101
|
Ciau-Uitz A, Pinheiro P, Gupta R, Enver T, Patient R. Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling. Dev Cell 2010; 18:569-78. [PMID: 20412772 DOI: 10.1016/j.devcel.2010.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/07/2010] [Accepted: 02/05/2010] [Indexed: 01/17/2023]
Abstract
The regulation of stem cell ontogeny is poorly understood. We show that the leukemia-associated Ets transcription factor, Tel1/ETV6, specifies the first hematopoietic stem cells (HSCs) in the dorsal aorta (DA). In contrast, Tel1/ETV6 has little effect on embryonic blood formation, further distinguishing the programming of the long- and short-term blood populations. Consistent with the notion of concordance of arterial and HSC programs, we show that Tel1/ETV6 is also required for the specification of the DA as an artery. We further show that Tel1/ETV6 acts by regulating the transcription of VegfA in both the lateral plate mesoderm and also in the somites. Exogenous VEGFA rescues Tel1/ETV6 morphants, and depletion of VEGFA or its receptor, Flk1, largely phenocopies Tel1/ETV6 depletion. Few such links between intrinsic and extrinsic programming of stem cells have been reported previously. Our data place Tel1/ETV6 at the apex of the genetic regulatory cascade leading to HSC production.
Collapse
Affiliation(s)
- Aldo Ciau-Uitz
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
102
|
Nakagawa T, Tohyama O, Yamaguchi A, Matsushima T, Takahashi K, Funasaka S, Shirotori S, Asada M, Obaishi H. E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Sci 2010; 101:210-5. [PMID: 19832844 PMCID: PMC11159146 DOI: 10.1111/j.1349-7006.2009.01343.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
c-Met is the cellular receptor for hepatocyte growth factor (HGF) and is known to be dysregulated in various types of human cancers. Activation of the HGF/c-Met pathway causes tumor progression, invasion, and metastasis. Vascular endothelial growth factor (VEGF) is also known as a key molecule in tumor progression through the induction of tumor angiogenesis. Because of their key roles in tumor progression, these pathways provide attractive targets for therapeutic intervention. We have generated a novel, orally active, small molecule compound, E7050, which inhibits both c-Met and vascular endothelial growth factor receptor (VEGFR)-2. In vitro studies indicate that E7050 potently inhibits phosphorylation of both c-Met and VEGFR-2. E7050 also potently represses the growth of both c-met amplified tumor cells and endothelial cells stimulated with either HGF or VEGF. In vivo studies using E7050 showed inhibition of the phosphorylation of c-Met and VEGFR-2 in tumors, and strong inhibition of tumor growth and tumor angiogenesis in xenograft models. Treatment of some tumor lines containing c-met amplifications with high doses of E7050 (50-200 mg/kg) induced tumor regression and disappearance. In a peritoneal dissemination model, E7050 showed an antitumor effect against peritoneal tumors as well as a significant prolongation of lifespan in treated mice. Our results indicate that E7050 is a potent inhibitor of c-Met and VEGFR-2 and has therapeutic potential for the treatment of cancer.
Collapse
|
103
|
Lee SK, Kim Y, Kim SS, Lee JH, Cho K, Lee SS, Lee ZW, Kwon KH, Kim YH, Suh-Kim H, Yoo JS, Park YM. Differential expression of cell surface proteins in human bone marrow mesenchymal stem cells cultured with or without basic fibroblast growth factor containing medium. Proteomics 2009; 9:4389-405. [PMID: 19655310 DOI: 10.1002/pmic.200900165] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells, which have the capability to differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle, and marrow stroma. However, they lose the capability of multi-lineage differentiation after several passages. It is known that basic fibroblast growth factor (bFGF) increases growth rate, differentiation potential, and morphological changes of MSCs in vitro. In this report, we have used 2-DE coupled to MS to identify differentially expressed proteins at the cell membrane level in MSCs growing in bFGF containing medium. The cell surface proteins isolated by the biotin-avidin affinity column were separated by 2-DE in triplicate experiments. A total of 15 differentially expressed proteins were identified by quadrupole-time of flight tandem MS. Nine of the proteins were upregulated and six proteins were downregulated in the MSCs cultured with bFGF containing medium. The expression level of three actin-related proteins, F-actin-capping protein subunit alpha-1, actin-related protein 2/3 complex subunit 2, and myosin regulatory light chain 2, was confirmed by Western blot analysis. The results indicate that the expression levels of F-actin-capping protein subunit alpha-1, actin-related protein 2/3 complex subunit 2, and myosin regulatory light chain 2 are important in bFGF-induced morphological change of MSCs.
Collapse
Affiliation(s)
- Sang Kwang Lee
- Mass Spectrometry Research Center, Korea Basic Science Institute, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Jones MC, Caswell PT, Moran-Jones K, Roberts M, Barry ST, Gampel A, Mellor H, Norman JC. VEGFR1 (Flt1) regulates Rab4 recycling to control fibronectin polymerization and endothelial vessel branching. Traffic 2009; 10:754-66. [PMID: 19302266 DOI: 10.1111/j.1600-0854.2009.00898.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cell's main receptor for VEGF, VEGFR2 (Kdr) is one of the most important positive regulators of new blood vessel growth and its downstream signalling is well characterized. By contrast, VEGFR1 (Flt1) and the mechanisms by which this VEGF receptor promotes branching morphogenesis in angiogenesis remain relatively unclear.Here we report that engagement of VEGFR1 activates a Rab4A-dependent pathway that transports alphavbeta3 Integrin from early endosomes to the plasma membrane, and that this is required for VEGF-driven fibronectin polymerization in endothelial cells. Furthermore, VEGFR1 acts to promote endothelial tubule branching in an organotypic model of angiogenesis via a mechanism that requires Rab4A and alphavbeta3 Integrin. We conclude that a recycling pathway regulated by Rab4A is a critical effector of VEGFR1 during branching morphogenesis of the vasculature.
Collapse
Affiliation(s)
- Matthew C Jones
- Beatson Institute for Cancer Research (Cancer Research UK), Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Gee E, Milkiewicz M, Haas TL. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J Cell Physiol 2009; 222:120-6. [PMID: 19774558 DOI: 10.1002/jcp.21924] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased capillary shear stress induces angiogenesis in skeletal muscle, but the signaling mechanisms underlying this response are not known. We hypothesize that shear stress-dependent activation of vascular endothelial growth factor receptor 2 (VEGFR2) causes p38 and ERK1/2 phosphorylation, which contribute to shear stress-induced angiogenesis. Skeletal muscle microvascular endothelial cells were sheared (12 dynes/cm(2), 0.5-24 h). VEGFR2-Y1214 phosphorylation increased in response to elevated shear stress and VEGF stimulation. p38 and ERK1/2 phosphorylation increased at 2 h of shear stress but only p38 remained phosphorylated at 6 and 24 h of shear stress. VEGFR2 inhibition abrogated p38, but not ERK1/2 phosphorylation. VEGF production was increased in response to shear stress at 6 h, and this increased production was abolished by p38 inhibition. Male Sprague-Dawley rats were administered prazosin (50 mg/L drinking water, 1, 2, 4, or 7 days) to induce chronically elevated capillary shear stress in skeletal muscle. In some experiments, mini-osmotic pumps were used to dispense p38 inhibitor SB203580 or its inactive analog SB202474, to the extensor digitorum longus (EDL) of control and prazosin-treated rats. Immunostaining and Western blotting showed increases in p38 phosphorylation in capillaries from rats treated with prazosin for 2 days but returned to basal levels at 4 and 7 days. p38 inhibition abolished the increase in capillary to muscle fiber ratio seen after 7 days of prazosin treatment. Our data suggest that p38 activation is necessary for shear stress-dependent angiogenesis.
Collapse
Affiliation(s)
- Eric Gee
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
106
|
VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochem Soc Trans 2009; 37:1193-7. [DOI: 10.1042/bst0371193] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian endothelium expresses two related but distinct receptor tyrosine kinases, VEGFR1 and VEGFR2 [VEGF (vascular endothelial growth factor) receptor 1 and 2], that regulate the vascular response to a key cytokine, VEGF-A. In the present review, we suggest a model for integrating the signals from these receptor tyrosine kinases by co-ordinating the spatial and temporal segregation of these membrane proteins linked to distinct signalling outputs associated with each intracellular location. Activation of pro-angiogenic VEGFR2 stimulates a programme of tyrosine phosphorylation, ubiquitination and proteolysis. This is linked to ESCRT (endosomal sorting complex required for transport)-mediated recognition of activated VEGFR2 and sorting in endosomes before arrival in lysosomes for terminal degradation. In addition, Rab GTPases regulate key events in VEGFR2 trafficking between the plasma membrane, early and late endosomes, with distinct roles for Rab4a, Rab5a and Rab7a. Manipulation of GTPase levels affects not only VEGFR2 activation and intracellular signalling, but also functional outputs such as VEGF-A-stimulated endothelial cell migration. In contrast, VEGFR1 displays stable Golgi localization that can be perturbed by cell stimuli that elevate cytosolic Ca2+ ion levels. One model is that VEGFR1 translocates from the trans-Golgi network to the plasma membrane via a calcium-sensitive trafficking step. This allows rapid and preferential sequestration of VEGF-A by the higher-affinity VEGFR1, thus blocking further VEGFR2 activation. Recycling or degradation of VEGFR1 allows resensitization of the VEGFR2-dependent signalling pathway. Thus a dual VEGFR system with a built-in negative-feedback loop is utilized by endothelial cells to sense a key cytokine in vascular tissues.
Collapse
|
107
|
Gao Y, Lu N, Ling Y, Chen Y, Wang L, Zhao Q, Qi Q, Liu W, Zhang H, You Q, Guo Q. Oroxylin A inhibits angiogenesis through blocking vascular endothelial growth factor-induced KDR/Flk-1 phosphorylation. J Cancer Res Clin Oncol 2009; 136:667-75. [DOI: 10.1007/s00432-009-0705-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/19/2009] [Indexed: 12/21/2022]
|
108
|
Woolard J, Bevan HS, Harper SJ, Bates DO. Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation 2009; 16:572-92. [PMID: 19521900 PMCID: PMC2929464 DOI: 10.1080/10739680902997333] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vascular endothelial growth factor (VEGF) family of proteins regulates blood flow, growth, and function in both normal physiology and disease processes. VEGF-A is alternatively spliced to form multiple isoforms, in two subfamilies, that have specific, novel functions. Alternative splicing of exons 5-7 of the VEGF gene generates forms with differing bioavailability and activities, whereas alternative splice-site selection in exon 8 generates proangiogenic, termed VEGF(xxx), or antiangiogenic proteins, termed VEGF(xxx)b. Despite its name, emerging roles for VEGF isoforms on cell types other than endothelium have now been identified. Although VEGF-A has conventionally been considered to be a family of proangiogenic, propermeability vasodilators, the identification of effects on nonendothelial cells, and the discovery of the antiangiogenic subfamily of splice isoforms, has added further complexity to their regulation of microvascular function. The distally spliced antiangiogenic isoforms are expressed in normal human tissue, but downregulated in angiogenic diseases, such as cancer and proliferative retinopathy, and in developmental pathologies, such as Denys Drash syndrome and preeclampsia. Here, we examine the molecular diversity of VEGF-A as a regulator of its biological activity and compare the role of the pro- and antiangiogenic VEGF-A splice isoforms in both normal and pathophysiological processes.
Collapse
Affiliation(s)
- Jeanette Woolard
- Department of Physiology and Pharmacology, Bristol Heart Institute, School of Veterinary Sciences, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
109
|
VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 2009; 29:8704-14. [PMID: 19587277 DOI: 10.1523/jneurosci.5527-08.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The generation of new neurons in the olfactory bulb (OB) persists into adulthood and is a multistep process that includes proliferation, fate choice, migration, survival, and differentiation. Neural precursor cells destined to form olfactory interneurons arise in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) to the OB. Recently, some factors classically known from their effects on the vascular system have been found to influence different steps of adult neurogenesis. In the present study, we report a modulatory function for the vascular endothelial growth factor receptor-1 (VEGFR-1) in adult olfactory neurogenesis. We identified expression of VEGFR-1 in GFAP-positive cells within regions involved in neurogenesis of the adult mouse brain. To determine functions for VEGFR-1 in adult neurogenesis, we compared neural progenitor cell proliferation, migration, and differentiation from wild-type and VEGFR-1 signaling-deficient mice (Flt-1TK(-/-) mice). Our data show that VEGFR-1 signaling is involved in the regulation of proliferation of neuronal progenitor cells within the SVZ, migration along the RMS, and in neuronal differentiation and anatomical composition of interneuron subtypes within the OB. RMS migration in Flt-1TK(-/-) mice was altered mainly as a result of increased levels of its ligand VEGF-A, which results in an increased phosphorylation of VEGFR-2 in neuronal progenitor cells within the SVZ and the RMS. This study reveals that proper RMS migration is dependent on endogenous VEGF-A protein.
Collapse
|
110
|
The effect of VEGF on the temporal–spatial change of α-tubulin and cortical granules of ovine oocytes matured in vitro. Anim Reprod Sci 2009; 113:236-50. [DOI: 10.1016/j.anireprosci.2008.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/29/2008] [Accepted: 08/01/2008] [Indexed: 11/18/2022]
|
111
|
Abstract
Angiogenesis and disruption of liver vascular architecture have been linked to progression to cirrhosis and liver cancer (HCC) in chronic liver diseases, which contributes both to increased hepatic vascular resistance and portal hypertension and to decreased hepatocyte perfusion. On the other hand, recent evidence shows that angiogenesis modulates the formation of portal-systemic collaterals and the increased splanchnic blood flow which are involved in the life threatening complications of cirrhosis. Finally, angiogenesis plays a key role in the growth of tumours, suggesting that interference with angiogenesis may prevent or delay the development of HCC. This review summarizes current knowledge on the molecular mechanisms of liver angiogenesis and on the consequences of angiogenesis in chronic liver disease. On the other hand, it presents the different strategies that have been used in experimental models to counteract excessive angiogenesis and its potential role in preventing transition to cirrhosis, development of portal hypertension and its consequences, and its application in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mercedes Fernández
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
112
|
Shin JY, Yoon IH, Kim JS, Kim B, Park CG. Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell Immunol 2009; 256:72-8. [PMID: 19249018 DOI: 10.1016/j.cellimm.2009.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 12/30/2008] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a proangiogenic mediator that promotes tumor growth. The role of VEGF in T lymphocytes is unknown. We found that T lymphocytes activated by either anti-CD3 monoclonal antibody (mAb) plus anti-CD28 mAb or by antigens on antigen-presenting cells transcribed mRNA for VEGF receptor 1 (VEGFR1) and VEGFR2. However, only VEGFR1 was expressed on the T cell surface. The addition of VEGF to either resting or activated T cells did not affect their proliferation, but VEGF increased IL-10 production and slightly decreased IFN-gamma production. A chemotaxis assay revealed that activated T lymphocytes migrate in response to VEGF. Our data suggest that VEGF has a direct immunomodulatory effect on T cells. Engagement of a high concentration of VEGF with VEGFR1 on T cells may cause T cells to migrate to tumor sites, and this interaction may play a role in IL-10-mediated immune evasion by tumor cells.
Collapse
Affiliation(s)
- Jin-Young Shin
- Department of Microbiology and Immunology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, South Korea
| | | | | | | | | |
Collapse
|
113
|
Caron C, Spring K, Laramée M, Chabot C, Cloutier M, Gu H, Royal I. Non-redundant roles of the Gab1 and Gab2 scaffolding adapters in VEGF-mediated signalling, migration, and survival of endothelial cells. Cell Signal 2009; 21:943-53. [PMID: 19233262 DOI: 10.1016/j.cellsig.2009.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/02/2009] [Accepted: 02/10/2009] [Indexed: 01/07/2023]
Abstract
Gab1 was previously described as a positive modulator of Akt, Src, ERK1/2, endothelial cell migration, and capillary formation in response to vascular endothelial growth factor (VEGF). However, its involvement in endothelial cell survival, as well as the potential contribution of the other family member Gab2 to signalling and biological responses remained unknown. Here, we show that Gab2 is tyrosine phosphorylated in a Grb2-dependent manner downstream of activated VEGF receptor-2 (VEGFR2), and that it associates with signalling proteins including PI3K and SHP2, but apparently not with the receptor. Similarly to Gab1, over-expression of Gab2 induces endothelial cell migration in response to VEGF, whereas its depletion using siRNAs results in its reduction. Importantly, depletion of both Gab1 and Gab2 leads to an even greater inhibition of VEGF-induced cell migration. However, contrary to what has been reported for Gab1, the silencing of Gab2 results in increased Src, Akt and ERK1/2 activation, slightly reduced p38 phosphorylation, and up-regulation of Gab1 protein levels. Accordingly, re-expression of Gab2 in Gab2-/- fibroblasts leads to opposite results, suggesting that the modulation of both Gab2 and Gab1 expression in these conditions might contribute to the impaired signalling observed. Consistent with their opposite roles on Akt, the depletion of Gab1, but not of Gab2, results in reduced FOXO1 phosphorylation and VEGF-mediated endothelial cell survival. Mutation of VEGFR2 Y801 and Y1214, which abrogates the phosphorylation of Gab1, also correlates with inhibition of Akt. Altogether, these results underscore the non-redundant and essential roles of Gab1 and Gab2 in endothelial cells, and suggest major contributions of these proteins during in vivo angiogenesis.
Collapse
Affiliation(s)
- Christine Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, 1560 rue Sherbrooke est, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
114
|
Tong M, Lloyd B, Pei P, Mallery SR. Human head and neck squamous cell carcinoma cells are both targets and effectors for the angiogenic cytokine, VEGF. J Cell Biochem 2009; 105:1202-10. [PMID: 18802921 DOI: 10.1002/jcb.21920] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Former vascular endothelial growth factor (VEGF)-head and neck squamous cell carcinoma (HNSCC) studies have focused on VEGF's contributions toward tumor-associated angiogenesis. Previously, we have shown that HNSCC cells produce high levels of VEGF. We therefore hypothesized that VEGF serves a biphasic role, that is, pro-angiogenic and pro-tumorigenic in HNSCC pathogenesis. Western blots confirmed the presence of VEGF's primary mitogenic receptors, VEGFR-2/KDR and VEGFR-1/Flt-1 in cultured HNSCC cells. Subsequent studies evaluated VEGF's effects on HNSCC intracellular signaling, mitogenesis, invasive capacities, and matrix metalloproteinases (MMPs) activities. Introduction of hrVEGF(165) initiated ROS-mediated intracellular signaling, resulting in kinase activation and phosphorylation of KDR and Erk1/2. As high endogenous VEGF production rendered HNSCC cells refractory to exogenous VEGF's mitogenic effects, siRNA was employed, inhibiting endogenous VEGF production for up to 96 h. Relative to transfection vector matched controls, siRNA treated HNSCC cells showed a significant decrease in proliferation at both 30 and 50 nM siRNA doses. Addition of exogenous hrVEGF(165) (30 and 50 ng/ml) to siRNA-silenced HNSCC cells resulted in dose-dependent increases in cell proliferation. Cell invasion assays showed VEGF is a potent HNSCC chemoattractant and demonstrated that VEGF pre-treatment enhanced invasiveness of HNSCC cells. Conditioned media from VEGF challenged HNSCC cells showed a moderate increase in gelatinase activity. Our results demonstrate, for the first time, that HNSCC cells are both targets and effectors for VEGF. These data introduce the prospect that VEGF targeted therapy has the potential to fulfill both anti-angiogenic and anti-tumorigenic functions.
Collapse
Affiliation(s)
- Meng Tong
- Department of Oral Maxillofacial Surgery, Pathology and Anesthesiology, College of Dentistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
115
|
PTK787/ZK22258 attenuates stellate cell activation and hepatic fibrosis in vivo by inhibiting VEGF signaling. J Transl Med 2009; 89:209-21. [PMID: 19114984 PMCID: PMC2888529 DOI: 10.1038/labinvest.2008.127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis due to hepatic stellate cell (HSC) activation represents a common response to chronic liver injury. PTK787/ZK222584 (PTK/ZK) is a pan-VEGFR tyrosine kinase inhibitor. The aim of this study was to examine the effect of PTK/ZK in liver fibrosis. In primary HSCs, PTK/ZK inhibited the expression of alpha-smooth muscle actin (alpha-SMA), collagen, tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as cell proliferation, migration and actin filament formation. PTK/ZK-induced apoptosis of HSCs, which was correlated with increased caspase-3 activation and suppressed Bcl-2 expression. PTK/ZK also induced cell cycle arrest, accompanied by increasing the expression of p27(Kip1) and downregulation of cyclin D1 and cyclin E. PTK/ZK significantly inhibited vascular endothelial growth factor (VEGF) expression, as well as VEGF-simulated cell proliferation and phosphorylation of Akt in activated HSCs. In a murine fibrotic liver, PTK/ZK attenuated collagen deposition and alpha-SMA expression in carbon tetrachloride-induced fibrosis in both a 'prevention' and 'treatment' dosing scheme. These beneficial effects were associated with reduced phosphorylation of Akt and suppressed mRNA expression of procollagen-(I), TIMP-1, matrix metalloproteinase-9 and CD31. These findings provide novel insights into the potential value of blocking VEGF signaling by a small molecule tyrosine kinase inhibitor in treating hepatic fibrosis.
Collapse
|
116
|
Virostko J, Xie J, Hallahan DE, Arteaga CL, Gore JC, Manning HC. A molecular imaging paradigm to rapidly profile response to angiogenesis-directed therapy in small animals. Mol Imaging Biol 2009; 11:204-12. [PMID: 19130143 DOI: 10.1007/s11307-008-0193-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/29/2008] [Accepted: 09/08/2008] [Indexed: 12/01/2022]
Abstract
PURPOSE The development of novel angiogenesis-directed therapeutics is hampered by the lack of non-invasive imaging metrics capable of assessing treatment response. We report the development and validation of a novel molecular imaging paradigm to rapidly assess response to angiogenesis-directed therapeutics in preclinical animal models. PROCEDURES A monoclonal antibody-based optical imaging probe targeting vascular endothelial growth factor receptor-2 (VEGFR2) expression was synthesized and evaluated in vitro and in vivo via multispectral fluorescence imaging. RESULTS The optical imaging agent demonstrated specificity for the target receptor in cultured endothelial cells and in vivo. The agent exhibited significant accumulation within 4T1 xenograft tumors. Mice bearing 4T1 xenografts and treated with sunitinib exhibited both tumor growth arrest and decreased accumulation of NIR800-alphaVEGFR2ab compared to untreated cohorts (p = 0.0021). CONCLUSIONS Molecular imaging of VEGFR2 expression is a promising non-invasive biomarker for assessing angiogenesis and evaluating the efficacy of angiogenesis-directed therapies.
Collapse
Affiliation(s)
- John Virostko
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
117
|
Kimura Y, Sumiyoshi M, Baba K. Antitumor activities of synthetic and natural stilbenes through antiangiogenic action. Cancer Sci 2008; 99:2083-96. [PMID: 19016770 PMCID: PMC11158896 DOI: 10.1111/j.1349-7006.2008.00948.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/22/2008] [Accepted: 06/27/2008] [Indexed: 01/22/2023] Open
Abstract
We reported that the antitumor and antimetastatic actions of resveratrol might be due to the inhibition of tumor-induced angiogenesis. To search for anticancer agents with stronger activity than resveratrol, we examined the antiangiogenic effects of 21 synthetic and/or natural stilbenes. Among these 21 stilbenes, 2,3-, 3,4-, and 4,4'-dihydroxystilbene inhibited the pro-matrix metalloproteinase (pro-MMP)-9 production in colon 26 cells at 5-25 microM, vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) migration at 10 and 25 microM, and VEGF-induced angiogenesis at 5-50 microM. Resvertarol inhibited the pro-MMP-9 production and VEGF-induced angiogenesis at 25 or 50 microM. Thus, the inhibition of pro-MMP-9 production in colon 26 cells and VEGF-induced angiogenesis by three dihydroxystilbenes were greater than those of resveratrol. The three dihydroxystilbenes (8 mg/kg, intraperitoneal injection) inhibited the tumor-induced neovascularization in colon 26-packed chamber-bearing mice and the tumor growth in colon 26-bearing mice. Furthermore, the three dihydroxystilbenes inhibited VEGF-induced VEGFR-2 phosphorylation. On the other hand, the three dihydroxystilbenes had no effect on VEGFR-1 and-2 expression, and VEGF-induced VEGFR-1 phosphorylation in HUVECs. These findings suggest that the inhibition of tumor-induced neovascularization by these three dihydroxystilbenes may be due to the inhibition of VEGF-induced endothelial cell migration and VEGF-induced angiogenesis through the inhibition of VEGF-induced VEGFR-2 phosphorylation in endothelial cells and pro-MMP-9 expression in colon 26 cells.
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Division of Biochemical Pharmacology, Department of Basic Medical Research, Graduate School of Medicine, Ehime University, Toon City, Ehime, Japan.
| | | | | |
Collapse
|
118
|
The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy. J Transl Med 2008; 88:949-61. [PMID: 18607348 DOI: 10.1038/labinvest.2008.60] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A growing body of evidence implicates inflammation in the development of diabetic nephropathy. We recently reported that diabetic endothelial nitric oxide synthase knockout (eNOS KO) mice develop advanced glomerular lesions resembling human diabetic nephropathy. Vascular endothelial growth factor (VEGF) is a major factor in diabetic nephropathy, and is known to be chemotactic for macrophages. Herein, we examined the association of VEGF with macrophage infiltration in experimental diabetic nephropathy. Glomerular macrophage infiltration was markedly increased in diabetic eNOS KO mice compared to diabetic C57BL/6 mice, and correlated with glomerular injury, such as mesangiolysis, glomerular microaneurysm and nodular lesions of glomerular sclerosis. An elevation of podocyte VEGF expression correlated with infiltration of Flt-1-positive macrophage in injured glomeruli in diabetic eNOS KO mice, suggesting that VEGF could contribute to macrophage migration. Neither renal nNOS nor iNOS expression was altered in both C57BL/6 and eNOS KO mice. To determine if lack of NO could affect VEGF activation of macrophages, we examined if exogenous NO can block macrophage migration induced by VEGF in in vitro studies. Exogenous NO blocked macrophage migration and hypertrophy in response to VEGF. NO mediated these effects in part by downregulating Flt-1 expression on the macrophage. In summary, NO negatively regulates VEGF-induced macrophage migration by inhibiting Flt-1 expression. The VEGF-endothelial NO uncoupling pathway might partially explain how VEGF causes glomerular disease in diabetes.
Collapse
|
119
|
Kowalczyk AE, Kaczmarek MM, Schams D, Ziecik AJ. Effect of prostaglandin E2and tumor necrosis factor α on the VEGF-Receptor system expression in cultured porcine luteal cells. Mol Reprod Dev 2008; 75:1558-66. [DOI: 10.1002/mrd.20897] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
120
|
Asami Y, Kakeya H, Komi Y, Kojima S, Nishikawa K, Beebe K, Neckers L, Osada H. Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci 2008; 99:1853-8. [PMID: 18637013 DOI: 10.1111/j.1349-7006.2008.00890.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is an inevitable event in tumor progression and metastasis, and thus has been a compelling target for cancer therapy in recent years. Effective inhibition of tumor progression and metastasis could become a promising way to treat tumor-induced angiogenesis. We discovered that a fungus, Neosartorya sp., isolated from a soil sample, produced a new angiogenesis inhibitor, which we designated azaspirene. Azaspirene was previously shown to inhibit human umbilical vein endothelial cell (HUVEC) migration induced by vascular endothelial growth factor (VEGF) at an effective dose, 100% of 27 micromol/L without significant cell toxicity. In the present study, we investigated the antiangiogenic activity of azaspirene in vivo. Azaspirene treatment reduced the number of tumor-induced blood vessels. Administration of azaspirene at 30 microg/egg resulted in inhibition of angiogenesis (23.6-45.3% maximum inhibition relative to the controls) in a chicken chorioallantoic membrane assay. Next, we elucidated the molecular mechanism of antiangiogenesis of azaspirene. We investigated the effects of azaspirene on VEGF-induced activation of the mitogen-activated protein kinase signaling pathway in HUVEC. In vitro experiments indicated that azaspirene suppressed Raf-1 activation induced by VEGF without affecting the activation of kinase insert domain-containing receptor/fetal liver kinase 1 (VEGF receptor 2). Additionally, azaspirene preferentially inhibited the growth of HUVEC but not that of the non-vascular endothelial cells NIH3T3, HeLa, MSS31, and MCF-7. Taken together, these results demonstrate that azaspirene is a novel inhibitor of angiogenesis and Raf-1 activation that contains a unique carbon skeleton in its molecular structure.
Collapse
Affiliation(s)
- Yukihiro Asami
- Antibiotics Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Chen CH, Hung HS, Hsu SH. Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 2008; 40:46-54. [PMID: 18220263 DOI: 10.1002/lsm.20589] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The purpose of this study, therefore, was to determine the mechanisms by which low-energy laser irradiation (LELI) may exert some of its angiogenic effects via the PI3 kinase/eNOS signaling pathway and induce endothelial cell migration and neovascularization, an important and necessary part of wound healing. STUDY DESIGN/MATERIALS AND METHODS The possible molecular mechanism of helium-neon (He-Ne) laser irradiation on endothelial cells was proposed. He-Ne laser at 632.5 nm was used to stimulate human umbilical vein endothelial cell (HUVEC), and its effect on cell proliferation, nitric oxide secretion, and cell migration was determined. RESULTS Irradiation enhanced endothelial nitric oxidase synthase (eNOS) protein expression, and irradiation of less than 0.26 J/cm(2) enhanced eNOS gene expression in HUVEC. The cell migration ability was promoted for HUVEC irradiated with 0.26 J/cm(2). This agreed with the vinculin protein expression induced by irradiation. In addition, the angiogenesis was promoted. The induced eNOS expression was inhibited by LY294002, indicating that the effect of laser on EC could be attributed to the up-regulation of eNOS expression through PI3K pathway at the cellular and molecular levels as a result of the He-Ne laser. CONCLUSIONS The study has shown that LELI increased endothelial cell proliferation, migration, NO secretion, and identified that activation of PI3K/Akt pathway was a critical step for the elevated for eNOS expression upon LELI.
Collapse
Affiliation(s)
- Chung-Huang Chen
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | |
Collapse
|
122
|
Holderfield MT, Hughes CC. Crosstalk Between Vascular Endothelial Growth Factor, Notch, and Transforming Growth Factor-β in Vascular Morphogenesis. Circ Res 2008; 102:637-52. [DOI: 10.1161/circresaha.107.167171] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular morphogenesis encompasses a temporally regulated set of morphological changes that endothelial cells undergo to generate a network of interconnected tubules. Such a complex process inevitably involves multiple cell signaling pathways that must be tightly coordinated in time and space. The formation of a new capillary involves endothelial cell activation, migration, alignment, proliferation, tube formation, branching, anastomosis, and maturation of intercellular junctions and the surrounding basement membrane. Each of these stages is either known or suspected to fall under the influence of the vascular endothelial growth factor, notch, and transforming growth factor-β/bone morphogenetic protein signaling pathways. Vascular endothelial growth factor is essential for initiation of angiogenic sprouting, and also regulates migration of capillary tip cells, proliferation of trunk cells, and gene expression in both. Notch has been implicated in the regulation of cell fate decisions in the vasculature, especially the choice between arterial and venular endothelial cells, and between tip and trunk cell phenotype. Transforming growth factor-β regulates cell migration and proliferation, as well as matrix synthesis. In this review, we emphasize how crosstalk between these pathways is essential for proper patterning of the vasculature and offer a transcriptional oscillator model to explain how these pathways might interact to generate new tip cells during retinal angiogenesis.
Collapse
Affiliation(s)
- Matthew T. Holderfield
- From the Department of Molecular Biology & Biochemistry, University of California, Irvine
| | | |
Collapse
|
123
|
Abstract
Both ulcerative colitis and Crohn's disease, the two major forms of inflammatory bowel diseases, are recognized, at the moment, as perplexing and challenging clinical entities, in which several molecules and cell types are implicated. Recent molecular evidence proposes the intestinal microvascular remodelling or angiogenesis, as a phenomenon implicated in the pathogenesis of these chronic inflammatory disorders, together with other proposed theories involved in the pathogenesis of inflammatory bowel diseases, such as genetic, microbacterial and immune factors. Intestinal damage is followed by a physiological angiogenesis, but the abnormal expression of pro- and anti-angiogenic molecules and the changes of vascular cell types could reflect a pathological vascular remodelling. Thus, the inflammation may be favoured and maintained by a pathological angiogenesis. A better understanding of the angiogenic process may facilitate the design of more effective therapies for chronic intestinal inflammation.
Collapse
Affiliation(s)
- I D Pousa
- Department of Gastroenterology and Ciberehd, University Hospital of La Princesa, Universidad Autónoma Madrid, Spain
| | | | | |
Collapse
|
124
|
Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, Uenaka T, Asada M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 2008; 122:664-71. [PMID: 17943726 DOI: 10.1002/ijc.23131] [Citation(s) in RCA: 383] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
E7080 is an orally active inhibitor of multiple receptor tyrosine kinases including VEGF, FGF and SCF receptors. In this study, we show the inhibitory activity of E7080 against SCF-induced angiogenesis in vitro and tumor growth of SCF-producing human small cell lung carcinoma H146 cells in vivo. E7080 inhibits SCF-driven tube formation of HUVEC, which express SCF receptor, KIT at the IC(50) value of 5.2 nM and it was almost identical for VEGF-driven one (IC(50) = 5.1 nM). To assess the role of SCF/KIT signaling in tumor angiogenesis, we evaluated the effect of imatinib, a selective KIT kinase inhibitor, on tumor growth of H146 cells in nude mice. Imatinib did not show the potent antitumor activity in vitro (IC(50) = 2,200 nM), because H146 cells did not express KIT. However, oral administration of imatinib at 160 mg/kg clearly slowed tumor growth of H146 cells in nude mice, accompanied by decreased microvessel density. Oral administration of E7080 inhibited tumor growth of H146 cells at doses of 30 and 100 mg/kg in a dose-dependent manner and caused tumor regression at 100 mg/kg. While anti-VEGF antibody also slowed tumor growth, it did not cause tumor regression. These results indicate that KIT signaling has a role in tumor angiogenesis of SCF-producing H146 cells, and E7080 causes regression of H146 tumors as a result of antiangiogenic activity mediated by inhibition of both KIT and VEGF receptor signaling. E7080 may provide therapeutic benefits in the treatment of SCF-producing tumors.
Collapse
Affiliation(s)
- Junji Matsui
- Tsukuba Research Laboratories, Tsukuba, Ibaraki 300-2635, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Funasaka T, Raz A. The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev 2008; 26:725-35. [PMID: 17828376 DOI: 10.1007/s10555-007-9086-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Autocrine motility factor (AMF) is a tumor-secreted cytokine and is abundant at tumor sites, where it may affect the process of tumor growth and metastasis. AMF is a multifunctional protein capable of affecting cell migration, invasion, proliferation, and survival, and possesses phosphoglucose isomerase activity and can catalyze the step in glycolysis and gluconeogenesis. Here, we review the role of AMF and tumor environment on malignant processes. The outcome of metastasis depends on multiple interactions between tumor cells and homeostatic mechanisms, therefore elucidation of the tumor/host interactions in the tumor microenvironment is essential in the development of new prevention and treatment strategies. Such knowledge might provide clues to develop new future therapeutic approaches for human cancers.
Collapse
Affiliation(s)
- Tatsuyoshi Funasaka
- Tumor Progression and Metastasis Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
126
|
Bayliss J, Maguire JA, Bailey M, Leet A, Kaye D, Richardson M, Bergin PJ, Dowling J, Thomson NM, Stein AN. Increased vascular endothelial growth factor mRNA in endomyocardial biopsies from allografts demonstrating severe acute rejection: A longitudinal study. Transpl Immunol 2008; 18:264-74. [DOI: 10.1016/j.trim.2007.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 07/16/2007] [Accepted: 07/31/2007] [Indexed: 01/08/2023]
|
127
|
Abid MR, Spokes KC, Shih SC, Aird WC. NADPH oxidase activity selectively modulates vascular endothelial growth factor signaling pathways. J Biol Chem 2007; 282:35373-85. [PMID: 17908694 DOI: 10.1074/jbc.m702175200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) play critical roles in vascular physiology and pathophysiology. We have demonstrated previously that NADPH oxidase-derived ROS are required for VEGF-mediated migration and proliferation of endothelial cells. The goal of this study was to determine the extent to which VEGF signaling is coupled to NADPH oxidase activity. Human umbilical vein endothelial cells and/or human coronary artery endothelial cells were transfected with short interfering RNA against the p47(phox) subunit of NADPH oxidase, treated in the absence or presence of VEGF, and assayed for signaling, gene expression, and function. We show that NADPH oxidase activity is required for VEGF activation of phosphoinositide 3-kinase-Akt-forkhead, and p38 MAPK, but not ERK1/2 or JNK. The permissive role of NADPH oxidase on phosphoinositide 3-kinase-Akt-forkhead signaling is mediated at post-VEGF receptor levels and involves the nonreceptor tyrosine kinase Src. DNA microarrays revealed the existence of two distinct classes of VEGF-responsive genes, one that is ROS-dependent and another that is independent of ROS levels. VEGF-induced, thrombomodulin-dependent activation of protein C was dependent on NADPH oxidase activity, whereas VEGF-induced decay-accelerating factor-mediated protection of endothelial cells against complement-mediated lysis was not. Taken together, these findings suggest that NADPH oxidase-derived ROS selectively modulate some but not all the effects of VEGF on endothelial cell phenotypes.
Collapse
Affiliation(s)
- Md Ruhul Abid
- Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
128
|
Choong NW, Salgia R, Vokes EE. Key signaling pathways and targets in lung cancer therapy. Clin Lung Cancer 2007; 8 Suppl 2:S52-60. [PMID: 17382025 DOI: 10.3816/clc.2007.s.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the use of chemotherapy, radiation therapy, and surgery, the overall outcome for lung cancer continues to be disappointing. In order to make a difference in the treatment of lung cancer, novel therapeutics need to be developed. The molecular mechanisms of carcinogenesis in lung cancer are complex and involve multiple oncogenes, tumor suppressor genes, receptor tyrosine kinases, cytoplasmic enzymes, and tumor interstitial elements, among other cellular proteins. In this review, the authors discuss key signaling pathways and molecular targets in the treatment of lung cancer. Through understanding molecular targets and the utilization of specific inhibitors, hopefully, a dramatic impact will be made in the biology and therapy of lung cancer.
Collapse
Affiliation(s)
- Nicholas W Choong
- Section of Hematology/Oncology, University of Chicago Medical Center, IL 60615, USA
| | | | | |
Collapse
|
129
|
Li HJ, Pang ZL, Mai-Mai-Ti MLAS. Effects of vascular endothelial growth factor antisense oligodeoxynucleotide on the mRNA expression of vascular endothelial growth factor, fms-like tyrosine kinase-1 and kinase insert domain-containing receptor and vascular endothelial growth factor protein excretion of gallbladder carcinoma GBC-SD cells in vitro. Shijie Huaren Xiaohua Zazhi 2007; 15:1225-1231. [DOI: 10.11569/wcjd.v15.i11.1225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of oligofectamine-mediated vascular endothelial growth factor (VEGF) antisense oligodeoxynucleotide (ASODN) transfection on the mRNA expression of VEGF, fms-like tyrosine kinase-1 (Flt-1) and kinase insert domain-containing receptor (KDR) as well as VEGF protein excretion of gallbladder carcinoma GBC-SD cells in vitro.
METHODS: Gallbladder carcinoma GBC-SD cells were transfected with VEGF ASODN and scrambled oligodeoxynucleotide (SODN) by Oligofectamine mediation. The mRNA expression of VEGF, Flt-1 and KDR in GBC-SD cells of each group were detected by semi-quantitive reverse transcription-polymerase chain reaction (RT-PCR) and the excretion of VEGF protein was measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS: Semi-quantitive RT-PCR revealed that VEGF, Flt-1 and KDR mRNA expression in groups of ASODN (VEGF165: 0.686 ± 0.033, 0.569 ± 0.049, 0.489 ± 0.036, 0.716 ± 0.017; VEGF165: 0.462 ± 0.046, 0.338 ± 0.034, 0.219 ± 0.022, 0.471 ± 0.038; Flt-1: 0.694 ± 0.019, 0.562 ± 0.045, 0.435 ± 0.042, 0.724 ± 0.026; KDR: 0.667 ± 0.063, 0.490 ± 0.033, 0.301 ± 0.029, 0.665 ± 0.068) and ASODN + Oligofectamine (VEGF165: 0.601 ± 0.021, 0.465 ± 0.042, 0.416 ± 0.023, 0.662 ± 0.035; VEGF121: 0.408 ± 0.014, 0.286 ± 0.019, 0.157 ± 0.021, 0.418 ± 0.037; Flt-1: 0.609 ± 0.018, 0.442 ± 0.049, 0.314 ± 0.015, 0.614 ± 0.029; KDR: 0.523 ± 0.048, 0.432 ± 0.027, 0.218 ± 0.036, 0.524 ± 0.037) were significantly inhibited 24, 48, 72 and 96 h after transfection in comparison with those in the control group (P < 0.05), and the inhibitory effect of ASODN + Oligofectamine was stronger (P > 0.05). ELISA results discovered that VEGF protein excretion was markedly decreased in the culture media of ASODN (281.26 ± 18.62, 526.44 ± 34.95, 791.13 ± 20.99) and ASODN + Oligofectamine (250.7 ± 14.57, 506.09 ± 19.14, 711.79 ± 19.91) group (P < 0.05) as compared with that in the control group, and ASODN + Oligofectamine was more efficient (P > 0.05).
CONCLUSION: VEGF ASODN can inhibit VEGF, Flt-1 and KDR mRNA expression and VEGF protein excretion of GBC-SD cells, and the effect may be strengthened by Oligofectamine mediation.
Collapse
|
130
|
Abstract
Current focus on cancer metastasis has centered on the intrinsic factors regulating the cell autonomous homing of the tumor cells to the metastatic site. Specific up-regulation of fibronectin and clustering of bone marrow-derived cellular infiltrates coexpressing matrix metalloproteinases in distant tissue sites before tumor cell arrival are proving to be indispensable for the initial stages of metastasis. These bone marrow-derived hematopoietic progenitors that express vascular endothelial growth factor receptor 1 mobilize in response to the unique array of growth factors produced by the primary tumor. Their arrival in distant sites represents early changes in the local microenvironment, termed the "premetastatic niche," which dictate the pattern of metastatic spread. Focus on the early cellular and molecular events in cancer dissemination and selectivity will likely lead to new approaches to detect and prevent metastasis at its earliest inception.
Collapse
Affiliation(s)
- Rosandra N. Kaplan
- Department of Pediatrics, Weill College of Medicine at Cornell University, New York, New York
- Department of Cell and Developmental Biology, Weill College of Medicine at Cornell University, New York, New York
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Shahin Rafii
- Department of Cell and Developmental Biology, Weill College of Medicine at Cornell University, New York, New York
- Department of Genetic Medicine, Weill College of Medicine at Cornell University, New York, New York
| | - David Lyden
- Department of Pediatrics, Weill College of Medicine at Cornell University, New York, New York
- Department of Cell and Developmental Biology, Weill College of Medicine at Cornell University, New York, New York
- Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
131
|
Kaczmarek MM, Kowalczyk AE, Waclawik A, Schams D, Ziecik AJ. Expression of vascular endothelial growth factor and its receptors in the porcine corpus luteum during the estrous cycle and early pregnancy. Mol Reprod Dev 2007; 74:730-9. [PMID: 17120307 DOI: 10.1002/mrd.20638] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was undertaken to determine the expression of vascular endothelial growth factor (VEGF) and its receptors, fms-like tyrosine kinase (Flt-1) and fetal liver kinase-1/kinase insert domain-containing receptor (Flk-1/KDR), in the porcine corpus luteum (CL) during the estrous cycle and early pregnancy. Immunohistochemical studies localized proteins of VEGF ligand-receptor system in the cytoplasm of luteal cells and in some blood vessels. Western blot analysis revealed significantly higher levels of VEGF protein during early and mid-luteal phase (vs. late luteal phase; P<0.001 and P<0.01, respectively). Quantification of VEGF mRNA in the CL showed increased mRNA levels during entire luteal phase (vs. Days 16-17; P<0.05). Expression of Flt-1 protein remained high during luteal phase (P<0.001), but the mRNA levels tended to increase from the early to the late luteal phase. Elevated protein expression of Flk-1/KDR was found in the mid-luteal phase (vs. Days 16-17; P<0.05). However, induction of Flk-1/KDR mRNA expression occurred earlier, in early luteal phase. The lowest VEGF, Flt-1 and Flk-1/KDR mRNA and protein levels were observed in regressed CL (P<0.001). During pregnancy, VEGF, Flt-1 and Flk-1/KDR mRNA and protein expression was comparable to the mid-luteal phase. In conclusion, the present study has demonstrated dynamic expression of VEGF and its receptors in the porcine CL during the estrous cycle and early pregnancy. These data suggest that the VEGF ligand-receptor system may play an important role in the development and maintenance of the CL in pigs.
Collapse
Affiliation(s)
- Monika M Kaczmarek
- Division of Reproductive Endocrinology and Pathophysiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | | | | | | |
Collapse
|
132
|
Cao Y, Liu Q. Therapeutic Targets of Multiple Angiogenic Factors for the Treatment of Cancer and Metastasis. Adv Cancer Res 2007; 97:203-24. [PMID: 17419947 DOI: 10.1016/s0065-230x(06)97009-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Like any growing healthy tissues, tumors build up their blood vessels by three mechanisms: angiogenesis, vasculogenesis, and intersucception. Vascular endothelial growth factor-A (VEGF-A) is one of the key factors responsible for stimulation and maintenance of the disorganized, leaky, and torturous tumor vasculature. In addition to VEGF-A, tumors produce multiple other factors to stimulate blood vessel growth. These include members in the platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), VEGF-C, insulin-like growth factor (IGF), angiopoietin (Ang), and hepatocyte growth factor (HGF) families. Recent studies show that these angiogenic factors can also promote lymphangiogenesis and potentially lymphatic metastasis. Understanding the roles of individual and combined angiogenic factors in promoting tumor angiogenesis is crucial for defining therapeutic targets and antiangiogenic drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Yihai Cao
- Laboratory of Angiogenesis Research, Microbiology and Tumor Biology Center, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
133
|
Qin L, Zeng H, Zhao D. Requirement of Protein Kinase D Tyrosine Phosphorylation for VEGF-A165-induced Angiogenesis through Its Interaction and Regulation of Phospholipase Cγ Phosphorylation. J Biol Chem 2006; 281:32550-8. [PMID: 16891660 DOI: 10.1074/jbc.m604853200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial cell growth factor-A(165) (VEGF-A(165)) is critical for angiogenesis. Although protein kinase C-mediated protein kinase D(PKD)activation was implicated in the response, the detailed mechanism remains unclear. In this study, we found that VEGF-A(165)-stimulated tyrosine phosphorylation of PKD and the dominant negative mutant of PKD, PKD(Y463F), inhibited VEGF-A(165)-induced human umbilical vein endothelial cell (HUVEC) proliferation. In addition, PKD(S738A/S742A) overexpression inhibited VEGF-induced HUVEC migration. Furthermore, knockdown of PKD by its specific small interfering RNA inhibited VEGF-induced HUVEC proliferation and migration. Moreover transfection of PKD(Y463F), PKD(S738A/S742A), or PKD-small interfering RNA blocked VEGF-induced angiogenesis in vivo. Our signaling experiments show that KDR not Flt-1 mediated PKD tyrosine phosphorylation and KDR tyrosine residues 951 and 1059 were required for VEGF-A(165)-stimulated PKD serine and tyrosine phosphorylation, respectively. Whereas G protein Gbetagamma subunits were required for both PKD serine phosphorylation and tyrosine phosphorylation, intracellular Ca(2+) mobilization was required for VEGF-A(165)-stimulated PKD tyrosine phosphorylation and phospholipase C (PLC) activity was required for PKD serine phosphorylation. Surprisingly, the PLC inhibitor did not inhibit PKD tyrosine phosphorylation. Instead, PKD tyrosine 463 was required for VEGF-A(165)-stimulated PLCgamma tyrosine phosphorylation. Moreover, PKD interacted with PLCgamma even in unstimulated cells, and PKD tyrosine 463 phosphorylation was not required for this interaction. Together, we demonstrate that PKD interacts with PLCgamma and becomes tyrosine phosphorylated upon VEGF stimulation, leading to PLCgamma activation and angiogenic response of VEGF-A(165).
Collapse
Affiliation(s)
- Liuliang Qin
- Department of Pathology and Gastroenterology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | | | | |
Collapse
|
134
|
Longley DB, Allen WL, Johnston PG. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer. Biochim Biophys Acta Rev Cancer 2006; 1766:184-96. [PMID: 16973289 DOI: 10.1016/j.bbcan.2006.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/25/2006] [Accepted: 08/04/2006] [Indexed: 12/17/2022]
Abstract
Resistance to chemotherapy limits the effectiveness of current cancer therapies, including those used to treat colorectal cancer, which is the second most common cause of cancer death in Europe and the United States. 5-Fluorouracil-based chemotherapy regimens are the standard treatment for colorectal cancer in both the adjuvant and advanced disease settings. Drug resistance is thought to cause treatment failure in over 90% of patients with metastatic cancer, while drug resistant micrometastic tumour cells may also reduce the impact of adjuvant chemotherapy treatment. The identification of panels of biomarkers that not only identify those patients most likely to benefit from chemotherapy treatment, but also which chemotherapies to use, would be a major advance. In this review, we describe molecular mechanisms of drug resistance that may be relevant to colorectal cancer. We also describe the results of predictive biomarker studies in this disease. Finally, we discuss how pharmacogenomics and other high through-put technologies may impact on the clinical management of colorectal cancer in the future.
Collapse
Affiliation(s)
- Daniel B Longley
- Drug Resistance Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, N. Ireland
| | | | | |
Collapse
|
135
|
Roodink I, van der Laak J, Kusters B, Wesseling P, Verrijp K, de Waal R, Leenders W. Development of the tumor vascular bed in response to hypoxia-induced VEGF-A differs from that in tumors with constitutive VEGF-A expression. Int J Cancer 2006; 119:2054-62. [PMID: 16804907 DOI: 10.1002/ijc.22072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumors arise initially as avascular masses in which central hypoxia induces expression of vascular endothelial growth factor-A (VEGF-A) and subsequently tumor vascularization. However, VEGF-A can also be constitutively expressed as a result of genetic events. VEGF-A is alternatively spliced to yield at least 6 different isoforms. Of these, VEGF-A(121) is freely diffusible whereas basically charged domains in the larger isoforms confer affinity for cell surface or extracellular matrix components. We previously reported that in a mouse brain metastasis model of human melanoma, VEGF-A(121) induced a qualitatively different tumor vascular phenotype than VEGF-A(165) and VEGF-A(189): in contrast to the latter ones, and VEGF-A(121) did not induce a neovascular bed but rather led to leakage and dilatation of preexistent brain vessels. Here, we correlate vascular phenotypes with spatial VEGF-A expression profiles in clinical brain tumors (low grade gliomas; n = 6, melanoma metastases; n = 4, adenocarcinoma metastases; n = 4, glioblastoma multiforme; n = 3, sarcoma metastasis; n = 1, renal cell carcinoma metastasis; n = 1). We show that tumors that constitutively express VEGF-A present with different vascular beds than tumors in which VEGF-A is expressed as a response to central hypoxia. This phenotypic difference is consistent with a model where in tumors with constitutive VEGF-A expression, all isoforms exert their effects on vasculature, resulting in a classical angiogenic phenotype. In tumors where only central parts express hypoxia-induced VEGF-A, the larger angiogenic isoforms are retained by extracellular matrix, leaving only freely diffusible VEGF-A(121) to exert its dilatation effects on distant vessels.
Collapse
Affiliation(s)
- Ilse Roodink
- Department of Pathology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
136
|
Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 2006; 20:1495-7. [PMID: 16754748 DOI: 10.1096/fj.05-5137fje] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There are growing data to suggest that tissue hypoxia represents a critical force that drives adult vasculogenesis. Vascular endothelial growth factor (VEGF) expression is dramatically up-regulated by hypoxia and results in enhanced neovascularization. Although the role of VEGF in angiogenesis has been well characterized, its role in adult vasculogenesis remains poorly understood. We used two distinct murine bone marrow transplantation (BMT) models to demonstrate that increased VEGF levels at the site of tumor growth promoted vasculogenesis in vivo. This effect of VEGF was downstream of its effect to enhance either mobilization or survival of circulating endothelial progenitor cells (EPCs). Both VEGFR1 (flt1) and VEGFR2 (flk1) are expressed on culture expanded human EPCs. Previous studies suggest that the effect of VEGF on endothelial cell migration is primarily mediated via VEGFR2; however, VEGF-induced EPC migration in vitro was mediated by both receptors, suggesting that VEGF-VEGFR1 interactions in EPCs are distinct from differentiated endothelial cells. We used specific blocking antibodies to these receptors to demonstrate that VEGFR1 plays an important role in human EPC recruitment to tumors. These findings were further supported by our finding that tumor-associated placental growth factor (PlGF), a VEGFR1-specific agonist, increased tumor vasculogenesis in a murine BMT model. We further showed that both VEGF receptors were necessary for the formation of functional vessels derived from exogenously administered human ex vivo expanded EPCs. Our data suggest local VEGF and/or PlGF expression promote vasculogenesis; VEGF plays a role in EPC recruitment and subsequent formation of functional vessels.
Collapse
Affiliation(s)
- Bin Li
- Department of Pathology, Vanderbilt University School of Medicine, 1161 21st Ave. South, C2217 MCN, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Osada S, Imai H, Tomita H, Tokuyma Y, Okumura N, Sakashita F, Nonoka K, Sugiyama Y. Vascular endothelial growth factor protects hepatoma cells against oxidative stress-induced cell death. J Gastroenterol Hepatol 2006; 21:988-93. [PMID: 16724983 DOI: 10.1111/j.1440-1746.2006.04223.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The aim of the present study was to examine coordination of the vascular endothelial growth factor (VEGF) and VEGF receptor (Flk-1) system and to study control of VEGF expression by oxidative stress, which is considered a model for chronic liver disease. METHODS Cell viability was determined by test method with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-dephenyl tetrazolium bromide (MTT). Expressions of cellular proteins were evaluated by western blot analysis. RESULTS The c-Met tyrosine phosphorylation in PLC/PRF/5 hepatoma cells was increased by treatment with 20 ng/mL hepatocyte growth factor (HGF), and extracellular signal-regulated kinase (ERK) was also activated. Although Flk-1 was phosphorylated in response to VEGF (>50 ng/mL), phosphorylated ERK was not detected at these concentrations. A total of 5.0 and 10 micromol/L hydrogen peroxide (H(2)O(2)) caused cell death in a dose-dependent manner after 24 h. On western blot analysis at 1 h with H(2)O(2), rapid phosphorylation of both ERK1/2 and c-Jun NH(2)-terminal kinase (JNK) was observed. In the first 6 h, H(2)O(2) induced cell death for 58.4 +/- 6.8%, whereas the presence of 100 ng/mL VEGF improved the survival rate to 77.2 +/- 4.2%. The VEGF significantly decreased H(2)O(2)-induced cell death after 12 h, whereas HGF (20 ng/mL) did not have a similar effect. When cells were incubated with 5 micromol/L H(2)O(2), expression of VEGF protein was detected. Furthermore, H(2)O(2)-induced phosphorylation of ERK and JNK was also reduced by VEGF (100 ng/mL). In contrast, HGF did not induce phosphorylation of ERK and JNK. CONCLUSION Hepatoma cells might be able to survive under continuous oxidative stress through expression of VEGF.
Collapse
Affiliation(s)
- Shinji Osada
- Surgical Oncology, Gifu University School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Vascular endothelial growth factor (VEGF) is an essential peptide in new vessel growth in physiology (endometrial growth, embryonic development); pathological conditions (diabetic retinopathy, rheumatoid arthritis); as well as in tumor cell growth, particularly distant metastases. This study focused on VEGF structure, receptors, and angiogensis in tumors, especially their roles in thyroid cancer. The VEGF mRNA undergoes alternative splicing events that generate four homodimeric isoforms, including VEGF121, VEGF165, VEGF189, or VEGF206. Using VEGF purified from a culture medium conditioned by A-431 human epidermoid carcinoma cells, VEGF-binding site complexes of 230, 170, and 125 kDa were detected on human umbilical vein endothelial cells. The VEGF specifically induced the tyrosine phosphorylation of a 190-kDa polypeptide, which had similar mass to the largest binding site detected through affinity cross-linking. A transmembrane receptor belongs to the tyrosine kinase family, fms-like tyrosine kinase (FLT). These receptor tyrosine kinases encoded by the FLT gene family have distinct functions in regulating blood vessel growth and differentiation. Regulation of VEGF is a complex, multistep mechanism in various kinds of cells and tissues. Hypoxia-dependent and -independent mechanisms are illustrated in different cancer tissues. Hypoxic tumor cells may switch to a proangiogenic phenotype, which increases VEGF transcription. Clinical applications of VEGF in cancer have included diagnosis, prediction of prognosis, and treatment in different solid tumors, including thyroid tumors. Studies involving thyroid cancer cell lines, serum level determination, immunohistocytochemical staining, molecular biological studies, and gene therapy to the in vivo clinical trials, have shown that antiangiogensis therapy can provide another treatment modality for thyroid cancer. Future studies focused on recombinant human anti-VEGF research involving patients with advanced thyroid cancer, and investigation of the protection of high-risk patients by using novel antiangiogenic vaccines, are warranted.
Collapse
Affiliation(s)
- Jen-Der Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University, Taiwan, Republic of China.
| | | |
Collapse
|
139
|
Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006; 63:601-15. [PMID: 16465447 PMCID: PMC2773843 DOI: 10.1007/s00018-005-5426-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to hypoxia and upon stimulation with growth factors such as transforming growth factors, interleukins or platelet-derived growth factor. VEGFs bind to three variants of type III receptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each VEGF isoform binds to a particular subset of these receptors giving rise to the formation of receptor homo- and heterodimers that activate discrete signaling pathways. Signal specificity of VEGF receptors is further modulated upon recruitment of coreceptors, such as neuropilins, heparan sulfate, integrins or cadherins. Here we summarize the knowledge accumulated since the discovery of these proteins more than 20 years ago with the emphasis on the signaling pathways activated by VEGF receptors in endothelial cells during cell migration, growth and differentiation.
Collapse
Affiliation(s)
- S. Cébe-Suarez
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - A. Zehnder-Fjällman
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - K. Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
140
|
Werdich XQ, Penn JS. Src, Fyn and Yes play differential roles in VEGF-mediated endothelial cell events. Angiogenesis 2006; 8:315-26. [PMID: 16400523 DOI: 10.1007/s10456-005-9021-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 10/04/2005] [Indexed: 11/29/2022]
Abstract
Widely coexpressed Src family kinase (SFK) members Src, Fyn and Yes are involved in various cellular events, often acting downstream of receptor tyrosine kinases, such as vascular endothelial growth factor (VEGF) receptors. They are well known for their functional redundancy; any unique features remain largely undefined. Utilizing RNA interference, we have selectively knocked down Src, Fyn and Yes in human retinal microvascular endothelial cells (HRMECs). Cells with single SFK knockdown showed that all three kinases were required for VEGF mitogenic signaling. VEGF-induced cell migration was significantly increased in Fyn-deficient cells and decreased in Yes-deficient cells. Selective interference of Fyn, but not Src or Yes, impaired VEGF-induced tube formation in HRMECs. Cells in which all three SFKs were targeted showed significant inhibition of all three cellular events. In addition, interference of Src, Fyn and Yes did not affect the anti-apoptotic effect of VEGF in HRMECs, as determined by DNA fragmentation analysis. These results provide direct evidence that Src, Fyn and Yes maintain distinct properties in the regulation of VEGF-mediated endothelial cell events.
Collapse
Affiliation(s)
- Xiang Q Werdich
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
141
|
|
142
|
Kwon M, Libutti SK. Advances in understanding angiogenesis through molecular studies. Int J Radiat Oncol Biol Phys 2006; 64:26-32. [PMID: 16377412 DOI: 10.1016/j.ijrobp.2005.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/10/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
Tumors, in most cases, need angiogenesis for their sustained growth. A great deal of evidence has suggested that the process of angiogenesis is regulated by the balance between proangiogenic and antiangiogenic factors. Thus, the inhibition of tumor angiogenesis has been considered to be one of the key targets in anticancer therapy, and more than 60 antiangiogenic compounds are currently under clinical evaluation in cancer patients. However, the molecular mechanisms responsible for the activity of many of these antiangiogenic compounds are still not well understood. The recent development of microarray technology has allowed us to investigate the mechanism of action of these inhibitors more rapidly and extensively. With the use of microarray technology, novel molecules and pathways are shown to play a role in angiogenesis. This article also reviews new experimental approaches combined with microarray analysis to identify the molecular pathways involved in tumor-host interactions. Elucidation of the pathways that mediate both angiogenic and antiangiogenic responses will help us to develop better anticancer therapies.
Collapse
Affiliation(s)
- Mijung Kwon
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1201, USA
| | | |
Collapse
|
143
|
Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 2005; 109:227-41. [PMID: 16104843 DOI: 10.1042/cs20040370] [Citation(s) in RCA: 639] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The VEGF (vascular endothelial growth factor) family and its receptors are essential regulators of angiogenesis and vascular permeability. Currently, the VEGF family consists of VEGF-A, PlGF (placenta growth factor), VEGF-B, VEGF-C, VEGF-D, VEGF-E and snake venom VEGF. VEGF-A has at least nine subtypes due to the alternative splicing of a single gene. Although the VEGF165 isoform plays a central role in vascular development, recent studies have demonstrated that each VEGF isoform plays distinct roles in vascular patterning and arterial development. VEGF-A binds to and activates two tyrosine kinase receptors, VEGFR (VEGF receptor)-1 and VEGFR-2. VEGFR-2 mediates most of the endothelial growth and survival signals, but VEGFR-1-mediated signalling plays important roles in pathological conditions such as cancer, ischaemia and inflammation. In solid tumours, VEGF-A and its receptor are involved in carcinogenesis, invasion and distant metastasis as well as tumour angiogenesis. VEGF-A also has a neuroprotective effect on hypoxic motor neurons, and is a modifier of ALS (amyotrophic lateral sclerosis). Recent progress in the molecular and biological understanding of the VEGF/VEGFR system provides us with novel and promising therapeutic strategies and target proteins for overcoming a variety of diseases.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Division of Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | | |
Collapse
|
144
|
O'Donnell A, Padhani A, Hayes C, Kakkar AJ, Leach M, Trigo JM, Scurr M, Raynaud F, Phillips S, Aherne W, Hardcastle A, Workman P, Hannah A, Judson I. A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points. Br J Cancer 2005; 93:876-83. [PMID: 16222321 PMCID: PMC2361651 DOI: 10.1038/sj.bjc.6602797] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SU5416 (Z-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone; semaxanib) is a small molecule inhibitor of the vascular endothelial growth factor receptor (VEGFR2). A Phase I dose escalation study was performed. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used as a pharmacodynamic assessment tool. In all, 27 patients were recruited. SU5416 was administered twice weekly by fixed rate intravenous infusion. Patients were treated in sequential cohorts of three patients at 48, 65, 85 110 and 145 mg m-2. A further dose level of 190 mg m-2 after a 2-week lead in period at a lower dose was completed; thereafter, the cohort at 145 mg m-2 was expanded. SU5416 showed linear pharmacokinetics to 145 mg m-2 with a large volume of distribution and rapid clearance. A significant degree of interpatient variability was seen. SU5416 was well tolerated, by definition a maximum-tolerated dose was not defined. No reproducible changes were seen in DCE-MRI end points. Serial assessments of VEGF in a cohort of patients treated at 145 mg m-2 did not show a statistically significant treatment-related change. Parallel assessments of the impact of SU5416 on coagulation profiles in six patients showed a transient effect within the fibrinolytic pathway. Clinical experience showed that patients who had breaks of therapy longer than a week could not have treatment reinitiated at a dose of 190 mg m-2 without unacceptable toxicity. The 145 mg m-2 dose level is thus the recommended dose for future study.
Collapse
Affiliation(s)
- A O'Donnell
- Institute of Cancer Research, and Royal Marsden Hospital, Sutton SM2 5PT, UK. anne.o'
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Chang X, Firestone GL, Bjeldanes LF. Inhibition of growth factor-induced Ras signaling in vascular endothelial cells and angiogenesis by 3,3'-diindolylmethane. Carcinogenesis 2005; 27:541-50. [PMID: 16199440 DOI: 10.1093/carcin/bgi230] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), an indole derivative produced on consumption of broccoli and other cruciferous vegetables, has been shown to have multiple anticancer effects in both in vivo and in vitro models. The present study was carried out to clarify the mechanism of DIM's antiangiogenic activity. We found that DIM can inhibit vascular endothelial growth factor (VEGF)-induced cell proliferation and DNA synthesis in human umbilical vascular endothelial cells (HUVECs). Consistent with this inhibition, VEGF-induced extracellular signal-regulated kinase (ERK1/2) phosphorylation was greatly reduced. However, VEGF receptor phosphorylation induced by VEGF was not affected by DIM, indicating that DIM does not exert a direct and specific effect on the tyrosine kinase activity of this receptor. Further studies showed that DIM had a similar inhibitory effect on ERK1/2 phosphorylation induced by a variety of growth factors. Furthermore, Ras-GTP content, which dramatically increased after HUVECs were challenged by either individual growth factors or serum, was reduced by approximately 80% with 25 muM DIM treatment, which in turn resulted in the reduced activities of Raf and MEK, culminating in the drop of ERK1/2 activation. Overexpression of constitutively active GTPase mutant, Ras G12V, in HUVECs reversed the inhibitory effect of DIM on ERK1/2 activation. In a rodent Matrigel plug model, the presence of DIM strongly reduced VEGF-induced neovascularization, indicating that DIM is active in vivo. These data provide evidence that DIM inhibits Ras signaling induced by VEGF and other growth factors, which interferes with its downstream biological effects necessary for angiogenesis.
Collapse
Affiliation(s)
- Xiaofei Chang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
146
|
Allen WL, Johnston PG. Have we made progress in pharmacogenomics? The implementation of molecular markers in colon cancer. Pharmacogenomics 2005; 6:603-14. [PMID: 16143000 DOI: 10.2217/14622416.6.6.603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For the last 40 years, 5-fluorouracil (5-FU) has remained the treatment of choice in both the adjuvant and advanced treatment of colorectal cancer (CRC). However, 5-FU monotherapy produces response rates of only 10–20% in the advanced setting. 5-FU has been combined with newer agents, such as oxaliplatin and irinotecan, and this has significantly increased response rates to 40–50% in the advanced setting. More recently, novel biological agents, such as the monoclonal antibodies targeting either the epidermal growth factor receptor or vascular endothelial growth factor, have shown to provide additional clinical benefit for patients with metastatic CRC. A number of predictive markers have been identified for CRC to date. However, their usefulness as individual markers of response has led to somewhat inconclusive results. Therefore, there is a need to identify panels of predictive markers of response to therapy for advanced CRC, in order to improve these disappointing response rates. The advent of high-throughput methodologies, such as microarrays, enables tumor samples to be profiled on a global scale. This technology has been utilized to develop predictive markers for a wide range of tumor types to date, and hopefully this technology can be translated into the CRC setting with the hope of predicting the response of each individual tumor to chemotherapy.
Collapse
Affiliation(s)
- Wendy L Allen
- Queen's University Belfast, Drug Resistance Group, Centre for Cancer Research and Cell Biology, University Floor, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, Northern Ireland
| | | |
Collapse
|
147
|
Cezar-de-Mello PFT, Nascimento-Silva V, Villela CG, Fierro IM. Aspirin-triggered Lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene 2005; 25:122-9. [PMID: 16132039 DOI: 10.1038/sj.onc.1209002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Angiogenesis, the growth of new capillaries from pre-existing ones, occurs through dynamic functions of the endothelial cells (EC), including migration, which is essential to achieve an organized formation of the vessel sprout. We demonstrated previously that an aspirin-triggered lipoxin analog, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 (ATL-1), inhibits vascular endothelial growth factor (VEGF)-induced EC migration. In the present study, we investigated the effects of ATL-1 in the actin cytoskeleton reorganization of EC stimulated with VEGF. Pretreatment of EC with ATL-1 caused a reduction in VEGF-induced stress fibers and therefore reduced the intracellular content of filamentous actin. A concomitant impairment in stress-activated protein kinase (SAPK2/p38) phosphorylation suggests that ATL inhibition of VEGF-stimulated actin polymerization involves the SAPK2/p38 pathway. Moreover, ATL-1 treatment inhibited focal adhesion clustering due to inhibition of focal adhesion kinase (FAK) phosphorylation and the subsequent association of FAK with the actin cytoskeleton. This final event, which ultimately allows cell migration, was reverted by an LX receptor antagonist, but not by a cys-LT1R antagonist, indicating an effect via the G-protein-linked LXA4 receptor. Together our results provide evidence that ATL-1 inhibits EC migration via the concerted inhibition of actin polymerization and proper assembly of focal adhesions, supporting a role for these novel lipid mediators as angiogenesis modulators.
Collapse
Affiliation(s)
- P F T Cezar-de-Mello
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
148
|
Li J, Huang S, Armstrong EA, Fowler JF, Harari PM. Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys 2005; 62:1477-85. [PMID: 16029810 DOI: 10.1016/j.ijrobp.2005.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 11/16/2022]
Abstract
The formation of new blood vessels (angiogenesis) represents a critical factor in the malignant growth of solid tumors and metastases. Vascular endothelial cell growth factor (VEGF) and its receptor VEGFR2 represent central molecular targets for antiangiogenic intervention, because of their integral involvement in endothelial cell proliferation and migration. In the current study, we investigated in vitro and in vivo effects of receptor blockade on various aspects of the angiogenic process using monoclonal antibodies against VEGFR2 (cp1C11, which is human specific, and DC101, which is mouse specific). Molecular blockade of VEGFR2 inhibited several critical steps involved in angiogenesis. VEGFR2 blockade in endothelial cells attenuated cellular proliferation, reduced cellular migration, and disrupted cellular differentiation and resultant formation of capillary-like networks. Further, VEGFR2 blockade significantly reduced the growth response of human squamous cell carcinoma xenografts in athymic mice. The growth-inhibitory effect of VEGFR2 blockade in tumor xenografts seems to reflect antiangiogenic influence as demonstrated by vascular growth inhibition in an in vivo angiogenesis assay incorporating tumor-bearing Matrigel plugs. Further, administration of VEGFR2-blocking antibodies in endothelial cell cultures, and in mouse xenograft models, increased their response to ionizing radiation, indicating an interactive cytotoxic effect of VEGFR2 blockade with radiation. These data suggest that molecular inhibition of VEGFR2 alone, and in combination with radiation, can enhance tumor response through molecular targeting of tumor vasculature.
Collapse
Affiliation(s)
- Jing Li
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI 53792-0600, USA
| | | | | | | | | |
Collapse
|
149
|
Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan ST. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 2005; 65:3691-9. [PMID: 15867364 DOI: 10.1158/0008-5472.can-04-3462] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis of hepatocellular carcinoma. Inhibition of VEGF receptors could theoretically reduce angiogenesis and tumor growth in hepatocellular carcinoma, but this remains to be proven with an experimental study. This study examined the angiogenesis-dependent and angiogenesis-independent activities of PTK787/ZK222584 (PTK787), a tyrosine kinase inhibitor of VEGF receptors, in nude mice bearing human hepatocellular carcinoma xenografts. The in vitro effects of PTK787 on proliferation, apoptosis, and cell cycle distribution in human hepatocellular carcinoma cell lines were also studied. Oral administration of PTK787 resulted in a significant reduction in tumor volume and microvessel formation of hepatocellular carcinoma xenografts in nude mice. PTK787 inhibited tumor cell proliferation in a dose-dependent manner and also induced tumor cells to undergo apoptosis both in vivo and in vitro. The proapoptotic response was associated with down-regulation of Bcl-2 and Bcl-x(L) expression and induction of cleavage of caspase-3. In addition, PTK787 induced growth arrest in hepatocellular carcinoma cells, which was associated with G1 arrest and partial G2-M block. This effect correlated with an increase in p21(WAF1/ CIP1) (p21) and p27KIP1 (p27) protein expression. In conclusion, this study showed that PTK787 is a potent inhibitor of tumor growth in hepatocellular carcinoma by both antiangiogenic effect and direct effects on tumor cell proliferation and apoptosis. Our data suggest that blockage of VEGF receptors may provide an effective therapeutic approach for human hepatocellular carcinoma.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/biosynthesis
- Caspase 3
- Caspases/biosynthesis
- Cell Cycle Proteins/biosynthesis
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclin-Dependent Kinase Inhibitor p27
- Extracellular Matrix Proteins
- Humans
- Intracellular Signaling Peptides and Proteins
- Liver Neoplasms/blood supply
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Myosin Heavy Chains
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/enzymology
- Nonmuscle Myosin Type IIB
- Phthalazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proteins/metabolism
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Pyridines/pharmacology
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Xenograft Model Antitumor Assays
- bcl-X Protein
Collapse
Affiliation(s)
- Yuqing Liu
- Centre for the Study of Liver Disease and Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
150
|
Choong NW, Ma PC, Salgia R. Therapeutic targeting of receptor tyrosine kinases in lung cancer. Expert Opin Ther Targets 2005; 9:533-59. [PMID: 15948672 DOI: 10.1517/14728222.9.3.533] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lung cancer is a difficult illness with a poor overall survival. Even though combination strategies with chemotherapy, radiation therapy and surgery have all been utilised, the overall outcome for this disease continues to be relatively disappointing. In order to make a difference in the treatment of lung cancer, novel therapeutics will have to be developed. Through basic biological studies, a number of receptor tyrosine kinases have been implicated in the pathogenesis and progression of lung cancer. In this review, the authors summarise the mechanisms of several major receptor tyrosine kinases in lung cancer, especially epidermal growth factor receptor, Her2/neu, MET, vascular endothelial growth factor and KIT. The biology associated with these receptors is described, and the various novel therapeutic inhibitory strategies that are ongoing in preclinical and clinical studies for lung cancer are detailed. Through understanding of receptor tyrosine kinases and the utilisation of specific inhibitors, it is hopeful that a dramatic impact will be made on the biology and therapy for lung cancer.
Collapse
Affiliation(s)
- Nicholas W Choong
- University of Chicago Medical Center, Pritzker School of Medicine, MC 2115, 5841, S. Maryland Avenue, Chicago, IL 60615, USA
| | | | | |
Collapse
|