101
|
Kimple ME, Keller MP, Rabaglia MR, Pasker RL, Neuman JC, Truchan NA, Brar HK, Attie AD. Prostaglandin E2 receptor, EP3, is induced in diabetic islets and negatively regulates glucose- and hormone-stimulated insulin secretion. Diabetes 2013; 62:1904-12. [PMID: 23349487 PMCID: PMC3661627 DOI: 10.2337/db12-0769] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BTBR mice develop severe diabetes in response to genetically induced obesity due to a failure of the β-cells to compensate for peripheral insulin resistance. In analyzing BTBR islet gene expression patterns, we observed that Pgter3, the gene for the prostaglandin E receptor 3 (EP3), was upregulated with diabetes. The EP3 receptor is stimulated by prostaglandin E2 (PGE2) and couples to G-proteins of the Gi subfamily to decrease intracellular cAMP, blunting glucose-stimulated insulin secretion (GSIS). Also upregulated were several genes involved in the synthesis of PGE2. We hypothesized that increased signaling through EP3 might be coincident with the development of diabetes and contribute to β-cell dysfunction. We confirmed that the PGE2-to-EP3 signaling pathway was active in islets from confirmed diabetic BTBR mice and human cadaveric donors, with increased EP3 expression, PGE2 production, and function of EP3 agonists and antagonists to modulate cAMP production and GSIS. We also analyzed the impact of EP3 receptor activation on signaling through the glucagon-like peptide (GLP)-1 receptor. We demonstrated that EP3 agonists antagonize GLP-1 signaling, decreasing the maximal effect that GLP-1 can elicit on cAMP production and GSIS. Taken together, our results identify EP3 as a new therapeutic target for β-cell dysfunction in T2D.
Collapse
Affiliation(s)
- Michelle E. Kimple
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin
- Corresponding author: Michelle E. Kimple, , or Alan D. Attie,
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin
| | - Mary R. Rabaglia
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin
| | - Renee L. Pasker
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin
| | - Joshua C. Neuman
- Department of Nutritional Sciences, University of Wisconsin, Madison, Madison, Wisconsin
| | - Nathan A. Truchan
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin
| | - Harpreet K. Brar
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin
- Corresponding author: Michelle E. Kimple, , or Alan D. Attie,
| |
Collapse
|
102
|
Tootle TL. Genetic insights into the in vivo functions of prostaglandin signaling. Int J Biochem Cell Biol 2013; 45:1629-32. [PMID: 23685076 DOI: 10.1016/j.biocel.2013.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/05/2023]
Abstract
Prostaglandins (PGs) are lipid signals that are produced at their sites of action by cyclooxygenase (COX) enzymes, the targets of non-steroidal anti-inflammatory drugs (NSAIDs), and PG-type specific synthases. Active PGs serve as ligands for G protein-coupled receptors (GPCRs). The functions of PGs have largely been elucidated using pharmacologic, expression-based (synthesis and signaling components), and genetic studies. In this review, we discuss the in vivo roles of PGs in cancer, development, and reproduction that have been characterized using genetic knockout/knockdown and overexpression approaches in mice, zebrafish, and invertebrate model systems, and how pharmacologic inhibition of PG synthesis affects cardiovascular health/disease and cancer incidence and progression.
Collapse
Affiliation(s)
- Tina L Tootle
- Anatomy and Cell Biology Department, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
103
|
Quan Y, Jiang J, Dingledine R. EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 2013; 288:9293-302. [PMID: 23404506 DOI: 10.1074/jbc.m113.455816] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.
Collapse
Affiliation(s)
- Yi Quan
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
104
|
Allaj V, Guo C, Nie D. Non-steroid anti-inflammatory drugs, prostaglandins, and cancer. Cell Biosci 2013; 3:8. [PMID: 23388178 PMCID: PMC3599181 DOI: 10.1186/2045-3701-3-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023] Open
Abstract
Fatty acids are involved in multiple pathways and play a pivotal role in health. Eicosanoids, derived from arachidonic acid, have received extensive attention in the field of cancer research. Following release from the phospholipid membrane, arachidonic acid can be metabolized into different classes of eicosanoids through cyclooxygenases, lipoxygenases, or p450 epoxygenase pathways. Non-steroid anti-inflammatory drugs (NSAIDs) are widely consumed as analgesics to relieve minor aches and pains, as antipyretics to reduce fever, and as anti-inflammatory medications. Most NSAIDs are nonselective inhibitors of cyclooxygenases, the rate limiting enzymes in the formation of prostaglandins. Long term use of some NSAIDs has been linked with reduced incidence and mortality in many cancers. In this review, we appraise the biological activities of prostanoids and their cognate receptors in the context of cancer biology. The existing literature supports that these lipid mediators are involved to a great extent in the occurrence and progression of cancer.
Collapse
Affiliation(s)
- Viola Allaj
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794, USA.
| | | | | |
Collapse
|
105
|
Downey JD, Saleh SA, Bridges TM, Morrison RD, Daniels JS, Lindsley CW, Breyer RM. Development of an in vivo active, dual EP1 and EP3 selective antagonist based on a novel acyl sulfonamide bioisostere. Bioorg Med Chem Lett 2013; 23:37-41. [PMID: 23218714 PMCID: PMC3534858 DOI: 10.1016/j.bmcl.2012.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 12/28/2022]
Abstract
Recent preclinical studies demonstrate a role for the prostaglandin E(2) (PGE(2)) subtype 1 (EP1) receptor in mediating, at least in part, the pathophysiology of hypertension and diabetes mellitus. A series of amide and N-acylsulfonamide analogs of a previously described picolinic acid-based human EP1 receptor antagonist (7) were prepared. Each analog had improved selectivity at the mouse EP1 receptor over the mouse thromboxane receptor (TP). A subset of analogs gained affinity for the mouse PGE(2) subtype 3 (EP3) receptor, another potential therapeutic target. One analog (17) possessed equal selectivity for EP1 and EP3, displayed a sufficient in vivo residence time in mice, and lacked the potential for acyl glucuronide formation common to compound 7. Treatment of mice with 17 significantly attenuated the vasopressor activity resulting from an acute infusion of EP1 and EP3 receptor agonists. Compound 17 represents a potentially novel therapeutic in the treatment of hypertension and diabetes mellitus.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus/drug therapy
- Half-Life
- Humans
- Hypertension/drug therapy
- Mice
- Microsomes, Liver/metabolism
- Pyridines/chemistry
- Pyridines/pharmacokinetics
- Pyridines/therapeutic use
- Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Structure-Activity Relationship
- Sulfonamides/chemistry
- Sulfonamides/pharmacokinetics
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Jason D. Downey
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sam A. Saleh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas M. Bridges
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Ryan D. Morrison
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - J. Scott Daniels
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Richard M. Breyer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
106
|
Fairbrother SE, Smith JE, Borman RA, Cox HM. EP4 receptors mediate prostaglandin E2, tumour necrosis factor alpha and interleukin 1beta-induced ion secretion in human and mouse colon mucosa. Eur J Pharmacol 2012; 694:89-97. [DOI: 10.1016/j.ejphar.2012.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/29/2012] [Accepted: 06/09/2012] [Indexed: 01/12/2023]
|
107
|
Miao L, Grebhardt S, Shi J, Peipe I, Zhang J, Mayer D. Prostaglandin E2 stimulates S100A8 expression by activating protein kinase A and CCAAT/enhancer-binding-protein-beta in prostate cancer cells. Int J Biochem Cell Biol 2012; 44:1919-28. [DOI: 10.1016/j.biocel.2012.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 12/17/2022]
|
108
|
Hawcroft G, Volpato M, Marston G, Ingram N, Perry SL, Cockbain AJ, Race AD, Munarini A, Belluzzi A, Loadman PM, Coletta PL, Hull MA. The omega-3 polyunsaturated fatty acid eicosapentaenoic acid inhibits mouse MC-26 colorectal cancer cell liver metastasis via inhibition of PGE2-dependent cell motility. Br J Pharmacol 2012; 166:1724-37. [PMID: 22300262 DOI: 10.1111/j.1476-5381.2012.01882.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE The omega-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA) has antineoplastic activity at early stages of colorectal carcinogenesis, relevant to chemoprevention of colorectal cancer (CRC). We tested the hypothesis that EPA also has anti-CRC activity at later stages of colorectal carcinogenesis, relevant to treatment of metastatic CRC, via modulation of E-type PG synthesis. EXPERIMENTAL APPROACH A BALB/c mouse model, in which intrasplenic injection of syngeneic MC-26 mouse CRC cells leads to development of liver metastases, was used. Dietary EPA was administered in the free fatty acid (FFA) form for 2 weeks before and after ultrasound-guided intrasplenic injection of 1 × 10(6) MC-26 cells (n= 16 each group). KEY RESULTS Treatment with 5% (w w(-1)) EPA-FFA was associated with a reduced MC-26 mouse CRC cell liver tumour burden compared with control animals (median liver weight 1.03 g vs. 1.62 g; P < 0.034). Administration of 5% EPA-FFA was also linked to a significant increase in tumour EPA incorporation and lower intratumoural PGE(2) levels (with concomitant increased production of PGE(3)). Liver tumours from 5% EPA-FFA- treated mice demonstrated decreased 5-bromo-2-deoxyuridine-positive CRC cell proliferation and reduced phosphorylated ERK 1/2 expression at the invasive edge of tumours. A concentration-dependent reduction in MC-26 CRC cell Transwell® migration following EPA-FFA treatment (50-200 µM) in vitro was rescued by exogenous PGE(2) (10 µM) and PGE(1)-alcohol (1 µM). CONCLUSIONS AND IMPLICATIONS EPA-FFA inhibits MC-26 CRC cell liver metastasis. EPA incorporation is associated with a 'PGE(2) to PGE(3) switch' in liver tumours. Inhibition of PGE(2)-EP(4) receptor-dependent CRC cell motility probably contributes to the antineoplastic activity of EPA.
Collapse
Affiliation(s)
- G Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, St James's University Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Mohan S, Ahmad AS, Glushakov AV, Chambers C, Doré S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front Neurol 2012; 3:145. [PMID: 23097645 PMCID: PMC3477820 DOI: 10.3389/fneur.2012.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH) strokes, and 3% are subarachnoid hemorrhage strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37–38% of patients between the ages of 45 and 64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptors cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate and calcium (Ca2+) signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and brain injuries alike.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, College of Medicine, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
110
|
Kawashima T, Yamazaki R, Matsuzawa Y, Yamaura E, Takabatake M, Otake S, Ikawa Y, Nakamura H, Fujino H, Murayama T. Contrary effects of sphingosine-1-phosphate on expression of α-smooth muscle actin in transforming growth factor β1-stimulated lung fibroblasts. Eur J Pharmacol 2012; 696:120-9. [PMID: 23041148 DOI: 10.1016/j.ejphar.2012.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β1 (TGFβ1) plays a pivotal role in fibrosis in various organs including the lung. Following pulmonary injury, TGFβ1 stimulates conversion of fibroblasts to myofibroblasts that are mainly characterized by up-regulation of α-smooth muscle actin (αSMA) expression, and the resulting excess production of extracellular matrix proteins causes fibrosis with loss of alveolar function. The present study was undertaken to define the role of the sphingosine-1-phosphate (S1P) pathway in TGFβ1-induced expression of αSMA in human fetal lung fibroblasts, HFL1 cells. Analysis of mRNA revealed the existence of S1P(1), S1P(2), and S1P(3) receptor mRNAs. Treatment with TGFβ1 increased sphingosine kinase (SphK) activity and S1P(3) receptor mRNA at 24h after stimulation, and pharmacological data showed the involvement of sphingomyelinase, SphK, and S1P(3) receptor in the TGFβ1-induced up-regulation of αSMA with and without serum. Treatment with pertussis toxin and S1P(1) receptor antagonist W146 enhanced αSMA expression by TGFβ1/serum, and S1P decreased and increased αSMA levels with and without serum, respectively. TGFβ1 increased cyclooxygenase-2 expression in a manner dependent on serum and the sphingomyelinase/SphK pathway, and the response was decreased by pertussis toxin. Prostaglandin E(2), formed by TGFβ1/serum stimulation, decreased the TGFβ1-induced expression of αSMA via EP prostanoid receptor. These data suggest that S1P formed by TGFβ1 stimulation has diverse effects on the expression of αSMA, inhibition via the S1P(1) receptor-mediated and serum-dependent expression of cyclooxygenase-2 and the resulting formation of prostaglandin E(2), and stimulation via the S1P(3) receptor in a serum-independent manner.
Collapse
Affiliation(s)
- Tatsuo Kawashima
- Department of Internal Medicine, Toho University School of Medicine, Sakura Hospital, Sakura City, Chiba 285-8741, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Mechiche H, Grassin-Delyle S, Robinet A, Nazeyrollas P, Devillier P. Prostanoid receptors involved in regulation of the beating rate of neonatal rat cardiomyocytes. PLoS One 2012; 7:e45273. [PMID: 22984630 PMCID: PMC3440323 DOI: 10.1371/journal.pone.0045273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 12/02/2022] Open
Abstract
Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate).
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western
- Cells, Cultured
- Cloprostenol/pharmacology
- Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide/pharmacology
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Hydantoins/pharmacology
- Iloprost/pharmacology
- Latanoprost
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Prostaglandin D2/pharmacology
- Prostaglandins F, Synthetic/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/physiology
- Receptors, Prostaglandin E, EP1 Subtype/agonists
- Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP1 Subtype/physiology
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/physiology
Collapse
Affiliation(s)
- Hakima Mechiche
- Laboratory of Cardiovascular Pharmacology, Université Champagne Ardennes, Reims, France
- UPRES EA 220, Université Versailles Saint-Quentin en Yvelines, Hôpital Foch, Suresnes, France
| | | | - Arnaud Robinet
- Laboratory of Cardiovascular Pharmacology, Université Champagne Ardennes, Reims, France
| | - Pierre Nazeyrollas
- Laboratory of Cardiovascular Pharmacology, Université Champagne Ardennes, Reims, France
| | - Philippe Devillier
- Laboratory of Cardiovascular Pharmacology, Université Champagne Ardennes, Reims, France
- UPRES EA 220, Université Versailles Saint-Quentin en Yvelines, Hôpital Foch, Suresnes, France
- * E-mail:
| |
Collapse
|
112
|
Liu Y, Rajagopal M, Lee K, Battini L, Flores D, Gusella GL, Pao AC, Rohatgi R. Prostaglandin E(2) mediates proliferation and chloride secretion in ADPKD cystic renal epithelia. Am J Physiol Renal Physiol 2012; 303:F1425-34. [PMID: 22933297 DOI: 10.1152/ajprenal.00010.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) contributes to cystogenesis in genetically nonorthologous models of autosomal dominant polycystic kidney disease (ADPKD). However, it remains unknown whether PGE(2) induces the classic features of cystic epithelia in genetically orthologous models of ADPKD. We hypothesized that, in ADPKD epithelia, PGE(2) induces proliferation and chloride (Cl(-)) secretion, two archetypal phenotypic features of ADPKD. To test this hypothesis, proliferation and Cl(-) secretion were measured in renal epithelial cells deficient in polycystin-1 (PC-1). PC-1-deficient cells increased in cell number (proliferated) faster than PC-1-replete cells, and this proliferative advantage was abrogated by cyclooxygenase inhibition, indicating a role for PGE(2) in cell proliferation. Exogenous administration of PGE(2) increased proliferation of PC-1-deficient cells by 38.8 ± 5.2% (P < 0.05) but inhibited the growth of PC-1-replete control cells by 49.4 ± 1.9% (P < 0.05). Next, we tested whether PGE(2)-specific E prostanoid (EP) receptor agonists induce intracellular cAMP and downstream β-catenin activation. PGE(2) and EP4 receptor agonism (TCS 2510) increased intracellular cAMP concentration and the abundance of active β-catenin in PC-1-deficient cells, suggesting a mechanism for PGE(2)-mediated proliferation. Consistent with this hypothesis, antagonizing EP4 receptors reverted the growth advantage of PC-1-deficient cells, implicating a central role for the EP4 receptor in proliferation. To test whether PGE(2)-dependent Cl(-) secretion is also enhanced in PC-1-deficient cells, we used an Ussing chamber to measure short-circuit current (I(sc)). Addition of PGE(2) induced a fivefold higher increase in I(sc) in PC-1-deficient cells compared with PC-1-replete cells. This PGE(2)-induced increase in I(sc) in PC-1-deficient cells was blocked by CFTR-172 and flufenamic acid, indicating that PGE(2) activates CFTR and calcium-activated Cl(-) channels. In conclusion, PGE(2) activates aberrant signaling pathways in PC-1-deficient epithelia that contribute to the proliferative and secretory phenotype characteristic of ADPKD and suggests a therapeutic role for PGE(2) inhibition and EP4 receptor antagonism.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Harland DR, Lorenz LD, Fay K, Dunn BE, Gruenloh SK, Narayanan J, Jacobs ER, Medhora M. Acute effects of prostaglandin E1 and E2 on vascular reactivity and blood flow in situ in the chick chorioallantoic membrane. Prostaglandins Leukot Essent Fatty Acids 2012; 87:79-89. [PMID: 22858445 PMCID: PMC3839254 DOI: 10.1016/j.plefa.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/04/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The chick chorioallantoic membrane (CAM) subserves gas exchange in the developing embryo and shell-less culture affords a unique opportunity for direct observations over time of individual blood vessels to pharmacologic interventions. We tested a number of lipids including prostaglandins PGE(1&2) for vascular effects and signaling in the CAM. Application of PGE(1&2) induced a decrease in the diameter of large blood vessels and a concentration-dependent, localized, reversible loss of blood flow through small vessels. The loss of flow was also mimicked by misoprostol, an agonist for 3 of 4 known PGE receptors, EP(2-4), and by U46619, a thromboxane mimetic. Selective receptor antagonists for EP(3) and thromboxane each partially blocked the response. This is a first report of the effects of prostaglandins on vasoreactivity in the CAM. Our model allows the unique ability to examine simultaneous responses of large and small vessels in real time and in vivo.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Alprostadil/antagonists & inhibitors
- Alprostadil/pharmacology
- Animals
- Biphenyl Compounds/pharmacology
- Blood Vessels/drug effects
- Blood Vessels/physiology
- Bridged Bicyclo Compounds, Heterocyclic
- Chick Embryo
- Chorioallantoic Membrane/blood supply
- Chorioallantoic Membrane/drug effects
- Chorioallantoic Membrane/metabolism
- Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide/pharmacology
- Dinoprostone/antagonists & inhibitors
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Estradiol/pharmacology
- Estrogens/pharmacology
- Fatty Acids, Unsaturated
- Hydrazines/pharmacology
- Microsomes/drug effects
- Microsomes/metabolism
- Misoprostol/pharmacology
- Prostaglandin Antagonists/pharmacology
- Rats
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/metabolism
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/antagonists & inhibitors
- Vasoconstrictor Agents/pharmacology
- Xanthones/pharmacology
- alpha-Linolenic Acid/pharmacology
Collapse
Affiliation(s)
- D R Harland
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - L D Lorenz
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - K Fay
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - B E Dunn
- Division of Pulmonary and Critical Care, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226
- Clement J. Zablocki VA Medical Center, Milwaukee WI 53295
| | - S K Gruenloh
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - J Narayanan
- Division of Pulmonary and Critical Care, Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - E R Jacobs
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Clement J. Zablocki VA Medical Center, Milwaukee WI 53295
| | - M Medhora
- Division of Pulmonary and Critical Care, Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
114
|
Gruhle S, Sauter M, Szalay G, Ettischer N, Kandolf R, Klingel K. The prostacyclin agonist iloprost aggravates fibrosis and enhances viral replication in enteroviral myocarditis by modulation of ERK signaling and increase of iNOS expression. Basic Res Cardiol 2012; 107:287. [PMID: 22836587 DOI: 10.1007/s00395-012-0287-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 12/19/2022]
Abstract
Enteroviruses, such as coxsackieviruses of group B (CVB), are able to induce a chronic inflammation of the myocardium, which may finally lead to the loss of functional tissue, remodeling processes and the development of fibrosis, thus affecting the proper contractile function of the heart. In other fibrotic diseases like scleroderma, the prostacyclin agonist iloprost was found to inhibit the extracellular signal-regulated kinase (ERK, p44/42 MAPK), a mitogen-activated protein kinase, and consecutively, the expression of the profibrotic cytokine connective tissue growth factor (CTGF), thereby preventing the development of fibrosis. As CTGF was found to mediate fibrosis in chronic CVB3 myocarditis as well, we evaluated whether the in vivo application of iloprost is capable to reduce the development of ERK/CTGF-mediated fibrosis in enteroviral myocarditis. Unexpectedly, the application of iloprost resulted in a prolonged myocardial inflammation and an aggravated fibrosis and failed to reduce activation of ERK and expression of CTGF at later stages of the disease. In addition, viral replication was found to be increased in iloprost-treated mice. Notably, the expression of cardiac inducible nitric oxide synthase (iNOS), which is known to aggravate myocardial damage in CVB3-infected mice, was strongly enhanced by iloprost. Using cultivated bone marrow macrophages (BMM), we confirmed these results, proving that iloprost potentiates the expression of iNOS mRNA and protein in CVB3-infected and IFN-gamma stimulated BMM. In conclusion, these results suggest a critical reflection of the clinical use of iloprost, especially in patients possibly suffering from an enteroviral myocarditis.
Collapse
Affiliation(s)
- Stefan Gruhle
- Department of Molecular Pathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstrasse 8, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
115
|
Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. The cyclooxygenase-2 pathway via the PGE₂ EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination. J Neurochem 2012; 121:418-27. [PMID: 21699540 PMCID: PMC3220805 DOI: 10.1111/j.1471-4159.2011.07363.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclooxygenases (COX)-1 and -2 are key enzymes required for the conversion of arachidonic acid to eicosanoids, potent mediators of inflammation. In patients with multiple sclerosis, COX-2 derived prostaglandins (PGs) are elevated in the CSF and COX-2 is up-regulated in demyelinating plaques. However, it is not known whether COX-2 activity contributes to oligodendrocyte death. In cuprizone-induced demyelination, oligodendrocyte apoptosis and a concomitant increase in the gene expression of COX-2 and PGE₂-EP2 receptor precede histological demyelination. COX-2 and EP2 receptor were expressed by oligodendrocytes, suggesting a causative role for the COX-2/EP2 pathway in the initiation of oligodendrocyte death and demyelination. COX-2 gene deletion, chronic treatment with the COX-2 selective inhibitor celecoxib, or with the EP2 receptor antagonist AH6809 reduced cuprizone-induced oligodendrocyte apoptosis, the degree of demyelination and motor dysfunction. These data indicate that the PGE₂ EP2 receptor contributes to oligodendrocyte apoptosis and open possible new therapeutic approaches for multiple sclerosis.
Collapse
Affiliation(s)
- Sara Palumbo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
116
|
Riise J, Nguyen CHT, Hussain RI, Dahl CP, Ege MS, Osnes JB, Skomedal T, Sandnes DL, Levy FO, Krobert KA. Prostanoid-mediated inotropic responses are attenuated in failing human and rat ventricular myocardium. Eur J Pharmacol 2012; 686:66-73. [PMID: 22546232 DOI: 10.1016/j.ejphar.2012.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/26/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Prostanoid-modulatory approaches in heart failure patients have displayed effects which may seem to be mutually incompatible. Both treatment with prostanoids and inhibition of prostanoid synthesis have resulted in increased mortality in heart failure patients. Currently, it is unknown if prostanoids mediate contractile effects in failing human heart and if this can explain some of the clinical effects seen after prostanoid modulatory treatments. Therefore, the objectives of this study were to determine if prostanoids could elicit direct inotropic responses in human ventricle, and if so to determine if they are modified in failing ventricle. Contractile force was measured in left ventricular strips from non-failing or failing human and rat hearts. The ratio of phosphorylated to non-phosphorylated myosin light chain 2 (MLC-2) was measured by Western blotting in myocardial strips, and the levels of prostanoid FP receptor mRNA and protein were measured in rat by real-time RT-PCR and receptor binding assays. In non-failing human hearts, prostanoids evoked a positive inotropic effect and an increase of MLC-2 phosphorylation which was absent in failing human hearts. In failing rat heart, the prostanoid FP receptor-mediated inotropic response and prostanoid FP receptor-density was reduced by ~40-50% compared to non-failing rat heart. Prostanoids mediate a sustained positive inotropic response in non-failing heart, which appears to be down regulated in failing heart. The pathophysiological significance of changes in prostanoid-mediated inotropic support in the failing heart remains to be determined.
Collapse
Affiliation(s)
- Jon Riise
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kambe T, Maruyama T, Nakai Y, Oida H, Maruyama T, Abe N, Nishiura A, Nakai H, Toda M. Synthesis and evaluation of γ-lactam analogs of PGE₂ as EP4 and EP2/EP4 agonists. Bioorg Med Chem 2012; 20:3502-22. [PMID: 22546206 DOI: 10.1016/j.bmc.2012.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/01/2012] [Accepted: 04/04/2012] [Indexed: 11/19/2022]
Abstract
To identify topically effective EP4 agonists and EP2/EP4 dual agonists with excellent subtype selectivity, further optimization of the 16-phenyl ω-chain moiety of the γ-lactam 5-thia prostaglandin E analog and the 2-mercaptothiazole-4-carboxylic acid analog were undertaken. Rat in vivo evaluation of these newly identified compounds as their poly (lactide-co-glycolide) microsphere formulation, from which sustained release of the test compound is possible, led us to discover compounds that showed efficacy in a rat bone fracture healing model after its topical administration without serious influence on blood pressure and heart rate. A structure-activity relationship study is also presented.
Collapse
Affiliation(s)
- Tohru Kambe
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, Shimamoto, Mishima, Osaka 618-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kambe T, Maruyama T, Nakai Y, Yoshida H, Oida H, Maruyama T, Abe N, Nishiura A, Nakai H, Toda M. Discovery of novel prostaglandin analogs as potent and selective EP2/EP4 dual agonists. Bioorg Med Chem 2012; 20:2235-51. [DOI: 10.1016/j.bmc.2012.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/16/2022]
|
119
|
Whittle BJ, Silverstein AM, Mottola DM, Clapp LH. Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP1 and EP2 agonist. Biochem Pharmacol 2012; 84:68-75. [PMID: 22480736 DOI: 10.1016/j.bcp.2012.03.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 11/26/2022]
Abstract
The prostacyclin analogues, iloprost and treprostinil are extensively used in treating pulmonary hypertension. Their binding profile and corresponding biochemical cellular responses on human prostanoid receptors expressed in cell lines, have now been compared. Iloprost had high binding affinity for EP1 and IP receptors (Ki 1.1 and 3.9 nM, respectively), low affinity for FP, EP3 or EP4 receptors, and very low affinity for EP2, DP1 or TP receptors. By contrast, treprostinil had high affinity for the DP1, EP2 and IP receptors (Ki 4.4, 3.6 and 32 nM, respectively), low affinity for EP1 and EP4 receptors and even lower affinity for EP3, FP and TP receptors. In functional assays, iloprost had similar high activity in elevating cyclic AMP levels in cells expressing the human IP receptor and stimulating calcium influx in cells expressing EP1 receptors (EC50 0.37 and 0.3 nM, respectively) with the rank order of activity on the other receptors comparable to the binding assays. As with binding studies, treprostinil elevated cyclic AMP with a similar high potency in cells expressing DP1, IP and EP2 receptors (EC50 0.6, 1.9 and 6.2 nM, respectively), but had low activity at the other receptors. Activation of IP, DP1 and EP2 receptors, as with treprostinil, can all result in vasodilatation of human pulmonary arteries. However, activation of EP1 receptors can provoke vasoconstriction, and hence may offset the IP-receptor mediated vasodilator effects of iloprost. Treprostinil may therefore differ from iloprost in its overall beneficial pulmonary vasorelaxant profile and other pharmacological actions, especially in diseases where the IP receptor is down-regulated.
Collapse
Affiliation(s)
- Brendan J Whittle
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | |
Collapse
|
120
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
121
|
Church RJ, Jania LA, Koller BH. Prostaglandin E(2) produced by the lung augments the effector phase of allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 188:4093-102. [PMID: 22412193 DOI: 10.4049/jimmunol.1101873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Elevated PGE(2) is a hallmark of most inflammatory lesions. This lipid mediator can induce the cardinal signs of inflammation, and the beneficial actions of nonsteroidal anti-inflammatory drugs are attributed to inhibition of cyclooxygenase (COX)-1 and COX-2, enzymes essential in the biosynthesis of PGE(2) from arachidonic acid. However, both clinical studies and rodent models suggest that, in the asthmatic lung, PGE(2) acts to restrain the immune response and limit physiological change secondary to inflammation. To directly address the role of PGE(2) in the lung, we examined the development of disease in mice lacking microsomal PGE(2) synthase-1 (mPGES1), which converts COX-1/COX-2-derived PGH(2) to PGE(2). We show that mPGES1 determines PGE(2) levels in the naive lung and is required for increases in PGE(2) after OVA-induced allergy. Although loss of either COX-1 or COX-2 increases the disease severity, surprisingly, mPGES1(-/-) mice show reduced inflammation. However, an increase in serum IgE is still observed in the mPGES1(-/-) mice, suggesting that loss of PGE(2) does not impair induction of a Th2 response. Furthermore, mPGES1(-/-) mice expressing a transgenic OVA-specific TCR are also protected, indicating that PGE(2) acts primarily after challenge with inhaled Ag. PGE(2) produced by the lung plays the critical role in this response, as loss of lung mPGES1 is sufficient to protect against disease. Together, this supports a model in which mPGES1-dependent PGE(2) produced by populations of cells native to the lung contributes to the effector phase of some allergic responses.
Collapse
Affiliation(s)
- Rachel J Church
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
122
|
Aging-shifted prostaglandin profile in endothelium as a factor in cardiovascular disorders. J Aging Res 2012; 2012:121390. [PMID: 22500225 PMCID: PMC3303603 DOI: 10.1155/2012/121390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/10/2011] [Accepted: 10/28/2011] [Indexed: 12/31/2022] Open
Abstract
Age-associated endothelium dysfunction is a major risk factor for the development of cardiovascular diseases. Endothelium-synthesized prostaglandins and thromboxane are local hormones, which mediate vasodilation and vasoconstriction and critically maintain vascular homeostasis. Accumulating evidence indicates that the age-related changes in endothelial eicosanoids contribute to decline in endothelium function and are associated with pathological dysfunction. In this review we summarize currently available information on aging-shifted prostaglandin profiles in endothelium and how these shifts are associated with cardiovascular disorders, providing one molecular mechanism of age-associated endothelium dysfunction and cardiovascular diseases.
Collapse
|
123
|
Khan KMF, Kothari P, Du B, Dannenberg AJ, Falcone DJ. Matrix metalloproteinase-dependent microsomal prostaglandin E synthase-1 expression in macrophages: role of TNF-α and the EP4 prostanoid receptor. THE JOURNAL OF IMMUNOLOGY 2012; 188:1970-80. [PMID: 22227567 DOI: 10.4049/jimmunol.1102383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase (MMP)-9 contributes to the pathogenesis of chronic inflammatory diseases and cancer. Thus, identifying targetable components of signaling pathways that regulate MMP-9 expression may have broad therapeutic implications. Our previous studies revealed a nexus between metalloproteinases and prostanoids whereby MMP-1 and MMP-3, commonly found in inflammatory and neoplastic foci, stimulate macrophage MMP-9 expression via the release of TNF-α and subsequent induction of cyclooxygenase-2 and PGE(2) engagement of EP4 receptor. In the current study, we determined whether MMP-induced cyclooxygenase-2 expression was coupled to the expression of prostaglandin E synthase family members. We found that MMP-1- and MMP-3-dependent release of TNF-α induced rapid and transient expression of early growth response protein 1 in macrophages followed by sustained elevation in microsomal prostaglandin synthase 1 (mPGES-1) expression. Metalloproteinase-induced PGE(2) levels and MMP-9 expression were markedly attenuated in macrophages in which mPGES-1 was silenced, thereby identifying mPGES-1 as a therapeutic target in the regulation of MMP-9 expression. Finally, the induction of mPGES-1 was regulated, in part, through a positive feedback loop dependent on PGE(2) binding to EP4. Thus, in addition to inhibiting macrophage MMP-9 expression, EP4 antagonists emerge as potential therapy to reduce mPGES-1 expression and PGE(2) levels in inflammatory and neoplastic settings.
Collapse
Affiliation(s)
- K M Faisal Khan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
124
|
Discovery of a novel EP2/EP4 dual agonist with high subtype-selectivity. Bioorg Med Chem Lett 2012; 22:396-401. [DOI: 10.1016/j.bmcl.2011.10.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 11/24/2022]
|
125
|
Kambe T, Maruyama T, Nagase T, Ogawa S, Minamoto C, Sakata K, Maruyama T, Nakai H, Toda M. Synthesis and evaluation of novel modified γ-lactam prostanoids as EP4 subtype-selective agonists. Bioorg Med Chem 2012; 20:702-13. [DOI: 10.1016/j.bmc.2011.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
|
126
|
Lin YM, Sarna SK, Shi XZ. Prophylactic and therapeutic benefits of COX-2 inhibitor on motility dysfunction in bowel obstruction: roles of PGE₂ and EP receptors. Am J Physiol Gastrointest Liver Physiol 2012; 302:G267-75. [PMID: 22038825 PMCID: PMC3341114 DOI: 10.1152/ajpgi.00326.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We reported previously that mechanical stretch in rat colonic obstruction induces cyclooxygenase (COX)-2 expression in smooth muscle cells. The aims of the present study were to investigate whether in vivo treatment with COX-2 inhibitor has prophylactic and therapeutic effects on motility dysfunction in colon obstruction, and if so what are the underlying mechanisms. Partial colon obstruction was induced with a silicon band in the distal colon of 6-8-wk-old Sprague-Dawley rats; obstruction was maintained for 3 days or 7 days. Daily administration of COX-2 inhibitor NS-398 (5 mg/kg) or vehicle was started before or after the induction of obstruction to study its prophylactic and therapeutic effects, respectively. The smooth muscle contractility was significantly suppressed, and colonic transit rate was slower in colonic obstruction. Prophylactic treatment with NS-398 significantly prevented the impairments of colonic transit and smooth muscle contractility and attenuated fecal collection in the occluded colons. When NS-398 was administered therapeutically 3 days after the initiation of obstruction, the muscle contractility and colonic transit still improved on day 7. Obstruction led to marked increase of COX-2 expression and prostaglandin E(2) (PGE(2)) synthesis. Exogenous PGE(2) decreased colonic smooth muscle contractility. All four PGE(2) E-prostanoid receptor types (EP1 to EP4) were detected in rat colonic muscularis externa. Treatments with EP1 and EP3 antagonists suppressed muscle contractility in control tissue but did not improve contractility in obstruction tissue. On the contrary, the EP2 and EP4 antagonists did not affect control tissue but significantly restored muscle contractility in obstruction. We concluded that our study shows that COX-2 inhibitor has prophylactic and therapeutic benefits for motility dysfunction in bowel obstruction. PGE(2) and its receptors EP2 and EP4 are involved in the motility dysfunction in obstruction, whereas EP1 and EP3 mediate PGE(2) regulation of colonic smooth muscle contractile function in normal state.
Collapse
Affiliation(s)
- You-Min Lin
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Sushil K. Sarna
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Xuan-Zheng Shi
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
127
|
Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG. EP4 receptor as a new target for bronchodilator therapy. Thorax 2011; 66:1029-35. [PMID: 21606476 PMCID: PMC3221321 DOI: 10.1136/thx.2010.158568] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/06/2011] [Indexed: 12/04/2022]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease are airway inflammatory diseases characterised by airflow obstruction. Currently approved bronchodilators such as long-acting β(2) adrenoceptor agonists are the mainstay treatments but often fail to relieve symptoms of chronic obstructive pulmonary disease and severe asthma and safety concerns have been raised over long-term use. The aim of the study was to identify the receptor involved in prostaglandin E(2) (PGE(2))-induced relaxation in guinea pig, murine, monkey, rat and human airways in vitro. METHODS Using an extensive range of pharmacological tools, the relaxant potential of PGE(2) and selective agonists for the EP(1-4) receptors in the presence and absence of selective antagonists in guinea pig, murine, monkey, rat and human isolated airways was investigated. RESULTS In agreement with previous studies, it was found that the EP(2) receptor mediates PGE(2)-induced relaxation of guinea pig, murine and monkey trachea and that the EP(4) receptor mediates PGE(2)-induced relaxation of the rat trachea. These data have been confirmed in murine airways from EP(2) receptor-deficient mice (Ptger2). In contrast to previous publications, a role for the EP(4) receptor in relaxant responses in human airways in vitro was found. Relaxant activity of AH13205 (EP(2) agonist) was also demonstrated in guinea pig but not human airway tissue, which may explain its failure in clinical studies. CONCLUSION Identification of the receptor mediating PGE(2)-induced relaxation represents a key step in developing a novel bronchodilator therapy. These data explain the lack of bronchodilator activity observed with selective EP(2) receptor agonists in clinical studies.
Collapse
Affiliation(s)
- James Buckley
- Respiratory Pharmacology, Pharmacology and Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Pharmacology and Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, London, UK
| | - Sarah A Maher
- Respiratory Pharmacology, Pharmacology and Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, London, UK
| | - Anthony T Nials
- Respiratory CEDD, GlaxoSmithKline Research and Development, Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Deborah L Clarke
- Respiratory Pharmacology, Pharmacology and Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Pharmacology and Toxicology Section, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, London, UK
| |
Collapse
|
128
|
Shibata-Nozaki T, Ito H, Mitomi H, Akaogi J, Komagata T, Kanaji T, Maruyama T, Mori T, Nomoto S, Ozaki S, Yamada H. Endogenous prostaglandin E2 inhibits aberrant overgrowth of rheumatoid synovial tissue and the development of osteoclast activity through EP4 receptor. ACTA ACUST UNITED AC 2011; 63:2595-605. [PMID: 21898865 DOI: 10.1002/art.30428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE We recently developed an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue. This study was undertaken to use that model to investigate the role of prostaglandin E2 (PGE2) and its receptor subtypes in the development of pannus growth and osteoclast activity in rheumatoid arthritis (RA). METHODS Inflammatory cells that infiltrated pannus from patients with RA were collected without enzyme digestion and designated synovial tissue-derived inflammatory cells. Their single-cell suspensions were cultured in medium alone to observe an aberrant overgrowth of inflammatory tissue in vitro. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. Osteoclast activity was assessed by the development of resorption pits in calcium phosphate-coated slides. RESULTS Primary culture of the synovial tissue-derived inflammatory cells resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks, during which tumor necrosis factor α, PGE2, macrophage colony-stimulating factor, and matrix metalloproteinase 9 were produced in the supernatant. This aberrant overgrowth was inhibited by antirheumatic drugs including methotrexate and infliximab. On calcium phosphate-coated slides, synovial tissue-derived inflammatory cells showed numerous resorption pits. In the presence of inhibitors of endogenous prostanoid production such as indomethacin and NS398, exogenous PGE1 and EP4-specific agonists significantly inhibited all these activities of synovial tissue-derived inflammatory cells in a dose-dependent manner. Addition of indomethacin, NS398, or EP4-specific antagonist resulted in the enhancement of these cells' activities. EP2-specific agonist had a partial effect, while EP1- and EP3-specific agonists had no significant effects. CONCLUSION These results suggest that endogenous PGE2 produced in rheumatoid synovium negatively regulates aberrant synovial overgrowth and the development of osteoclast activity via EP4.
Collapse
Affiliation(s)
- Toshiko Shibata-Nozaki
- Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Chia E, Kagota S, Wijekoon EP, McGuire JJ. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice. BMC Pharmacol 2011; 11:10. [PMID: 21955547 PMCID: PMC3192660 DOI: 10.1186/1471-2210-11-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of resistance arteries was attenuated by prolonged angiotensin II treatment in mice. We compared the vasodilatation of resistance-type arteries (mesenteric) from angiotensin II-treated PAR2 wild-type mice (WT) induced by PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) to the responses obtained in controls (saline treatment). We also investigated arterial vasodilatation in angiotensin II-treated PAR2 deficient (PAR2-/-) mice. Results 2fly-induced relaxations of untreated arteries from angiotensin II-treated WT were not different than saline-treated WT. Treatment of arteries with nitric oxide synthase inhibitor and SK3.1 inhibitor (L-NAME + TRAM-34) blocked 2fly in angiotensin II-treated WT. Protein and mRNA expression of cyclooxygenase-1 and -2 were increased, and cyclooxygenase activity increased the sensitivity of arteries to 2fly in only angiotensin II-treated WT. These protective vasodilatation mechanisms were selective for 2fly compared with acetylcholine- and nitroprusside-induced relaxations which were attenuated by angiotensin II; PAR2-/- were protected against this attenuation of nitroprusside. Conclusions PAR2-mediated vasodilatation of resistance type arteries is protected against the negative effects of angiotensin II-induced vascular dysfunction in mice. In conditions of endothelial dysfunction, angiotensin II induction of cyclooxygenases increases sensitivity to PAR2 agonist and the preserved vasodilatation mechanism involves activation of SK3.1.
Collapse
Affiliation(s)
- Elizabeth Chia
- Memorial University, St, John's, Newfoundland and Labrador, Canada
| | | | | | | |
Collapse
|
130
|
Prostaglandin D₂ induces contractions through activation of TP receptors in peripheral lung tissue from the guinea pig. Eur J Pharmacol 2011; 669:136-42. [PMID: 21872585 DOI: 10.1016/j.ejphar.2011.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/05/2011] [Accepted: 07/30/2011] [Indexed: 02/02/2023]
Abstract
Prostaglandin D(2) (PGD(2)), released through mast cell activation, is used as a non-invasive biomarker in patients with asthma. Since PGD(2) can elicit opposing effects on airway tone via activation of the PGD(2) receptors DP(1) and DP(2) as well as the thromboxane receptor TP, the aim of this study was to characterize the receptors that are activated by PGD(2) in the guinea pig lung parenchyma. PGD(2) and the thromboxane analog U46619 induced concentration-dependent contractions. U46619 was more potent and caused stronger effect than PGD(2). The specific TP receptor antagonist SQ-29548 and the combined TP and DP(2) receptor antagonist BAYu3405 concentration-dependently shifted the curves for both agonists to the right. The DP(1) receptor agonist BW245 induced a weak relaxation at high concentrations, whereas the DP(1) receptor antagonist BWA868C did not affect the PGD(2) induced contractions. The specific DP(2) receptor agonist 13,14-dihydro-15-keto-PGD(2) showed neither contractile nor relaxant effect in the parenchyma. Furthermore, studies in precision-cut lung slices specified that airways as well as pulmonary arteries and veins contracted to both PGD(2) and U46619. When the lung parenchyma from ovalbumin sensitized guinea pigs were exposed to ovalbumin, both thromboxane B(2) and PGD(2) were released. Ovalbumin also induced maximal contractions at similar level as PGD(2) in the parenchyma, which was partly reduced by SQ-29548. These data show that PGD(2) should be recognized as a TP receptor agonist in the peripheral lung inducing contraction on airways, arteries and veins. Therefore, a TP receptor antagonist can be useful in combination treatment of allergic responses in asthma.
Collapse
|
131
|
Zare B, Madadkar-Sobhani A, Dastmalchi S, Mahmoudian M. Prediction of the Human EP1 Receptor Binding Site by Homology Modeling and Molecular Dynamics Simulation. Sci Pharm 2011; 79:793-816. [PMID: 22145106 PMCID: PMC3221501 DOI: 10.3797/scipharm.1106-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/07/2011] [Indexed: 12/12/2022] Open
Abstract
The prostanoid receptor EP1 is a G-protein-coupled receptor (GPCR) known to be involved in a variety of pathological disorders such as pain, fever and inflammation. These receptors are important drug targets, but design of subtype specific agonists and antagonists has been partially hampered by the absence of three-dimensional structures for these receptors. To understand the molecular interactions of the PGE2, an endogen ligand, with the EP1 receptor, a homology model of the human EP1 receptor (hEP1R) with all connecting loops was constructed from the 2.6 Å resolution crystal structure (PDB code: 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to molecular dynamics simulation to assess quality of the model. Also, a step by step ligand-supported model refinement was performed, including initial docking of PGE2 and iloprost in the putative binding site, followed by several rounds of energy minimizations and molecular dynamics simulations. Docking studies were performed for PGE2 and some other related compounds in the active site of the final hEP1 receptor model. The docking enabled us to identify key molecular interactions supported by the mutagenesis data. Also, the correlation of r2=0.81 was observed between the Ki values and the docking scores of 15 prostanoid compounds. The results obtained in this study may provide new insights toward understanding the active site conformation of the hEP1 receptor and can be used for the structure-based design of novel specific ligands.
Collapse
Affiliation(s)
- Behnoush Zare
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
132
|
Yanagawa Y, Suzuki M, Matsumoto M, Togashi H. Prostaglandin E(2) enhances IL-33 production by dendritic cells. Immunol Lett 2011; 141:55-60. [PMID: 21835205 DOI: 10.1016/j.imlet.2011.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/16/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023]
Abstract
While interleukin (IL)-33, a novel member of the IL-1 family, seems to promote T helper type 2 (Th2)-associated inflammations and allergic diseases, the stimulating factors for IL-33 production are less well characterized. Prostaglandin E(2) (PGE(2)) has been shown to suppress immune cell functions. However, the immune enhancement by this mediator is not well understood. In the present study, we examined the effect of PGE(2) on IL-33 production by dendritic cells (DCs). Bone marrow-derived DCs were stimulated with lipopolysaccharide (LPS) in the presence or absence of PGE(2). LPS increased mRNA expression of the IL-1 family members, IL-1, IL-18, and IL-33 in DCs. PGE(2) alone showed slight effect on IL-1, IL-18, and IL-33 mRNA expression in DCs. Of note, LPS combined with PGE(2) caused in a synergistic enhancement of mRNA expression of IL-33 but not IL-1 and IL-18. In addition, PGE(2) dramatically enhanced IL-33 protein production by DCs upon LPS stimulation. The protein kinase A (PKA) inhibitor H89 significantly inhibited the PGE(2)-mediated enhancement of IL-33 production by DCs. Thus, PGE(2) appears to enhance IL-33 mRNA expression and its protein synthesis via PKA pathway in DCs. PGE(2) may promote Th2-mediated inflammations through the enhancement of IL-33 production by DCs, which might be associated with the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Yoshiki Yanagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan.
| | | | | | | |
Collapse
|
133
|
Fairbrother SE, Smith JE, Borman RA, Cox HM. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum. Neurogastroenterol Motil 2011; 23:782-e336. [PMID: 21605283 DOI: 10.1111/j.1365-2982.2011.01727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. METHODS Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. KEY RESULTS PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. CONCLUSIONS & INFERENCES PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations.
Collapse
Affiliation(s)
- S E Fairbrother
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK.
| | | | | | | |
Collapse
|
134
|
Mitsumori T, Furuyashiki T, Momiyama T, Nishi A, Shuto T, Hayakawa T, Ushikubi F, Kitaoka S, Aoki T, Inoue H, Matsuoka T, Narumiya S. Thromboxane receptor activation enhances striatal dopamine release, leading to suppression of GABAergic transmission and enhanced sugar intake. Eur J Neurosci 2011; 34:594-604. [PMID: 21749493 DOI: 10.1111/j.1460-9568.2011.07774.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The extracellular dopamine level is regulated not only by synaptic inputs to dopamine neurons but also by local mechanisms surrounding dopaminergic terminals. However, much remains to be investigated for the latter mechanism. Thromboxane A(2) is one of the cyclooxygenase products derived from arachidonic acid, and acts on its cognate G protein-coupled receptor [thromboxane receptor (TP)]. We show here that TP in the striatum locally facilitates dopamine overflow. Intrastriatal injection of a TP agonist increased extracellular dopamine levels in the striatum as measured by in vivo microdialysis. TP stimulation also augmented electrically evoked dopamine overflow from striatal slices. Conversely, TP deficiency reduced dopamine overflow evoked by N-methyl-d-aspartic acid (NMDA) and acetylcholine in striatal slices. TP immunostaining showed that TP is enriched in vascular endothelial cells. Pharmacological blockade of nitric oxide (NO) synthesis and genetic deletion of endothelial NO synthase (eNOS) suppressed NMDA/acetylcholine-induced dopamine overflow. This involvement of NO was abolished in TP-deficient slices, suggesting a role for eNOS-derived NO synthesis in TP-mediated dopamine overflow. As a functional consequence of TP-mediated dopamine increase, a TP agonist suppressed GABAergic inhibitory postsynaptic currents in medium spiny neurons through a D2-like receptor-dependent mechanism. Finally, TP is involved in sucrose intake, a dopamine-dependent motivational behavior. These data suggest that TP stimulation in the striatum locally facilitates dopamine overflow evoked by synaptic inputs via NO synthesis in endothelial cells.
Collapse
Affiliation(s)
- Tomoyuki Mitsumori
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Myren M, Olesen J, Gupta S. Pharmacological and expression profile of the prostaglandin I(2) receptor in the rat craniovascular system. Vascul Pharmacol 2011; 55:50-8. [PMID: 21749934 DOI: 10.1016/j.vph.2011.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/08/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
Activation of the trigeminal nerve terminals around cerebral and meningeal arteries is thought to be an important patho-mechanism in migraine. Vasodilatation of the cranial arteries may also play a role in increasing nociception. Prostaglandin I(2) (PGI(2)) is capable of inducing a headache in healthy volunteers, a response that is likely to be mediated by the prostaglandin I(2) receptor (IP). This study investigates the functional and molecular characteristics of the IP receptor in the rat craniovascular system. In the closed cranial window model, iloprost, an IP receptor agonist, dilated the rat middle meningeal artery (MMA) (E(max)=170%±16%; pED(50)=6.5±0.2) but not the rat cerebral artery (CA) in vivo. The specific antagonist of the IP receptor, CAY10441, significantly blocked the iloprost-induced response dose-dependently, with the highest dose attenuating iloprost (1μgkg(-1)) induced dilatations by 70% (p<0.05). CAY10441 did not have any effect on the prostaglandin E(2)-induced vasodilatory response, thus suggesting no interaction with EP(2) and EP(4) receptors. IP receptor mRNA transcripts and protein were present in meningeal as well as in cerebral rat vasculature, and localized the IP receptor protein to the smooth vasculature of the cranial arteries (MMA, MCA and basilar artery). Together, these results demonstrate that the IP receptor mediates the dilatory effect of PGI(2) in the cranial vasculature in rats. Antagonism of this receptor might be of therapeutic relevance in acute migraine treatment.
Collapse
Affiliation(s)
- Maja Myren
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, DK-2600 Glostrup, Denmark
| | | | | |
Collapse
|
136
|
Jones RL, Woodward DF. Interaction of prostanoid EP₃ and TP receptors in guinea-pig isolated aorta: contractile self-synergism of 11-deoxy-16,16-dimethyl PGE₂. Br J Pharmacol 2011; 162:521-31. [PMID: 20955363 DOI: 10.1111/j.1476-5381.2010.01039.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Surprisingly high contractile activity was reported for 11-deoxy-16,16-dimethyl prostaglandin E₂ (DX-DM PGE₂) on pig cerebral artery when used as a selective EP₃ receptor agonist. This study investigated the selectivity profile of DX-DM PGE₂, focusing on the interaction between its EP₃ and TP (thromboxane A₂-like) agonist activities. EXPERIMENTAL APPROACH Contraction of guinea-pig trachea (EP₁ system) and aorta (EP₃ and TP systems) was measured in conventional organ baths. KEY RESULTS Strong contraction of guinea-pig aorta to sulprostone and 17-phenyl PGE₂ (EP₃ agonists) was only seen under priming with a second contractile agent such as phenylephrine, histamine or U-46619 (TP agonist). In contrast, DX-DM PGE₂ induced strong contraction, which on the basis of treatment with (DG)-3ap (EP₃ antagonist) and/or BMS-180291 (TP antagonist) was attributed to self-synergism arising from co-activation of EP₃ and TP receptors. EP₃/TP self-synergism also accounted for contraction induced by PGF(2α) and its analogues (+)-cloprostenol and latanoprost-FA. DX-DM PGE₂ also showed significant EP₁ agonism on guinea-pig trachea as defined by the EP₁ antagonists SC-51322, (ONO)-5-methyl-1 and AH-6809, although AH-6809 exhibited poor specificity at concentrations ≥3 µM. CONCLUSIONS AND IMPLICATIONS EP₃/TP self-synergism, as seen with PGE/PGF analogues in this study, may confound EP₃ agonist potency comparisons and the characterization of prostanoid receptor systems. The competitive profile of a TP antagonist may be distorted by variation in the silent/overt contraction profile of the EP₃ system in different studies. The relevance of self-synergism to in vivo actions of natural prostanoid receptor agonists is discussed.
Collapse
Affiliation(s)
- R L Jones
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
137
|
Genetos DC, Yellowley CE, Loots GG. Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression. PLoS One 2011; 6:e17772. [PMID: 21436889 PMCID: PMC3059227 DOI: 10.1371/journal.pone.0017772] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 02/14/2011] [Indexed: 11/19/2022] Open
Abstract
The Wnt signaling pathway is a robust regulator of skeletal homeostasis. Gain-of-function mutations promote high bone mass, whereas loss of Lrp5 or Lrp6 co-receptors decrease bone mass. Similarly, mutations in antagonists of Wnt signaling influence skeletal integrity, in an inverse relation to Lrp receptor mutations. Loss of the Wnt antagonist Sclerostin (Sost) produces the generalized skeletal hyperostotic condition of sclerosteosis, which is characterized by increased bone mass and density due to hyperactive osteoblast function. Here we demonstrate that prostaglandin E(2) (PGE(2)), a paracrine factor with pleiotropic effects on osteoblasts and osteoclasts, decreases Sclerostin expression in osteoblastic UMR106.01 cells. Decreased Sost expression correlates with increased expression of Wnt/TCF target genes Axin2 and Tcf3. We also show that the suppressive effect of PGE(2) is mediated through a cyclic AMP/PKA pathway. Furthermore, selective agonists for the PGE(2) receptor EP2 mimic the effect of PGE(2) upon Sost, and siRNA reduction in Ptger2 prevents PGE(2)-induced Sost repression. These results indicate a functional relationship between prostaglandins and the Wnt/β-catenin signaling pathway in bone.
Collapse
Affiliation(s)
- Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America.
| | | | | |
Collapse
|
138
|
Wilson SM, Sheddan NA, Newton R, Giembycz MA. Evidence for a second receptor for prostacyclin on human airway epithelial cells that mediates inhibition of CXCL9 and CXCL10 release. Mol Pharmacol 2011; 79:586-95. [PMID: 21173040 DOI: 10.1124/mol.110.069674] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herein we provide evidence for the coexpression of two distinct prostacyclin (PGI(2)) receptors (IP) on BEAS-2B human airway epithelial cells. IP receptor heterogeneity initially was suggested by the finding that the rank orders of potency of PGI(2) and three structurally similar analogs [taprostene, iloprost, 15-deoxy-16-(m-tolyl)-17,18,19,20-tetranorisocarbacyclin (15-deoxy-TIC)] for the inhibition of chemokine (CXCL9 and CXCL10) release and for transcriptional activation/augmentation of cAMP response element and glucocorticoid response element luciferase reporters were distinct. Indeed, PGI(2), taprostene, and iloprost activated both reporters whereas 15-deoxy-TIC was inert. Conversely, 15-deoxy-TIC, PGI(2), and taprostene (but not iloprost) suppressed chemokine release. Further experiments established that iloprost did not antagonize the inhibitory effect taprostene or 15-deoxy-TIC on chemokine output. Likewise, 15-deoxy-TIC failed to antagonize taprostene- and iloprost-induced reporter transactivation. Thus, iloprost- and 15-deoxy-TIC-induced responses were apparently mediated via pharmacologically distinct receptors. In human embryonic kidney 293 cells overexpressing the human recombinant IP receptor receptor, 15-deoxy-TIC was considerably less potent (>10,000-fold) than iloprost and taprostene in promoting cAMP accumulation, yet in BEAS-2B cells, these analogs were equipotent. IP receptor heterogeneity was also supported by the finding that the affinity of the IP receptor antagonist R-3-(4-fluorophenyl)-2-[5-(4-fluorophenyl)-benzofuran-2-yl-methoxycarbonyl-amino] propionic acid (RO3244794) for the receptor mediating inhibition of chemokine release was approximately 10-fold lower than for the receptor mediating both transcriptional outputs. Finally, small interfering RNAs directed against the IP receptor gene, PTGIR, failed to block the suppression of chemokine output induced by taprostene and 15-deoxy-TIC, whereas taprostene- and iloprost-induced transcriptional responses were markedly attenuated. Collectively, these results indicate that PGI(2), taprostene and 15-deoxy-TIC suppress chemokine release from BEAS-2B cells by interacting with a novel IP receptor that we denote here as the "IP(2)" subtype.
Collapse
Affiliation(s)
- Sylvia M Wilson
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
139
|
Ito H, Yamada H, Shibata TN, Mitomi H, Nomoto S, Ozaki S. Dual role of interleukin-17 in pannus growth and osteoclastogenesis in rheumatoid arthritis. Arthritis Res Ther 2011; 13:R14. [PMID: 21294864 PMCID: PMC3241358 DOI: 10.1186/ar3238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 12/31/2010] [Accepted: 02/04/2011] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION In a murine model, interleukin (IL)-17 plays a critical role in the pathogenesis of arthritis. There are controversies, however, regarding whether IL-17 is a proinflammatory mediator in rheumatoid arthritis (RA). We previously established an ex vivo cellular model using synovial tissue (ST)-derived inflammatory cells, which reproduced pannus-like tissue growth and osteoclastic activity in vitro. Using this model, we investigated the effects of IL-17 on pannus growth and osteoclastogenesis in RA. METHODS Inflammatory cells that infiltrated synovial tissue from patients with RA were collected without enzyme digestion and designated as ST-derived inflammatory cells. ST-derived inflammatory cells were cultured in the presence or absence of IL-17 or indomethacin, and the morphologic changes were observed for 4 weeks. Cytokines produced in the culture supernatants were measured by using enzyme-linked immunosorbent assay kits. Osteoclastic activity was assessed by the development of resorption pits in calcium phosphate-coated slides. RESULTS Exogenous addition of IL-17 dramatically enhanced the spontaneous production of IL-6 and prostaglandin E₂ (PGE₂) by the ST-derived inflammatory cells, while it had no effect on the production of tumor necrosis factor (TNF)-α and macrophage colony-stimulating factor (M-CSF). Furthermore, IL-17 did not affect the spontaneous development of pannus-like tissue growth and osteoclastic activity by the ST-derived inflammatory cells. On the other hand, IL-17 enhanced pannus-like tissue growth, the production of TNF-α and M-CSF and the development of osteoclastic activity in the presence of indomethacin, an inhibitor of endogenous prostanoid production, while exogenous addition of PGE₁ suppressed their activities. CONCLUSIONS The present study suggests that IL-17 induces negative feedback regulation through the induction of PGE₂, while it stimulates proinflammatory pathways such as inflammatory cytokine production, pannus growth and osteoclastogenesis in RA.
Collapse
Affiliation(s)
- Hiroshi Ito
- Division of Rheumatology and Allergology, Department of Internal Medicine, St, Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | | | | | | | | | | |
Collapse
|
140
|
Petrucci G, De Cristofaro R, Rutella S, Ranelletti FO, Pocaterra D, Lancellotti S, Habib A, Patrono C, Rocca B. Prostaglandin E2 differentially modulates human platelet function through the prostanoid EP2 and EP3 receptors. J Pharmacol Exp Ther 2011; 336:391-402. [PMID: 21059804 DOI: 10.1124/jpet.110.174821] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activated human platelets synthesize prostaglandin (PG) E(2), although at lower rate than thromboxane A(2). PGE(2) acts through different receptors (EP1-4), but its role in human platelet function remains poorly characterized compared with thromboxane. We studied the effect of PGE(2) and its analogs on in vitro human platelet function and platelet and megakaryocyte EP expression. Platelets preincubated with PGE(2) or its analogs were stimulated with agonists and studied by optical aggregometry. Intraplatelet calcium mobilization was investigated by the stopped flow method; platelet vasodilator-stimulated phosphoprotein (VASP), P-selectin, and microaggregates were investigated by flow cytometry. PGE(2) at nanomolar concentrations dose-dependently increased the slope (velocity) of the secondary phase of ADP-induced platelet aggregation (EC(50), 25.6 ± 6 nM; E(max) of 100 ± 19% increase versus vehicle-treated), without affecting final maximal aggregation. PGE(2) stabilized reversible aggregation induced by low ADP concentrations (EC(50), 37.7 ± 9 nM). The EP3 agonists, 11-deoxy-16,16-dimethyl PGE(2) (11d-16dm PGE(2)) and sulprostone enhanced the secondary wave of ADP-induced aggregation, with EC(50) of 48.6 ± 10 nM (E(max), 252 ± 51%) and 5 ± 2 nM (E(max), 300 ± 35%), respectively. The EP2 agonist butaprost inhibited ADP-induced secondary phase slopes (IC(50), 40 ± 20 nM). EP4 stimulation had minor inhibitory effects. 11d-16dm PGE(2) alone raised intraplatelet Ca(2+) and enhanced ADP-induced Ca(2+) increase. 11d-16dm PGE(2) and 17-phenyltrinor PGE(2) (EP3 > EP1 agonist) at nanomolar concentrations counteracted PGE(1)-induced VASP phosphorylation and induced platelet microaggregates and P-selectin expression. EP1, EP2, EP3, and EP4 were expressed on human platelets and megakaryocytes. PGE(2) through different EPs finely modulates human platelet responsiveness. These findings should inform the rational selection of novel antithrombotic strategies based on EP modulation.
Collapse
Affiliation(s)
- Giovanna Petrucci
- Department of Pharmacology, Catholic University School of Medicine, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Jones RL, Woodward DF, Wang JW, Clark RL. Roles of affinity and lipophilicity in the slow kinetics of prostanoid receptor antagonists on isolated smooth muscle preparations. Br J Pharmacol 2011; 162:863-79. [PMID: 20973775 PMCID: PMC3042197 DOI: 10.1111/j.1476-5381.2010.01087.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/24/2010] [Accepted: 10/04/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The highly lipophilic acyl-sulphonamides L-798106 and L-826266 showed surprisingly slow antagonism of the prostanoid EP₃ receptor system in guinea-pig aorta. Roles of affinity and lipophilicity in the onset kinetics of these and other prostanoid ligands were investigated. EXPERIMENTAL APPROACH Antagonist selectivity was assessed using a panel of human recombinant prostanoid receptor-fluorimetric imaging plate reader assays. Potencies/affinities and onset half-times of agonists and antagonists were obtained on guinea-pig-isolated aorta and vas deferens. n-Octanol-water partition coefficients were predicted. KEY RESULTS L-798106, L-826266 and the less lipophilic congener (DG)-3ap appear to behave as selective, competitive-reversible EP₃ antagonists. For ligands of low to moderate lipophilicity, potency increments for EP₃ and TP (thromboxane-like) agonism on guinea-pig aorta (above pEC₅₀ of 8.0) were associated with progressively longer onset half-times; similar trends were found for TP and histamine H₁ antagonism above a pA₂ limit of 8.0. In contrast, L-798106 (EP₃), L-826266 (EP₃, TP) and the lipophilic H₁ antagonists astemizole and terfenadine exhibited very slow onset rates despite their moderate affinities; (DG)-3ap (EP₃) had a faster onset. Agonism and antagonism on the vas deferens EP₃ system were overall much faster, although trends were similar. CONCLUSIONS AND IMPLICATIONS High affinity and high liphophilicity may contribute to the slow onsets of prostanoid ligands in some isolated smooth muscle preparations. Both relationships are explicable by tissue disposition under the limited diffusion model. EP₃ antagonists used as research tools should have moderate lipophilicity. The influence of lipophilicity on the potential clinical use of EP₃ antagonists is discussed.
Collapse
MESH Headings
- Acrylamides/chemistry
- Acrylamides/metabolism
- Acrylamides/pharmacology
- Animals
- Aorta, Thoracic/metabolism
- Guinea Pigs
- HEK293 Cells
- Humans
- Hydrophobic and Hydrophilic Interactions
- In Vitro Techniques
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kinetics
- Ligands
- Male
- Models, Biological
- Muscle Contraction/drug effects
- Muscle Relaxation/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Naphthalenes/chemistry
- Naphthalenes/metabolism
- Naphthalenes/pharmacology
- Neuromuscular Agents/chemistry
- Neuromuscular Agents/metabolism
- Neuromuscular Agents/pharmacology
- Receptors, Eicosanoid/agonists
- Receptors, Eicosanoid/antagonists & inhibitors
- Receptors, Eicosanoid/genetics
- Receptors, Eicosanoid/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/agonists
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Recombinant Proteins/agonists
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/metabolism
- Sulfonamides/metabolism
- Sulfonamides/pharmacology
- Vas Deferens/metabolism
Collapse
Affiliation(s)
- R L Jones
- Cardiovascular Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | |
Collapse
|
142
|
Chun KS, Langenbach R. The prostaglandin E2 receptor, EP2, regulates survivin expression via an EGFR/STAT3 pathway in UVB-exposed mouse skin. Mol Carcinog 2011; 50:439-48. [PMID: 21268125 DOI: 10.1002/mc.20728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 11/03/2010] [Accepted: 11/23/2010] [Indexed: 01/25/2023]
Abstract
We previously reported that cycloogenase (COX)-2-generated prostaglandin E2 (PGE2) had anti-apoptotic effects in UVB-exposed mouse skin that involved EP2-mediated signaling (Chun et al., Cancer Res. 2007; 67: 2015). Because survivin is a regulator of cell survival, the possible involvement of COX-2 and EP2 in survivin expression following UVB exposure of mouse skin was investigated. In wild type mice, UVB exposure time-dependently increased the levels of survivin and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), a transcription factor that regulates survivin expression; and COX-2- or EP2-deficiency significantly reduced their induction. Topical application of the COX-2 inhibitor, celecoxib, also reduced UVB-induced survivin levels. To further investigate the roles of PGE2 and EP2 in the regulation of survivin, indomethacin was used to inhibit UVB-induced endogenous PG production. UVB-induced survivin levels were reduced by indomethacin, and PGE2 and the EP2 agonist, butaprost, partially restored survivin levels. The epidermal growth factor receptor (EGFR) is a downstream effector of EP2 and EGFR inhibition (AG1478) significantly reduced UVB activation of STAT3 and survivin levels. UVB-induced epidermal apoptosis in COX-2-/- mice was reduced by butaprost and EGFR inhibition blocked butaprost’s protective effects. Furthermore, butaprost in the absence of UVB exposure time-dependently increased p-EGFR, p-STAT3, and survivin levels in naïve mouse skin, whereas the EP4 agonist, PGE1 alcohol, did not significantly increase p-STAT3 or survivin levels. These data suggest that COX-2-generated PGE2 regulates survivin expression in mouse skin, in part, via an EP2-mediated EGFR/STAT3 pathway. Therefore, targeting the EP2/survivin pathway may provide a strategy for the chemoprevention/chemotherapy of skin cancer.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
143
|
Morrison K, Ernst R, Hess P, Studer R, Clozel M. Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function. J Pharmacol Exp Ther 2010; 335:249-55. [PMID: 20660124 DOI: 10.1124/jpet.110.169748] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is an orally available prostacyclin (PGI(2)) receptor (IP receptor) agonist that is chemically distinct from PGI(2) and is in clinical development for the treatment of pulmonary arterial hypertension. Selexipag is highly selective for the human IP receptor in vitro, whereas analogs of PGI(2) can activate prostanoid receptors other than the IP receptor. The goal of this study was to determine the impact of selectivity for the IP receptor on gastric function by measuring 1) contraction of rat gastric fundus ex vivo and 2) the rates of gastric emptying and intestinal transport in response to selexipag in comparison with other PGI(2) analogs. The rat gastric fundus expresses mRNA encoding multiple prostanoid receptors to different levels: prostaglandin E receptor 1 (EP(1)) > prostaglandin E receptor 3 (EP(3)), IP receptor > prostaglandin D(2) receptor 1, thromboxane receptor. Selexipag and metabolite {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (ACT-333679) did not contract gastric fundus at concentrations up to 10(-3) M. In contrast, the PGI(2) analogs iloprost and beraprost evoked concentration-dependent contraction of gastric fundus. Contraction to treprostinil was observed at high concentration (10(-4) M). Contraction to all PGI(2) analogs was mediated via activation of EP(3) receptors, although EP(1) receptors also contributed to the contraction of gastric fundus to iloprost and beraprost. Antagonism of IP receptors did not affect responses. Oral selexipag did not significantly alter gastric function in vivo, as measured by rates of stomach emptying and intestinal transport, whereas beraprost slowed gastrointestinal transport. The high functional selectivity of selexipag and ACT-333679 for the IP receptor precludes a stimulatory action on gastric smooth muscle and may help minimize gastric side effects such as nausea and vomiting.
Collapse
Affiliation(s)
- Keith Morrison
- Drug Discovery Department, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | | | | |
Collapse
|
144
|
Abstract
The stimulation of thromboxane/endoperoxide receptors (TP) elicits diverse physiological/pathophysiological reactions, including platelet aggregation and contraction of vascular smooth muscle. Furthermore, the activation of endothelial TP promotes the expression of adhesion molecules and favors adhesion and infiltration of monocytes/macrophages. In various cardiovascular diseases, endothelial dysfunction is predominantly the result of the release of endothelium-derived contracting factors that counteract the vasodilator effect of nitric oxide produced by the endothelial nitric oxide synthase. Endothelium-dependent contractions involve the activation of cyclooxygenases, the production of reactive oxygen species along with that of endothelium-derived contracting factors, which diffuse toward the vascular smooth muscle cells and activate their TP. TP antagonists curtail the endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and reduce vascular inflammation. Therefore, TP antagonists, because of this triple activity, may have a unique potential for the treatment of cardiovascular disorders.
Collapse
|
145
|
Ma X, Kundu N, Ioffe OB, Goloubeva O, Konger R, Baquet C, Gimotty P, Reader J, Fulton AM. Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Mol Cancer Res 2010; 8:1310-8. [PMID: 20858737 DOI: 10.1158/1541-7786.mcr-10-0003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase-2 is frequently overexpressed and associated with poor prognosis in breast cancer. The cyclooxygenase-2 product prostaglandin E(2) elicits cellular responses through four G-protein-coupled receptors, designated EP1 to EP4, coupled to distinct intracellular signaling pathways. EP4, expressed on malignant breast cells, promotes metastasis; however, a role for EP1 in metastasis has not been investigated. Using a murine model of metastatic breast cancer, we now show that pharmacologic antagonism of EP1 with SC19220 or AH6809 promoted lung colonization of mammary tumor cells by 3.7- to 5.4-fold. Likewise, reducing EP1 gene expression by shRNA also increased metastatic capacity relative to cells transfected with nonsilencing vector but did not affect the size of transplanted tumors. Examination of invasive ductal carcinomas by immunohistochemistry shows that EP1 was detected in both the cytoplasm and nucleus of benign ducts as well as malignant cells in some samples, but was absent or limited to either the nucleus or cytoplasm in other malignant samples. Overall survival for women with tumors that were negative for nuclear EP1 was significantly worse than for women with EP1 expression (P = 0.008). There was no difference in survival for women with differences in cytoplasmic EP1 expression (P = 0.46). Comparing EP1 mRNA in breast tumors from African American and European American women revealed that many more African American breast tumors lacked detectable EP1 mRNA (P = 0.04). These studies support the hypothesis that EP1 functions as a metastasis suppressor and that loss of nuclear EP1 is associated with poorer overall survival and may contribute to disparities in outcome in different populations.
Collapse
Affiliation(s)
- Xinrong Ma
- University of Maryland, Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
McCormick C, Jones RL, Kennedy S, Wadsworth RM. Activation of prostanoid EP receptors by prostacyclin analogues in rabbit iliac artery: Implications for anti-restenotic potential. Eur J Pharmacol 2010; 641:160-7. [DOI: 10.1016/j.ejphar.2010.04.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/31/2010] [Accepted: 04/23/2010] [Indexed: 12/21/2022]
|
147
|
Ahmad AS, Ahmad M, Maruyama T, Narumiya S, Doré S. Prostaglandin D2 DP1 receptor is beneficial in ischemic stroke and in acute exicitotoxicity in young and old mice. AGE (DORDRECHT, NETHERLANDS) 2010; 32:271-82. [PMID: 20640551 PMCID: PMC2926852 DOI: 10.1007/s11357-010-9135-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 01/29/2010] [Indexed: 05/29/2023]
Abstract
The cardiovascular complications reported to be associated with cyclooxygenase inhibitor use have shifted our focus toward prostaglandins and their respective receptors. Prostaglandin D(2) and its DP1 receptor have been implicated in various normal and pathologic conditions, but their role in stroke is still poorly defined. Here, we tested whether DP1 deletion aggravates N-methyl-D: -aspartic acid (NMDA)-induced acute toxicity and whether DP1 pharmacologic activation protects mice from acute excitotoxicity and transient cerebral ischemia. Moreover, since the elderly are more vulnerable to stroke-related damage than are younger patients, we tested the susceptibility of aged DP1 knockout (DP1(-/-)) mice to brain damage. We found that intrastriatal injection of 15 nmol NMDA caused significantly larger lesion volumes (27.2 +/- 6.4%) in young adult DP1(-/-) mice than in their wild-type counterparts. Additionally, intracerebroventricular pretreatment of wild-type mice with 10, 25, and 50 nmol of the DP1-selective agonist BW245C significantly attenuated the NMDA-induced lesion size by 19.5 +/- 5.0%, 39.6 +/- 7.7%, and 28.9 +/- 7.0%, respectively. The lowest tested dose of BW245C also was able to reduce middle cerebral artery occlusion-induced brain infarction size significantly (21.0 +/- 5.7%). Interestingly, the aggravated NMDA-induced brain damage was persistent in older DP1(-/-) mice as well. We conclude that the DP1 receptor plays an important role in attenuating brain damage and that selective targeting of this receptor could be considered as an adjunct therapeutic tool to minimize stroke damage.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 364, Baltimore, MD 21205 USA
| | - Muzamil Ahmad
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 364, Baltimore, MD 21205 USA
| | - Takayuki Maruyama
- Pharmacological Research Laboratories, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Sylvain Doré
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 364, Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
148
|
Deacon K, Knox AJ. Endothelin-1 (ET-1) increases the expression of remodeling genes in vascular smooth muscle through linked calcium and cAMP pathways: role of a phospholipase A(2)(cPLA(2))/cyclooxygenase-2 (COX-2)/prostacyclin receptor-dependent autocrine loop. J Biol Chem 2010; 285:25913-27. [PMID: 20452970 PMCID: PMC2923981 DOI: 10.1074/jbc.m110.139485] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Indexed: 11/17/2022] Open
Abstract
Several important genes that are involved in inflammation and tissue remodeling are switched on by virtue of CRE response elements in their promoters. The upstream signaling mechanisms that inflammatory mediators use to activate cAMP response elements (CREs) are poorly understood. Endothelin (ET) is an important vasoactive mediator that plays roles in inflammation, vascular remodeling, angiogenesis, and carcinogenesis by activating 7 transmembrane G protein-coupled receptors (GPCR). Here we characterized the mechanisms ET-1 uses to regulate CRE-dependent remodeling genes in pulmonary vascular smooth muscle cells. These studies revealed activation pathways involving a cyclooxygenase-2 (COX-2)/prostacyclin receptor (IP receptor) autocrine loop and an interlinked calcium-dependent pathway. We found that ET-1 activated several CRE response genes in vascular smooth muscle cells, particularly COX-2, amphiregulin, follistatin, inhibin-beta-A, and CYR61. ET-1 also activated two other genes epiregulin and HB-EGF. Amphiregulin, follistatin, and inhibin-beta-A and epiregulin were activated by an autocrine loop involving cPLA2, arachidonic acid release, COX-2-dependent PGI(2) synthesis, and IP receptor-linked elevation of cAMP leading to CRE transcription activation. In contrast COX-2, CYR61, and HB-EGF transcription were regulated in a calcium-dependent, COX-2 independent, manner. Observations with IP receptor antagonists and COX-2 inhibitors were confirmed with IP receptor or COX-2-specific small interfering RNAs. ET-1 increases in intracellular calcium and gene transcription were dependent upon ET(a) activation and calcium influx through T type voltage-dependent calcium channels. These studies give important insights into the upstream signaling mechanisms used by G protein-coupled receptor-linked mediators such as ET-1, to activate CRE response genes involved in angiogenesis, vascular remodeling, inflammation, and carcinogenesis.
Collapse
Affiliation(s)
- Karl Deacon
- Division of Respiratory Medicine, Centre for Respiratory Research, University of Nottingham, City Hospital Site, Hucknall Road, Nottingham, UK.
| | | |
Collapse
|
149
|
Tamiji J, Crawford DA. Misoprostol elevates intracellular calcium in Neuro-2a cells via protein kinase A. Biochem Biophys Res Commun 2010; 399:565-70. [PMID: 20678471 DOI: 10.1016/j.bbrc.2010.07.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/27/2010] [Indexed: 11/15/2022]
Abstract
Misoprostol, a prostaglandin type E analogue, has been implicated in a number of neurodevelopmental disorders. However, its mode of action in the nervous system is not well understood. Misoprostol acts on the same receptors as prostaglandin E(2) (PGE(2)), a natural lipid-derived compound, which mediates important physiological functions in the nervous system via activation of four EP receptors (EP1-4). In this study we use a ratiometric calcium imaging with fura-2 AM as a calcium indicator to show that misoprostol alters intracellular calcium levels in mouse neuroblastoma (Neuro-2a) cells via similar mechanisms as PGE(2). We demonstrate that the misoprostol-induced increase in calcium is mediated by a protein kinase A (PKA)-dependent mechanism and that the EP4 receptor signaling pathway may play an inhibitory role on calcium regulation. Overall, this study provides further support for the involvement of PGE(2) signaling in calcium homeostasis and suggests its important role in the nervous system.
Collapse
Affiliation(s)
- Javaneh Tamiji
- School of Kinesiology and Health Science, York University, Toronto, Canada; Neuroscience Graduate Diploma Program, York University, Toronto, Canada
| | | |
Collapse
|
150
|
Mishra RK, Singh J. Generation, Validation, and Utilization of a Three-Dimensional Pharmacophore Model for EP3 Antagonists. J Chem Inf Model 2010; 50:1502-9. [DOI: 10.1021/ci100003q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rama K. Mishra
- deCODE Chemistry Incorporated, 2501 Davey Road, Woodridge, Illinois 60517
| | - Jasbir Singh
- deCODE Chemistry Incorporated, 2501 Davey Road, Woodridge, Illinois 60517
| |
Collapse
|