101
|
Lin Y, Ye S, He Y, Li S, Chen Y, Zhai Z. Short-term insulin intensive therapy decreases MCP-1 and NF-κB expression of peripheral blood monocyte and the serum MCP-1 concentration in newlydiagnosed type 2 diabetics. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:212-220. [PMID: 29641741 PMCID: PMC10118989 DOI: 10.20945/2359-3997000000029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/13/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To observe the effect of short-term insulin intensive treatment on the monocyte chemoattractant protein-1 (MCP-1) as well as on the nuclear factor-kappa B (NF-κB) expression of peripheral blood monocyte. This is also in addition to observing the serum MCP-1 level in newlydiagnosed type 2 diabetic patients and probing its anti-inflammation effects. SUBJECTS AND METHODS Twenty newly-diagnosed type 2 diabetic patients were treated with an insulin intensive treatment for 2 weeks. MCP-1 and NF-κB expression on the monocyte surface were measured with flow cytometry, the serum MCP-1 level was measured by enzyme linked immunosorbent assay (ELISA) during pretreatment and post-treatment. RESULTS After 2 weeks of the treatment, MCP-1 and NF-κB protein expression of peripheral blood monocyte and serum MCP-1 levels decreased significantly compared with those of pre-treatment, which were (0.50 ± 0.18)% vs (0.89 ± 0.26)% (12.22 ± 2.80)% vs (15.53 ± 2.49)% and (44.53 ± 3.97) pg/mL vs (49.53 ± 3.47) pg/mL, respectively (P < 0.01). The MCP-1 expression on monocyte surface had a significant positive relationship with serum MCP-1 levels (r = 0.47, P < 0.01). CONCLUSIONS Short-term insulin intensive therapy plays a role in alleviating the increased inflammation reaction in type 2 diabetics.
Collapse
Affiliation(s)
- Yang Lin
- School of Medicine, Shandong University, Jinan, Shandong 250100, China.,Department of Pediatrics, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| | - Shandong Ye
- School of Medicine, Shandong University, Jinan, Shandong 250100, China.,Department of Endocrinology, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| | - Yuanyuan He
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| | - Sumei Li
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| | - Yan Chen
- Endocrinological Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| | - Zhimin Zhai
- Department of Central lab, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| |
Collapse
|
102
|
Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int 2018; 93:803-813. [DOI: 10.1016/j.kint.2017.11.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/15/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
|
103
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the proposed role of immune modulation in the development and progression of diabetic kidney disease (DKD). RECENT FINDINGS Diabetic kidney disease has not historically been considered an immune-mediated disease; however, increasing evidence is emerging in support of an immune role in its pathophysiology. Both systemic and local renal inflammation have been associated with DKD. Infiltration of immune cells, predominantly macrophages, into the kidney has been reported in a number of both experimental and clinical studies. In addition, increased levels of circulating pro-inflammatory cytokines have been linked to disease progression. Consequently, a variety of therapeutic strategies involving modulation of the immune response are currently being investigated in diabetic kidney disease. Although no current therapies for DKD are directly based on immune modulation many of the therapies in clinical use have anti-inflammatory effects along with their primary actions. Macrophages emerge as the most likely beneficial immune cell target and compounds which reduce macrophage infiltration to the kidney have shown potential in both animal models and clinical trials.
Collapse
Affiliation(s)
- Fionnuala B Hickey
- Department of Clinical Medicine, Trinity College Dublin, Tallaght Hospital, Dublin, Dublin 24, Ireland
| | - Finian Martin
- School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
104
|
Van Krieken R, Marway M, Parthasarathy P, Mehta N, Ingram AJ, Gao B, Krepinsky JC. Inhibition of SREBP With Fatostatin Does Not Attenuate Early Diabetic Nephropathy in Male Mice. Endocrinology 2018; 159:1479-1495. [PMID: 29420703 DOI: 10.1210/en.2018-00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
Sterol regulatory element binding protein (SREBP) is an important potential mediator of kidney fibrosis and is known to be upregulated in diabetic nephropathy. We evaluated the effectiveness of SREBP inhibition as treatment of diabetic nephropathy. Type 1 diabetes was induced in uninephrectomized male CD1 mice with streptozotocin. The mice were treated with the SREBP inhibitor fatostatin for 12 weeks. At the endpoint, kidney function and pathologic findings were assessed. Fatostatin inhibited the increase of both isoforms of SREBP (types 1 and 2) in diabetic kidneys. Treatment attenuated basement membrane thickening but did not improve hyperfiltration, albuminuria, or kidney fibrosis in diabetic mice. The treatment of nondiabetic mice with fatostatin led to hyperfiltration and increased the glomerular volume to levels seen in diabetic mice. This was associated with increased renal inflammation and a trend toward increased renal fibrosis. Both in vivo and in cultured renal proximal tubular epithelial cells, fatostatin increased the expression of the proinflammatory cytokine monocyte chemoattractant protein-1. Thus, SREBP inhibition with fatostatin not only is ineffective in preventing diabetic nephropathy but also leads to kidney injury in nondiabetic mice. Further research on the efficacy of other SREBP inhibitors and the specific roles of SREBP-1 and SREBP-2 in the treatment and pathogenesis of diabetic nephropathy is needed.
Collapse
Affiliation(s)
| | - Mandeep Marway
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | | | - Neel Mehta
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Alistar J Ingram
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| |
Collapse
|
105
|
Winter L, Wong LA, Jerums G, Seah JM, Clarke M, Tan SM, Coughlan MT, MacIsaac RJ, Ekinci EI. Use of Readily Accessible Inflammatory Markers to Predict Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2018; 9:225. [PMID: 29910771 PMCID: PMC5992400 DOI: 10.3389/fendo.2018.00225] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/20/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease is a common complication of type 1 and type 2 diabetes and is the primary cause of end-stage renal disease in developed countries. Early detection of diabetic kidney disease will facilitate early intervention aimed at reducing the rate of progression to end-stage renal disease. Diabetic kidney disease has been traditionally classified based on the presence of albuminuria. More recently estimated glomerular filtration rate has also been incorporated into the staging of diabetic kidney disease. While albuminuric diabetic kidney disease is well described, the phenotype of non-albuminuric diabetic kidney disease is now widely accepted. An association between markers of inflammation and diabetic kidney disease has previously been demonstrated. Effector molecules of the innate immune system including C-reactive protein, interleukin-6, and tumor necrosis factor-α are increased in patients with diabetic kidney disease. Furthermore, renal infiltration of neutrophils, macrophages, and lymphocytes are observed in renal biopsies of patients with diabetic kidney disease. Similarly high serum neutrophil and low serum lymphocyte counts have been shown to be associated with diabetic kidney disease. The neutrophil-lymphocyte ratio is considered a robust measure of systemic inflammation and is associated with the presence of inflammatory conditions including the metabolic syndrome and insulin resistance. Cross-sectional studies have demonstrated a link between high levels of the above inflammatory biomarkers and diabetic kidney disease. Further longitudinal studies will be required to determine if these readily available inflammatory biomarkers can accurately predict the presence and prognosis of diabetic kidney disease, above and beyond albuminuria, and estimated glomerular filtration rate.
Collapse
Affiliation(s)
- Lauren Winter
- Endocrine Centre of Excellence, Austin Health, Melbourne, VIC, Australia
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lydia A. Wong
- Endocrine Centre of Excellence, Austin Health, Melbourne, VIC, Australia
| | - George Jerums
- Endocrine Centre of Excellence, Austin Health, Melbourne, VIC, Australia
| | - Jas-mine Seah
- Endocrine Centre of Excellence, Austin Health, Melbourne, VIC, Australia
| | - Michele Clarke
- Endocrine Centre of Excellence, Austin Health, Melbourne, VIC, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Melinda T. Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richard J. MacIsaac
- Department of Endocrinology and Diabetes, St Vincent’s Health, Melbourne, VIC, Australia
- Department of Medicine, St Vincent’s Health, University of Melbourne, Melbourne, VIC, Australia
| | - Elif I. Ekinci
- Endocrine Centre of Excellence, Austin Health, Melbourne, VIC, Australia
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Elif I. Ekinci,
| |
Collapse
|
106
|
Bornfeldt KE, Kramer F, Batorsky A, Choi J, Hudkins KL, Tontonoz P, Alpers CE, Kanter JE. A Novel Type 2 Diabetes Mouse Model of Combined Diabetic Kidney Disease and Atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:343-352. [PMID: 29154962 DOI: 10.1016/j.ajpath.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Diabetic kidney disease and atherosclerotic disease are major causes of morbidity and mortality associated with type 2 diabetes (T2D), and diabetic kidney disease is a major cardiovascular risk factor. The black and tan, brachyury (BTBR) mouse strain with leptin deficiency (Lepob) has emerged as one of the best models of human diabetic kidney disease. However, no T2D mouse model of combined diabetic kidney disease and atherosclerosis exists. Our goal was to generate such a model. To this end, the low-density lipoprotein (LDL) receptor was targeted for degradation via inducible degrader of the LDL receptor (IDOL) overexpression, using liver-targeted adenoassociated virus serotype DJ/8 (AAV-DJ/8) in BTBR wild-type and BTBR Lepob mice. Liver-targeted IDOL-AAV-DJ/8 increased plasma LDL cholesterol compared with the control enhanced green fluorescent protein AAV-DJ/8. IDOL-induced dyslipidemia caused formation of atherosclerotic lesions of an intermediate stage, which contained both macrophages and smooth muscle cells. BTBR Lepob mice exhibited diabetic kidney disease. IDOL-induced dyslipidemia worsened albuminuria and glomerular macrophage accumulation but had no effect on mesangial expansion or podocyte numbers. Thus, by inducing hepatic degradation of the LDL receptor, we generated a T2D model of combined kidney disease and atherosclerosis. This model provides a new tool to study mechanisms, interactions, and treatment strategies of kidney disease and atherosclerosis in T2D.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington; Department of Pathology, UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Farah Kramer
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Anna Batorsky
- Department of Pathology, UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Jinkuk Choi
- Department of Pathology, University of California, Los Angeles, California; Department of Laboratory Medicine, University of California, Los Angeles, California; Molecular Biology Institute, University of California, Los Angeles, California
| | - Kelly L Hudkins
- Department of Pathology, UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Peter Tontonoz
- Department of Pathology, University of California, Los Angeles, California; Department of Laboratory Medicine, University of California, Los Angeles, California; Molecular Biology Institute, University of California, Los Angeles, California
| | - Charles E Alpers
- Department of Pathology, UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Jenny E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
107
|
Dai XY, Huang XR, Zhou L, Zhang L, Fu P, Manthey C, Nikolic-Paterson DJ, Lan HY. Targeting c-fms kinase attenuates chronic aristolochic acid nephropathy in mice. Oncotarget 2017; 7:10841-56. [PMID: 26909597 PMCID: PMC4905443 DOI: 10.18632/oncotarget.7460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/09/2016] [Indexed: 02/05/2023] Open
Abstract
Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some Chinese herbal medicines, but treatment remains ineffective. Macrophage accumulation is an early feature in human and experimental AAN; however, the role of macrophages in chronic AAN is unknown. We report here that targeting macrophages with fms-I, a selective inhibitor of the tyrosine kinase activity of the macrophage colony-stimulating factor receptor, suppressed disease progression in a mouse model of chronic AAN. Treatment with fms-I (10mg/kg/BID) from day 0 to 28 (prevention study) or from day 14 to 28 (intervention study) substantially inhibited macrophage accumulation and significantly improved renal dysfunction including a reduction in proteinuria and tubular damage. Progressive interstitial fibrosis (myofibroblast accumulation and collagen deposition) and renal inflammation (increased expression of MCP-1, MIF, and TNF-α) were also attenuated by fms-I treatment. These protective effects involved inhibition of TGF-β/Smad3 and NF-kB signaling. In conclusion, the present study establishes that macrophages are key inflammatory cells that exacerbates progressive tubulointerstitial damage in chronic AAN via mechanisms associated with TGF-β/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Targeting macrophages via a c-fms kinase inhibitor may represent a novel therapy for chronic AAN.
Collapse
Affiliation(s)
- Xiao Y Dai
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,Division of Nephrology, Mianyang Central Hospital, Mianyang, China.,Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao R Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Zhou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Zhang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Ping Fu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Carl Manthey
- Janssen Research and Development, LLC, Radnor, PA, USA
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Department of Medicine, Clayton, VIC, Australia
| | - Hui Y Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
108
|
Chen P, Yuan Y, Zhang T, Xu B, Gao Q, Guan T. Pentosan polysulfate ameliorates apoptosis and inflammation by suppressing activation of the p38 MAPK pathway in high glucose‑treated HK‑2 cells. Int J Mol Med 2017; 41:908-914. [PMID: 29207166 PMCID: PMC5752165 DOI: 10.3892/ijmm.2017.3290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 11/20/2017] [Indexed: 01/26/2023] Open
Abstract
The apoptosis of tubular epithelial cells in diabetic nephropathy (DN) is commonly observed in human renal biopsies. Inflammation plays a key role in DN, and pentosan polysulfate (PPS) has been shown to largely attenuate the inflammation of nephropathy in aging diabetic mice. p38 mitogen-activated protein kinase (p38 MAPK) plays a crucial role in tissue inflammation and cell apoptosis, and it is activated by hyperglycemia. In the present study, high glucose (HG)-treated human renal proximal tubular epithelial cells (HK-2) were used to examine the protective effects of PPS against HG-stimulated apoptosis and inflammation. The results of the study revealed that PPS markedly suppressed the HG-induced reduction in cell viability. Incubation of HK-2 cells with HG activated the p38 MAPK pathway and, subsequently, as confirmed by western blot analysis and flow cytometry, increased cell apoptosis, which was blocked by PPS. In addition, PPS treatment significantly inhibited HG-stimulated p38 MAPK and nuclear factor-κB activation, and reduced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6. In conclusion, PPS ameliorates p38 MAPK-mediated renal cell apoptosis and inflammation. The anti-apoptotic actions and anti-inflammatory effects of PPS prompt further investigation of this compound as a promising therapeutic agent against DN.
Collapse
Affiliation(s)
- Ping Chen
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yang Yuan
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Tianying Zhang
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bo Xu
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
109
|
Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK Signaling Pathway in Renal Fibrosis. Front Physiol 2017; 8:829. [PMID: 29114233 PMCID: PMC5660697 DOI: 10.3389/fphys.2017.00829] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/06/2017] [Indexed: 01/07/2023] Open
Abstract
Fibrosis of the glomerular and tubulointerstitial compartments is a common feature of chronic kidney disease leading to end-stage renal failure. This fibrotic process involves a number of pathologic mechanisms, including cell death and inflammation. This review focuses on the role of the c-Jun amino terminal kinase (JNK) signaling pathway in the development of renal fibrosis. The JNK pathway is activated in response to various cellular stresses and plays an important role in cell death and inflammation. Activation of JNK signaling is a common feature in most forms of human kidney injury, evident in both intrinsic glomerular and tubular cells as well as in infiltrating leukocytes. Similar patterns of JNK activation are evident in animal models of acute and chronic renal injury. Administration of JNK inhibitors can protect against acute kidney injury and suppress the development of glomerulosclerosis and tubulointerstitial fibrosis. In particular, JNK activation in tubular epithelial cells may be a pivotal mechanism in determining the outcome of both acute kidney injury and progression of chronic kidney disease. JNK signaling promotes tubular epithelial cell production of pro-inflammatory and pro-fibrotic molecules as well as tubular cell de-differentiation toward a mesenchymal phenotype. However, the role of JNK within renal fibroblasts is less well-characterized. The JNK pathway interacts with other pro-fibrotic pathways, most notable with the TGF-β/SMAD pathway. JNK activation can augment TGF-β gene transcription, induce expression of enzymes that activate the latent form of TGF-β, and JNK directly phosphorylates SMAD3 to enhance transcription of pro-fibrotic molecules. In conclusion, JNK signaling plays an integral role in several key mechanisms operating in renal fibrosis. Targeting of JNK enzymes has therapeutic potential for the treatment of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Keren Grynberg
- Department of Nephrology, Monash Medical Centre, Monash University Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
| | - Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Monash University Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Monash University Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
110
|
Jha JC, Banal C, Okabe J, Gray SP, Hettige T, Chow BSM, Thallas-Bonke V, De Vos L, Holterman CE, Coughlan MT, Power DA, Skene A, Ekinci EI, Cooper ME, Touyz RM, Kennedy CR, Jandeleit-Dahm K. NADPH Oxidase Nox5 Accelerates Renal Injury in Diabetic Nephropathy. Diabetes 2017; 66:2691-2703. [PMID: 28747378 DOI: 10.2337/db16-1585] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022]
Abstract
NADPH oxidase-derived excessive production of reactive oxygen species (ROS) in the kidney plays a key role in mediating renal injury in diabetes. Pathological changes in diabetes include mesangial expansion and accumulation of extracellular matrix (ECM) leading to glomerulosclerosis. There is a paucity of data about the role of the Nox5 isoform of NADPH oxidase in animal models of diabetic nephropathy since Nox5 is absent in the mouse genome. Thus, we examined the role of Nox5 in human diabetic nephropathy in human mesangial cells and in an inducible human Nox5 transgenic mouse exposed to streptozotocin-induced diabetes. In human kidney biopsies, Nox5 was identified to be expressed in glomeruli, which appeared to be increased in diabetes. Colocalization demonstrated Nox5 expression in mesangial cells. In vitro, silencing of Nox5 in human mesangial cells was associated with attenuation of the hyperglycemia and TGF-β1-induced enhanced ROS production, increased expression of profibrotic and proinflammatory mediators, and increased TRPC6, PKC-α, and PKC-β expression. In vivo, vascular smooth muscle cell/mesangial cell-specific overexpression of Nox5 in a mouse model of diabetic nephropathy showed enhanced glomerular ROS production, accelerated glomerulosclerosis, mesangial expansion, and ECM protein (collagen IV and fibronectin) accumulation as well as increased macrophage infiltration and expression of the proinflammatory chemokine MCP-1. Collectively, this study provides evidence of a role for Nox5 and its derived ROS in promoting progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Jay C Jha
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Claudine Banal
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jun Okabe
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Human Epigenetics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Stephen P Gray
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thushan Hettige
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Bryna S M Chow
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Vicki Thallas-Bonke
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Lisanne De Vos
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Chet E Holterman
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Melinda T Coughlan
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - David A Power
- Department of Nephrology and Institute of Breathing and Sleep, Austin Health, Heidelberg, Australia
| | - Alison Skene
- Department of Anatomical Pathology, Austin Health, Heidelberg, Australia
| | - Elif I Ekinci
- Endocrine Centre, Austin Health, Repatriation Campus, Heidelberg, Australia
| | - Mark E Cooper
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Chris R Kennedy
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Karin Jandeleit-Dahm
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
111
|
Boels MGS, Koudijs A, Avramut MC, Sol WMPJ, Wang G, van Oeveren-Rietdijk AM, van Zonneveld AJ, de Boer HC, van der Vlag J, van Kooten C, Eulberg D, van den Berg BM, IJpelaar DHT, Rabelink TJ. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2430-2440. [PMID: 28837800 DOI: 10.1016/j.ajpath.2017.07.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
Inhibition of monocyte chemotactic protein-1 (MCP-1) with the Spiegelmer emapticap pegol (NOX-E36) shows long-lasting albuminuria-reducing effects in diabetic nephropathy. MCP-1 regulates inflammatory cell recruitment and differentiation of macrophages. Because the endothelial glycocalyx is also reduced in diabetic nephropathy, we hypothesized that MCP-1 inhibition restores glomerular barrier function through influencing macrophage cathepsin L secretion, thus reducing activation of the glycocalyx-degrading enzyme heparanase. Four weeks of treatment of diabetic Apoe knockout mice with the mouse-specific NOX-E36 attenuated albuminuria without any change in systemic hemodynamics, despite persistent loss of podocyte function. MCP-1 inhibition, however, increased glomerular endothelial glycocalyx coverage, with preservation of heparan sulfate. Mechanistically, both glomerular cathepsin L and heparanase expression were reduced. MCP-1 inhibition resulted in reduced CCR2-expressing Ly6Chi monocytes in the peripheral blood, without affecting overall number of kidney macrophages at the tissue level. However, the CD206+/Mac3+ cell ratio, as an index of presence of anti-inflammatory macrophages, increased in diabetic mice after treatment. Functional analysis of isolated renal macrophages showed increased release of IL-10, whereas tumor necrosis factor and cathepsin L release was reduced, further confirming polarization of tissue macrophages toward an anti-inflammatory phenotype during mouse-specific NOX-E36 treatment. We show that MCP-1 inhibition restores glomerular endothelial glycocalyx and barrier function and reduces tissue inflammation in the presence of ongoing diabetic injury, suggesting a therapeutic potential for NOX-E36 in diabetic nephropathy.
Collapse
Affiliation(s)
- Margien G S Boels
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Angela Koudijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - M Cristina Avramut
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wendy M P J Sol
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gangqi Wang
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Annemarie M van Oeveren-Rietdijk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C de Boer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cees van Kooten
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Bernard M van den Berg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Daphne H T IJpelaar
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
112
|
Diabetic nephropathy - is this an immune disorder? Clin Sci (Lond) 2017; 131:2183-2199. [PMID: 28760771 DOI: 10.1042/cs20160636] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Chronic diabetes is associated with metabolic and haemodynamic stresses which can facilitate modifications to DNA, proteins and lipids, induce cellular dysfunction and damage, and stimulate inflammatory and fibrotic responses which lead to various types of renal injury. Approximately 30-40% of patients with diabetes develop nephropathy and this renal injury normally progresses in about a third of patients. Due to the growing incidence of diabetes, diabetic nephropathy is now the main cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence from experimental and clinical studies has demonstrated that renal inflammation plays a critical role in determining whether renal injury progresses during diabetes. However, the immune response associated with diabetic nephropathy is considerably different to that seen in autoimmune kidney diseases or in acute kidney injury arising from episodes of ischaemia or infection. This review evaluates the role of the immune system in the development of diabetic nephropathy, including the specific contributions of leucocyte subsets (macrophages, neutrophils, mast cells, T and B lymphocytes), danger-associated molecular patterns (DAMPs), inflammasomes, immunoglobulin and complement. It also examines factors which may influence the development of the immune response, including genetic factors and exposure to other kidney insults. In addition, this review discusses therapies which are currently under development for targeting the immune system in diabetic nephropathy and indicates those which have proceeded into clinical trials.
Collapse
|
113
|
De Blasio MJ, Ramalingam A, Cao AH, Prakoso D, Ye JM, Pickering R, Watson AM, de Haan JB, Kaye DM, Ritchie RH. The superoxide dismutase mimetic tempol blunts diabetes-induced upregulation of NADPH oxidase and endoplasmic reticulum stress in a rat model of diabetic nephropathy. Eur J Pharmacol 2017; 807:12-20. [DOI: 10.1016/j.ejphar.2017.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
114
|
Chen X, Wu R, Kong Y, Yang Y, Gao Y, Sun D, Liu Q, Dai D, Lu Z, Wang N, Ge S, Wang F. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation. Oncotarget 2017; 8:31915-31922. [PMID: 28404881 PMCID: PMC5458258 DOI: 10.18632/oncotarget.16651] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation have been demonstrated to be involved in the onset and promotion of diabetic nephropathy (DN).Tanshinone IIA (Tan) possesses both antioxidant and anti-inflammatory properties. Here, the aim of the present study was to explore whether Tan could attenuate renal damage in the rats with streptozotocin (STZ)-induced diabetes and its potential mechanisms. Tan was gavaged to STZ-induced diabetic rats at the dose of 10mg/kg once a day for 12 weeks. Tan treatment significantly attenuated albuminuria and renal histopathology in diabetic rats. Besides, Tan treatment also effectively inhibited oxidative stress and inflammatory reaction in the kidneys of diabetic rats. Our study provided evidence that the protective effect of Tan on diabetes-induced renal injury is associated with inhibition of oxidative stress and inflammation. Tan may be a potential candidate for the treatment of DN.
Collapse
Affiliation(s)
- Xia Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwei Kong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuting Yang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dandan Sun
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qizhen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dongjun Dai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Sheng Ge
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai 200233, China
| |
Collapse
|
115
|
Pichler R, Afkarian M, Dieter BP, Tuttle KR. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 2017; 312:F716-F731. [PMID: 27558558 PMCID: PMC6109808 DOI: 10.1152/ajprenal.00314.2016] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/16/2016] [Indexed: 01/10/2023] Open
Abstract
Increasing incidences of obesity and diabetes have made diabetic kidney disease (DKD) the leading cause of chronic kidney disease and end-stage renal disease worldwide. Despite current pharmacological treatments, including strategies for optimizing glycemic control and inhibitors of the renin-angiotensin system, DKD still makes up almost one-half of all cases of end-stage renal disease in the United States. Compelling and mounting evidence has clearly demonstrated that immunity and inflammation play a paramount role in the pathogenesis of DKD. This article reviews the involvement of the immune system in DKD and identifies important roles of key immune and inflammatory mediators. One of the most recently identified biomarkers is serum amyloid A, which appears to be relatively specific for DKD. Novel and evolving treatment approaches target protein kinases, transcription factors, chemokines, adhesion molecules, growth factors, advanced glycation end-products, and other inflammatory molecules. This is the beginning of a new era in the understanding and treatment of DKD, and we may have finally reached a tipping point in our fight against the growing burden of DKD.
Collapse
Affiliation(s)
- Raimund Pichler
- Division of Nephrology, University of Washington, Seattle, Washington;
| | - Maryam Afkarian
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
| | - Brad P Dieter
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
- Providence Health Care, Spokane, Washington
| | - Katherine R Tuttle
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
- Providence Health Care, Spokane, Washington
| |
Collapse
|
116
|
Moritz RJ, LeBaron RG, Phelix CF, Rupaimoole R, Kim HS, Tsin A, Asmis R. Macrophage TGF- β1 and the Proapoptotic Extracellular Matrix Protein BIGH3 Induce Renal Cell Apoptosis in Prediabetic and Diabetic Conditions. ACTA ACUST UNITED AC 2017; 7:496-510. [PMID: 28149671 PMCID: PMC5279341 DOI: 10.4236/ijcm.2016.77055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metabolically stressed kidney is in part characterized by infiltrating macrophages and macrophage-derived TGF-β1 that promote the synthesis of various ECM molecules. TGF-β1 strongly enhances the expression of the gene TGFBI that encodes a cell-adhesion class, proapoptotic ECM protein called BIGH3. We hypothesized that in a diabetic environment a relationship between infiltrating macrophages, macrophage-derived TGF-β1, and BIGH3 protein promotes renal cell death. To investigate this hypothesis, we used our mouse model of diabetic complications. Mice on a high-fat diet developed hypercholesterolemia, and exposure to streptozotocin rendered hypercholesterolemic mice diabetic. Immunohistochemical images show increased macrophage infiltration and BIGH3 protein in the kidney cortices of hypercholesterolemic and diabetic mice. Macrophages induced a two-fold increase in BIGH3 expression and an 86% increase in renal proximal tubule epithelial cell apoptosis. TGF-β1 antibody and TGF-β1 receptor chemical antagonist blocked macrophage-induced apoptosis. BIGH3 antibody completely blocked apoptosis that was induced by TGF-β1, and blocked apoptosis induced by exogenous recombinant BIGH3. These results uncover a distinctive interplay of macrophage-derived TGF-β1, BIGH3 protein, and apoptosis, and indicate that BIGH3 is central in a novel pathway that promotes diabetic nephropathy. Macrophage TGF-β1 and BIGH3 are identified as prediabetic biomarkers, and potential therapeutic targets for intervention in prediabetic and diabetic individuals.
Collapse
Affiliation(s)
- Robert J Moritz
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Richard G LeBaron
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Clyde F Phelix
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Rajesha Rupaimoole
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Hong Seok Kim
- Departments of Biochemistry and Clinical Laboratory Sciences, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Andrew Tsin
- Department of Biology, University of Texas at San Antonio, San Antonio, USA
| | - Reto Asmis
- Departments of Biochemistry and Clinical Laboratory Sciences, School of Health Professions, University of Texas Health Science Center at San Antonio, San Antonio, USA
| |
Collapse
|
117
|
Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 2017; 33:55-63. [DOI: 10.1016/j.cytogfr.2016.10.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022]
|
118
|
Fakhruddin S, Alanazi W, Jackson KE. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. J Diabetes Res 2017; 2017:8379327. [PMID: 28164134 PMCID: PMC5253173 DOI: 10.1155/2017/8379327] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure.
Collapse
Affiliation(s)
- Selim Fakhruddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Wael Alanazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Keith E. Jackson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| |
Collapse
|
119
|
Chen J, Hou XF, Wang G, Zhong QX, Liu Y, Qiu HH, Yang N, Gu JF, Wang CF, Zhang L, Song J, Huang LQ, Jia XB, Zhang MH, Feng L. Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:433-444. [PMID: 27664441 DOI: 10.1016/j.jep.2016.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multiple lines of evidences have suggested that endoplasmic reticulum (ER) stress-related inflammatory responses play a critical role in the pathogenesis of diabetic nephropathy (DN). Moutan Cortex (MC), the root bark of Paeonia suffruticosa Andr., is a well-known traditional Chinese medicine (TCM), which has been used clinically for treating inflammatory diseases in China. The findings from our previous research suggested that terpene glycoside (TG) component of MC possessed favorable anti-inflammatory properties in curing DN. However, the underlying mechanisms of MC-TG for treating DN are still unknown. AIM OF THE STUDY To explore the role of ER stress-related inflammatory responses in the progression of DN, and to investigate the underlying protective mechanisms of MC-TG in kidney damage. MATERIALS AND METHODS DN rats and advanced glycation end-products (AGEs) induced HBZY-1 cell dysfunction were established to evaluate the protective effect of MC-TG on ameliorating renal injury. Evaluation of pathological lesions was performed by Masson staining and transmission electron microscopy (TEM). Interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), glucose regulated protein 78 (GRP78/Bip), as well as spliced X box binding protein 1(XBP-1(s)) levels in rat serum were detected by an enzyme-linked immunosorbent assay (ELISA). Furthermore, western blotting (WB) was applied to detect the protein expressions including IL-6, MCP-1, intercellular cell adhesion molecule-1 (ICAM-1), GRP78/Bip, XBP-1 (s), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), cleaved activating transcription factor 6 (ATF6), phosphorylated PKR-like endoplasmic reticulum kinase (p-PERK), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in vivo and in vitro. Immunohistochemistry (IHC) was carried out to determine the phosphorylation of IRE1α and NF-κB p65 in kidney tissues. RESULTS Pretreatment with MC-TG could markedly improve renal insufficiency and pathologic changes. It could down-regulate ER stress-related factors GRP78/Bip, XBP-1(s) levels, and also reduce the pro-inflammatory molecules IL-6, MCP-1, and ICAM-1 expressions. Furthermore, a significant decrease in phosphorylation of IRE1α and NF-κB p65 by the treatment of MC-TG. CONCLUSIONS These findings indicated that MC-TG ameliorated ER stress-related inflammation in the pathogenesis of DN, wherein the protective mechanism might be associated with the inhibition of IRE1/NF-κB activation. Thus, MC-TG might be a potential therapeutic candidate for the prevention and treatment of DN.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Cell Line
- Chromatography, High Pressure Liquid
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Endoplasmic Reticulum Stress/drug effects
- Glycation End Products, Advanced/metabolism
- Glycosides/chemistry
- Glycosides/isolation & purification
- Glycosides/pharmacology
- Inflammation Mediators/metabolism
- Male
- Membrane Proteins/metabolism
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/ultrastructure
- Paeonia/chemistry
- Phosphorylation
- Phytotherapy
- Plants, Medicinal
- Protein Serine-Threonine Kinases/metabolism
- Rats, Sprague-Dawley
- Renal Insufficiency/etiology
- Renal Insufficiency/metabolism
- Renal Insufficiency/pathology
- Renal Insufficiency/prevention & control
- Signal Transduction/drug effects
- Streptozocin
- Terpenes/chemistry
- Terpenes/isolation & purification
- Terpenes/pharmacology
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng 100700, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Xue-Feng Hou
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230012, PR China
| | - Gang Wang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Qing-Xiang Zhong
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Ying Liu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Hui-Hui Qiu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Nan Yang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Jun-Fei Gu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Chun-Fei Wang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Li Zhang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Jie Song
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng 100700, PR China
| | - Xiao-Bin Jia
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China.
| | - Ming-Hua Zhang
- Department of Pharmacy, Wuxi Xishan People's Hospital, Jiangsu, Wuxi 214011, PR China.
| | - Liang Feng
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China.
| |
Collapse
|
120
|
Ruiz-Andres O, Sanchez-Niño MD, Moreno JA, Ruiz-Ortega M, Ramos AM, Sanz AB, Ortiz A. Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. Am J Physiol Renal Physiol 2016; 311:F1329-F1340. [PMID: 27760772 DOI: 10.1152/ajprenal.00487.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is associated to an increased risk of death, CKD progression, and acute kidney injury (AKI) even from early stages, when glomerular filtration rate (GFR) is preserved. The link between early CKD and these risks is unclear, since there is no accumulation of uremic toxins. However, pathological albuminuria and kidney inflammation are frequent features of early CKD, and the production of kidney protective factors may be decreased. Indeed, Klotho expression is already decreased in CKD category G1 (normal GFR). Klotho has anti-aging and nephroprotective properties, and decreased Klotho levels may contribute to increase the risk of death, CKD progression, and AKI. In this review, we discuss the downregulation by mediators of inflammation of molecules with systemic and/or renal local protective functions, exemplified by Klotho and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a transcription factor that promotes mitochondrial biogenesis. Cytokines such as TWEAK, TNF-α, or transforming growth factor -β1 produced locally during kidney injury or released from inflammatory sites at other organs may decrease kidney expression of Klotho and PGC-1α or lead to suboptimal recruitment of these nephroprotective proteins. Transcription factors (e.g., Smad3 and NF-κB) and epigenetic mechanisms (e.g., histone acetylation or methylation) contribute to downregulate the expression of Klotho and/or PGC-1α, while histone crotonylation promotes PGC-1α expression. NF-κBiz facilitates the repressive effect of NF-κB on Klotho expression. A detailed understanding of these mediators may contribute to the development of novel therapeutic approaches to prevent CKD progression and its negative impact on mortality and AKI.
Collapse
Affiliation(s)
- Olga Ruiz-Andres
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Maria Dolores Sanchez-Niño
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Juan Antonio Moreno
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Adrian Mario Ramos
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Ana Belen Sanz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid.,REDINREN, Madrid, Spain; and
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid; .,REDINREN, Madrid, Spain; and.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| |
Collapse
|
121
|
Involvement of the NLRC4-Inflammasome in Diabetic Nephropathy. PLoS One 2016; 11:e0164135. [PMID: 27706238 PMCID: PMC5051905 DOI: 10.1371/journal.pone.0164135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. The role of inflammation in DN has only recently been recognized. It has been shown that the NLRP3-inflammasome contributes to DN development by inducing interleukin (IL)-1β processing and secretion. In an effort to understand other IL-1β activating mechanism during DN development, we examined the role of the NLRC4-inflammasome in DN and found that NLRC4 is a parallel mechanism, in addition to the NLRP3-inflammasome, to induce pro-IL-1β processing and activation. We found that the expression of NLRC4 is elevated in DN kidneys. NLRC4-deficiency results in diminished DN disease progression, as manifested by a decrease in blood glucose and albumin excretion, as well as preserved renal histology. We further found that DN kidneys have increased F4/80+ macrophages, increased IL-1β production, and other signaling pathways related to kidney pathology such as activation of NF-κB and MAP kinase pathways, all of which were rescued by NLRC4-deficiency. This study demonstrates NLRC4-driven IL-1β production as critical for the progression of DN, which underscores the importance to target this pathway to alleviate this devastating disease.
Collapse
|
122
|
Nair M, le Roux CW, Docherty NG. Mechanisms underpinning remission of albuminuria following bariatric surgery. Curr Opin Endocrinol Diabetes Obes 2016; 23:366-72. [PMID: 27584009 DOI: 10.1097/med.0000000000000279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Albuminuria is a biomarker of renal injury commonly used to monitor progression of diabetic kidney disease. The appearance of excess albumin in the urine reflects alterations in the structure and permeability of the glomerular filtration barrier. The present article summarizes the clinical evidence base for remission of albuminuria after bariatric surgery. It furthermore focuses on how beneficial impacts on glomerular podocyte structure and function may explain this phenomenon. RECENT FINDINGS A coherent clinical evidence base is emerging demonstrating remission of albuminuria following bariatric surgery in patients with obesity and diabetes. The impaired metabolic milieu in diabetic kidney disease drives podocyte dedifferentiation and death through glucotoxic, lipotoxic proinflammatory, and pressure-related stress. Improvements in these parameters after surgery correlate with improvements in albuminuria and preclinical studies provide mechanistic data that support the existence of cause-effect relationship. SUMMARY The benefits of bariatric surgery extend beyond weight loss in diabetes to encompass beneficial effects on diabetic renal injury. Attenuation of the toxic metabolic milieu that the podocyte is exposed to postbariatric surgery suggests that the restitution of podocyte health is a key cellular event underpinning remission of albuminuria.
Collapse
Affiliation(s)
- Meera Nair
- aDiabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, IrelandbDepartment of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedencInvestigative Science, Imperial College London, London, UK
| | | | | |
Collapse
|
123
|
Abstract
PURPOSE OF REVIEW Recently, initial studies have been carried out in patients using monocyte chemoattractant protein-1 (MCP-1) inhibitors. This review summarizes the known function of MCP-1 in regulating monocytes during inflammation and its role in inflammatory disease of the kidney. RECENT FINDINGS MCP-1 is one of the first chemokines described and plays an important role in renal inflammatory disease. The function of MCP-1 has been investigated and analyzed in both animal models of renal disease and renal patients. MCP-1 mediates firstly the release of monocytes from the bone marrow, and then generates a gradient in the endothelial glycocalyx to direct monocytes to sites of inflammation, thereby alleviating the migration of blood leukocytes into the inflamed tissue. In addition, MCP-1 has direct signaling effects in monocytes and influences migration, proliferation, and differentiation of leukocytes. Blockade of MCP-1 in several models of renal disease has ameliorated the disease, suggesting that inhibition of MCP-1 is a promising and valid strategy to treat patients with renal inflammatory disease. SUMMARY Understanding the role of MCP-1 in monocyte homeostasis and the implications of MCP-1 inhibition in renal disease will help in designing better diagnostic and therapeutic strategies in patients with inflammatory renal disease.
Collapse
|
124
|
Duthie F, O’Sullivan ED, Hughes J. ISN Forefronts Symposium 2015: The Diverse Function of Macrophages in Renal Disease. Kidney Int Rep 2016. [PMCID: PMC5720538 DOI: 10.1016/j.ekir.2016.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Experimental and human studies indicate that macrophages play a key role within the diseased kidney and represent a target for novel therapies. This brief review outlines the involvement and nature of macrophages in renal disease and highlights the phenotypic plasticity of these cells and their responsiveness to the renal microenvironment.
Collapse
|
125
|
Matsui T, Nakamura N, Ojima A, Nishino Y, Yamagishi SI. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta. Nutr Metab Cardiovasc Dis 2016; 26:797-807. [PMID: 27212619 DOI: 10.1016/j.numecd.2016.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Advanced glycation end products (AGEs)-receptor RAGE interaction evokes oxidative stress and inflammatory reactions, thereby being involved in endothelial cell (EC) damage in diabetes. Sulforaphane is generated from glucoraphanin, a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, by myrosinase. Sulforaphane has been reported to protect against oxidative stress-mediated cell and tissue injury. However, effects of sulforaphane on AGEs-induced vascular damage remain unclear. METHODS AND RESULTS In this study, we investigated whether and how sulforaphane could inhibit inflammation in AGEs-exposed human umbilical vein ECs (HUVECs) and AGEs-injected rat aorta. Sulforaphane treatment for 4 or 24 h dose-dependently inhibited the AGEs-induced increase in RAGE, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecular-1 (VCAM-1) gene expression in HUVECs. AGEs significantly stimulated MCP-1 production by, and THP-1 cell adhesion to, HUVECs, both of which were prevented by 1.6 μM sulforaphane. Sulforaphane significantly suppressed oxidative stress generation and NADPH oxidase activation evoked by AGEs in HUVECs. Furthermore, aortic RAGE, ICAM-1 and VCAM-1 expression in AGEs-injected rats were increased, which were suppressed by simultaneous infusion of sulforaphane. CONCLUSION The present study demonstrated for the first time that sulforaphane could inhibit inflammation in AGEs-exposed HUVECs and AGEs-infused rat aorta partly by suppressing RAGE expression through its anti-oxidative properties. Inhibition of the AGEs-RAGE axis by sulforaphane might be a novel therapeutic target for vascular injury in diabetes.
Collapse
Affiliation(s)
- T Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - N Nakamura
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - A Ojima
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Y Nishino
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - S-I Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.
| |
Collapse
|
126
|
Zhang H, Wang H, Yan M, Zhao T, Lu X, Zhu B, Gong Y, Li P. A recombinant TGF-β1 vaccine ameliorates diabetic nephropathy in OLETF rats. Immunotherapy 2016; 8:1045-57. [PMID: 27485077 DOI: 10.2217/imt-2015-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The aim of this study was to investigate the potential of a recombinant vaccine encoding TGF-β1 in OLETF rats with diabetic nephropathy (DN). METHODS OLETF rats were treated with vehicle or TGF-β1 vaccine. LETO rats were used as normal controls. At 42 weeks after immunization with vaccine, samples from blood, urine and kidney were collected for biochemical, histologic, immunohistochemical and molecular analyses. RESULTS OLETF rats treated with the vaccine reduced blood glucose levels, improved renal pathological changes, and inhibited overexpression of TGF-β1 and p-Smad3, as well as MCP-1, TNF-α and IL-1β. CONCLUSION TGF-β1 vaccine attenuated diabetic nephropathy in OLETF rats through reduction of inflammation, improvement of kidney fibrosis and partial correction of glucose metabolism.
Collapse
Affiliation(s)
- Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Hua Wang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoguang Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Zhu
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
127
|
Herrera M, Söderberg M, Sabirsh A, Valastro B, Mölne J, Santamaria B, Valverde AM, Guionaud S, Heasman S, Bigley A, Jermutus L, Rondinone C, Coghlan M, Baker D, Quinn CM. Inhibition of T-cell activation by the CTLA4-Fc Abatacept is sufficient to ameliorate proteinuric kidney disease. Am J Physiol Renal Physiol 2016; 312:F748-F759. [PMID: 27440778 DOI: 10.1152/ajprenal.00179.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) remains an unmet medical challenge as its prevalence is projected to continue to increase and specific medicines for treatment remain undeveloped. Activation of the immune system, in particular T-cells, is emerging as a possible mechanism underlying DN disease progression in humans and animal models. We hypothesized that inhibition of T-cell activation will ameliorate DN. Interaction of B7-1 (CD80) on the surface of antigen presenting cells with its binding partners, CTLA4 (CD152) and CD28 on T-cells, is essential for T-cell activation. In this study we used the soluble CTLA4-Fc fusion protein Abatacept to block cell surface B7-1, preventing the cellular interaction and inhibiting T-cell activation. When Abatacept was dosed in an animal model of diabetes-induced albuminuria, it reduced albuminuria in both prevention and intervention modes. The number of T-cells infiltrating the kidneys of DN animals correlated with the degree of albuminuria, and treatment with Abatacept reduced the number of renal T-cells. As B7-1 induction has been recently proposed to underlie podocyte damage in DN, Abatacept could be efficacious in DN by protecting podocytes. However, this does not appear to be the case as B7-1 was not expressed in 1) kidneys of DN animals; 2) stimulated human podocytes in culture; or 3) glomeruli of DN patients. We conclude that Abatacept ameliorates DN by blocking systemic T-cell activation and not by interacting with podocytes.
Collapse
Affiliation(s)
- Marcela Herrera
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom;
| | | | - Alan Sabirsh
- Cardiovascular & Metabolic Diseases, AstraZeneca, Gothenburg, Sweden
| | - Barbara Valastro
- Cardiovascular & Metabolic Diseases, AstraZeneca, Gothenburg, Sweden
| | | | - Beatriz Santamaria
- Institute for Biomedical Research Alberto Sols, CSIC, UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, ISCIII), Madrid, Spain; and
| | - Angela M Valverde
- Institute for Biomedical Research Alberto Sols, CSIC, UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, ISCIII), Madrid, Spain; and
| | - Silvia Guionaud
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| | - Stephanie Heasman
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| | - Alison Bigley
- Drug Safety and Metabolism, AstraZeneca, Cheshire, United Kingdom
| | - Lutz Jermutus
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| | - Cristina Rondinone
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| | - Matthew Coghlan
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| | - David Baker
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| | - Carol Moreno Quinn
- Cardiovascular & Metabolic Diseases, MedImmune, Cambridge, United Kingdom
| |
Collapse
|
128
|
Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits. Life Sci 2016; 157:82-90. [DOI: 10.1016/j.lfs.2016.05.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022]
|
129
|
Hojs R, Ekart R, Bevc S, Hojs N. Markers of Inflammation and Oxidative Stress in the Development and Progression of Renal Disease in Diabetic Patients. Nephron Clin Pract 2016; 133:159-62. [PMID: 27344598 DOI: 10.1159/000447434] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/03/2016] [Indexed: 11/19/2022] Open
Abstract
The prevalence of diabetes is increasing and has already reached pandemic proportions. Diabetes is a well-known risk factor for chronic kidney disease. Diabetic kidney disease (DKD) occurs in up to 40% of people with type 1 or 2 diabetes and is nowadays the leading cause of end-stage renal disease (ESRD). Among several factors involved in the development and progression of DKD are also inflammation and oxidative stress. Unfortunately, there is a paucity of sensitive and specific biomarkers for the early prediction of patients who will develop DKD or will progress to ESRD. This review summarizes the evidence regarding the prognostic value and benefits of targeting markers of inflammation (pro-inflammatory cytokines, tumour necrosis factor-α (TNF-α) and TNF-α receptors, adhesion molecules, chemokines) and markers of oxidative stress. Some of these biomarkers are promising, but further studies are needed before they can be used in clinical practice.
Collapse
Affiliation(s)
- Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Clinical Centre, Maribor, Slovenia
| | | | | | | |
Collapse
|
130
|
Matsui T, Yamagishi S, Nakamura K, Inoue H, Takeuchi M. Nifedipine, a Calcium-channel Blocker, Inhibits Advanced Glycation End-product-induced Expression of Monocyte Chemoattractant Protein-1 in Human Cultured Mesangial Cells. J Int Med Res 2016; 35:107-12. [PMID: 17408061 DOI: 10.1177/147323000703500111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The interaction between advanced glycation end-products (AGEs) and their receptors mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. This study investigated whether nifedipine, a widely used anti-hypertensive drug, suppresses expression of monocyte chemoattractant protein-1 (MCP-1), a chemokine that mediates the recruitment of monocytes to inflammatory sites, in AGE-exposed human cultured mesangial cells. Cells were treated with 100 μg/ml AGE-bovine serum albumin (BSA) or non-glycated BSA in the presence or absence of 1 μM nifedipine or 50 nM diphenylene iodonium, an inhibitor of reduced nicotinamide-adenine dinucleotide phosphate oxidase, for 4 or 24 h. Expression of MCP-1 mRNA was measured using a semi-quantitative reverse transcription-polymerase chain reaction; MCP-1 protein production was measured using an enzyme-linked immunosorbent assay. AGEs significantly increased both MCP-1 mRNA expression and protein production in mesangial cells; this increase was blocked by both nifedipine and diphenylene iodonium. These results suggest that nifedipine could play a protective role against early diabetic nephropathy by suppressing MCP-1 overexpression via blockade of AGE signalling in mesangial cells.
Collapse
Affiliation(s)
- T Matsui
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | |
Collapse
|
131
|
Bertinat R, Westermeier F, Silva P, Shi J, Nualart F, Li X, Yáñez AJ. Anti-Diabetic Agent Sodium Tungstate Induces the Secretion of Pro- and Anti-Inflammatory Cytokines by Human Kidney Cells. J Cell Physiol 2016; 232:355-362. [PMID: 27186953 DOI: 10.1002/jcp.25429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 02/04/2023]
Abstract
Diabetic kidney disease (DKD) is the major cause of end stage renal disease. Sodium tungstate (NaW) exerts anti-diabetic and immunomodulatory activities in diabetic animal models. Here, we used primary cultures of renal proximal tubule epithelial cells derived from type-2-diabetic (D-RPTEC) and non-diabetic (N-RPTEC) subjects as in vitro models to study the effects of NaW on cytokine secretion, as these factors participate in intercellular regulation of inflammation, cell growth and death, differentiation, angiogenesis, development, and repair, all processes that are dysregulated during DKD. In basal conditions, D-RPTEC cells secreted higher levels of prototypical pro-inflammatory IL-6, IL-8, and MCP-1 than N-RPTEC cells, in agreement with their diabetic phenotype. Unexpectedly, NaW further induced IL-6, IL-8, and MCP-1 secretion in both N- and D-RPTEC, together with lower levels of IL-1 RA, IL-4, IL-10, and GM-CSF, suggesting that it may contribute to the extent of renal damage/repair during DKD. Besides, NaW induced the accumulation of IκBα, the main inhibitor protein of one major pathway involved in cytokine production, suggesting further anti-inflammatory effect in the long-term. A better understanding of the mechanisms involved in the interplay between the anti-diabetic and immunomodulatory properties of NaW will facilitate future studies about its clinical relevance. J. Cell. Physiol. 232: 355-362, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile. .,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. .,Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Francisco Westermeier
- Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Centro Avanzado de Enfermedades Crónicas (ACCDiS), Universidad de Chile, Santiago, Chile.,Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pamela Silva
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jie Shi
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Xuhang Li
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alejandro J Yáñez
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile. .,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
132
|
Manson SR, Austin PF, Guo Q, Moore KH. BMP-7 Signaling and its Critical Roles in Kidney Development, the Responses to Renal Injury, and Chronic Kidney Disease. VITAMINS AND HORMONES 2016; 99:91-144. [PMID: 26279374 DOI: 10.1016/bs.vh.2015.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is a significant health problem that most commonly results from congenital abnormalities in children and chronic renal injury in adults. The therapeutic potential of BMP-7 was first recognized nearly two decades ago with studies demonstrating its requirement for kidney development and ability to inhibit the pathogenesis of renal injury in models of CKD. Since this time, our understanding of CKD has advanced considerably and treatment strategies have evolved with the identification of many additional signaling pathways, cell types, and pathologic processes that contribute to disease progression. The purpose of this review is to revisit the seminal studies that initially established the importance of BMP-7, highlight recent advances in BMP-7 research, and then integrate this knowledge with current research paradigms. We will provide an overview of the evolutionarily conserved roles of BMP proteins and the features that allow BMP signaling pathways to function as critical signaling nodes for controlling biological processes, including those related to CKD. We will discuss the multifaceted functions of BMP-7 during kidney development and the potential for alterations in BMP-7 signaling to result in congenital abnormalities and pediatric kidney disease. We will summarize the renal protective effects of recombinant BMP-7 in experimental models of CKD and then propose a model to describe the potential physiological role of endogenous BMP-7 in the innate repair mechanisms of the kidneys that respond to renal injury. Finally, we will highlight emerging clinical approaches for applying our knowledge of BMP-7 toward improving the treatment of patients with CKD.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA.
| | - Paul F Austin
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Qiusha Guo
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Katelynn H Moore
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
133
|
Abatacept Treatment Does Not Preserve Renal Function in the Streptozocin-Induced Model of Diabetic Nephropathy. PLoS One 2016; 11:e0152315. [PMID: 27055155 PMCID: PMC4824484 DOI: 10.1371/journal.pone.0152315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes and remains the largest cause of end-stage renal disease in the Western world. Treatment options are limited and novel therapies that effectively slow disease progression are warranted. Previous work suggested that treatment with CTLA4-Ig (abatacept), a molecule that binds and blocks B7-1 and is licensed for the treatment of rheumatoid arthritis, could ameliorate DN. This study was designed to assess whether B7-1 signalling constitutes a promising therapeutic pathway for DN. Mice injected with streptozotocin (STZ) were treated with abatacept and glycemia and renal function were assessed. No differences were found in diabetes progression, albumin excretion rates or albumin/creatine ratios, while mesangial expansion was unaltered at endpoint. Except for increased renal CCL5, treatment did not affect a panel of gene expression endpoints reflecting early fibrotic changes, inflammation and kidney injury. Finally, abatacept treatment effectively reduced the accumulation of activated CD4+ T cells in the kidney, suggesting that renal T cell inflammation is not a driving factor in the pathology of the STZ model. In conjunction with the recent data discounting the expression of B7-1 on podocytes, our present data do not support a role for abatacept in DN treatment.
Collapse
|
134
|
Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS One 2016; 11:e0150886. [PMID: 26939003 PMCID: PMC4777421 DOI: 10.1371/journal.pone.0150886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/19/2016] [Indexed: 12/16/2022] Open
Abstract
Macrophage-mediated inflammation has been implicated in various kidney diseases. We previously reported that Rac1, a Rho family small GTP-binding protein, was overactivated in several chronic kidney disease models, and that Rac1 inhibitors ameliorated renal injury, in part via inhibition of inflammation, but the detailed mechanisms have not been clarified. In the present study, we examined whether Rac1 in macrophages effects cytokine production and the inflammatory mechanisms contributing to kidney derangement. Myeloid-selective Rac1 flox control (M-Rac1 FC) and knockout (M-Rac1 KO) mice were generated using the cre-loxP system. Renal function under basal conditions did not differ between M-Rac1 FC and KO mice. Accordingly, lipopolysaccharide (LPS)-evoked kidney injury model was created. LPS elevated blood urea nitrogen and serum creatinine, enhanced expressions of kidney injury biomarkers, Kim-1 and Ngal, and promoted tubular injury in M-Rac1 FC mice. By contrast, deletion of myeloid Rac1 almost completely prevented the LPS-mediated renal impairment. LPS triggered a marked induction of macrophage-derived inflammatory cytokines, IL-6 and TNFα, in M-Rac1 FC mice, which was accompanied by Rac1 activation, stimulation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and reactive oxygen species overproduction. These changes were inhibited in M-Rac1 KO mice. LPS evoked F4/80-positive macrophages accumulation in the kidney, which was not affected by myeloid Rac1 deficiency. We further tested the role of Rac1 signaling in cytokine production using macrophage cell line, RAW264.7. Exposure to LPS increased IL-6 and TNFα mRNA expression. The LPS-driven cytokine induction was dose-dependently blocked by the Rac1 inhibitor EHT1864, NADPH oxidase inhibitor diphenyleneiodonium, and NF-κB inhibitor BAY11-7082. In conclusion, genetic ablation of Rac1 in the myeloid lineage protected against LPS-induced renal inflammation and injury, by suppressing macrophage-derived cytokines, IL-6 and TNFα, without blocking recruitment. Our data suggest that Rac1 in macrophage is a novel target for the treatment of kidney disease through inhibition of cytokine production.
Collapse
|
135
|
Jha JC, Thallas-Bonke V, Banal C, Gray SP, Chow BSM, Ramm G, Quaggin SE, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 2016; 59:379-89. [PMID: 26508318 PMCID: PMC6450410 DOI: 10.1007/s00125-015-3796-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Changes in podocyte morphology and function are associated with albuminuria and progression of diabetic nephropathy. NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and Nox4 is upregulated in podocytes in response to high glucose. We assessed the role of NOX4-derived ROS in podocytes in vivo in a model of diabetic nephropathy using a podocyte-specific NOX4-deficient mouse, with a major focus on the development of albuminuria and ultra-glomerular structural damage. METHODS Streptozotocin-induced diabetes-associated changes in renal structure and function were studied in male floxedNox4 and podocyte-specific, NOX4 knockout (podNox4KO) mice. We assessed albuminuria, glomerular extracellular matrix accumulation and glomerulosclerosis, and markers of ROS and inflammation, as well as glomerular basement membrane thickness, effacement of podocytes and expression of the podocyte-specific protein nephrin. RESULTS Podocyte-specific Nox4 deletion in streptozotocin-induced diabetic mice attenuated albuminuria in association with reduced vascular endothelial growth factor (VEGF) expression and prevention of the diabetes-induced reduction in nephrin expression. In addition, podocyte-specific Nox4 deletion reduced glomerular accumulation of collagen IV and fibronectin, glomerulosclerosis and mesangial expansion, as well as glomerular basement membrane thickness. Furthermore, diabetes-induced increases in renal ROS, glomerular monocyte chemoattractant protein-1 (MCP-1) and protein kinase C alpha (PKC-α) were attenuated in podocyte-specific NOX4-deficient mice. CONCLUSIONS/INTERPRETATION Collectively, this study shows the deleterious effect of Nox4 expression in podocytes by promoting podocytopathy in association with albuminuria and extracellular matrix accumulation in experimental diabetes, emphasising the role of NOX4 as a target for new renoprotective agents.
Collapse
Affiliation(s)
- Jay C Jha
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Vicki Thallas-Bonke
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Claudine Banal
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Stephen P Gray
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Bryna S M Chow
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
| | - Georg Ramm
- Monash Micro-imaging, Monash University, Melbourne, VIC, Australia
| | | | - Mark E Cooper
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, the Netherlands
| | - Karin A Jandeleit-Dahm
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia.
- Department of Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
136
|
He Y, Xu Z, Zhou M, Wu M, Chen X, Wang S, Qiu K, Cai Y, Fu H, Chen B, Zhou M. Reversal of Early Diabetic Nephropathy by Islet Transplantation under the Kidney Capsule in a Rat Model. J Diabetes Res 2016; 2016:4157313. [PMID: 27725943 PMCID: PMC5048050 DOI: 10.1155/2016/4157313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 12/24/2022] Open
Abstract
Objective. Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus, and insulin therapy has many side effects in the treatment of DN. Islet transplantation has emerged as a promising therapy for diabetic patients. This study was established to investigate its advantageous effects in a rat model of early DN. Methods. Streptozotocin was administered to the rats to induce diabetes. Twelve weeks later, the diabetic rats were divided into 3 groups: the islet-transplanted group (IT group), the insulin-treated group (IN group), and the untreated group (DN group). Renal injury and kidney structure were assessed by urinalysis and transmission electron microscopy (TEM) detection. Immunohistochemical staining and western blotting were performed to assess renal fibrosis levels. Results. The early DN features were reversed and the glomerular filtration barrier and basement membrane structures were improved at 4 weeks after islet transplantation. The urine microalbumin-to-creatinine ratio (ACR), protein-to-creatinine ratio, and mean thickness of the glomerular basement membrane (GBM) were significantly decreased in the IT group. The expression of renal fibrotic factors was also significantly decreased. Conclusions. These data suggest that early DN can be reversed after islet transplantation, and they may facilitate the development of a clinical therapeutic strategy for human diabetes mellitus.
Collapse
Affiliation(s)
- Yunqiang He
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziqiang Xu
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Mingshi Zhou
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Minmin Wu
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuehai Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Silu Wang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kaiyan Qiu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Yong Cai
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Hongxing Fu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- *Bicheng Chen: and
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- *Mengtao Zhou:
| |
Collapse
|
137
|
Bassi R, Fornoni A, Doria A, Fiorina P. CTLA4-Ig in B7-1-positive diabetic and non-diabetic kidney disease. Diabetologia 2016; 59:21-29. [PMID: 26409459 PMCID: PMC5003171 DOI: 10.1007/s00125-015-3766-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease in the Western world. Standard treatments have ultimately proven ineffective in blocking DKD progression, thus necessitating the design of new therapies to complement glycaemic and blood pressure control. High glucose levels upregulate the immune-related molecule B7-1 in podocytes, and such an event may play a relevant role in DKD onset, suggesting that B7-1 is a suitable therapeutic target for DKD. CTLA4-Ig is a clinically available fusion protein, approved for the treatment of some autoimmune diseases, which binds B7-1 and blocks its signalling. We have previously demonstrated that CTLA4-Ig restores the physiological structure and cellular motility of podocytes challenged with high glucose in vitro and abrogates the onset of proteinuria in murine models of DKD in vivo. Notably, these beneficial effects occurred independently of any systemic immunological effects of CTLA4-Ig. While the expression of B7-1 on podocytes raises questions regarding the very nature of the podocyte as we know it, the preliminary positive effect of CTLA4-Ig on proteinuria in preclinical models and the evidence of B7-1 expression in kidney biopsies of diabetic individuals suggest a potential novel indication for CTLA4-Ig in DKD. Nonetheless, recent reports of problems with detecting podocyte B7-1 and of inconsistent therapeutic efficacy of CTLA4-Ig in proteinuric patients highlight the necessity to establish uniformly accepted protocols for the detection of B7-1 and underline the need for randomised trials with CTLA4-Ig in kidney diseases.
Collapse
Affiliation(s)
- Roberto Bassi
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Enders Building, Boston, MA, 02115, USA
- Department of Transplant Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA, USA
| | - Paolo Fiorina
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Enders Building, Boston, MA, 02115, USA.
- Department of Transplant Medicine, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
138
|
Nikolic-Paterson DJ. Cathepsin S-Dependent Protease-Activated Receptor-2 Activation: A New Mechanism of Endothelial Dysfunction. J Am Soc Nephrol 2015; 27:1577-9. [PMID: 26590253 DOI: 10.1681/asn.2015101162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- David J Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
139
|
Tesch GH, Ma FY, Han Y, Liles JT, Breckenridge DG, Nikolic-Paterson DJ. ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in Nos3-Deficient Mice. Diabetes 2015; 64:3903-13. [PMID: 26180085 DOI: 10.2337/db15-0384] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023]
Abstract
p38 mitogen-activated protein kinase (MAPK) signaling promotes diabetic kidney injury. Apoptosis signal-regulating kinase (ASK)1 is one of the upstream kinases in the p38 MAPK-signaling pathway, which is activated by inflammation and oxidative stress, suggesting a possible role for ASK1 in diabetic nephropathy. In this study, we examined whether a selective ASK1 inhibitor can prevent the induction and progression of diabetic nephropathy in mice. Diabetes was induced in hypertensive endothelial nitric oxide synthase (Nos3)-deficient mice by five low-dose streptozotocin (STZ) injections. Groups of diabetic Nos3(-/-) mice received ASK1 inhibitor (GS-444217 delivered in chow) as an early intervention (2-8 weeks after STZ) or late intervention (weeks 8-15 after STZ). Control diabetic and nondiabetic Nos3(-/-) mice received normal chow. Treatment with GS-444217 abrogated p38 MAPK activation in diabetic kidneys but had no effect upon hypertension in Nos3(-/-) mice. Early intervention with GS-444217 significantly inhibited diabetic glomerulosclerosis and reduced renal dysfunction but had no effect on the development of albuminuria. Late intervention with GS-444217 improved renal function and halted the progression of glomerulosclerosis, renal inflammation, and tubular injury despite having no effect on established albuminuria. In conclusion, this study identifies ASK1 as a new therapeutic target in diabetic nephropathy to reduce renal inflammation and fibrosis independent of blood pressure control.
Collapse
Affiliation(s)
- Greg H Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| | - Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| | - Yingjie Han
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| | | | | | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia Monash University Department of Medicine, Clayton, Victoria, Australia
| |
Collapse
|
140
|
The Expression of Tristetraprolin and Its Relationship with Urinary Proteins in Patients with Diabetic Nephropathy. PLoS One 2015; 10:e0141471. [PMID: 26517838 PMCID: PMC4627660 DOI: 10.1371/journal.pone.0141471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/07/2015] [Indexed: 01/28/2023] Open
Abstract
Objective Tristetraprolin (TTP), also known as zinc finger protein 36, is an RNA binding protein that has a significant role in regulating the expression of mRNAs containing AU-rich elements. We postulated that TTP might regulate interleukin (IL)-6 and IL-18 expression in diabetes. This study aimed to test the hypothesis that the levels of TTP are correlated with nephropathy in patients with type 2 diabetes. Methods Eighty-seven patients (61.3±9.6 years old) who had been diagnosed with type 2 diabetes mellitus and 41 age and sex matched healthy control subjects were enrolled. The diabetes patients were classified into those without proteinuria, with microalbuminuria, and with clinical proteinuria groups according to the ratio of urinary excretion of albumin/creatinine (ACR). Results Serum and urinary levels of IL-6 and IL-18 were significantly elevated, but those of TTP were significantly decreased in patients with diabetes as compared with control subjects. In addition, serum and urinary levels of IL-6 and IL-18 were significantly higher, but those of TTP were significantly lower in patients with proteinuria than in patients without proteinuria or with microalbuminuria. There was a significant correlation between serum TTP and IL-6/IL-18 (correlation coefficients of -0.572 and -0.685, P < 0.05). Conclusion These results show that diabetes with clinical proteinuria is accompanied by decreased urinary and serum level of TTP and increased levels of IL-6 and IL-18. Decreased TTP expression might occur prior to the increase in IL-6 and IL-18, and decrease of TTP might provide an earlier marker for glomerular dysfunction than IL-6 and IL-18.
Collapse
|
141
|
Lazaro I, Oguiza A, Recio C, Mallavia B, Madrigal-Matute J, Blanco J, Egido J, Martin-Ventura JL, Gomez-Guerrero C. Targeting HSP90 Ameliorates Nephropathy and Atherosclerosis Through Suppression of NF-κB and STAT Signaling Pathways in Diabetic Mice. Diabetes 2015; 64:3600-13. [PMID: 26116697 DOI: 10.2337/db14-1926] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/20/2015] [Indexed: 11/13/2022]
Abstract
Heat shock proteins (HSPs) are induced by cellular stress and function as molecular chaperones that regulate protein folding. Diabetes impairs the function/expression of many HSPs, including HSP70 and HSP90, key regulators of pathological mechanisms involved in diabetes complications. Therefore, we investigated whether pharmacological HSP90 inhibition ameliorates diabetes-associated renal damage and atheroprogression in a mouse model of combined hyperglycemia and hyperlipidemia (streptozotocin-induced diabetic apolipoprotein E-deficient mouse). Treatment of diabetic mice with 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG, 2 and 4 mg/kg, 10 weeks) improved renal function, as evidenced by dose-dependent decreases in albuminuria, renal lesions (mesangial expansion, leukocyte infiltration, and fibrosis), and expression of proinflammatory and profibrotic genes. Furthermore, DMAG significantly reduced atherosclerotic lesions and induced a more stable plaque phenotype, characterized by lower content of lipids, leukocytes, and inflammatory markers, and increased collagen and smooth muscle cell content. Mechanistically, the renoprotective and antiatherosclerotic effects of DMAG are mediated by the induction of protective HSP70 along with inactivation of nuclear factor-κB (NF-κB) and signal transducers and activators of transcription (STAT) and target gene expression, both in diabetic mice and in cultured cells under hyperglycemic and proinflammatory conditions. In conclusion, HSP90 inhibition by DMAG restrains the progression of renal and vascular damage in experimental diabetes, with potential implications for the prevention of diabetes complications.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Beñat Mallavia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Julio Madrigal-Matute
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY
| | - Julia Blanco
- Department of Pathology, Hospital Clinico San Carlos, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Jose-Luis Martin-Ventura
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
142
|
Therapeutic oligonucleotides with polyethylene glycol modifications. Future Med Chem 2015; 7:1721-31. [PMID: 26465713 DOI: 10.4155/fmc.15.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the field of oligonucleotide drugs, the attachment of PEG is a well-established strategy to prevent enzymatic degradation and avoid renal elimination. Pegaptanib and other oligonucleotides in clinical development utilize the attachment of linear or branched high molecular weight PEG chains for increase of accumulation and duration of the effect after local or systemic application. The length of PEG chains is decisive for the pharmacokinetic and pharmacodynamic effects. Longer chains increase circulation times, but generally decrease gene-silencing efficiencies for antisense and siRNA agents and binding affinities for aptamers. Shorter chains are less efficient in preventing renal filtration, but have also less impact on the gene-silencing machinery and binding kinetics.
Collapse
|
143
|
Hu W, Zhang Y, Sigdel KR. The effects of Panax notoginseng saponins on the cytokines and peritoneal function in rats with peritoneal fibrosis. Ren Fail 2015; 37:1507-13. [PMID: 26371362 DOI: 10.3109/0886022x.2015.1088350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Due to the long-term and chronic exposure to the peritoneal dialysis fluid, patients could develop peritoneal fibrosis and ultrafiltration failure which compromises treatment efficacy and outcome, and fibrosis is the major cause of peritoneal dialysis (PD) withdraw among patients. METHODS Twenty-one male WISTAR rats were randomly assigned to three groups, namely saline group, standard peritoneal dialysis fluid (PDF) group, and panax notoginseng saponins (PNS) group. Peritoneal fibrosis was induced by daily injection of PDF for 4 weeks. After execution, multiple histological techniques including HE and Masson's trichrome staining and transmission electron microscopy (TEM) were applied to observe the pathological changes and concentrations of multiple cytokines may involve in the process of fibrosis were determined by enzyme-linked immune sorbent assay (ELISA). Biochemistry parameters were determined by automated chemistry analyzer. RESULTS PNS can significantly inhibit the expression of transforming growth factor beta (TGF-β1), connective tissue growth factor (CTGF), and monocyte chemoattractant protein (MCP-1) in the peritoneum of rats. Furthermore, pathological damages, including extracellular matrix deposition, vascularization, and fibroblast, were ameliorated in PNS group when being compared with standard PDF group. Peritoneal functions were improved by regular PNS treatment with significantly elevated ultrafiltration. CONCLUSION PNS is capable of improving peritoneal function in subjects with PDF exposure and can possibly applied in patients with PD after further verification.
Collapse
Affiliation(s)
- Weiping Hu
- a Department of Nephrology , First Affiliated Hospital of Xiamen University , Xiamen , People's Republic of China
| | - Yanlin Zhang
- a Department of Nephrology , First Affiliated Hospital of Xiamen University , Xiamen , People's Republic of China
| | - Keshav Raj Sigdel
- a Department of Nephrology , First Affiliated Hospital of Xiamen University , Xiamen , People's Republic of China
| |
Collapse
|
144
|
Abstract
The kidney is arguably the most important target of microvascular damage in diabetes. A substantial proportion of individuals with diabetes will develop kidney disease owing to their disease and/or other co-morbidity, including hypertension and ageing-related nephron loss. The presence and severity of chronic kidney disease (CKD) identify individuals who are at increased risk of adverse health outcomes and premature mortality. Consequently, preventing and managing CKD in patients with diabetes is now a key aim of their overall management. Intensive management of patients with diabetes includes controlling blood glucose levels and blood pressure as well as blockade of the renin-angiotensin-aldosterone system; these approaches will reduce the incidence of diabetic kidney disease and slow its progression. Indeed, the major decline in the incidence of diabetic kidney disease (DKD) over the past 30 years and improved patient prognosis are largely attributable to improved diabetes care. However, there remains an unmet need for innovative treatment strategies to prevent, arrest, treat and reverse DKD. In this Primer, we summarize what is now known about the molecular pathogenesis of CKD in patients with diabetes and the key pathways and targets implicated in its progression. In addition, we discuss the current evidence for the prevention and management of DKD as well as the many controversies. Finally, we explore the opportunities to develop new interventions through urgently needed investment in dedicated and focused research. For an illustrated summary of this Primer, visit: http://go.nature.com/NKHDzg.
Collapse
|
145
|
Su X, Zhou G, Wang Y, Yang X, Li L, Yu R, Li D. The PPARβ/δ agonist GW501516 attenuates peritonitis in peritoneal fibrosis via inhibition of TAK1-NFκB pathway in rats. Inflammation 2015; 37:729-37. [PMID: 24337677 DOI: 10.1007/s10753-013-9791-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peritoneal fibrosis is a common consequence of long-term peritoneal dialysis (PD), and peritonitis is a factor in its onset. Agonist-bound peroxisome proliferator-activated receptors (PPARs) function as key regulators of energy metabolism and inflammation. Here, we examined the effects of PPARβ/δ agonist GW501516 on peritonitis in a rat peritoneal fibrosis model. Peritoneal fibrosis secondary to inflammation was induced into uremic rats by daily injection of Dianeal 4.25% PD solutions along with six doses of lipopolysaccharide before commencement of GW501516 treatment. Normal non-uremic rats served as control, and all rats were fed with a control diet or a GW501516-containing diet. Compared to control group, exposure to PD fluids caused peritoneal fibrosis that was accompanied by increased mRNA levels of monocyte chemoattractant protein-1, tumor necrotic factor-α, and interleukin-6 in the uremic rats, and these effects were prevented by GW501516 treatment. Moreover, GW501516 was found to attenuate glucose-stimulated inflammation in cultured rat peritoneal mesothelial cells via inhibition of transforming growth factor-β-activated kinase 1 (TAK1), and nuclear factor kappa B (NFκB) signaling pathway (TAK1-NFκB pathway), a main inflammation regulatory pathway. In conclusion, inhibition of TAK1-NFκB pathway with GW501516 may represent a novel therapeutic approach to ameliorate peritonitis-induced peritoneal fibrosis for patients on PD.
Collapse
Affiliation(s)
- Xuesong Su
- Department of Nephrology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
146
|
Awad AS, You H, Gao T, Cooper TK, Nedospasov SA, Vacher J, Wilkinson PF, Farrell FX, Brian Reeves W. Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney Int 2015; 88:722-33. [PMID: 26061548 PMCID: PMC4589442 DOI: 10.1038/ki.2015.162] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 01/15/2023]
Abstract
Monocyte/macrophage recruitment correlates strongly with the progression of diabetic nephropathy. Tumor necrosis factor-alpha (TNF-α) is produced by monocytes/macrophages but the direct role of TNF-α and/or macrophage-derived TNF-α in the progression of diabetic nephropathy remains unclear. Here we tested whether inhibition of TNF-α confers kidney protection in diabetic nephropathy via a macrophage-derived TNF-α dependent pathway. Compared to vehicle-treated mice, blockade of TNF-α with a murine anti-TNF-α antibody conferred kidney protection in Ins2Akita mice as indicated by reductions in albuminuria, plasma creatinine, histopathologic changes, kidney macrophage recruitment and plasma inflammatory cytokine levels at 18 weeks of age. To assess the direct role of macrophage-derived TNF-α in diabetic nephropathy, we generated macrophage specific TNF-α deficient mice (CD11bCre/TNF-αFlox/Flox). Conditional ablation of TNF-α in macrophages significantly reduced albuminuria, the increase in plasma creatinine and BUN, histopathologic changes and kidney macrophage recruitment compared to diabetic TNF-αFlox/Flox control mice after 12 weeks of streptozotocin-induced diabetes. Thus, production of TNF-α by macrophages plays a major role in diabetic renal injury. Hence, blocking TNF-α could be a novel therapeutic approach for treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Alaa S Awad
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hanning You
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ting Gao
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Timothy K Cooper
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia
| | - Jean Vacher
- Clinical Research Institute of Montreal, Départment de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Patrick F Wilkinson
- Department of Immunology Research, Janssen R&D, Spring House, Pennsylvania, USA
| | - Francis X Farrell
- Department of Immunology Research, Janssen R&D, Spring House, Pennsylvania, USA
| | - W Brian Reeves
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
147
|
Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:164703. [PMID: 26167475 PMCID: PMC4475763 DOI: 10.1155/2015/164703] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Abstract
The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.
Collapse
|
148
|
Nair AR, Ebenezer PJ, Saini Y, Francis J. Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Exp Cell Res 2015; 335:238-47. [PMID: 26033363 DOI: 10.1016/j.yexcr.2015.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Angiotensin II is a vaso-constrictive peptide that regulates blood pressure homeostasis. Even though the inflammatory effects of AngII in renal pathophysiology have been studied, there still exists a paucity of data with regard to the mechanism of action of AngII-mediated kidney injury. The objective of this study was to elucidate the mechanistic role of HMGB1-TLR4 signaling in AngII-induced inflammation in the kidney. EXPERIMENTAL APPROACH Rat tubular epithelial cells (NRK52E) were treated with AngII over a preset time-course. In another set of experiments, HMGB1 was neutralized and TLR4 was knocked down using small interfering RNA targeting TLR4. Cell extracts were subjected to RT-PCR, immunoblotting, flow cytometry, and ELISA. KEY RESULTS AngII-induced inflammation in NRK52E cells increased gene and protein expression of TLR4, HMGB1 and key proinflammatory cytokines (TNFα and IL1β). Pretreatment with Losartan (an AT1 receptor blocker) attenuated the AngII-induced expression of TLR4 and inflammatory cytokines. TLR4 silencing was used to elucidate the specific role played by TLR4 in AngII-induced inflammation. TLR4siRNA treatment in these cells significantly decreased the AngII-induced inflammatory effect. Consistent observations were made when the Ang II treated cells were pretreated with anti-HMGB1. Downstream activation of NFκB and rate of generation of ROS was also decreased on gene silencing of TLR4 and exposure to anti-HMGB1. CONCLUSIONS AND IMPLICATIONS These results indicate a key role for HMGB1-TLR4 signaling in AngII-mediated inflammation in the renal epithelial cells. Our data also reveal that AngII-induced effects could be alleviated by HMGB1-TLR4 inhibition, suggesting this pathway as a potential therapeutic target for hypertensive renal dysfunctions.
Collapse
Affiliation(s)
- Anand R Nair
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Philip J Ebenezer
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Yogesh Saini
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
149
|
Serum Levels of Progranulin Are Closely Associated with Microvascular Complication in Type 2 Diabetes. DISEASE MARKERS 2015; 2015:357279. [PMID: 26106251 PMCID: PMC4464678 DOI: 10.1155/2015/357279] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/02/2022]
Abstract
Objective. Progranulin (PGRN) was recently introduced as a novel marker of chronic inflammatory response in obesity and type 2 diabetes capable of directly affecting the insulin signaling pathway. This study aimed to investigate the correlation between PGRN and type 2 diabetics with microvascular complications. Methods. PGRN serum levels and glucose metabolism related substance were measured in 84 type 2 diabetic patients with or without microangiopathies and 12 health persons. Further analyses of serum PGRN in different stages of diabetic microangiopathies were conducted. Results. Serum levels of PGRN were markedly higher in type 2 diabetic patients with microangiopathies. PGRN serum levels increased with the progress of diabetic microangiopathies with significantly highest values detectable in clinical diabetic nephropathy (CDN) and proliferative diabetic retinopathy (PDR) groups. Serum PGRN concentrations in all individuals positively and markedly correlated with systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), triglyceride (TG), urinary albumin excretion rate (UAER), blood urea nitrogen (BUN), creatinine (CRE), white blood cell (WBC), disease duration, IL-6, and TNF-α, while correlating negatively and significantly with eGFR. Multiple linear regression analysis showed that only UAER and CRE were independently associated with serum PGRN. Conclusion. PGRN might be considered as a marker for diabetic microangiopathy and its severity.
Collapse
|
150
|
Hojs R, Ekart R, Bevc S, Hojs N. Biomarkers of Renal Disease and Progression in Patients with Diabetes. J Clin Med 2015; 4:1010-1024. [PMID: 26239462 PMCID: PMC4470213 DOI: 10.3390/jcm4051010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 12/28/2022] Open
Abstract
Diabetes prevalence is increasing worldwide, mainly due to the increase in type 2 diabetes. Diabetic nephropathy occurs in up to 40% of people with type 1 or type 2 diabetes. It is important to identify patients at risk of diabetic nephropathy and those who will progress to end stage renal disease. In clinical practice, most commonly used markers of renal disease and progression are serum creatinine, estimated glomerular filtration rate and proteinuria or albuminuria. Unfortunately, they are all insensitive. This review summarizes the evidence regarding the prognostic value and benefits of targeting some novel risk markers for development of diabetic nephropathy and its progression. It is focused mainly on tubular biomarkers (neutrophil-gelatinase associated lipocalin, kidney injury molecule 1, liver-fatty acid-binding protein, N-acetyl-beta-d-glucosaminidase), markers of inflammation (pro-inflammatory cytokines, tumour necrosis factor-α and tumour necrosis factor-α receptors, adhesion molecules, chemokines) and markers of oxidative stress. Despite the promise of some of these new biomarkers, further large, multicenter prospective studies are still needed before they can be used in everyday clinical practice.
Collapse
Affiliation(s)
- Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Clinical Centre Maribor, Ljubljanska 5, Maribor 2000, Slovenia.
- Faculty of Medicine, University of Maribor, Taborska ul. 8, Maribor 2000, Slovenia.
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Clinical Centre Maribor, Ljubljanska 5, Maribor 2000, Slovenia.
- Faculty of Medicine, University of Maribor, Taborska ul. 8, Maribor 2000, Slovenia.
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Clinical Centre Maribor, Ljubljanska 5, Maribor 2000, Slovenia.
- Faculty of Medicine, University of Maribor, Taborska ul. 8, Maribor 2000, Slovenia.
| | - Nina Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Clinical Centre Maribor, Ljubljanska 5, Maribor 2000, Slovenia.
- Faculty of Medicine, University of Maribor, Taborska ul. 8, Maribor 2000, Slovenia.
| |
Collapse
|