: 10.1186/s13287-024-03737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent form of dementia leading to memory loss, reduced cognitive and linguistic abilities, and decreased self-care. Current AD treatments aim to relieve symptoms and slow disease progression, but a cure is elusive due to limited understanding of the underlying disease mechanisms. MAIN CONTENT Stem cell technology has the potential to revolutionize AD research. With the ability to self-renew and differentiate into various cell types, stem cells are valuable tools for disease modeling, drug screening, and cell therapy. Recent advances have broadened our understanding beyond the deposition of amyloidβ (Aβ) or tau proteins in AD to encompass risk genes, immune system disorders, and neuron-glia mis-communication, relying heavily on stem cell-derived disease models. These stem cell-based models (e.g., organoids and microfluidic chips) simulate in vivo pathological processes with extraordinary spatial and temporal resolution. Stem cell technologies have the potential to alleviate AD pathology through various pathways, including immunomodulation, replacement of damaged neurons, and neurotrophic support. In recent years, transplantation of glial cells like oligodendrocytes and the infusion of exosomes have become hot research topics. CONCLUSION Although stem cell-based models and therapies for AD face several challenges, such as extended culture time and low differentiation efficiency, they still show considerable potential for AD treatment and are likely to become preferred tools for AD research.
Collapse
Affiliation(s)
- Zimeng Cao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fanshu Kong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaqi Ding
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chunxia Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Fumei He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- School of Pharmaceutical Sciences, Dali University, Dali, 671000, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
113
|
Salzinger A, Ramesh V, Das Sharma S, Chandran S, Thangaraj Selvaraj B. Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2024; 13:792. [PMID: 38786016 PMCID: PMC11120636 DOI: 10.3390/cells13100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.
Collapse
Affiliation(s)
- Andrea Salzinger
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Vidya Ramesh
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Shreya Das Sharma
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bhuvaneish Thangaraj Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
114
|
Jordan FD, Kutter M, Comby JM, Brozzi F, Kurtys E. Open and remotely accessible Neuroplatform for research in wetware computing. Front Artif Intell 2024; 7:1376042. [PMID: 38756757 PMCID: PMC11097343 DOI: 10.3389/frai.2024.1376042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
Wetware computing and organoid intelligence is an emerging research field at the intersection of electrophysiology and artificial intelligence. The core concept involves using living neurons to perform computations, similar to how Artificial Neural Networks (ANNs) are used today. However, unlike ANNs, where updating digital tensors (weights) can instantly modify network responses, entirely new methods must be developed for neural networks using biological neurons. Discovering these methods is challenging and requires a system capable of conducting numerous experiments, ideally accessible to researchers worldwide. For this reason, we developed a hardware and software system that allows for electrophysiological experiments on an unmatched scale. The Neuroplatform enables researchers to run experiments on neural organoids with a lifetime of even more than 100 days. To do so, we streamlined the experimental process to quickly produce new organoids, monitor action potentials 24/7, and provide electrical stimulations. We also designed a microfluidic system that allows for fully automated medium flow and change, thus reducing the disruptions by physical interventions in the incubator and ensuring stable environmental conditions. Over the past three years, the Neuroplatform was utilized with over 1,000 brain organoids, enabling the collection of more than 18 terabytes of data. A dedicated Application Programming Interface (API) has been developed to conduct remote research directly via our Python library or using interactive compute such as Jupyter Notebooks. In addition to electrophysiological operations, our API also controls pumps, digital cameras and UV lights for molecule uncaging. This allows for the execution of complex 24/7 experiments, including closed-loop strategies and processing using the latest deep learning or reinforcement learning libraries. Furthermore, the infrastructure supports entirely remote use. Currently in 2024, the system is freely available for research purposes, and numerous research groups have begun using it for their experiments. This article outlines the system's architecture and provides specific examples of experiments and results.
Collapse
|
115
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
116
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
117
|
Zhou G, Pang S, Li Y, Gao J. Progress in the generation of spinal cord organoids over the past decade and future perspectives. Neural Regen Res 2024; 19:1013-1019. [PMID: 37862203 PMCID: PMC10749595 DOI: 10.4103/1673-5374.385280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo. As emerging bioengineering methods have led to the optimization of cell culture protocols, spinal cord organoids technology has made remarkable advancements in the past decade. Our literature search found that current spinal cord organoids do not only dynamically simulate neural tube formation but also exhibit diverse cytoarchitecture along the dorsal-ventral and rostral-caudal axes. Moreover, fused organoids that integrate motor neurons and other regionally specific organoids exhibit intricate neural circuits that allows for functional assessment. These qualities make spinal cord organoids valuable tools for disease modeling, drug screening, and tissue regeneration. By utilizing this emergent technology, researchers have made significant progress in investigating the pathogenesis and potential therapeutic targets of spinal cord diseases. However, at present, spinal cord organoid technology remains in its infancy and has not been widely applied in translational medicine. Establishment of the next generation of spinal cord organoids will depend on good manufacturing practice standards and needs to focus on diverse cell phenotypes and electrophysiological functionality evaluation.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siyuan Pang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
118
|
Petersilie L, Heiduschka S, Nelson JS, Neu LA, Le S, Anand R, Kafitz KW, Prigione A, Rose CR. Cortical brain organoid slices (cBOS) for the study of human neural cells in minimal networks. iScience 2024; 27:109415. [PMID: 38523789 PMCID: PMC10957451 DOI: 10.1016/j.isci.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Brain organoids derived from human pluripotent stem cells are a promising tool for studying human neurodevelopment and related disorders. Here, we generated long-term cultures of cortical brain organoid slices (cBOS) grown at the air-liquid interphase from regionalized cortical organoids. We show that cBOS host mature neurons and astrocytes organized in complex architecture. Whole-cell patch-clamp demonstrated subthreshold synaptic inputs and action potential firing of neurons. Spontaneous intracellular calcium signals turned into synchronous large-scale oscillations upon combined disinhibition of NMDA receptors and blocking of GABAA receptors. Brief metabolic inhibition to mimic transient energy restriction in the ischemic brain induced reversible intracellular calcium loading of cBOS. Moreover, metabolic inhibition induced a reversible decline in neuronal ATP as revealed by ATeam1.03YEMK. Overall, cBOS provide a powerful platform to assess morphological and functional aspects of human neural cells in intact minimal networks and to address the pathways that drive cellular damage during brain ischemia.
Collapse
Affiliation(s)
- Laura Petersilie
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Heiduschka
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Louis A. Neu
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Karl W. Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
119
|
Giorgi C, Castelli V, d’Angelo M, Cimini A. Organoids Modeling Stroke in a Petri Dish. Biomedicines 2024; 12:877. [PMID: 38672231 PMCID: PMC11048104 DOI: 10.3390/biomedicines12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Stroke is a common neurological disorder, the second leading cause of death, and the third leading cause of disability. Unfortunately, the only approved drug for it is tissue plasminogen, but the therapeutic window is limited. In this context, preclinical studies are relevant to better dissect the underlying mechanisms of stroke and for the drug screening of potential therapies. Brain organoids could be relevant in this setting. They are derived from pluripotent stem cells or isolated organ progenitors that differentiate to form an organ-like tissue, exhibiting multiple cell types that self-organize to form a structure not unlike the organ in vivo. Brain organoids mimic many key features of early human brain development at molecular, cellular, structural, and functional levels and have emerged as novel model systems that can be used to investigate human brain diseases including stroke. Brain organoids are a promising and powerful tool for ischemic stroke studies; however, there are a few concerns that need to be addressed, including the lack of vascularization and the many cell types that are typically present in the human brain. The aim of this review is to discuss the potential of brain organoids as a novel model system for studying ischemic stroke, highlighting both the advantages and disadvantages in the use of this technology.
Collapse
Affiliation(s)
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (V.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (V.C.)
| |
Collapse
|
120
|
Korszun-Karbowniczak J, Krysiak ZJ, Saluk J, Niemcewicz M, Zdanowski R. The Progress in Molecular Transport and Therapeutic Development in Human Blood-Brain Barrier Models in Neurological Disorders. Cell Mol Neurobiol 2024; 44:34. [PMID: 38627312 PMCID: PMC11021242 DOI: 10.1007/s10571-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described.
Collapse
Affiliation(s)
- Joanna Korszun-Karbowniczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Zuzanna Joanna Krysiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland.
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, Institute of Biochemistry, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
| |
Collapse
|
121
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
122
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
123
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
124
|
Hossain MK, Kim HR, Chae HJ. Aging phenotype in AD brain organoids: Track to success and challenges. Ageing Res Rev 2024; 96:102256. [PMID: 38460555 DOI: 10.1016/j.arr.2024.102256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Alzheimer's disease (AD) poses a complex challenge, with abnormal protein accumulation in the brain causing memory loss and cognitive decline. Traditional models fall short in AD research, prompting interest in 3D brain organoids (BOs) from human stem cells. These findings hold promise for unveiling the mechanisms of AD, especially in relation to aging. However, an understanding of the aging impact of AD remains elusive. BOs offer insight but face challenges. This review delves into the role of BOs in deciphering aging-related AD and acknowledges limitations. Strategies to enhance BOs for accurate aging modeling in AD brains are suggested. Strengthened by molecular advancements, BOs have the potential to uncover the aging phenotype, advancing AD research.
Collapse
Affiliation(s)
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Han Jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
125
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
126
|
Li Z, Yu D, Zhou C, Wang F, Lu K, Liu Y, Xu J, Xuan L, Wang X. Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives. BIOMATERIALS TRANSLATIONAL 2024; 5:21-32. [PMID: 39220668 PMCID: PMC11362354 DOI: 10.12336/biomatertransl.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 09/04/2024]
Abstract
In recent years, advances in microfabrication technology and tissue engineering have propelled the development of a novel drug screening and disease modelling platform known as organoid-on-a-chip. This platform integrates organoids and organ-on-a-chip technologies, emerging as a promising approach for in vitro modelling of human organ physiology. Organoid-on-a-chip devices leverage microfluidic systems to simulate the physiological microenvironment of specific organs, offering a more dynamic and flexible setting that can mimic a more comprehensive human biological context. However, the lack of functional vasculature has remained a significant challenge in this technology. Vascularisation is crucial for the long-term culture and in vitro modelling of organoids, holding important implications for drug development and personalised medical approaches. This review provides an overview of research progress in developing vascularised organoid-on-a-chip models, addressing methods for in vitro vascularisation and advancements in vascularised organoids. The aim is to serve as a reference for future endeavors in constructing fully functional vascularised organoid-on-a-chip platforms.
Collapse
Affiliation(s)
- Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dingyuan Yu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feifan Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Xu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
127
|
Nicholson JG, Cirigliano S, Singhania R, Haywood C, Shahidi Dadras M, Yoshimura M, Vanderbilt D, Liechty B, Fine HA. Chronic hypoxia remodels the tumor microenvironment to support glioma stem cell growth. Acta Neuropathol Commun 2024; 12:46. [PMID: 38528608 DOI: 10.1186/s40478-024-01755-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Cerebral organoids co-cultured with patient derived glioma stem cells (GLICOs) are an experimentally tractable research tool useful for investigating the role of the human brain tumor microenvironment in glioblastoma. Here we describe long-term GLICOs, a novel model in which COs are grown from embryonic stem cell cultures containing low levels of GSCs and tumor development is monitored over extended durations (ltGLICOs). Single-cell profiling of ltGLICOs revealed an unexpectedly long latency period prior to GSC expansion, and that normal organoid development was unimpaired by the presence of low numbers of GSCs. However, as organoids age they experience chronic hypoxia and oxidative stress which remodels the tumor microenvironment to promote GSC expansion. Receptor-ligand modelling identified astrocytes, which secreted various pro-tumorigenic ligands including FGF1, as the primary cell type for GSC crosstalk and single-cell multi-omic analysis revealed these astrocytes were under the control of ischemic regulatory networks. Functional validation confirmed hypoxia as a driver of pro-tumorigenic astrocytic ligand secretion and that GSC expansion was accelerated by pharmacological induction of oxidative stress. When controlled for genotype, the close association between glioma aggressiveness and patient age has very few proposed biological explanations. Our findings indicate that age-associated increases in cerebral vascular insufficiency and associated regional chronic cerebral hypoxia may contribute to this phenomenon.
Collapse
Affiliation(s)
- J G Nicholson
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - S Cirigliano
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - R Singhania
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - C Haywood
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - M Shahidi Dadras
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - M Yoshimura
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - D Vanderbilt
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - B Liechty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - H A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
128
|
Ahmed I, Sun J, Brown J, Khosrotehrani K, Shafiee A. An optimized protocol for generating appendage-bearing skin organoids from human-induced pluripotent stem cells. Biol Methods Protoc 2024; 9:bpae019. [PMID: 38605978 PMCID: PMC11009018 DOI: 10.1093/biomethods/bpae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Organoid generation from pluripotent stem cells is a cutting-edge technique that has created new possibilities for modelling human organs in vitro, as well as opening avenues for regenerative medicine. Here, we present a protocol for generating skin organoids (SKOs) from human-induced pluripotent stem cells (hiPSCs) via direct embryoid body formation. This method provides a consistent start point for hiPSC differentiation, resulting in SKOs with complex skin architecture and appendages (e.g. hair follicles, sebaceous glands, etc.) across hiPSC lines from two different somatic sources.
Collapse
Affiliation(s)
- Imaan Ahmed
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jane Sun
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jason Brown
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Abbas Shafiee
- The University of Queensland Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| |
Collapse
|
129
|
Giorgi C, Lombardozzi G, Ammannito F, Scenna MS, Maceroni E, Quintiliani M, d’Angelo M, Cimini A, Castelli V. Brain Organoids: A Game-Changer for Drug Testing. Pharmaceutics 2024; 16:443. [PMID: 38675104 PMCID: PMC11054008 DOI: 10.3390/pharmaceutics16040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Neurological disorders are the second cause of death and the leading cause of disability worldwide. Unfortunately, no cure exists for these disorders, but the actual therapies are only able to ameliorate people's quality of life. Thus, there is an urgent need to test potential therapeutic approaches. Brain organoids are a possible valuable tool in the study of the brain, due to their ability to reproduce different brain regions and maturation stages; they can be used also as a tool for disease modelling and target identification of neurological disorders. Recently, brain organoids have been used in drug-screening processes, even if there are several limitations to overcome. This review focuses on the description of brain organoid development and drug-screening processes, discussing the advantages, challenges, and limitations of the use of organoids in modeling neurological diseases. We also highlighted the potential of testing novel therapeutic approaches. Finally, we examine the challenges and future directions to improve the drug-screening process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Annamaria Cimini
- Department of Life, Health and Environmental Science, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (G.L.); (F.A.); (M.S.S.); (E.M.); (M.Q.); (M.d.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Science, University of L’Aquila, 67100 L’Aquila, Italy; (C.G.); (G.L.); (F.A.); (M.S.S.); (E.M.); (M.Q.); (M.d.)
| |
Collapse
|
130
|
Zhao HH, Haddad G. Brain organoid protocols and limitations. Front Cell Neurosci 2024; 18:1351734. [PMID: 38572070 PMCID: PMC10987830 DOI: 10.3389/fncel.2024.1351734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Stem cell-derived organoid technology is a powerful tool that revolutionizes the field of biomedical research and extends the scope of our understanding of human biology and diseases. Brain organoids especially open an opportunity for human brain research and modeling many human neurological diseases, which have lagged due to the inaccessibility of human brain samples and lack of similarity with other animal models. Brain organoids can be generated through various protocols and mimic whole brain or region-specific. To provide an overview of brain organoid technology, we summarize currently available protocols and list several factors to consider before choosing protocols. We also outline the limitations of current protocols and challenges that need to be solved in future investigation of brain development and pathobiology.
Collapse
Affiliation(s)
- Helen H. Zhao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- The Rady Children's Hospital, San Diego, CA, United States
| |
Collapse
|
131
|
Kwon H, Lee S, Byun H, Huh SJ, Lee E, Kim E, Lee J, Shin H. Engineering pre-vascularized 3D tissue and rapid vascular integration with host blood vessels via co-cultured spheroids-laden hydrogel. Biofabrication 2024; 16:025029. [PMID: 38447223 DOI: 10.1088/1758-5090/ad30c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in regenerative medicine and tissue engineering have enabled the biofabrication of three-dimensional (3D) tissue analogues with the potential for use in transplants and disease modeling. However, the practical use of these biomimetic tissues has been hindered by the challenge posed by reconstructing anatomical-scale micro-vasculature tissues. In this study, we suggest that co-cultured spheroids within hydrogels hold promise for regenerating highly vascularized and innervated tissues, bothin vitroandin vivo. Human adipose-derived stem cells (hADSCs) and human umbilical vein cells (HUVECs) were prepared as spheroids, which were encapsulated in gelatin methacryloyl hydrogels to fabricate a 3D pre-vascularized tissue. The vasculogenic responses, extracellular matrix production, and remodeling depending on parameters like co-culture ratio, hydrogel strength, and pre-vascularization time forin vivointegration with native vessels were then delicately characterized. The co-cultured spheroids with 3:1 ratio (hADSCs/HUVECs) within the hydrogel and with a pliable storage modulus showed the greatest vasculogenic potential, and ultimately formedin vitroarteriole-scale vasculature with a longitudinal lumen structure and a complex vascular network after long-term culturing. Importantly, the pre-vascularized tissue also showed anastomotic vascular integration with host blood vessels after transplantation, and successful vascularization that was positive for both CD31 and alpha-smooth muscle actin covering 18.6 ± 3.6μm2of the luminal area. The described co-cultured spheroids-laden hydrogel can therefore serve as effective platform for engineering 3D vascularized complex tissues.
Collapse
Affiliation(s)
- Hyunseok Kwon
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
132
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
133
|
Rai V, Mendoza-Mari Y, Radwan MM, Brazdzionis J, Connett DA, Miulli DE, Agrawal DK. Transcriptional and Translational Regulation of Differentially Expressed Genes in Yucatan Miniswine Brain Tissues following Traumatic Brain Injury. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2024; 7:81-91. [PMID: 38818113 PMCID: PMC11138201 DOI: 10.26502/jbsb.5107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity, disability, and mortality worldwide. Motor and cognitive deficits and emotional disturbances are long-term consequences of TBI. A lack of effective treatment for TBI-induced neural damage, functional impairments, and cognitive deficits makes it challenging in the recovery following TBI. One of the reasons may be the lack of knowledge underlying the complex pathophysiology of TBI and the regulatory factors involved in the cellular and molecular mechanisms of inflammation, neural regeneration, and injury repair. These mechanisms involve a change in the expression of various proteins encoded by genes whose expression is regulated by transcription factors (TFs) at the transcriptional level and microRNA (miRs) at the mRNA level. In this pilot study, we performed the RNA sequencing of injured tissues and non-injured tissues from the brain of Yucatan miniswine and analyzed the sequencing data for differentially expressed genes (DEGs) and the TFs and miRs regulating the expression of DEGs using in-silico analysis. We also compared the effect of the electromagnetic field (EMF) applied to the injured miniswine on the expression profile of various DEGs. The results of this pilot study revealed a few DEGs that were significantly upregulated in the injured brain tissue and the EMF stimulation showed effect on their expression profile.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Yssel Mendoza-Mari
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Mohamed M Radwan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - James Brazdzionis
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - David A Connett
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Dan E Miulli
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
134
|
Ning RX, Liu CY, Wang SQ, Li WK, Kong X, He ZW. Application status and optimization suggestions of tumor organoids and CAR-T cell co-culture models. Cancer Cell Int 2024; 24:98. [PMID: 38443969 PMCID: PMC10916304 DOI: 10.1186/s12935-024-03272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Tumor organoids, especially patient-derived organoids (PDOs) exhibit marked similarities in histopathological morphology, genomic alterations, and specific marker expression profiles to those of primary tumour tissues. They are applied in various fields including drug screening, gene editing, and identification of oncogenes. However, CAR-T therapy in the treatment of solid tumours is still at an exploratory stage. Tumour organoids offer unique advantages over other preclinical models commonly used for CAR-T therapy research, which the preservation of the biological characteristics of primary tumour tissue is critical for the study of early-stage solid tumour CAR-T therapies. Although some investigators have used this co-culture model to validate newly targeted CAR-T cells, optimise existing CAR-T cells and explore combination therapy strategies, there is still untapped potential in the co-culture models used today. This review introduces the current status of the application of tumour organoid and CAR-T cell co-culture models in recent years and commented on the limitations of the current co-cultivation model. Meanwhile, we compared the tumour organoid model with two pre-clinical models commonly used in CAR-T therapy research. Eventually, combined with the new progress of organoid technologies, optimization suggestions were proposed for the co-culture model from five perspectives: preserving or reconstructing the tumor microenvironment, systematization, vascularization, standardized culture procedures, and expanding the tumor organoids resource library, aimed at assisting related researchers to better utilize co-culture models.
Collapse
Affiliation(s)
- Rong-Xuan Ning
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan, 523710, Guangdong Province, China
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Cun-Yu Liu
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Shi-Qi Wang
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wen-Kai Li
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Xia Kong
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Zhi-Wei He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan, 523710, Guangdong Province, China.
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
135
|
Lacin ME, Yildirim M. Applications of multiphoton microscopy in imaging cerebral and retinal organoids. Front Neurosci 2024; 18:1360482. [PMID: 38505776 PMCID: PMC10948410 DOI: 10.3389/fnins.2024.1360482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Cerebral organoids, self-organizing structures with increased cellular diversity and longevity, have addressed shortcomings in mimicking human brain complexity and architecture. However, imaging intact organoids poses challenges due to size, cellular density, and light-scattering properties. Traditional one-photon microscopy faces limitations in resolution and contrast, especially for deep regions. Here, we first discuss the fundamentals of multiphoton microscopy (MPM) as a promising alternative, leveraging non-linear fluorophore excitation and longer wavelengths for improved imaging of live cerebral organoids. Then, we review recent applications of MPM in studying morphogenesis and differentiation, emphasizing its potential for overcoming limitations associated with other imaging techniques. Furthermore, our paper underscores the crucial role of cerebral organoids in providing insights into human-specific neurodevelopmental processes and neurological disorders, addressing the scarcity of human brain tissue for translational neuroscience. Ultimately, we envision using multimodal multiphoton microscopy for longitudinal imaging of intact cerebral organoids, propelling advancements in our understanding of neurodevelopment and related disorders.
Collapse
Affiliation(s)
| | - Murat Yildirim
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
136
|
Crouch EE, Diafos LN, Valenzuela EJ, Wedderburn-Pugh K, Birrueta JO, Caston J, Joseph T, Andrews MG, Bhaduri A, Huang EJ. Profiling human brain vascular cells using single-cell transcriptomics and organoids. Nat Protoc 2024; 19:603-628. [PMID: 38102365 PMCID: PMC11537086 DOI: 10.1038/s41596-023-00929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/13/2023] [Indexed: 12/17/2023]
Abstract
Angiogenesis and neurogenesis are functionally interconnected during brain development. However, the study of the vasculature has trailed other brain cell types because they are delicate and of low abundance. Here we describe a protocol extension to purify prenatal human brain endothelial and mural cells with FACS and utilize them in downstream applications, including transcriptomics, culture and organoid transplantation. This approach is simple, efficient and generates high yields from small amounts of tissue. When the experiment is completed within a 24 h postmortem interval, these healthy cells produce high-quality data in single-cell transcriptomics experiments. These vascular cells can be cultured, passaged and expanded for many in vitro assays, including Matrigel vascular tube formation, microfluidic chambers and metabolic measurements. Under these culture conditions, primary vascular cells maintain expression of cell-type markers for at least 3 weeks. Finally, we describe how to use primary vascular cells for transplantation into cortical organoids, which captures key features of neurovascular interactions in prenatal human brain development. In terms of timing, tissue processing and staining requires ~3 h, followed by an additional 3 h of FACS. The transplant procedure of primary, FACS-purified vascular cells into cortical organoids requires an additional 2 h. The time required for different transcriptomic and epigenomic protocols can vary based on the specific application, and we offer strategies to mitigate batch effects and optimize data quality. In sum, this vasculo-centric approach offers an integrated platform to interrogate neurovascular interactions and human brain vascular development.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| | - Loukas N Diafos
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Edward J Valenzuela
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Kaylee Wedderburn-Pugh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Jaela Caston
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Madeline G Andrews
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Aparna Bhaduri
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric J Huang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Biomedical Science Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Pathology Service 113B, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA.
| |
Collapse
|
137
|
Adams L, Song MK, Yuen S, Tanaka Y, Kim YS. A single-nuclei paired multiomic analysis of the human midbrain reveals age- and Parkinson's disease-associated glial changes. NATURE AGING 2024; 4:364-378. [PMID: 38491288 PMCID: PMC11361719 DOI: 10.1038/s43587-024-00583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Age is the primary risk factor for Parkinson's disease (PD), but how aging changes the expression and regulatory landscape of the brain remains unclear. Here we present a single-nuclei multiomic study profiling shared gene expression and chromatin accessibility of young, aged and PD postmortem midbrain samples. Combined multiomic analysis along a pseudopathogenesis trajectory reveals that all glial cell types are affected by age, but microglia and oligodendrocytes are further altered in PD. We present evidence for a disease-associated oligodendrocyte subtype and identify genes lost over the aging and disease process, including CARNS1, that may predispose healthy cells to develop a disease-associated phenotype. Surprisingly, we found that chromatin accessibility changed little over aging or PD within the same cell types. Peak-gene association patterns, however, are substantially altered during aging and PD, identifying cell-type-specific chromosomal loci that contain PD-associated single-nucleotide polymorphisms. Our study suggests a previously undescribed role for oligodendrocytes in aging and PD.
Collapse
Affiliation(s)
- Levi Adams
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Department of Biology, Bates College, Lewiston, ME, USA
| | - Min Kyung Song
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
- College of Nursing Science, Kyung Hee University, Seoul, Republic of Korea
| | - Samantha Yuen
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center (CRHMR), University of Montreal, Quebec, QC, Canada
| | - Yoshiaki Tanaka
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center (CRHMR), University of Montreal, Quebec, QC, Canada.
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| |
Collapse
|
138
|
Shaji M, Tamada A, Fujimoto K, Muguruma K, Karsten SL, Yokokawa R. Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoids. LAB ON A CHIP 2024; 24:680-696. [PMID: 38284292 DOI: 10.1039/d3lc00930k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The lack of functional vascular system in stem cell-derived cerebral organoids (COs) limits their utility in modeling developmental processes and disease pathologies. Unlike other organs, brain vascularization is poorly understood, which makes it particularly difficult to mimic in vitro. Although several attempts have been made to vascularize COs, complete vascularization leading to functional capillary network development has only been achieved via transplantation into a mouse brain. Understanding the cues governing neurovascular communication is therefore imperative for establishing an efficient in vitro system for vascularized cerebral organoids that can emulate human brain development. Here, we used a multidisciplinary approach combining microfluidics, organoids, and transcriptomics to identify molecular changes in angiogenic programs that impede the successful in vitro vascularization of human induced pluripotent stem cell (iPSC)-derived COs. First, we established a microfluidic cerebral organoid (CO)-vascular bed (VB) co-culture system and conducted transcriptome analysis on the outermost cell layer of COs cultured on the preformed VB. Results revealed coordinated regulation of multiple pro-angiogenic factors and their downstream targets. The VEGF-HIF1A-AKT network was identified as a central pathway involved in the angiogenic response of cerebral organoids to the preformed VB. Among the 324 regulated genes associated with angiogenesis, six transcripts represented significantly regulated growth factors with the capacity to influence angiogenic activity during co-culture. Subsequent on-chip experiments demonstrated the angiogenic and vasculogenic potential of cysteine-rich angiogenic inducer 61 (CYR61) and hepatoma-derived growth factor (HDGF) as potential enhancers of organoid vascularization. Our study provides the first global analysis of cerebral organoid response to three-dimensional microvasculature for in vitro vascularization.
Collapse
Affiliation(s)
- Maneesha Shaji
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Atsushi Tamada
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Kazuya Fujimoto
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Stanislav L Karsten
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| |
Collapse
|
139
|
Yang Y, Yang H, Kiskin FN, Zhang JZ. The new era of cardiovascular research: revolutionizing cardiovascular research with 3D models in a dish. MEDICAL REVIEW (2021) 2024; 4:68-85. [PMID: 38515776 PMCID: PMC10954298 DOI: 10.1515/mr-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Cardiovascular research has heavily relied on studies using patient samples and animal models. However, patient studies often miss the data from the crucial early stage of cardiovascular diseases, as obtaining primary tissues at this stage is impracticable. Transgenic animal models can offer some insights into disease mechanisms, although they usually do not fully recapitulate the phenotype of cardiovascular diseases and their progression. In recent years, a promising breakthrough has emerged in the form of in vitro three-dimensional (3D) cardiovascular models utilizing human pluripotent stem cells. These innovative models recreate the intricate 3D structure of the human heart and vessels within a controlled environment. This advancement is pivotal as it addresses the existing gaps in cardiovascular research, allowing scientists to study different stages of cardiovascular diseases and specific drug responses using human-origin models. In this review, we first outline various approaches employed to generate these models. We then comprehensively discuss their applications in studying cardiovascular diseases by providing insights into molecular and cellular changes associated with cardiovascular conditions. Moreover, we highlight the potential of these 3D models serving as a platform for drug testing to assess drug efficacy and safety. Despite their immense potential, challenges persist, particularly in maintaining the complex structure of 3D heart and vessel models and ensuring their function is comparable to real organs. However, overcoming these challenges could revolutionize cardiovascular research. It has the potential to offer comprehensive mechanistic insights into human-specific disease processes, ultimately expediting the development of personalized therapies.
Collapse
Affiliation(s)
- Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Fedir N. Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Joe Z. Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
140
|
Chai YC, To SK, Simorgh S, Zaunz S, Zhu Y, Ahuja K, Lemaitre A, Ramezankhani R, van der Veer BK, Wierda K, Verhulst S, van Grunsven LA, Pasque V, Verfaillie C. Spatially Self-Organized Three-Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304421. [PMID: 38037510 PMCID: PMC10837345 DOI: 10.1002/advs.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Indexed: 12/02/2023]
Abstract
Although human pluripotent stem cell (PSC)-derived brain organoids have enabled researchers to gain insight into human brain development and disease, these organoids contain solely ectodermal cells and are not vascularized as occurs during brain development. Here it is created less complex and more homogenous large neural constructs starting from PSC-derived neuroprogenitor cells (NPC), by fusing small NPC spheroids into so-called concentroids. Such concentroids consisted of a pro-angiogenic core, containing neuronal and outer radial glia cells, surrounded by an astroglia-dense outer layer. Incorporating PSC-derived endothelial cells (EC) around and/or in the concentroids promoted vascularization, accompanied by differential outgrowth and differentiation of neuronal and astroglia cells, as well as the development of ectodermal-derived pericyte-like mural cells co-localizing with EC networks. Single nucleus transcriptomic analysis revealed an enhanced neural cell subtype maturation and diversity in EC-containing concentroids, which better resemble the fetal human brain compared to classical organoids or NPC-only concentroids. This PSC-derived "vascularized" concentroid brain model will facilitate the study of neurovascular/blood-brain barrier development, neural cell migration, and the development of effective in vitro vascularization strategies of brain mimics.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - San Kit To
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Susan Simorgh
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Samantha Zaunz
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - YingLi Zhu
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Karan Ahuja
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Alix Lemaitre
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Roya Ramezankhani
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Keimpe Wierda
- Electrophysiology Expert UnitVIB‐KU Leuven Center for Brain & Disease ResearchLeuven3000Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Vincent Pasque
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Catherine Verfaillie
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| |
Collapse
|
141
|
Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone Organoids: Recent Advances and Future Challenges. Adv Healthc Mater 2024; 13:e2302088. [PMID: 38079529 DOI: 10.1002/adhm.202302088] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Bone defects stemming from tumorous growths, traumatic events, and diverse conditions present a profound conundrum in clinical practice and research. While bone has the inherent ability to regenerate, substantial bone anomalies require bone regeneration techniques. Bone organoids represent a new concept in this field, involving the 3D self-assembly of bone-associated stem cells guided in vitro with or without extracellular matrix material, resulting in a tissue that mimics the structural, functional, and genetic properties of native bone tissue. Within the scientific panorama, bone organoids ascend to an esteemed status, securing significant experimental endorsement. Through a synthesis of current literature and pioneering studies, this review offers a comprehensive survey of the bone organoid paradigm, delves into the quintessential architecture and ontogeny of bone, and highlights the latest progress in bone organoid fabrication. Further, existing challenges and prospective directions for future research are identified, advocating for interdisciplinary collaboration to fully harness the potential of this burgeoning domain. Conclusively, as bone organoid technology continues to mature, its implications for both clinical and research landscapes are poised to be profound.
Collapse
Affiliation(s)
- Ding Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yihan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
142
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
143
|
Chew LH, Mercier E, Rogalski JC, Pippard S, Knock E. Methods to extract and analyze fluid from human pluripotent stem cell-derived choroid plexus organoids. Front Mol Neurosci 2024; 16:1243499. [PMID: 38348236 PMCID: PMC10859488 DOI: 10.3389/fnmol.2023.1243499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
The choroid plexus (ChP) is a highly vascularized tissue lining the ventricular space of the brain. The ChP generates cerebrospinal fluid (CSF) and forms a protective barrier in the central nervous system (CNS). Recently, a three-dimensional human pluripotent stem cell (hPSC)-derived ChP organoid model has been developed. This model generates cystic structures that are filled with a fluid resembling CSF and are surrounded by an epithelial layer expressing ependymal choroid plexus-specific markers. Here we describe a method to generate these choroid plexus organoids using a commercial kit and methods to extract the CSF-like fluid for use in downstream analysis.
Collapse
Affiliation(s)
| | | | - Jason C. Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Erin Knock
- STEMCELL Technologies, Vancouver, BC, Canada
| |
Collapse
|
144
|
Stankovic I, Notaras M, Wolujewicz P, Lu T, Lis R, Ross ME, Colak D. Schizophrenia endothelial cells exhibit higher permeability and altered angiogenesis patterns in patient-derived organoids. Transl Psychiatry 2024; 14:53. [PMID: 38263175 PMCID: PMC10806043 DOI: 10.1038/s41398-024-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterized by the manifestation of psychiatric symptoms in early adulthood. While many research avenues into the origins of SCZ during brain development have been explored, the contribution of endothelial/vascular dysfunction to the disease remains largely elusive. To model the neuropathology of SCZ during early critical periods of brain development, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids and define cell-specific signatures of disease. Single-cell RNA sequencing revealed that while SCZ organoids were similar in their macromolecular diversity to organoids generated from healthy controls (CTRL), SCZ organoids exhibited a higher percentage of endothelial cells when normalized to total cell numbers. Additionally, when compared to CTRL, differential gene expression analysis revealed a significant enrichment in genes that function in vessel formation, vascular regulation, and inflammatory response in SCZ endothelial cells. In line with these findings, data from 23 donors demonstrated that PECAM1+ microvascular vessel-like structures were increased in length and number in SCZ organoids in comparison to CTRL organoids. Furthermore, we report that patient-derived endothelial cells displayed higher paracellular permeability, implicating elevated vascular activity. Collectively, our data identified altered gene expression patterns, vessel-like structural changes, and enhanced permeability of endothelial cells in patient-derived models of SCZ. Hence, brain microvascular cells could play a role in the etiology of SCZ by modulating the permeability of the developing blood brain barrier (BBB).
Collapse
Affiliation(s)
- Isidora Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tyler Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
145
|
Paranjape AN, D'Aiuto L, Zheng W, Chen X, Villanueva FS. A multicellular brain spheroid model for studying the mechanisms and bioeffects of ultrasound-enhanced drug penetration beyond the blood‒brain barrier. Sci Rep 2024; 14:1909. [PMID: 38253669 PMCID: PMC10803331 DOI: 10.1038/s41598-023-50203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
The blood‒brain barrier (BBB) acts as a hindrance to drug therapy reaching the brain. With an increasing incidence of neurovascular diseases and brain cancer metastases, there is a need for an ideal in vitro model to develop novel methodologies for enhancing drug delivery to the brain. Here, we established a multicellular human brain spheroid model that mimics the BBB both architecturally and functionally. Within the spheroids, endothelial cells and pericytes localized to the periphery, while neurons, astrocytes, and microglia were distributed throughout. Ultrasound-targeted microbubble cavitation (UTMC) is a novel noninvasive technology for enhancing endothelial drug permeability. We utilized our three-dimensional (3D) model to study the feasibility and mechanisms regulating UTMC-induced hyperpermeability. UTMC caused a significant increase in the penetration of 10 kDa Texas red dextran (TRD) into the spheroids, 100 µm beyond the BBB, without compromising cell viability. This hyperpermeability was dependent on UTMC-induced calcium (Ca2+) influx and endothelial nitric oxide synthase (eNOS) activation. Our 3D brain spheroid model, with its intact and functional BBB, offers a valuable platform for studying the bioeffects of UTMC, including effects occurring spatially distant from the endothelial barrier.
Collapse
Affiliation(s)
- Anurag N Paranjape
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Wenxiao Zheng
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
146
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
147
|
Zhang K, Cai W, Hu L, Chen S. Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming. Curr Stem Cell Res Ther 2024; 19:1251-1262. [PMID: 37807418 DOI: 10.2174/011574888x255496230923164547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Wenwen Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| |
Collapse
|
148
|
Andrews MG, Pearson CA. Toward an understanding of glucose metabolism in radial glial biology and brain development. Life Sci Alliance 2024; 7:e202302193. [PMID: 37798120 PMCID: PMC10556723 DOI: 10.26508/lsa.202302193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Decades of research have sought to determine the intrinsic and extrinsic mechanisms underpinning the regulation of neural progenitor maintenance and differentiation. A series of precise temporal transitions within progenitor cell populations generates all the appropriate neural cell types while maintaining a pool of self-renewing progenitors throughout embryogenesis. Recent technological advances have enabled us to gain new insights at the single-cell level, revealing an interplay between metabolic state and developmental progression that impacts the timing of proliferation and neurogenesis. This can have long-term consequences for the developing brain's neuronal specification, maturation state, and organization. Furthermore, these studies have highlighted the need to reassess the instructive role of glucose metabolism in determining progenitor cell division, differentiation, and fate. This review focuses on glucose metabolism (glycolysis) in cortical progenitor cells and the emerging focus on glycolysis during neurogenic transitions. Furthermore, we discuss how the field can learn from other biological systems to improve our understanding of the spatial and temporal changes in glycolysis in progenitors and evaluate functional neurological outcomes.
Collapse
Affiliation(s)
- Madeline G Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Caroline A Pearson
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
149
|
Momoi MY. Overview: Research on the Genetic Architecture of the Developing Cerebral Cortex in Norms and Diseases. Methods Mol Biol 2024; 2794:1-12. [PMID: 38630215 DOI: 10.1007/978-1-0716-3810-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The human brain is characterized by high cell numbers, diverse cell types with diverse functions, and intricate connectivity with an exceedingly broad surface of the cortex. Human-specific brain development was accomplished by a long timeline for maturation from the prenatal period to the third decade of life. The long timeline makes complicated architecture and circuits of human cerebral cortex possible, and it makes human brain vulnerable to intrinsic and extrinsic insults resulting in the development of variety of neuropsychiatric disorders. Unraveling the molecular and cellular processes underlying human brain development under the elaborate regulation of gene expression in a spatiotemporally specific manner, especially that of the cortex will provide a biological understanding of human cognition and behavior in health and diseases. Global research consortia and the advancing technologies in brain science including functional genomics equipped with emergent neuroinformatics such as single-cell multiomics, novel human models, and high-volume databases with high-throughput computation facilitate the biological understanding of the development of the human brain cortex. Knowing the process of interplay of the genome and the environment in cortex development will lead us to understand the human-specific cognitive function and its individual diversity. Thus, it is worthwhile to overview the recent progress in neurotechnology to foresee further understanding of the human brain and norms and diseases.
Collapse
Affiliation(s)
- Mariko Y Momoi
- Ryomo Seishi Ryogoen Rehabilitation Hospital for Children with Disabilities, Gunma, Japan
| |
Collapse
|
150
|
Wallace JL, Pollen AA. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat Rev Neurosci 2024; 25:7-29. [PMID: 37996703 DOI: 10.1038/s41583-023-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The delayed and prolonged postmitotic maturation of human neurons, compared with neurons from other species, may contribute to human-specific cognitive abilities and neurological disorders. Here we review the mechanisms of neuronal maturation, applying lessons from model systems to understand the specific features of protracted human cortical maturation and species differences. We cover cell-intrinsic features of neuronal maturation, including transcriptional, epigenetic and metabolic mechanisms, as well as cell-extrinsic features, including the roles of activity and synapses, the actions of glial cells and the contribution of the extracellular matrix. We discuss evidence for species differences in biochemical reaction rates, the proposed existence of an epigenetic maturation clock and the contributions of both general and modular mechanisms to species-specific maturation timing. Finally, we suggest approaches to measure, improve and accelerate the maturation of human neurons in culture, examine crosstalk and interactions among these different aspects of maturation and propose conceptual models to guide future studies.
Collapse
Affiliation(s)
- Jenelle L Wallace
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|