101
|
Liu F, Xia Y, Wu L, Fu D, Hayward A, Luo J, Yan X, Xiong X, Fu P, Wu G, Lu C. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Gene 2015; 557:163-71. [PMID: 25523093 DOI: 10.1016/j.gene.2014.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/20/2022]
Abstract
Oilseed rape (Brassica napus) is one of the most important oilseed crops globally. To meet increasing demand for oil-based products, the ability to enhance desirable oil content in the seed is required. This study assessed the capability of five genes in the triacylglyceride (TAG) synthesis pathway to enhance oil content. The genes BnGPDH, BnGPAT, BnDGAT, ScGPDH and ScLPAAT were overexpressed separately in a tobacco (Nicotiana benthamiana) model system, and simultaneously by pyramiding in B. napus, under the control of a seed specific Napin promoter. ScLPAAT transgenic plants showed a significant increase of 6.84% to 8.55% in oil content in tobacco seeds, while a ~4% increase was noted for BnGPDH and BnGPAT transgenic seeds. Seed-specific overexpression of all four genes in B. napus resulted in as high a 12.57% to 14.46% increased in seed oil content when compared to WT, equaling close to the sum of the single-gene overexpression increases in tobacco. Taken together, our study demonstrates that BnGPDH, BnGPAT and ScLPAAT may effectively increase seed oil content, and that simultaneous overexpression of these in transgenic B. napus may further enhance the desirable oil content relative to single-gene overexpressors.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Yuping Xia
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Lei Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland 4072, Australia.
| | - Junling Luo
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Xiaojuan Xiong
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Ping Fu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Changming Lu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| |
Collapse
|
102
|
Li Q, Zheng Q, Shen W, Cram D, Fowler DB, Wei Y, Zou J. Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. THE PLANT CELL 2015; 27:86-103. [PMID: 25564555 PMCID: PMC4330585 DOI: 10.1105/tpc.114.134338] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Glycerolipid biosynthesis in plants proceeds through two major pathways compartmentalized in the chloroplast and the endoplasmic reticulum (ER). The involvement of glycerolipid pathway interactions in modulating membrane desaturation under temperature stress has been suggested but not fully explored. We profiled glycerolipid changes as well as transcript dynamics under suboptimal temperature conditions in three plant species that are distinctively different in the mode of lipid pathway interactions. In Arabidopsis thaliana, a 16:3 plant, the chloroplast pathway is upregulated in response to low temperature, whereas high temperature promotes the eukaryotic pathway. Operating under a similar mechanistic framework, Atriplex lentiformis at high temperature drastically increases the contribution of the eukaryotic pathway and correspondingly suppresses the prokaryotic pathway, resulting in the switch of lipid profile from 16:3 to 18:3. In wheat (Triticum aestivum), an 18:3 plant, low temperature also influences the channeling of glycerolipids from the ER to chloroplast. Evidence of differential trafficking of diacylglycerol moieties from the ER to chloroplast was uncovered in three plant species as another layer of metabolic adaptation under temperature stress. We propose a model that highlights the predominance and prevalence of lipid pathway interactions in temperature-induced lipid compositional changes.
Collapse
Affiliation(s)
- Qiang Li
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Qian Zheng
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Wenyun Shen
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Dustin Cram
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - D Brian Fowler
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| |
Collapse
|
103
|
Li Q, Shao J, Tang S, Shen Q, Wang T, Chen W, Hong Y. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2015; 6:1015. [PMID: 26635841 PMCID: PMC4652056 DOI: 10.3389/fpls.2015.01015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 05/05/2023]
Abstract
Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.
Collapse
|
104
|
Wang L, Kazachkov M, Shen W, Bai M, Wu H, Zou J. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:965-76. [PMID: 25268378 DOI: 10.1111/tpj.12683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 05/19/2023]
Abstract
Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.
Collapse
Affiliation(s)
- Liping Wang
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | | | | | |
Collapse
|
105
|
Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L, Wang T, Wang M, Yang Z, Wang Q, Yu S. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One 2014; 9:e105834. [PMID: 25181516 PMCID: PMC4152018 DOI: 10.1371/journal.pone.0105834] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022] Open
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of triacylglycerols. In this study, three novel AhDGATs genes were identified and isolated from peanut. Quantitative real-time RT-PCR analysis indicated that the AhDGAT1-2 transcript was more abundant in roots, seeds, and cotyledons, whereas the transcript abundances of AhDGAT1-1 and AhDGAT3-3 were higher in flowers than in the other tissues examined. During seed development, transcript levels of AhDGAT1-1 remained relatively low during the initial developmental stage but increased gradually during later stages, peaking at 50 days after pegging (DAP). Levels of AhDGAT1-2 transcripts were higher at 10 and 60 DAPs and much lower during other stages, whereas AhDGAT3-3 showed higher expression levels at 20 and 50 DAPs. In addition, AhDGAT transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. The activity of the three AhDGAT genes was confirmed by heterologous expression in a Saccharomyces cerevisiae TAG-deficient quadruple mutant. The recombinant yeasts restored lipid body formation and TAG biosynthesis, and preferentially incorporated unsaturated C18 fatty acids into lipids. The present study provides significant information useful in modifying the oil deposition of peanut through molecular breeding.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, P R China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, P R China
| | - Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS), Qingdao, P R China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P R China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Mian Wang
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Quanfu Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P R China
- * E-mail: (QFW); (SLY)
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, P R China
- * E-mail: (QFW); (SLY)
| |
Collapse
|
106
|
Dey P, Chakraborty M, Kamdar MR, Maiti MK. Functional characterization of two structurally novel diacylglycerol acyltransferase2 isozymes responsible for the enhanced production of stearate-rich storage lipid in Candida tropicalis SY005. PLoS One 2014; 9:e94472. [PMID: 24732323 PMCID: PMC3986092 DOI: 10.1371/journal.pone.0094472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/16/2014] [Indexed: 12/18/2022] Open
Abstract
Diacylglycerol acyltransferase (DGAT) activity is an essential enzymatic step in the formation of neutral lipid i.e., triacylglycerol in all living cells capable of accumulating storage lipid. Previously, we characterized an oleaginous yeast Candida tropicalis SY005 that yields storage lipid up to 58% under a specific nitrogen-stress condition, when the DGAT-specific transcript is drastically up-regulated. Here we report the identification, differential expression and function of two DGAT2 gene homologues- CtDGAT2a and CtDGAT2b of this C. tropicalis. Two protein isoforms are unique with respect to the presence of five additional stretches of amino acids, besides possessing three highly conserved motifs known in other reported DGAT2 enzymes. Moreover, the CtDGAT2a and CtDGAT2b are characteristically different in amino acid sequences and predicted protein structures. The CtDGAT2b isozyme was found to be catalytically 12.5% more efficient than CtDGAT2a for triacylglycerol production in a heterologous yeast system i.e., Saccharomyces cerevisiae quadruple mutant strain H1246 that is inherently defective in neutral lipid biosynthesis. The CtDGAT2b activity rescued the growth of transformed S. cerevisiae mutant cells, which are usually non-viable in the medium containing free fatty acids by incorporating them into triacylglycerol, and displayed preferential specificity towards saturated acyl species as substrate. Furthermore, we document that the efficiency of triacylglycerol production by CtDGAT2b is differentially affected by deletion, insertion or replacement of amino acids in five regions exclusively present in two CtDGAT2 isozymes. Taken together, our study characterizes two structurally novel DGAT2 isozymes, which are accountable for the enhanced production of storage lipid enriched with saturated fatty acids inherently in C. tropicalis SY005 strain as well as in transformed S. cerevisiae neutral lipid-deficient mutant cells. These two genes certainly will be useful for further investigation on the novel structure-function relationship of DGAT repertoire, and also in metabolic engineering for the enhanced production of lipid feedstock in other organisms.
Collapse
Affiliation(s)
- Prabuddha Dey
- Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Monami Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Maulik R. Kamdar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K. Maiti
- Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
- * E-mail:
| |
Collapse
|
107
|
Yu J, Zhang Z, Wei J, Ling Y, Xu W, Su Z. SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways. BMC Genomics 2014; 15:271. [PMID: 24712981 PMCID: PMC4051163 DOI: 10.1186/1471-2164-15-271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean (Glycine max L.) is one of the world's most important leguminous crops producing high-quality protein and oil. Increasing the relative oil concentration in soybean seeds is many researchers' goal, but a complete analysis platform of functional annotation for the genes involved in the soybean acyl-lipid pathway is still lacking. Following the success of soybean whole-genome sequencing, functional annotation has become a major challenge for the scientific community. Whole-genome transcriptome analysis is a powerful way to predict genes with biological functions. It is essential to build a comprehensive analysis platform for integrating soybean whole-genome sequencing data, the available transcriptome data and protein information. This platform could also be used to identify acyl-lipid metabolism pathways. DESCRIPTION In this study, we describe our construction of the Soybean Functional Genomics Database (SFGD) using Generic Genome Browser (Gbrowse) as the core platform. We integrated microarray expression profiling with 255 samples from 14 groups' experiments and mRNA-seq data with 30 samples from four groups' experiments, including spatial and temporal transcriptome data for different soybean development stages and environmental stresses. The SFGD includes a gene co-expression regulatory network containing 23,267 genes and 1873 miRNA-target pairs, and a group of acyl-lipid pathways containing 221 enzymes and more than 1550 genes. The SFGD also provides some key analysis tools, i.e. BLAST search, expression pattern search and cis-element significance analysis, as well as gene ontology information search and single nucleotide polymorphism display. CONCLUSION The SFGD is a comprehensive database integrating genome and transcriptome data, and also for soybean acyl-lipid metabolism pathways. It provides useful toolboxes for biologists to improve the accuracy and robustness of soybean functional genomics analysis, further improving understanding of gene regulatory networks for effective crop improvement. The SFGD is publically accessible at http://bioinformatics.cau.edu.cn/SFGD/, with all data available for downloading.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenhai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Ling
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
108
|
Aymé L, Baud S, Dubreucq B, Joffre F, Chardot T. Function and localization of the Arabidopsis thaliana diacylglycerol acyltransferase DGAT2 expressed in yeast. PLoS One 2014; 9:e92237. [PMID: 24663078 PMCID: PMC3963872 DOI: 10.1371/journal.pone.0092237] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/19/2014] [Indexed: 11/22/2022] Open
Abstract
Diacylglycerol acyltransferases (DGATs) catalyze the final and only committed step of triacylglycerol synthesis. DGAT activity is rate limiting for triacylglycerol accumulation in mammals, plants and microbes. DGATs belong to three different evolutionary classes. In Arabidopsis thaliana, DGAT1, encoded by At2g19450, is the major DGAT enzyme involved in triacylglycerol accumulation in seeds. Until recently, the function of DGAT2 (At3g51520) has remained elusive. Previous attempts to characterize its enzymatic function by heterologous expression in yeast were unsuccessful. In the present report we demonstrate that expression of a codon-optimized version of the DGAT2 gene is able to restore neutral lipid accumulation in the Saccharomyces cerevisiae mutant strain (H1246), which is defective in triacylglycerol biosynthesis. Heterologous expression of codon-optimized DGAT2 and DGAT1 induced the biogenesis of subcellular lipid droplets containing triacylglycerols and squalene. Both DGAT proteins were found to be associated with these lipid droplets. The fatty acid composition was affected by the nature of the acyltransferase expressed. DGAT2 preferentially incorporated C16:1 fatty acids whereas DGAT1 displayed preference for C16:0, strongly suggesting that these enzymes have contrasting substrate specificities.
Collapse
Affiliation(s)
- Laure Aymé
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Sébastien Baud
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Bertrand Dubreucq
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | | | - Thierry Chardot
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- * E-mail:
| |
Collapse
|
109
|
Xu R, Yang T, Wang R, Liu A. Characterisation of DGAT1 and DGAT2 from Jatropha curcas and their functions in storage lipid biosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:321-329. [PMID: 32480992 DOI: 10.1071/fp12388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 10/01/2013] [Indexed: 06/11/2023]
Abstract
Diacylglycerol acyltransferases (DGATs) catalyse the final step of triacylglycerol (TAG) biosynthesis of the Kennedy pathway, and play a critical role during TAG accumulation in developing oleaginous seeds. In this study, the molecular cloning and characterisation of two DGAT genes, JcDGAT1 and JcDGAT2, from jatropha (Jatropha curcas L., a potential biodiesel plant) is presented. Using heterogonous overexpression techniques, both JcDGAT1 and JcDGAT2 were able to restore TAG biosynthesis in a yeast mutant H1246 strain, and enhance the quantity of TAG biosynthesis by 16.6 and 14.3%, respectively, in strain INVSc1. In transgenic tobacco, overexpression of JcDGAT1 and JcDGAT2 resulted in an increase in seed oil content of, respectively, 32.8 and 31.8%. Further, the functional divergence of JcDGAT1 and JcDGAT2 in TAG biosynthesis was demonstrated by comparing the fatty acid compositions in both the transgenic yeast and tobacco systems. In particular, JcDGAT2 incorporated a 2.5-fold higher linoleic acid content into TAG than JcDGAT1 in transgenic yeast and exhibited a significant linoleic acid substrate preference in both yeast and tobacco. This study provides new insights in understanding the molecular mechanisms of DGAT genes underlying the biosynthesis of linoleic acids and TAG in plants.
Collapse
Affiliation(s)
- Ronghua Xu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
| | - Tianquan Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
| | - Ruling Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
| | - Aizhong Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
| |
Collapse
|
110
|
Misra A, Khan K, Niranjan A, Nath P, Sane VA. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. PHYTOCHEMISTRY 2013; 96:37-45. [PMID: 24125179 DOI: 10.1016/j.phytochem.2013.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/30/2013] [Accepted: 09/16/2013] [Indexed: 05/18/2023]
Abstract
The increasing consumption of fossil fuels and petroleum products is leading to their rapid depletion and is a matter of concern around the globe. Substitutes of fossil fuels are required to sustain the pace of economic development. In this context, oil from the non food crops (biofuel) has shown potential to substitute fossil fuels. Jatropha curcas is an excellent shrub spread and naturalized across the globe. Its oil contains a high percentage of unsaturated fatty acids (about 78-84% of total fatty acid content) making the oil suitable for biodiesel production. Despite its high oil content, it has been poorly studied in terms of important enzymes/genes responsible for oil biosynthesis. Here, we describe the isolation of the full length cDNA clone of JcDGAT1, a key enzyme involved in oil biosynthesis, from J. curcas seeds and manipulation of oil content and composition in transgenic Arabidopsis plants by its expression. Transcript analysis of JcDGAT1 reveals a gradual increase from early seed development to its maturation. Homozygous transgenic Arabidopsis lines expressing JcDGAT1 both under CaMV35S promoter and a seed specific promoter show an enhanced level of total oil content (up by 30-41%) in seeds but do not show any phenotypic differences. In addition, our studies also show alterations in the oil composition through JcDGAT1 expression. While the levels of saturated FAs such as palmitate and stearate in the oil do not change, there is significant reproducible decrease in the levels of oleic acid and a concomitant increase in levels of linolenic acid both under the CaMV35S promoter as well as the seed specific promoter. Our studies thus confirm that DGAT is involved in flux control in oil biosynthesis and show that JcDGAT1 could be used specifically to manipulate and improve oil content and composition in plants.
Collapse
Affiliation(s)
- Aparna Misra
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
111
|
Fan J, Yan C, Xu C. Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:930-42. [PMID: 24118513 DOI: 10.1111/tpj.12343] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 05/11/2023]
Abstract
Phospholipid:diacylglycerol acyltransferase (PDAT) and diacylglycerol:acyl CoA acyltransferase play overlapping roles in triacylglycerol (TAG) assembly in Arabidopsis, and are essential for seed and pollen development, but the functional importance of PDAT in vegetative tissues remains largely unknown. Taking advantage of the Arabidopsis tgd1-1 mutant that accumulates oil in vegetative tissues, we demonstrate here that PDAT1 is crucial for TAG biosynthesis in growing tissues. We show that disruption of PDAT1 in the tgd1-1 mutant background causes serious growth retardation, gametophytic defects and premature cell death in developing leaves. Lipid analysis data indicated that knockout of PDAT1 results in increases in the levels of free fatty acids (FFAs) and diacylglycerol. In vivo ¹⁴C-acetate labeling experiments showed that, compared with wild-type, tgd1-1 exhibits a 3.8-fold higher rate of fatty acid synthesis (FAS), which is unaffected by disruption or over-expression of PDAT1, indicating a lack of feedback regulation of FAS in tgd1-1. We also show that detached leaves of both pdat1-2 and tgd1-1 pdat1-2 display increased sensitivity to FFA but not to diacylglycerol. Taken together, our results reveal a critical role for PDAT1 in mediating TAG synthesis and thereby protecting against FFA-induced cell death in fast-growing tissues of plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biosciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | | |
Collapse
|
112
|
Xu J, Kazachkov M, Jia Y, Zheng Z, Zou J. Expression of a type 2 diacylglycerol acyltransferase from Thalassiosira pseudonana in yeast leads to incorporation of docosahexaenoic acid β-oxidation intermediates into triacylglycerol. FEBS J 2013; 280:6162-72. [PMID: 24128189 DOI: 10.1111/febs.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/18/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Glycerolipids of the marine diatom Thalassiosira pseudonana are enriched particularly with eicosapentaenoic acid (EPA), and also with an appreciable level of docosahexaenoic acid (DHA). The present study describes the functional characterization of a type 2 diacylglycerol acyltransferase (DGAT2, EC 2.3.1.20) from T. pseudonana, designated TpDGAT2, which catalyzes the final step of triacylglycerol (TAG) synthesis. Heterologous expression of this gene restored TAG formation in a yeast mutant devoid of TAG biosynthesis. TpDGAT2 was also shown to exert a large impact on the fatty acid profile of TAG. Its expression caused a 10-12% increase of 18:1 and a concomitant decrease of 16:0 relative to that of AtDGAT1(Arabidopsis thaliana). Furthermore, in the presence of the very-long-chain polyunsaturated fatty acids (VLCPUFA) EPA and DHA, TAG formed by TpDGAT2 displayed three- to six-fold increases in the percentage of VLCPUFA relative to that of AtDGAT1 even though TpDGAT2 conferred much lower TAG-synthetic activities than Arabidopsis DGAT1. Strikingly, when fed DHA, the yeast mutant expressing TpDGAT2 incorporated high levels of EPA and DHA isomers derived from DHA β-oxidation. In contrast, no such phenomenon occurred in the cells expressing AtDGAT1. These results suggested that, in addition to the role in breaking down storage lipids, yeast peroxisomes also contribute to lipid synthesis by recycling acyl-CoAs when a fatty acyl assembly system is available to capture and utilize the fatty acyl pools generated via β-oxidation. Our study hence illustrated a case where the efficiency and substrate preference of an acyltransferase can elicit far reaching metabolic adjustments that affect TAG composition.
Collapse
Affiliation(s)
- Jingyu Xu
- National Research Council Canada, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
113
|
Cao H, Shockey JM, Klasson KT, Chapital DC, Mason CB, Scheffler BE. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues. PLoS One 2013; 8:e76946. [PMID: 24146944 PMCID: PMC3795650 DOI: 10.1371/journal.pone.0076946] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Jay M. Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - K. Thomas Klasson
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Dorselyn C. Chapital
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Catherine B. Mason
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Brian E. Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi, United States of America
| |
Collapse
|
114
|
Kong Y, Chen S, Yang Y, An C. ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress. FEBS Lett 2013; 587:3076-82. [PMID: 23942253 DOI: 10.1016/j.febslet.2013.07.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022]
Abstract
Triacylglycerol (TAG) accumulation is essential for seed maturation in plants. Diacylglycerol acyltransferase 1 (DGAT1) is the rate-limiting enzyme in TAG biosynthesis. In this study, we show that TAG accumulation in Arabidopsis seedlings is correlated with environmental stress, and both ABI4 and ABI5 play important roles in regulating DGAT1 expression. Tobacco transient assays revealed the synergistic effect of ABI4 with ABI5 in regulating DGAT1 expression. Taken together, our findings indicate ABI5 is an important accessory factor with ABI4 in the activation of DGAT1 in Arabidopsis seedlings under stress.
Collapse
Affiliation(s)
- Yinfei Kong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | | | |
Collapse
|
115
|
Harwood JL, Ramli US, Tang M, Quant PA, Weselake RJ, Fawcett T, Guschina IA. Regulation and enhancement of lipid accumulation in oil crops: The use of metabolic control analysis for informed genetic manipulation. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Umi S. Ramli
- School of Biosciences; Cardiff University; Cardiff UK
| | - Mingguo Tang
- School of Biosciences; Cardiff University; Cardiff UK
| | - Patti A Quant
- Department of Biochemistry; Oxford University; Oxford UK
| | - Randall J. Weselake
- Department of Agricultural, Food & Nutritional Science; University of Alberta; Edmonton Alberta Canada
| | - Tony Fawcett
- Department of Biological Sciences; Durham University; Durham UK
| | | |
Collapse
|
116
|
Guo HH, Wang TT, Li QQ, Zhao N, Zhang Y, Liu D, Hu Q, Li FL. Two novel diacylglycerol acyltransferase genes from Xanthoceras sorbifolia are responsible for its seed oil content. Gene 2013; 527:266-74. [DOI: 10.1016/j.gene.2013.05.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/10/2013] [Accepted: 05/28/2013] [Indexed: 01/31/2023]
|
117
|
Zhou XR, Shrestha P, Yin F, Petrie JR, Singh SP. AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Lett 2013; 587:2371-6. [PMID: 23770095 DOI: 10.1016/j.febslet.2013.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/24/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
Demonstration of the function of the Arabidopsis thaliana acyl-CoA:diacylglycerol acyltransferase 2 (AtDGAT2) has remained elusive despite biochemical testing of genetic mutants and overexpression lines. We show that transiently expressed AtDGAT2 in the Nicotiana benthamiana leaf resulted in an increase in triacylglycerol twice as great as the increase observed following parallel expression of AtDGAT1. AtDGAT2 showed higher conversion from labeled diacylglycerol to triacylglycerol compared to AtDGAT1, and was acyl-CoA dependent. In addition, AtDGAT2 had different acyl-CoA substrate preference than AtDGAT1. These results allow us to conclude that AtDAGT2 is a functional acyl-CoA:diacylglycerol acyltransferase enzyme that can catalyse substantial increase in TAG synthesis.
Collapse
Affiliation(s)
- Xue-Rong Zhou
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, Australia.
| | | | | | | | | |
Collapse
|
118
|
Banaś W, Sanchez Garcia A, Banaś A, Stymne S. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. PLANTA 2013; 237:1627-36. [PMID: 23539042 PMCID: PMC3664747 DOI: 10.1007/s00425-013-1870-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/10/2013] [Indexed: 05/07/2023]
Abstract
The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.
Collapse
Affiliation(s)
- Walentyna Banaś
- Institute of Biology, University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
| | | | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Sten Stymne
- Department of Plant Breeding, SLU, Alnarp, Sweden
| |
Collapse
|
119
|
Li M, Zhao M, Wu H, Wu W, Xu Y. Cloning, characterization and functional analysis of two type 1 diacylglycerol acyltransferases (DGAT1s) from Tetraena mongolica. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:490-503. [PMID: 23480422 DOI: 10.1111/jipb.12046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/09/2013] [Indexed: 06/01/2023]
Abstract
Two cDNAs encoding putative type 1 acyl-CoA: diacylglycerol acyltransferases (DGAT1, EC 2.3.1.20), were cloned from Tetraena mongolica, an extreme xerophyte with high oil content in the stems. The 1 488-bp and 1 485-bp of the open reading frame (ORF) of the two cDNAs, designated as TmDGAT1a and TmDGAT1b, were both predicted to encode proteins of 495 and 494 amino acids, respectively. Southern blot analysis revealed that TmDGAT1a and TmDGAT1b both had low copy numbers in the T. mongolica genome. In addition to ubiquitous expression with different intensity in different tissues, including stems, leaves and roots, TmDGAT1a and TmDGAT1b, were found to be strongly induced by high salinity, drought and osmotic stress, resulting in a remarkable increase of triacylglycerol (TAG) accumulation in T. mongolica plantlets. TmDGAT1a and TmDGAT1b activities were confirmed in the yeast H1246 quadruple mutant (DGA1, LRO1, ARE1, ARE2) by restoring DGAT activity of the mutant host to produce TAG. Overexpression of TmDGAT1a and TmDGAT1b in soybean hairy roots as well as in T. mongolica calli both resulted in an increase in oil content (ranging from 37% to 108%), accompanied by altered fatty acid profiles.
Collapse
Affiliation(s)
- Minchun Li
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
120
|
Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:358-64. [PMID: 23529069 DOI: 10.1016/j.pbi.2013.02.015] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 05/18/2023]
Abstract
Oil produced in plant seeds is utilized as a major source of calories for human nutrition, as feedstocks for non-food uses such as soaps and polymers, and can serve as a high-energy biofuel. The biochemical pathways leading to oil (triacylglycerol) synthesis in seeds involve multiple subcellular organelles, requiring extensive lipid trafficking. Phosphatidylcholine plays a central role in these pathways as a substrate for acyl modifications and likely as a carrier for the trafficking of acyl groups between organelles and membrane subdomains. Although much has been clarified regarding the enzymes and pathways responsible for acyl-group flux, there are still major gaps in our understanding. These include the identity of several key enzymes, how flux between alternative pathways is controlled and the specialized cell biology leading to biogenesis of oil bodies that store up to 80% of carbon in seeds.
Collapse
Affiliation(s)
- Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
121
|
Li R, Hatanaka T, Yu K, Wu Y, Fukushige H, Hildebrand D. Soybean oil biosynthesis: role of diacylglycerol acyltransferases. Funct Integr Genomics 2013; 13:99-113. [PMID: 23322364 DOI: 10.1007/s10142-012-0306-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/17/2012] [Accepted: 12/26/2012] [Indexed: 12/11/2022]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.
Collapse
Affiliation(s)
- Runzhi Li
- Shanxi Agricultural University, Taigu 030801, China
| | | | | | | | | | | |
Collapse
|
122
|
Vanhercke T, El Tahchy A, Shrestha P, Zhou XR, Singh SP, Petrie JR. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett 2013; 587:364-9. [PMID: 23313251 DOI: 10.1016/j.febslet.2012.12.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
Metabolic engineering approaches to increase plant oil levels can generally be divided into categories which increase fatty acid biosynthesis ('Push'), are involved in TAG assembly ('Pull') or increase TAG storage/decrease breakdown ('Accumulation'). In this study, we describe the surprising synergy when Push (WRI1) and Pull (DGAT1) approaches are combined. Co-expression of these genes in the Nicotiana benthamiana transient leaf expression system resulted in TAG levels exceeding those expected from an additive effect and biochemical tracer studies confirmed increased flux of carbon through fatty acid and TAG synthesis pathways. Leaf fatty acid profile also synergistically shifts from polyunsaturated to monounsaturated fatty acids.
Collapse
Affiliation(s)
- Thomas Vanhercke
- Food Futures National Research Flagship, P.O. Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
123
|
Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, Koo AJK, Bukhman YV, Reid GE, Howe GA, Ohlrogge J, Benning C. Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. THE PLANT CELL 2013; 25:677-93. [PMID: 23417035 PMCID: PMC3608786 DOI: 10.1105/tpc.112.104752] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Enhancement of acyl-CoA-dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves.
Collapse
|
124
|
Besagni C, Kessler F. A mechanism implicating plastoglobules in thylakoid disassembly during senescence and nitrogen starvation. PLANTA 2013. [PMID: 23187680 DOI: 10.1007/s00425-012-1813-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plastoglobules are lipid droplets present in all plastid types. In chloroplasts, they are connected to the thylakoid membrane by the outer lipid half-bilayer. The plastoglobule core is composed of neutral lipids most prominently the prenylquinones, triacylglycerols, fatty acid phytyl esters but likely also unknown compounds. During stress and various developmental stages such as senescence, plastoglobule size and number increase due to the accumulation of lipids. However, their role is not limited to lipid storage. Indeed, the characterization of the plastoglobule proteome revealed the presence of enzymes. Importantly it has been demonstrated that these participate in isoprenoid lipid metabolic pathways at the plastoglobule, notably in the metabolism of prenylquinones. Recently, the characterization of two phytyl ester synthases has established a firm metabolic link between PG enzymatic activity and thylakoid disassembly during chloroplast senescence and nitrogen starvation.
Collapse
Affiliation(s)
- Céline Besagni
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Neuchâtel, Switzerland.
| | | |
Collapse
|
125
|
Eskandari M, Cober ER, Rajcan I. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:483-95. [PMID: 23192670 DOI: 10.1007/s00122-012-1995-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/06/2012] [Indexed: 05/20/2023]
Abstract
Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.
Collapse
Affiliation(s)
- Mehrzad Eskandari
- Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
126
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013; 11:e0161. [PMID: 23505340 PMCID: PMC3563272 DOI: 10.1199/tab.0161] [Citation(s) in RCA: 759] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
127
|
Andriotis VM, Pike MJ, Schwarz SL, Rawsthorne S, Wang TL, Smith AM. Altered starch turnover in the maternal plant has major effects on Arabidopsis fruit growth and seed composition. PLANT PHYSIOLOGY 2012; 160:1175-86. [PMID: 22942388 PMCID: PMC3490605 DOI: 10.1104/pp.112.205062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 05/20/2023]
Abstract
Mature seeds of both the high-starch starch-excess1 (sex1) mutant and the almost starchless phosphoglucomutase1 mutant of Arabidopsis (Arabidopsis thaliana) have 30% to 40% less lipid than seeds of wild-type plants. We show that this is a maternal effect and is not attributable to the defects in starch metabolism in the embryo itself. Low lipid contents and consequent slow postgerminative growth are seen only in mutant embryos that develop on maternal plants with mutant phenotypes. Mutant embryos that develop on plants with wild-type starch metabolism have wild-type lipid contents and postgerminative growth. The maternal effect on seed lipid content is attributable to carbohydrate starvation in the mutant fruit at night. Fruits on sex1 plants grow more slowly than those on wild-type plants, particularly at night, and have low sugars and elevated expression of starvation genes at night. Transcript levels of the transcription factor WRINKLED1, implicated in lipid synthesis, are reduced at night in sex1 but not in wild-type seeds, and so are transcript levels of key enzymes of glycolysis and fatty acid synthesis. sex1 embryos develop more slowly than wild-type embryos. We conclude that the reduced capacity of mutant plants to convert starch to sugars in leaves at night results in low nighttime carbohydrate availability in the developing fruit. This in turn reduces the rate of development and expression of genes encoding enzymes of storage product accumulation in the embryo. Thus, the supply of carbohydrate from the maternal plant to the developing fruit at night can have an important influence on oilseed composition and on postgerminative growth.
Collapse
|
128
|
Cao H, Chapital DC, Howard OD, Deterding LJ, Mason CB, Shockey JM, Klasson KT. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2. Appl Microbiol Biotechnol 2012; 96:711-27. [PMID: 22270236 PMCID: PMC11338361 DOI: 10.1007/s00253-012-3869-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/11/2022]
Abstract
Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. PLANT PHYSIOLOGY 2012; 160:1530-9. [PMID: 22932756 PMCID: PMC3490606 DOI: 10.1104/pp.112.204438] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/27/2012] [Indexed: 05/18/2023]
Abstract
Triacylglycerols (TAG) in seeds of Arabidopsis (Arabidopsis thaliana) and many plant species contain large amounts of polyunsaturated fatty acids (PUFA). These PUFA are synthesized on the membrane lipid phosphatidylcholine (PC). However, the exact mechanisms of how fatty acids enter PC and how they are removed from PC after being modified to participate in the TAG assembly are unclear, nor are the identities of the key enzymes/genes that control these fluxes known. By reverse genetics and metabolic labeling experiments, we demonstrate that two genes encoding the lysophosphatidylcholine acyltransferases LPCAT1 and LPCAT2 in Arabidopsis control the previously identified "acyl-editing" process, the main entry of fatty acids into PC. The lpcat1/lpcat2 mutant showed increased contents of very-long-chain fatty acids and decreased PUFA in TAG and the accumulation of small amounts of lysophosphatidylcholine in developing seeds revealed by [¹⁴C]acetate-labeling experiments. We also showed that mutations in LPCATs and the PC diacylglycerol cholinephosphotransferase in the reduced oleate desaturation1 (rod1)/lpcat1/lpcat2 mutant resulted in a drastic reduction of PUFA content in seed TAG, accumulating only one-third of the wild-type level. These results indicate that PC acyl editing and phosphocholine headgroup exchange between PC and diacylglycerols control the majority of acyl fluxes through PC to provide PUFA for TAG synthesis.
Collapse
|
130
|
Tang M, Guschina IA, O'Hara P, Slabas AR, Quant PA, Fawcett T, Harwood JL. Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation. THE NEW PHYTOLOGIST 2012; 196:414-426. [PMID: 22901003 DOI: 10.1111/j.1469-8137.2012.04262.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Metabolic control analysis allows the study of metabolic regulation. We applied both single- and double-manipulation top-down control analysis to examine the control of lipid accumulation in developing oilseed rape (Brassica napus) embryos. The biosynthetic pathway was conceptually divided into two blocks of reactions (fatty acid biosynthesis (Block A), lipid assembly (Block B)) connected by a single system intermediate, the acyl-coenzyme A (acyl-CoA) pool. Single manipulation used exogenous oleate. Triclosan was used to inhibit specifically Block A, whereas diazepam selectively manipulated flux through Block B. Exogenous oleate inhibited the radiolabelling of fatty acids from [1-(14)C]acetate, but stimulated that from [U-14C]glycerol into acyl lipids. The calculation of group flux control coefficients showed that c. 70% of the metabolic control was in the lipid assembly block of reactions. Monte Carlo simulations gave an estimation of the error of the resulting group flux control coefficients as 0.27±0.06 for Block A and 0.73±0.06 for Block B. The two methods of control analysis gave very similar results and showed that Block B reactions were more important under our conditions. This contrasts notably with data from oil palm or olive fruit cultures and is important for efforts to increase oilseed rape lipid yields.
Collapse
Affiliation(s)
- Mingguo Tang
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UKDepartment of Biological Sciences, Durham University, Durham DH1 3LE, UKDepartment of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Irina A Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UKDepartment of Biological Sciences, Durham University, Durham DH1 3LE, UKDepartment of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Paul O'Hara
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UKDepartment of Biological Sciences, Durham University, Durham DH1 3LE, UKDepartment of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Antoni R Slabas
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UKDepartment of Biological Sciences, Durham University, Durham DH1 3LE, UKDepartment of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Patti A Quant
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UKDepartment of Biological Sciences, Durham University, Durham DH1 3LE, UKDepartment of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Tony Fawcett
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UKDepartment of Biological Sciences, Durham University, Durham DH1 3LE, UKDepartment of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UKDepartment of Biological Sciences, Durham University, Durham DH1 3LE, UKDepartment of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
131
|
Hernández ML, Whitehead L, He Z, Gazda V, Gilday A, Kozhevnikova E, Vaistij FE, Larson TR, Graham IA. A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants. PLANT PHYSIOLOGY 2012; 160:215-25. [PMID: 22760209 PMCID: PMC3440200 DOI: 10.1104/pp.112.201541] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/02/2012] [Indexed: 05/19/2023]
Abstract
Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other mechanisms, such as fatty acid (FA) recycling into TAG are operating. We show that TAG composition changes significantly in Suc-rescued seedlings compared with that found in dry seeds, with 18:2 and 18:3 accumulating. However, 20:1 FA is not efficiently recycled back into TAG in young seedlings, instead partitioning into the membrane lipid fraction and diacylglycerol. In the lipolysis mutant sugar dependent1and the β-oxidation double mutant acx1acx2 (for acyl-Coenzyme A oxidase), levels of TAG actually increased in seedlings growing on Suc. We performed a transcriptomic study and identified up-regulation of an acyltransferase gene, DIACYLGLYCEROL ACYLTRANSFERASE3 (DGAT3), with homology to a peanut (Arachis hypogaea) cytosolic acyltransferase. The acyl-Coenzyme A substrate for this acyltransferase accumulates in mutants that are blocked in oil breakdown postlipolysis. Transient expression in Nicotiana benthamiana confirmed involvement in TAG synthesis and specificity toward 18:3 and 18:2 FAs. Double-mutant analysis with the peroxisomal ATP-binding cassette transporter mutant peroxisomal ABC transporter1 indicated involvement of DGAT3 in the partitioning of 18:3 into TAG in mutant seedlings growing on Suc. Fusion of the DGAT3 protein with green fluorescent protein confirmed localization to the cytosol of N. benthamiana. This work has demonstrated active recycling of 18:2 and 18:3 FAs into TAG when seed oil breakdown is blocked in a process involving a soluble cytosolic acyltransferase.
Collapse
Affiliation(s)
| | | | - Zhesi He
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Valeria Gazda
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alison Gilday
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Ekaterina Kozhevnikova
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fabián E. Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Tony R. Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
132
|
|
133
|
Ying JZ, Shan JX, Gao JP, Zhu MZ, Shi M, Lin HX. Identification of quantitative trait Loci for lipid metabolism in rice seeds. MOLECULAR PLANT 2012; 5:865-75. [PMID: 22147755 DOI: 10.1093/mp/ssr100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant seed oil is important for human dietary consumption and industrial application. The oil trait is controlled by quantitative trait loci (QTLs), but no QTLs for fatty acid composition are known in rice, the monocot model plant. QTL analysis was performed using F(2) and F(2:3) progeny from a cross of an indica variety and a japonica variety. Gas chromatography-mass spectrometry (GC-MS) analysis revealed significant differences between parental lines in fatty acid composition of brown rice oil, and 29 associated QTLs in F(2) and/or F(2:3) populations were identified throughout the rice genome, except chromosomes 9 and 10. Eight QTLs were repeatedly identified in both populations across different environments. Five loci pleiotropically controlled different traits, contributing to complex interactions of oil with fatty acids and between fatty acids. Nine rice orthologs of Arabidopsis genes encoding key enzymes in lipid metabolism co-localized with 11 mapped QTLs. A strong QTL for oleic (18:1) and linoleic (18:2) acid were associated with a rice ortholog of a gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT), and another for palmitic acid (16:0) mapped similarly to the acyl-ACP thioesterase (FatB) gene ortholog. Our approach rapidly and efficiently identified candidate genes for mapped QTLs controlling fatty acid composition and oil concentration, providing information for improving rice grain quality by marker assisted selection.
Collapse
Affiliation(s)
- Jie-Zheng Ying
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
134
|
Liu Q, Siloto RMP, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 2012; 51:350-77. [PMID: 22705711 DOI: 10.1016/j.plipres.2012.06.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Triacylglycerol (TG) is a storage lipid which serves as an energy reservoir and a source of signalling molecules and substrates for membrane biogenesis. TG is essential for many physiological processes and its metabolism is widely conserved in nature. Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the final step in the sn-glycerol-3-phosphate pathway leading to TG. DGAT activity resides mainly in two distinct membrane bound polypeptides, known as DGAT1 and DGAT2 which have been identified in numerous organisms. In addition, a few other enzymes also hold DGAT activity, including the DGAT-related acyl-CoA:monoacylglycerol acyltransferases (MGAT). Progress on understanding structure/function in DGATs has been limited by the lack of detailed three-dimensional structural information due to the hydrophobic properties of theses enzymes and difficulties associated with purification. This review examines several aspects of DGAT and MGAT genes and enzymes, including current knowledge on their gene structure, expression pattern, biochemical properties, membrane topology, functional motifs and subcellular localization. Recent progress in probing structural and functional aspects of DGAT1 and DGAT2, using a combination of molecular and biochemical techniques, is emphasized. Biotechnological applications involving DGAT enzymes ranging from obesity therapeutics to oilseed engineering are also discussed.
Collapse
Affiliation(s)
- Qin Liu
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6H 2P5.
| | | | | | | | | |
Collapse
|
135
|
Fatima T, Snyder CL, Schroeder WR, Cram D, Datla R, Wishart D, Weselake RJ, Krishna P. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS One 2012; 7:e34099. [PMID: 22558083 PMCID: PMC3338740 DOI: 10.1371/journal.pone.0034099] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/21/2012] [Indexed: 12/18/2022] Open
Abstract
Background Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich in essential fatty acids, linoleic (18∶2ω-6) and α-linolenic (18∶3ω-3) acids, and pulp oil that contains high levels of monounsaturated palmitoleic acid (16∶1ω-7). Sea buckthorn is fast gaining popularity as a source of functional food and nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology. Results GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and α-linolenic acids at 33–36% and 30–36%, respectively, while the pulp oil contained palmitoleic acid at 32–42%. 454 sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141 putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and computational prediction of metabolic pathways indicated that primary metabolism (protein>nucleic acid>carbohydrate>lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript expression at four developing stages of the berry. Conclusion This study provides the first comprehensive genomic resources represented by expressed sequences for sea buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic acid and α-linolenic acid in a close to 1∶1 ratio, which is beneficial for human health. These data provide the foundation for further studies on sea buckthorn oil, the enzymes involved in its biosynthesis, and the genes involved in the general hardiness of sea buckthorn against environmental conditions.
Collapse
Affiliation(s)
- Tahira Fatima
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Crystal L. Snyder
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - William R. Schroeder
- Agroforestry Development Centre, Agriculture and Agri-Food Canada, Indian Head, Saskatchewan, Canada
| | - Dustin Cram
- Plant Biotechnology Institute, National Research Council, Saskatoon, Saskatchewan, Canada
| | - Raju Datla
- Plant Biotechnology Institute, National Research Council, Saskatoon, Saskatchewan, Canada
| | - David Wishart
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Randall J. Weselake
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Priti Krishna
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
136
|
O'Neill CM, Morgan C, Hattori C, Brennan M, Rosas U, Tschoep H, Deng PX, Baker D, Wells R, Bancroft I. Towards the genetic architecture of seed lipid biosynthesis and accumulation in Arabidopsis thaliana. Heredity (Edinb) 2012; 108:115-23. [PMID: 21731053 PMCID: PMC3262871 DOI: 10.1038/hdy.2011.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/23/2011] [Accepted: 05/31/2011] [Indexed: 01/21/2023] Open
Abstract
We report the quantitative genetic analysis of seed oil quality and quantity in six Arabidopsis thaliana recombinant inbred populations, in which the parent accessions were from diverse geographical origins, and were selected on the basis of variation for seed oil content and lipid composition. Although most of the biochemical steps involved in lipid biosynthesis are known and the key genes have been identified, the regulation of the processes that results in the final oil composition and total amount is not understood. By using physically anchored markers it was possible to compare results across populations. A total of 219 quantitative trait loci (QTLs) were identified, of which 81 were significant at P<0.001. Some of these colocalise with QTLs identified previously, but many novel QTLs were also identified. The results highlight the importance of studying traits in multiple populations, which will lead to a better understanding of the contribution that natural variation makes to the genetic architecture of a phenotype.
Collapse
Affiliation(s)
- C M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | - C Morgan
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | - C Hattori
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | | | - U Rosas
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - H Tschoep
- SESVANDERHAVE NV/SA, Tienen, Belgium
| | - P X Deng
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | - D Baker
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | - R Wells
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | - I Bancroft
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| |
Collapse
|
137
|
Zhu Y, Cao Z, Xu F, Huang Y, Chen M, Guo W, Zhou W, Zhu J, Meng J, Zou J, Jiang L. Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:515-31. [PMID: 22042481 DOI: 10.1007/s00122-011-1725-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 10/07/2011] [Indexed: 05/24/2023]
Abstract
Seed oil production in oilseed rape is greatly affected by the temperature during seed maturation. However, the molecular mechanism of the interaction between genotype and temperature in seed maturation remains largely unknown. We developed two near-isogenic lines (NIL-9 and NIL-1), differing mainly at a QTL region influencing oil content on Brassica napus chromosome C2 (qOC.C2.2) under high temperature during seed maturation. The NILs were treated under different temperatures in a growth chamber after flowering. RNA from developing seeds was extracted on the 25th day after flowering (DAF), and transcriptomes were determined by microarray analysis. Statistical analysis indicated that genotype, temperature, and the interaction between genotype and temperature (G × T) all significantly affected the expression of the genes in the 25 DAF seeds, resulting in 4,982, 19,111, and 839 differentially expressed unisequences, respectively. NIL-9 had higher seed oil content than NIL-1 under all of the temperatures in the experiments, especially at high temperatures. A total of 39 genes, among which six are located at qOC.C2.2, were differentially expressed among the NILs regardless of temperature, indicating the core genetic divergence that was unaffected by temperature. Increasing the temperature caused a reduction in seed oil content that was accompanied by the downregulation of a number of genes associated with red light response, photosynthesis, response to gibberellic acid stimulus, and translational elongation, as well as several genes of importance in the lipid metabolism pathway. These results contribute to our knowledge of the molecular nature of QTLs and the interaction between genotype and temperature.
Collapse
Affiliation(s)
- Yana Zhu
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Xu J, Carlsson AS, Francis T, Zhang M, Hoffman T, Giblin ME, Taylor DC. Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. BMC PLANT BIOLOGY 2012; 12:4. [PMID: 22233193 PMCID: PMC3310826 DOI: 10.1186/1471-2229-12-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/10/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Arabidopsis thaliana dgat1 mutant, AS11, has an oil content which is decreased by 30%, and a strongly increased ratio of 18:3/20:1, compared to wild type. Despite lacking a functional DGAT1, AS11 still manages to make 70% of WT seed oil levels. Recently, it was demonstrated that in the absence of DGAT1, PDAT1 was essential for normal seed development, and is a dominant determinant in Arabidopsis TAG biosynthesis. METHODS Biochemical, metabolic and gene expression studies combined with genetic crossing of selected Arabidopsis mutants have been carried out to demonstrate the contribution of Arabidopsis PDAT1 and LPCAT2 in the absence of DGAT1 activity. RESULTS Through microarray and RT-PCR gene expression analyses of AS11 vs. WT mid-developing siliques, we observed consistent trends between the two methods. FAD2 and FAD3 were up-regulated and FAE1 down-regulated, consistent with the AS11 acyl phenotype. PDAT1 expression was up-regulated by ca 65% while PDAT2 expression was up-regulated only 15%, reinforcing the dominant role of PDAT1 in AS11 TAG biosynthesis. The expression of LPCAT2 was up-regulated by 50-75%, while LPCAT1 expression was not significantly affected. In vitro LPCAT activity was enhanced by 75-125% in microsomal protein preparations from mid-developing AS11 seed vs WT. Co-incident homozygous knockout lines of dgat1/lpcat2 exhibited severe penalties on TAG biosynthesis, delayed plant development and seed set, even with a functional PDAT1; the double mutant dgat1/lpcat1 showed only marginally lower oil content than AS11. CONCLUSIONS Collectively, the data strongly support that in AS11 it is LPCAT2 up-regulation which is primarily responsible for assisting in PDAT1-catalyzed TAG biosynthesis, maintaining a supply of PC as co-substrate to transfer sn-2 moieties to the sn-3 position of the enlarged AS11 DAG pool.
Collapse
Affiliation(s)
- Jingyu Xu
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Anders S Carlsson
- Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Box 101, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Tammy Francis
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Meng Zhang
- College of Agronomy, Northwest A & F University, No.3 Taicheng Road, Yangling, Shanxi 712100, China
| | - Travis Hoffman
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Michael E Giblin
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - David C Taylor
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- NRC Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
139
|
Li R, Yu K, Wu Y, Tateno M, Hatanaka T, Hildebrand DF. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metab Eng 2012; 14:29-38. [PMID: 22107928 DOI: 10.1016/j.ymben.2011.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Plant and Soil Science, University of Kentucky, KY 40546-0312, USA
| | | | | | | | | | | |
Collapse
|
140
|
Cagliari A, Margis R, Dos Santos Maraschin F, Turchetto-Zolet AC, Loss G, Margis-Pinheiro M. Biosynthesis of Triacylglycerols (TAGs) in plants and algae. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2011. [DOI: 10.4081/pb.2011.e10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Triacylglycerols (TAGs), which consist of three fatty acids bound to a glycerol backbone, are major storage lipids that accumulate in developing seeds, flower petals, pollen grains, and fruits of innumerous plant species. These storage lipids are of great nutritional and nutraceutical value and, thus, are a common source of edible oils for human consumption and industrial purposes. Two metabolic pathways for the production of TAGs have been clarified: an acyl¬ CoA-dependent pathway and an acyl-CoA-independent pathway. Lipid metabolism, specially the pathways to fatty acids and TAG biosynthesis, is relatively well understood in plants, but poorly known in algae. It is generally accepted that the basic pathways of fatty acid and TAG biosynthesis in algae are analogous to those of higher plants. However, unlike higher plants where individual classes of lipids may be synthesized and localized in a specific cell, tissue or organ, the complete pathway, from carbon dioxide fixation to TAG synthesis and sequestration, takes place within a single algal cell. Another distinguishing feature of some algae is the large amounts of very long-chain polyunsaturated fatty acids (VLC- PUFAs) as major fatty acid components. Nowadays, the focus of attention in biotechnology is the isolation of novel fatty acid metabolizing genes, especially elongases and desaturases that are responsible for PUFAs synthesis, from different species of algae, and its transfer to plants. The aim is to boost the seed oil content and to generate desirable fatty acids in oilseed crops through genetic engineering approaches. This paper presents the current knowledge of the neutral storage lipids in plants and algae from fatty acid biosynthesis to TAG accumulation.
Collapse
|
141
|
Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB. Comparative deep transcriptional profiling of four developing oilseeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1014-27. [PMID: 21851431 PMCID: PMC3507003 DOI: 10.1111/j.1365-313x.2011.04751.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 05/18/2023]
Abstract
Transcriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus and Tropaeolum majus, which differ in their storage tissue for oil, their ability to photosynthesize and in the structure and content of their triacylglycerols (TAG). The larger number of ESTs in these 16 datasets provided reliable estimates of the expression of acyltransferases and other enzymes expressed at low levels. Analysis of EST levels from these oilseeds revealed both conserved and distinct species-specific expression patterns for genes involved in the synthesis of glycerolipids and their precursors. Independent of the species and tissue type, ESTs for core fatty acid synthesis enzymes maintained a conserved stoichiometry and a strong correlation in temporal profiles throughout seed development. However, ESTs associated with non-plastid enzymes of oil biosynthesis displayed dissimilar temporal patterns indicative of different regulation. The EST levels for several genes potentially involved in accumulation of unusual TAG structures were distinct. Comparison of expression of members from multi-gene families allowed the identification of specific isoforms with conserved function in oil biosynthesis. In all four oilseeds, ESTs for Rubisco were present, suggesting its possible role in carbon metabolism, irrespective of light availability. Together, these data provide a resource for use in comparative and functional genomics of diverse oilseeds. Expression data for more than 350 genes encoding enzymes and proteins involved in lipid metabolism are available at the 'ARALIP' website (http://aralip.plantbiology.msu.edu/).
Collapse
Affiliation(s)
| | - Aruna Kilaru
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Xia Cao
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Timothy P Durrett
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Jilian Fan
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Jacob K Jensen
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Nick A Thrower
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Markus Pauly
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Curtis Wilkerson
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI 48824, USA
- *For correspondence (fax +1 517 353 1926; e-mail )
| | - John B Ohlrogge
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI 48824, USA
- *For correspondence (fax +1 517 353 1926; e-mail )
| |
Collapse
|
142
|
Yang Y, Yu X, Song L, An C. Nitrogen deficiency system is helpful in characterizing regulation mechanisms of ectopic triacylglycerol accumulation in Arabidopsis seedlings. PLANT SIGNALING & BEHAVIOR 2011; 6:2042-2043. [PMID: 22112453 PMCID: PMC3337202 DOI: 10.4161/psb.6.12.18161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Triacylglycerol (TAG) is the major storage component accumulated in seed. However the regulatory mechanism of TAG synthesis and accumulation in non-seed tissues remains unknown. Recently, we found that nitrogen (N) deficiency (0.1mM N) caused an inducement of TAG biosynthesis in Arabidopsis seedlings. ABSCISIC ACID INSENSITIVE 4 (ABI4) was essential for the activation of Acyl-CoA:diacylglycerol acyltransferase1(DGAT1) expression during N deficiency in Arabidopsis seedlings. In this addendum, we further discussed the approaches to provide a net increase in total oil production in higher plants by using the low N platform. First, the N-deficient seedlings can be used to determine the key factors that regulate the ectopic expression of key genes in TAG metabolism. Second, the research on the relationship between TAG homeostasis and cell division will be helpful to find the key factors that specifically regulate TAG accumulation under the nutrient-limited condition.
Collapse
|
143
|
An X, Song S, Hou J, Zhu C, Peng J, Liu X, Liu H, Xiao W, Zhao H, Bai L, Wang J, Song Y, Cao B. Polymorphism identification in goat DGAT2 gene and association analysis with milk yield and fat percentage. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2011.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
144
|
Guihéneuf F, Leu S, Zarka A, Khozin-Goldberg I, Khalilov I, Boussiba S. Cloning and molecular characterization of a novel acyl-CoA:diacylglycerol acyltransferase 1-like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum. FEBS J 2011; 278:3651-66. [PMID: 21812932 DOI: 10.1111/j.1742-4658.2011.08284.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified and isolated a cDNA encoding a novel acyl-CoA:diacylglycerol acyltransferase (DGAT)1-like protein, from the diatom microalga Phaeodactylum tricornutum (PtDGAT1). The full-length cDNA sequences of PtDGAT1 transcripts revealed that two types of mRNA, PtDGAT1short and PtDGAT1long, were transcribed from the single PtDGAT1 gene. PtDGAT1short encodes a 565 amino acid sequence that is homologous to several functionally characterized higher plant DGAT1 proteins, and 55% identical to the putative DGAT1 of the diatom Thalassiosira pseudonana, but shows little homology with other available putative and cloned algal DGAT sequences. PtDGAT1long lacks several catalytic domains, owing to a 63-bp nucleotide insertion in the mRNA containing a stop codon. Alternative splicing consisting of intron retention appears to regulate the amount of active DGAT1 produced, providing a possible molecular mechanism for increased triacylglycerol (TAG) biosynthesis in P. tricornutum under nitrogen starvation. DGAT mediates the last committed step in TAG biosynthesis, so we investigated the changes in expression levels of the two types of mRNA following nitrogen starvation inducing TAG accumulation. The abundance of both transcripts was markedly increased under nitrogen starvation, but much less so for PtDGAT1short. PtDGAT1 activity of PtDGAT1short was confirmed in a heterologous yeast transformation system by restoring DGAT activity in a Saccharomyces cerevisiae neutral lipid-deficient quadruple mutant strain (H1246), resulting in lipid body formation. Lipid body formation was only restored upon the expression of PtDGAT1short, and not of PtDGAT1long. The recombinant yeast appeared to display a preference for incorporating saturated C(16) and C(18) fatty acids into TAG.
Collapse
Affiliation(s)
- Freddy Guihéneuf
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Israel
| | | | | | | | | | | |
Collapse
|
145
|
Cao H. Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Res Notes 2011; 4:249. [PMID: 21777418 PMCID: PMC3157451 DOI: 10.1186/1756-0500-4-249] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diacylglycerol acyltransferase families (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Understanding the roles of DGATs will help to create transgenic plants with value-added properties and provide clues for therapeutic intervention for obesity and related diseases. The objective of this analysis was to identify conserved sequence motifs and amino acid residues for better understanding of the structure-function relationship of these important enzymes. RESULTS 117 DGAT sequences from 70 organisms including plants, animals, fungi and human are obtained from database search using tung tree DGATs. Phylogenetic analysis separates these proteins into DGAT1 and DGAT2 subfamilies. These DGATs are integral membrane proteins with more than 40% of the total amino acid residues being hydrophobic. They have similar properties and amino acid composition except that DGAT1s are approximately 20 kDa larger than DGAT2s. DGAT1s and DGAT2s have 41 and 16 completely conserved amino acid residues, respectively, although only two of them are shared by all DGATs. These residues are distributed in 7 and 6 sequence blocks for DGAT1s and DGAT2s, respectively, and located at the carboxyl termini, suggesting the location of the catalytic domains. These conserved sequence blocks do not contain the putative neutral lipid-binding domain, mitochondrial targeting signal, or ER retrieval motif. The importance of conserved residues has been demonstrated by site-directed and natural mutants. CONCLUSIONS This study has identified conserved sequence motifs and amino acid residues in all 117 DGATs and the two subfamilies. None of the completely conserved residues in DGAT1s and DGAT2s is present in recently reported isoforms in the multiple sequences alignment, raising an important question how proteins with completely different amino acid sequences could perform the same biochemical reaction. The sequence analysis should facilitate studying the structure-function relationship of DGATs with the ultimate goal to identify critical amino acid residues for engineering superb enzymes in metabolic engineering and selecting enzyme inhibitors in therapeutic application for obesity and related diseases.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U,S, Department of Agriculture, 1100 Robert E, Lee Blvd,, New Orleans, Louisiana 70124, USA.
| |
Collapse
|
146
|
Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. PLANT & CELL PHYSIOLOGY 2011; 52:983-993. [PMID: 21659329 DOI: 10.1093/pcp/pcr051] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
147
|
Yang Y, Yu X, Song L, An C. ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. PLANT PHYSIOLOGY 2011; 156:873-83. [PMID: 21515696 PMCID: PMC3177282 DOI: 10.1104/pp.111.175950] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/19/2011] [Indexed: 05/18/2023]
Abstract
Triacylglycerol (TAG) is the major seed storage lipid and is important for biofuel and other renewable chemical uses. Acyl-coenzyme A:diacylglycerol acyltransferase1 (DGAT1) is the rate-limiting enzyme in the TAG biosynthesis pathway, but the mechanism of its regulation is unknown. Here, we show that TAG accumulation in Arabidopsis (Arabidopsis thaliana) seedlings increased significantly during nitrogen deprivation (0.1 mm nitrogen) with concomitant induction of genes involved in TAG biosynthesis and accumulation, such as DGAT1 and OLEOSIN1. Nitrogen-deficient seedlings were used to determine the key factors contributing to ectopic TAG accumulation in vegetative tissues. Under low-nitrogen conditions, the phytohormone abscisic acid plays a crucial role in promoting TAG accumulation in Arabidopsis seedlings. Yeast one-hybrid and electrophoretic mobility shift assays demonstrated that ABSCISIC ACID INSENSITIVE4 (ABI4), an important transcriptional factor in the abscisic acid signaling pathway, bound directly to the CE1-like elements (CACCG) present in DGAT1 promoters. Genetic studies also revealed that TAG accumulation and DGAT1 expression were reduced in the abi4 mutant. Taken together, our results indicate that abscisic acid signaling is part of the regulatory machinery governing TAG ectopic accumulation and that ABI4 is essential for the activation of DGAT1 in Arabidopsis seedlings during nitrogen deficiency.
Collapse
Affiliation(s)
| | | | | | - Chengcai An
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
148
|
Lu C, Napier JA, Clemente TE, Cahoon EB. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 2011; 22:252-9. [PMID: 21144729 DOI: 10.1016/j.copbio.2010.11.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/07/2010] [Indexed: 11/25/2022]
Abstract
Vegetable oils have historically been a valued commodity for food use and to a lesser extent for non-edible applications such as detergents and lubricants. The increasing reliance on biodiesel as a transportation fuel has contributed to rising demand and higher prices for vegetable oils. Biotechnology offers a number of solutions to meet the growing need for affordable vegetable oils and vegetable oils with improved fatty acid compositions for food and industrial uses. New insights into oilseed metabolism and its transcriptional control are enabling biotechnological enhancement of oil content and quality. Alternative crop platforms and emerging technologies for metabolic engineering also hold promise for meeting global demand for vegetable oils and for enhancing nutritional, industrial, and biofuel properties of vegetable oils.
Collapse
Affiliation(s)
- Chaofu Lu
- Department of Plant Sciences, Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
149
|
Banilas G, Karampelias M, Makariti I, Kourti A, Hatzopoulos P. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:521-32. [PMID: 20870930 PMCID: PMC3003803 DOI: 10.1093/jxb/erq286] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 07/23/2010] [Accepted: 08/06/2010] [Indexed: 05/18/2023]
Abstract
Diacylglycerol acyltransferases (DGATs) catalyse the final step of the triacylglycerol (TAG) biosynthesis of the Kennedy pathway. Two major gene families have been shown to encode DGATs, DGAT1 (type-1) and DGAT2 (type-2). Both genes encode membrane-bound proteins, with no sequence homology to each other. In this study, the molecular cloning and characterization of a type-2 DGAT cDNA from olive is presented. Southern blot analysis showed that OeDGAT2 is represented by a single copy in the olive genome. Comparative transcriptional analysis revealed that DGAT1 and DGAT2 are developmentally regulated and share an overall overlapping but distinct transcription pattern in various tissues during vegetative growth. DGAT2 is highly expressed in mature or senescing olive tissues. In flowers, the expression of DGAT1 was almost undetectable, while DGAT2 transcripts accumulated at the later stages of both anther and ovary development. Differential gene regulation was also detected in the seed and mesocarp, two drupe compartments that largely differ in their functional roles and mode of lipid accumulation. DGAT1 appears to contribute for most of the TAG deposition in seeds, whereas, in the mesocarp, both DGAT1 and DGAT2 share an overlapping expression pattern. During the last stages of mesocarp growth, when TAGs are still accumulating, strong up-regulation of DGAT2 but a marked decline of DGAT1 transcript levels were detected. The present results show overlapping gene expression for olive DGATs during mesocarp growth, with a more prominent implication of DGAT2 in floral bud development and fruit ripening.
Collapse
Affiliation(s)
- Georgios Banilas
- Department of Oenology and Beverage Technology, Technological Educational Institute of Athens, Ag. Spyridona Str., 12210 Athens, Greece
| | - Michael Karampelias
- Laboratory of Molecular Biology, Agricultural Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ifigenia Makariti
- Laboratory of Molecular Biology, Agricultural Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anna Kourti
- Laboratory of Molecular Biology, Agricultural Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Polydefkis Hatzopoulos
- Laboratory of Molecular Biology, Agricultural Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
150
|
Rani SH, Krishna THA, Saha S, Negi AS, Rajasekharan R. Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. J Biol Chem 2010; 285:38337-47. [PMID: 20921218 PMCID: PMC2992267 DOI: 10.1074/jbc.m110.133116] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 10/01/2010] [Indexed: 11/06/2022] Open
Abstract
A key step in the triacylglycerol (TAG) biosynthetic pathway is the final acylation of diacylglycerol (DAG) by DAG acyltransferase. In silico analysis has revealed that the DCR (defective in cuticular ridges) (At5g23940) gene has a typical HX(4)D acyltransferase motif at the N-terminal end and a lipid binding motif VX(2)GF at the middle of the sequence. To understand the biochemical function, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to acylate DAG specifically in an acyl-CoA-dependent manner. Overexpression of At5g23940 in a Saccharomyces cerevisiae quadruple mutant deficient in DAG acyltransferases resulted in TAG accumulation. At5g23940 rescued the growth of this quadruple mutant in the oleate-containing medium, whereas empty vector control did not. Lipid particles were localized in the cytosol of At5g23940-transformed quadruple mutant cells, as observed by oil red O staining. There was an incorporation of 16-hydroxyhexadecanoic acid into TAG in At5g23940-transformed cells of quadruple mutant. Here we report a soluble acyl-CoA-dependent DAG acyltransferase from Arabidopsis thaliana. Taken together, these data suggest that a broad specific DAG acyltransferase may be involved in the cutin as well as in the TAG biosynthesis by supplying hydroxy fatty acid.
Collapse
Affiliation(s)
- Sapa Hima Rani
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - T. H. Anantha Krishna
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Saikat Saha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Arvind Singh Negi
- the Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow 220015, India
| | - Ram Rajasekharan
- the Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow 220015, India
| |
Collapse
|