101
|
Deme P, Rojas C, Slusher BS, Rais R, Afghah Z, Geiger JD, Haughey NJ. Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1? Exp Neurol 2020; 327:113181. [PMID: 31930991 PMCID: PMC7233457 DOI: 10.1016/j.expneurol.2020.113181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.
Collapse
Affiliation(s)
- Pragney Deme
- The Johns Hopkins University School of Medicine, Department of Neurology, United States
| | - Camilo Rojas
- The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States
| | - Barbara S Slusher
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Raina Rais
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of The Solomon H. Snyder Department of Neuroscience, United States; The Johns Hopkins University School of Medicine, Department of Comparative Medicine and Pathobiology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States
| | - Zahra Afghah
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Jonathan D Geiger
- The University of North Dakota School of Medicine and Health Sciences, Department of Biomedical Sciences, United States
| | - Norman J Haughey
- The Johns Hopkins University School of Medicine, Department of Neurology, United States; The Johns Hopkins University School of Medicine, Department of Psychiatry, United States.
| |
Collapse
|
102
|
Kubis-Kubiak A, Dyba A, Piwowar A. The Interplay between Diabetes and Alzheimer's Disease-In the Hunt for Biomarkers. Int J Mol Sci 2020; 21:ijms21082744. [PMID: 32326589 PMCID: PMC7215807 DOI: 10.3390/ijms21082744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
- Correspondence:
| | - Aleksandra Dyba
- Students Science Club of the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| |
Collapse
|
103
|
Zhou R, Chen H, Ye F, Huang S, Zhang J. Influence of Hypertension on Longitudinal Changes in Brain Glucose Metabolism Was Modified by the APOE4 Allele Among Cognitively Normal Older Individuals. Front Aging Neurosci 2020; 12:85. [PMID: 32308617 PMCID: PMC7146026 DOI: 10.3389/fnagi.2020.00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/12/2020] [Indexed: 02/05/2023] Open
Abstract
Objective To examine whether the influence of hypertension (HTN) status on longitudinal changes in brain glucose metabolism was modified by the apolipoprotein 4 (APOE4) status among older people with normal cognition. Methods In this study, we included 217 older individuals with normal cognition from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Participants were divided into the HTN and no HTN groups based on self-reported medical history. Brain glucose metabolism was assessed by 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET). Linear mixed model was fitted to examine the association between the HTN × APOE4 interaction and longitudinal changes in brain glucose metabolism after controlling for several covariates. Results In the present study, we found that the association between HTN status and longitudinal changes in brain glucose metabolism varied as a function of the APOE4 status, such that the HTN/APOE4+ group showed a steeper decline in FDG SUVR than all other groups (No HTN/APOE4-, HTN/APOE4-, and No HTN/APOE4+). Nevertheless, there was no significant difference in the rate of decline in FDG SUVR among other groups (No HTN/APOE4-, HTN/APOE4-, and No HTN/APOE4+). Conclusion The APOE4 genotype interacted with hypertension status to affect longitudinal changes in brain glucose metabolism among older individual with normal cognition, such that the HTN/APOE4+ group showed a steeper decline in FDG SUVR than other groups.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, China
| | - Hao Chen
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, China
| | - Fanhao Ye
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, China
| | - Shiwei Huang
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, China
| | - Jie Zhang
- Independent Researcher, Hangzhou, China
| |
Collapse
|
104
|
Rhea EM, Raber J, Banks WA. ApoE and cerebral insulin: Trafficking, receptors, and resistance. Neurobiol Dis 2020; 137:104755. [PMID: 31978603 PMCID: PMC7050417 DOI: 10.1016/j.nbd.2020.104755] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system (CNS) insulin resistance is associated with Alzheimer's disease (AD). In addition, the apolipoprotein E4 (apoE4) isoform is a risk factor for AD. The connection between these two factors in relation to AD is being actively explored. We summarize this literature with a focus on the transport of insulin and apoE across the blood-brain barrier (BBB) and into the CNS, the impact of apoE and insulin on the BBB, and the interactions between apoE, insulin, and the insulin receptor once present in the CNS. We highlight how CNS insulin resistance is apparent in AD and potential ways to overcome this resistance by repurposing currently approved drugs, with apoE genotype taken into consideration as the treatment response following most interventions is apoE isoform-dependent. This review is part of a special issue focusing on apoE in AD and neurodegeneration.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America.
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States of America; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - William A Banks
- Research and Development, Veterans Affairs Puget Sound Healthcare System, Seattle, WA 98108, United States of America; Department of Medicine, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
105
|
APOE4 is Associated with Differential Regional Vulnerability to Bioenergetic Deficits in Aged APOE Mice. Sci Rep 2020; 10:4277. [PMID: 32152337 PMCID: PMC7062695 DOI: 10.1038/s41598-020-61142-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer’s disease (AD). However, the reason for the association between APOE4 and AD remains unclear. While much of the research has focused on the ability of the apoE4 protein to increase the aggregation and decrease the clearance of Aβ, there is also an abundance of data showing that APOE4 negatively impacts many additional processes in the brain, including bioenergetics. In order to gain a more comprehensive understanding of APOE4′s role in AD pathogenesis, we performed a transcriptomics analysis of APOE4 vs. APOE3 expression in the entorhinal cortex (EC) and primary visual cortex (PVC) of aged APOE mice. This study revealed EC-specific upregulation of genes related to oxidative phosphorylation (OxPhos). Follow-up analysis utilizing the Seahorse platform showed decreased mitochondrial respiration with age in the hippocampus and cortex of APOE4 vs. APOE3 mice, but not in the EC of these mice. Additional studies, as well as the original transcriptomics data, suggest that multiple bioenergetic pathways are differentially regulated by APOE4 expression in the EC of aged APOE mice in order to increase the mitochondrial coupling efficiency in this region. Given the importance of the EC as one of the first regions to be affected by AD pathology in humans, the observation that the EC is susceptible to differential bioenergetic regulation in response to a metabolic stressor such as APOE4 may point to a causative factor in the pathogenesis of AD.
Collapse
|
106
|
Williams T, Borchelt DR, Chakrabarty P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Mol Neurodegener 2020; 15:8. [PMID: 32005122 PMCID: PMC6995170 DOI: 10.1186/s13024-020-0358-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
One of the primary genetic risk factors for Alzheimer’s disease (AD) is the presence of the Ɛ4 allele of apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism. Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has been devoted towards developing cellular and animal models. Data from these models indicate that APOE4 exacerbates amyloid β plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are distinct from modulation of Aβ or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions. This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4 towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.
Collapse
Affiliation(s)
- Tosha Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
107
|
Brain imaging measurements of fibrillar amyloid-β burden, paired helical filament tau burden, and atrophy in cognitively unimpaired persons with two, one, and no copies of the APOE ε4 allele. Alzheimers Dement 2020; 16:598-609. [PMID: 31831374 PMCID: PMC7187298 DOI: 10.1016/j.jalz.2019.08.195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION We previously characterized associations between brain imaging measurements of amyloid-β (Aβ) plaque burden and apolipoprotein E (APOE) ε4 gene dose in a small number of cognitively unimpaired late-middle-aged APOE ε4 homozygotes (HMs), heterozygotes (HTs), and noncarriers (NCs). We now characterize cross-sectional Aβ plaque, tau tangle, and cortical atrophy (neurodegeneration) measurements, classifications, and associations with age in a larger number of unimpaired HMs, HTs, and NCs over a wider age range. METHODS We analyzed 11 C Pittsburgh compound B (Aβ) positron emission tomography (PET), flortaucipir (tau) PET, and volumetric magnetic resonance imaging data from 164 study participants of age 47-86 years, including 26 APOE ε4 HMs, 48 HTs, and 90 NCs matched for age and sex. RESULTS Aβ PET measurements rose, plateaued at the respective ages of 68 and 76, and then declined with age in unimpaired HM and HT groups. Compared with NCs, these two groups began to have significantly higher Aβ PET measurements at ages 62 and 70, respectively, and no longer had significantly higher measurements by ages 71 and 78, respectively. They began to have significantly higher entorhinal cortex tau PET measurements at ages 66 and 70, respectively, and no longer had significantly higher measurements by ages 74 and 78, respectively. Brain atrophy measurements tended to decline slowly with age in all three genetic groups. Their elevated tau PET measurements were attributable to those with positive Aβ PET scans. 41.0%, 18.0%, and 5.0% of the 47- to 70-year-old HMs, HTs, and NCs and 25.0%, 79.0%, and 38.0% of the 71- to 86-year-old HMs, HTs, and NCs had positive Aβ PET scans, and the long-term recall memory scores are significantly higher in the older HMs than in HT and NC groups, suggesting resistance to Aβ deposition in those HMs who remained unimpaired at older ages. CONCLUSIONS This study provides information about Aβ plaque burden, tau tangle burden, and neurodegeneration in cognitively unimpaired persons at three levels of genetic risk for AD. Unimpaired APOE ε4 HMs can be studied before their 70s to evaluate the understanding of factors, processes, and interventions involved in the predisposition to and prevention of AD, and after their 70s, to discover factors, processes, and interventions involved in the resilience or resistance to and prevention of AD.
Collapse
|
108
|
Kapogiannis D, Avgerinos KI. Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:79-110. [PMID: 32739015 PMCID: PMC9989941 DOI: 10.1016/bs.irn.2020.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To meet its high energy demands, the brain mostly utilizes glucose. However, the brain has evolved to exploit additional fuels, such as ketones, especially during prolonged fasting. With aging and neurodegenerative diseases (NDDs), the brain becomes inefficient at utilizing glucose due to changes in glia and neurons that involve glucose transport, glycolytic and Krebs cycle enzyme activities, and insulin signaling. Positron emission tomography and magnetic resonance spectroscopy studies have identified glucose metabolism abnormalities in aging, Alzheimer's disease (AD) and other NDDs in vivo. Despite glucose hypometabolism, brain cells can utilize ketones efficiently, thereby providing a rationale for the development of therapeutic ketogenic interventions in AD and other NDDs. This review compares available ketogenic interventions and discusses the potential of the potent oral Ketone Ester for future therapeutic use in AD and other NDDs characterized by inefficient glucose utilization.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
109
|
Laczó J, Cechova K, Parizkova M, Lerch O, Andel R, Matoska V, Kaplan V, Matuskova V, Nedelska Z, Vyhnalek M, Hort J. The Combined Effect of APOE and BDNF Val66Met Polymorphisms on Spatial Navigation in Older Adults. J Alzheimers Dis 2020; 78:1473-1492. [PMID: 33325388 PMCID: PMC7836052 DOI: 10.3233/jad-200615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The apolipoprotein E (APOE) ɛ4 allele is associated with episodic memory and spatial navigation deficits. The brain-derived neurotrophic factor (BDNF) Met allele may further worsen memory impairment in APOEɛ4 carriers but its role in APOEɛ4-related spatial navigation deficits has not been established. OBJECTIVE We examined influence of APOE and BDNF Val66Met polymorphism combination on spatial navigation and volumes of selected navigation-related brain regions in cognitively unimpaired (CU) older adults and those with amnestic mild cognitive impairment (aMCI). METHODS 187 participants (aMCI [n = 116] and CU [n = 71]) from the Czech Brain Aging Study were stratified based on APOE and BDNF Val66Met polymorphisms into four groups: ɛ4-/BDNFVal/Val, ɛ4-/BDNFMet, ɛ4+/BDNFVal/Val, and ɛ4+/BDNFMet. The participants underwent comprehensive neuropsychological examination, brain MRI, and spatial navigation testing of egocentric, allocentric, and allocentric delayed navigation in a real-space human analogue of the Morris water maze. RESULTS Among the aMCI participants, the ɛ4+/BDNFMet group had the least accurate egocentric navigation performance (p < 0.05) and lower verbal memory performance than the ɛ4-/BDNFVal/Val group (p = 0.007). The ɛ4+/BDNFMet group had smaller hippocampal and entorhinal cortical volumes than the ɛ4-/BDNFVal/Val (p≤0.019) and ɛ4-/BDNFMet (p≤0.020) groups. Among the CU participants, the ɛ4+/BDNFMet group had less accurate allocentric and allocentric delayed navigation performance than the ɛ4-/BDNFVal/Val group (p < 0.05). CONCLUSION The combination of APOEɛ4 and BDNF Met polymorphisms is associated with more pronounced egocentric navigation impairment and atrophy of the medial temporal lobe regions in individuals with aMCI and less accurate allocentric navigation in CU older adults.
Collapse
Affiliation(s)
- Jan Laczó
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Katerina Cechova
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Martina Parizkova
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Ross Andel
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Vojtech Kaplan
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Veronika Matuskova
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
110
|
Ma X, Zhuo Z, Wei L, Ma Z, Li Z, Li H. Altered Temporal Organization of Brief Spontaneous Brain Activities in Patients with Alzheimer’s Disease. Neuroscience 2020; 425:1-11. [DOI: 10.1016/j.neuroscience.2019.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/04/2023]
|
111
|
Stonnington CM, Velgos SN, Chen Y, Syed S, Huentelman M, Thiyyagura P, Lee W, Richholt R, Caselli RJ, Locke DE, Lu B, Reiman EM, Su Y, Chen K. Interaction Between BDNF Val66Met and APOE4 on Biomarkers of Alzheimer's Disease and Cognitive Decline. J Alzheimers Dis 2020; 78:721-734. [PMID: 33044176 PMCID: PMC10416650 DOI: 10.3233/jad-200132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Whether brain-derived neurotrophic factor (BDNF) Met carriage impacts the risk or progression of Alzheimer's disease (AD) is unknown. OBJECTIVE To evaluate the interaction of BDNF Met and APOE4 carriage on cerebral metabolic rate for glucose (CMRgl), amyloid burden, hippocampus volume, and cognitive decline among cognitively unimpaired (CU) adults enrolled in the Arizona APOE cohort study. METHODS 114 CU adults (mean age 56.85 years, 38% male) with longitudinal FDG PET, magnetic resonance imaging, and cognitive measures were BDNF and APOE genotyped. A subgroup of 58 individuals also had Pittsburgh B (PiB) PET imaging. We examined baseline CMRgl, PiB PET amyloid burden, CMRgl, and hippocampus volume change over time, and rate of change in cognition over an average of 15 years. RESULTS Among APOE4 carriers, BDNF Met carriers had significantly increased amyloid deposition and accelerated CMRgl decline in regions typically affected by AD, but without accompanying acceleration of cognitive decline or hippocampal volume changes and with higher baseline frontal CMRgl and slower frontal decline relative to the Val/Val group. The BDNF effects were not found among APOE4 non-carriers. CONCLUSION Our preliminary studies suggest that there is a weak interaction between BDNF Met and APOE4 on amyloid-β plaque burden and longitudinal PET measurements of AD-related CMRgl decline in cognitively unimpaired late-middle-aged and older adults, but with no apparent effect upon rate of cognitive decline. We suggest that cognitive effects of BDNF variants may be mitigated by compensatory increases in frontal brain activity-findings that would need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Cynthia M. Stonnington
- Department of Psychiatry and Psychology, Mayo Clinic Arizona. 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Stefanie N. Velgos
- Mayo Clinic Graduate School of Biomedical Sciences, Clinical and Translational Science Track. 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
- Translational neuroscience and Aging Laboratory, Mayo Clinic Arizona. 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Yinghua Chen
- Banner Alzheimer’s Institute. 901 E. Willetta St. Fl 3, Phoenix, AZ 85006, USA
| | - Sameena Syed
- Department of Psychiatry and Psychology, Mayo Clinic Arizona. 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
- Midwestern University. 19555 N. 59 Ave, Glendale, AZ 85308, USA
- Department of Medicine. University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106
| | - Matt Huentelman
- The Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ 85004
| | - Pradeep Thiyyagura
- Banner Alzheimer’s Institute. 901 E. Willetta St. Fl 3, Phoenix, AZ 85006, USA
| | - Wendy Lee
- Banner Alzheimer’s Institute. 901 E. Willetta St. Fl 3, Phoenix, AZ 85006, USA
| | - Ryan Richholt
- The Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ 85004
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic Arizona. 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Dona E.C. Locke
- Department of Psychiatry and Psychology, Mayo Clinic Arizona. 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University. 30 Shuangqing Rd., Haidian Qu, Beijing Shi, China
| | - Eric M. Reiman
- Banner Alzheimer’s Institute. 901 E. Willetta St. Fl 3, Phoenix, AZ 85006, USA
- The Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ 85004
| | - Yi Su
- Banner Alzheimer’s Institute. 901 E. Willetta St. Fl 3, Phoenix, AZ 85006, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute. 901 E. Willetta St. Fl 3, Phoenix, AZ 85006, USA
| |
Collapse
|
112
|
Sirtuin 3 attenuates amyloid-β induced neuronal hypometabolism. Aging (Albany NY) 2019; 10:2874-2883. [PMID: 30362958 PMCID: PMC6224231 DOI: 10.18632/aging.101592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease (AD) is manifested by regional cerebral hypometabolism. Sirtuin 3 (Sirt3) is localized in mitochondria and regulates cellular metabolism, but the role of Sirt3 in AD-related hypometabolism remains elusive. We used expression profiling and weighted gene co-expression network analysis (WGCNA) to analyze cortical neurons from a transgenic mouse model of AD (APPSwInd). Based on WGCNA results, we measured NAD+ level, NAD+/ NADH ratio, Sirt3 protein level and its deacetylation activity, and ATP production across both in vivo and in vitro models. To investigate the effect of Sirt3 on amyloid-β (Aβ)-induced mitochondria damage, we knocked down and over-expressed Sirt3 in hippocampal cells. WGCNA revealed Sirt3 as a key player in Aβ-related hypometabolism. In APP mice, the NAD+ level, NAD+/ NADH ratio, Sirt3 protein level and activity, and ATP production were all reduced compared to the control. As a result, learning and memory performance were impaired in 9-month-old APP mice compared to wild type controls. Using hippocampal HT22 cells model, Sirt3 overexpression increased Sirt3 deacetylation activity, rescued mitochondria function, and salvaged ATP production, which were damaged by Aβ. Sirt3 plays an important role in regulating Aβ-induced cerebral hypometabolism. This study suggests a potential direction for AD therapy.
Collapse
|
113
|
Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol 2019; 184:101719. [PMID: 31704314 DOI: 10.1016/j.pneurobio.2019.101719] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
In the past few years it has become increasingly clear that an understanding of the interaction between metabolism and immune function can provide an insight into cellular responses to challenges. Significant progress has been made in terms of how macrophages are metabolically re-programmed in response to inflammatory stimuli but, to date, little emphasis has been placed on evaluating equivalent changes in microglia. The need to make progress is driven by the fact that, while microglial activation and the cell's ability to adopt an inflammatory phenotype is necessary to fulfil the neuroprotective function of the cell, persistent activation of microglia and the associated neuroinflammation is at the heart of several neurodegenerative diseases. Understanding the metabolic changes that accompany microglial responses may broaden our perspective on how dysfunction might arise and be tempered. This review will evaluate the current literature that addresses the interplay between inflammation and metabolic reprogramming in microglia, reflecting on the parallels that exist with macrophages. It will consider the changes that take place with age including those that have been reported in neurons and astrocytes with the development of non-invasive imaging techniques, and reflect on the literature that is currently available relating to metabolic reprogramming of microglia with age and in neurodegeneration. Finally it will consider the possibility that manipulating microglial metabolism may provide a valuable approach to modulating neuroinflammation.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
114
|
When Does Alzheimer's Disease Really Start? The Role of Biomarkers. Int J Mol Sci 2019; 20:ijms20225536. [PMID: 31698826 PMCID: PMC6888399 DOI: 10.3390/ijms20225536] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
While Alzheimer’s disease (AD) classical diagnostic criteria rely on clinical data from a stablished symptomatic disease, newer criteria aim to identify the disease in its earlier stages. For that, they incorporated the use of AD’s specific biomarkers to reach a diagnosis, including the identification of Aβ and tau depositions, glucose hypometabolism, and cerebral atrophy. These biomarkers created a new concept of the disease, in which AD’s main pathological processes have already taken place decades before we can clinically diagnose the first symptoms. Therefore, AD is now considered a dynamic disease with a gradual progression, and dementia is its final stage. With that in mind, new models were proposed, considering the orderly increment of biomarkers and the disease as a continuum, or the variable time needed for the disease’s progression. In 2011, the National Institute on Aging and the Alzheimer’s Association (NIA-AA) created separate diagnostic recommendations for each stage of the disease continuum—preclinical, mild cognitive impairment, and dementia. However, new scientific advances have led them to create a unifying research framework in 2018 that, although not intended for clinical use as of yet, is a step toward shifting the focus from the clinical symptoms to the biological alterations and toward changing the future diagnostic and treatment possibilities. This review aims to discuss the role of biomarkers in the onset of AD.
Collapse
|
115
|
Ferrari BL, Neto GDCC, Nucci MP, Mamani JB, Lacerda SS, Felício AC, Amaro E, Gamarra LF. The accuracy of hippocampal volumetry and glucose metabolism for the diagnosis of patients with suspected Alzheimer's disease, using automatic quantitative clinical tools. Medicine (Baltimore) 2019; 98:e17824. [PMID: 31702636 PMCID: PMC6855664 DOI: 10.1097/md.0000000000017824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hippocampus is one of the earliest sites involved in the pathology of Alzheimer's disease (AD). Therefore, we specifically investigated the sensitivity and specificity of hippocampal volume and glucose metabolism in patients being evaluated for AD, using automated quantitative tools (NeuroQuant - magnetic resonance imaging [MRI] and Scenium - positron emission tomography [PET]) and clinical evaluation.This retrospective study included adult patients over the age of 45 years with suspected AD, who had undergone fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET-CT) and MRI. FDG-PET-CT images were analyzed both qualitatively and quantitatively. In quantitative volumetric MRI analysis, the percentage of the total intracranial volume of each brain region, as well as the total hippocampal volume, were considered in comparison to an age-adjusted percentile. The remaining brain regions were compared between groups according to the final diagnosis.Thirty-eight patients were included in this study. After a mean follow-up period of 23 ± 11 months, the final diagnosis for 16 patients was AD or high-risk mild cognitive impairment (MCI). Out of the 16 patients, 8 patients were women, and the average age of all patients was 69.38 ± 10.98 years. Among the remaining 22 patients enrolled in the study, 14 were women, and the average age was 67.50 ± 11.60 years; a diagnosis of AD was initially excluded, but the patients may have low-risk MCI. Qualitative FDG-PET-CT analysis showed greater accuracy (0.87), sensitivity (0.76), and negative predictive value (0.77), when compared to quantitative PET analysis, hippocampal MRI volumetry, and specificity. The positive predictive value of FDG-PET-CT was similar to the MRI value.The performance of FDG-PET-CT qualitative analysis was significantly more effective compared to MRI volumetry. At least in part, this observation could corroborate the sequential hypothesis of AD pathophysiology, which posits that functional changes (synaptic dysfunction) precede structural changes (atrophy).
Collapse
Affiliation(s)
| | | | - Mariana Penteado Nucci
- LIM44, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
116
|
Zou T, Chen W, Zhou X, Duan Y, Ying X, Liu G, Zhu M, Pari A, Alimu K, Miao H, Kabinur K, Zhang L, Wang Q, Duan S. Association of multiple candidate genes with mild cognitive impairment in an elderly Chinese Uygur population in Xinjiang. Psychogeriatrics 2019; 19:574-583. [PMID: 30983028 PMCID: PMC6899574 DOI: 10.1111/psyg.12440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a high-risk factor for Alzheimer's disease (AD). In the present study, we investigated the association of genetic polymorphisms of five genes (8-oxoguanine DNA glycosylase 1 (OGG1), bridging integrator 1 (BIN1), sortilin-related receptor 1 (SORL1), presenilin 2 (PSEN2) and nerve growth factor (NGF)) with MCI risk in a Xinjiang Uygur population. We also tested the relationship between the promoter methylation of genes OGG1 and dihydrolipoamide S-succinyltransferase (DLST) with MCI. METHODS This study involved 43 MCI patients and 125 controls. Genotyping was done by Sanger sequencing. DNA methylation assays used quantitative methylation-specific polymerase chain reaction. RESULTS We found that polymorphisms of five genes and the methylation of DLST and OGG1 genes were not associated with MCI (P > 0.05). Further subgroup analysis found that DLST hypomethylation was significantly associated with MCI in the carriers of apolipoprotein E (APOE) ε4 (P = 0.042). In the carriers of non-APOE ε4, DLST methylation levels were significantly lower in the male control group than in the female control group (p = 0.04). Meanwhile, among the non-APOE ε4 carriers younger than 75, OGG1 hypermethylation levels were significantly associated with MCI (P = 0.049). DLST methylation in female controls was significantly lower than that in male controls (P = 0.003). According to gender stratification, there was a significant positive correlation of fasting plasma glucose (FBG) and high-density lipoprotein (HDL) with OGG1 methylation in the female controls (FBG: P = 0.024; HDL: P = 0.033). There was a significant inverse correlation between low-density lipoprotein and DLST methylation in male MCI (P = 0.033). There was a significant positive correlation between HDL and DLST methylation levels in the female controls (P = 0.000). CONCLUSIONS This study was the first to discover that DLST promoter methylation interacted with APOE ε4 and thus affected the pathogenesis of MCI. In addition, OGG1 promoter methylation interacted with several other factors to increase the risk of MCI.
Collapse
Affiliation(s)
- Ting Zou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei Chen
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohui Zhou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yali Duan
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiuru Ying
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Guili Liu
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Meisheng Zhu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abuliz Pari
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kader Alimu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haijun Miao
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Keyim Kabinur
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qinwen Wang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Shiwei Duan
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
117
|
Etnier JL, Karper WB, Labban JD, Piepmeier AT, Shih CH, Dudley WN, Henrich VC, Wideman L. The Physical Activity and Alzheimer's Disease (PAAD) Study: Cognitive outcomes. Ann Behav Med 2019. [PMID: 29538632 DOI: 10.1093/abm/kax035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Alzheimer's disease is a progressive disease that degrades cognitive functioning and ultimately results in death. Currently, there is no cure for Alzheimer's disease and, hence, the identification of preventative strategies is important. Physical activity (PA) is a behavioral intervention that holds promise with respect to delaying the onset of Alzheimer's disease. Purpose The purpose of this study was to explore the differential cognitive benefits achieved in response to PA as a function of a person's genetic risk for AD. Methods Older cognitively normal adults (50-65 years) with a family history of AD (FHxAD) participated in an 8-month PA program. Cognitive performance was measured at baseline, pretest, midtest, and posttest and changes over time were assessed as a function of apolipoprotein E (APOE) status (carriers: 1-2 copies of the ɛ4 allele; noncarriers: 0 copies of the ɛ4 allele). Results Improvements in memory were associated with PA participation irrespective of APOE ɛ4 carrier status. Conclusions Future experimental studies are needed to confirm that PA causes improvements to cognitive performance in older cognitively normal adults with a FHxAD and that these improvements are equivalent for cognitively normal APOE ɛ4 carriers and noncarriers.
Collapse
Affiliation(s)
- Jennifer L Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| | - William B Karper
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| | - Jeffrey D Labban
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| | - Aaron T Piepmeier
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| | - Chia-Hao Shih
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| | - William N Dudley
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| | - Vincent C Henrich
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| | - Laurie Wideman
- Department of Kinesiology, University of North Carolina at Greensboro, Coleman, Greensboro NC
| |
Collapse
|
118
|
The Role of Physical Fitness in Cognitive-Related Biomarkers in Persons at Genetic Risk of Familial Alzheimer's Disease. J Clin Med 2019; 8:jcm8101639. [PMID: 31591322 PMCID: PMC6832576 DOI: 10.3390/jcm8101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Nondemented people with a family history of Alzheimer’s disease (ADFH) and the ApoE-4 allele have been demonstrated to show a trend for a higher probability of cognitive decline and aberrant levels of cognitive-related biomarkers. However, the potential interactive effects on physical fitness have not been investigated. Purpose: The primary purpose of this study was to determine whether ADFH individuals with the ApoE-4 genotype show deviant brain event-related neural oscillatory performance and cognitively-related molecular indices. A secondary purpose was to examine the interactive effects on physical fitness. Methods: Blood samples were provided from 110 individuals with ADFH to assess molecular biomarkers and the ApoE genotype for the purpose of dividing them into an ApoE-4 group (n = 16) and a non-ApoE-4 group (n = 16) in order for them to complete a visuospatial working memory task while simultaneously recording electroencephalographic signals. They also performed a senior functional physical fitness (SFPF) test. Results: While performing the cognitive task, the ApoE-4 relative to non-ApoE-4 group showed worse accuracy rates (ARs) and brain neural oscillatory performance. There were no significant between-group differences with regard to any molecular biomarkers (e.g., IL-1β, IL-6, IL-8, BDNF, Aβ1-40, Aβ1-42). VO2max was significantly correlated with the neuropsychological performance (i.e., ARs and RTs) in the 2-item and 4-item conditions in the ApoE-4 group and across the two groups. However, the electroencephalogram (EEG) oscillations during visuospatial working memory processing in the two conditions were not correlated with any SFPF scores or cardiorespiratory tests in the two groups. Conclusions: ADFH individuals with the ApoE-4 genotype only showed deviant neuropsychological (e.g., ARs) and neural oscillatory performance when performing the cognitive task with a higher visuospatial working memory load. Cardiorespiratory fitness potentially played an important role in neuropsychological impairment in this group.
Collapse
|
119
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 794] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
120
|
Korthauer LE, Awe E, Frahmand M, Driscoll I. Genetic Risk for Age-Related Cognitive Impairment Does Not Predict Cognitive Performance in Middle Age. J Alzheimers Dis 2019; 64:459-471. [PMID: 29865048 DOI: 10.3233/jad-171043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory loss and executive dysfunction, which correspond to structural changes to the medial temporal lobes (MTL) and prefrontal cortex (PFC), respectively. Given the overlap in cognitive deficits between healthy aging and the earliest stages of AD, early detection of AD remains a challenge. The goal of the present study was to study MTL- and PFC-dependent cognitive functioning in middle-aged individuals at genetic risk for AD or cognitive impairment who do not currently manifest any clinical symptoms. Participants (N = 150; aged 40-60 years) underwent genotyping of 47 single nucleotide polymorphisms (SNPs) in six genes previously associated with memory or executive functioning: APOE, SORL1, BDNF, TOMM40, KIBRA, and COMT. They completed two MTL-dependent tasks, the virtual Morris Water Task (vMWT) and transverse patterning discriminations task (TPDT), and the PFC-dependent reversal learning task. Although age was associated with poorer performance on the vMWT and TPDT within this middle-aged sample, there were no genotype-associated differences in cognitive performance. Although the vMWT and TPDT may be sensitive to age-related changes in cognition, carriers of APOE, SORL1, BDNF, TOMM40, KIBRA, and COMT risk alleles do not exhibit alteration in MTL- and PFC-dependent functioning in middle age compared to non-carriers.
Collapse
Affiliation(s)
- Laura E Korthauer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Elizabeth Awe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marijam Frahmand
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
121
|
Peretti DE, Vállez García D, Reesink FE, Doorduin J, de Jong BM, De Deyn PP, Dierckx RAJO, Boellaard R. Diagnostic performance of regional cerebral blood flow images derived from dynamic PIB scans in Alzheimer's disease. EJNMMI Res 2019; 9:59. [PMID: 31273465 PMCID: PMC6609664 DOI: 10.1186/s13550-019-0528-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In clinical practice, visual assessment of glucose metabolism images is often used for the diagnosis of Alzheimer's disease (AD) through 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) scans. However, visual assessment of the characteristic AD hypometabolic pattern relies on the expertise of the reader. Therefore, user-independent pipelines are preferred to evaluate the images and to classify the subjects. Moreover, glucose consumption is highly correlated with cerebral perfusion. Regional cerebral blood flow (rCBF) images can be derived from dynamic 11C-labelled Pittsburgh Compound B PET scans, which are also used for the assessment of the deposition of amyloid-β plaques on the brain, a fundamental characteristic of AD. The aim of this study was to explore whether these rCBF PIB images could be used for diagnostic purposes through the PMOD Alzheimer's Discrimination Tool. RESULTS Both tracer relative cerebral flow (R1) and early PIB (ePIB) (20-130 s) uptake presented a good correlation when compared to FDG standardized uptake value ratio (SUVR), while ePIB (1-8 min) showed a worse correlation. All receiver operating characteristic curves exhibited a similar shape, with high area under the curve values, and no statistically significant differences were found between curves. However, R1 and ePIB (1-8 min) had the highest sensitivity, while FDG SUVR had the highest specificity. CONCLUSION rCBF images were suggested to be a good surrogate for FDG scans for diagnostic purposes considering an adjusted threshold value.
Collapse
Affiliation(s)
- Débora E. Peretti
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Fransje E. Reesink
- Department of Neurology, Alzheimer Centrum Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bauke M. de Jong
- Department of Neurology, Alzheimer Centrum Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Peter P. De Deyn
- Department of Neurology, Alzheimer Centrum Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
122
|
Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO. Consequences of Metabolic Disruption in Alzheimer's Disease Pathology. Neurotherapeutics 2019; 16:600-610. [PMID: 31270743 PMCID: PMC6694332 DOI: 10.1007/s13311-019-00755-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive disease that slowly destroys cognitive function, such as thinking, remembering, and reasoning, to a level that one cannot carry out a daily living. As people live longer, the risk of developing AD has increased to 1 in 10 among people who are older than 65 and to almost 1 in 2 among those who are older than 85 according to a 2019 Alzheimer's Association report. As a most common cause of dementia, AD accounts for 60-80% of all dementia cases. AD is characterized by amyloid plaques and neurofibrillary tangles, composed of extracellular aggregates of amyloid-β peptides and intracellular aggregates of hyperphosphorylated tau, respectively. Besides plaques and tangles, AD pathology includes synaptic dysfunction including loss of synapses, inflammation, brain atrophy, and brain hypometabolism, all of which contribute to progressive cognitive decline. Recent genetic studies of sporadic cases of AD have identified a score of risk factors, as reported by Hollingworth et al. (Nat Genet 43:429-435, 2001) and Lambert et al. (Nat Genet 45:1452-1458, 2013). Of all these genes, apolipoprotein E4 (APOE4) still presents the biggest risk factor for sporadic cases of AD, as stated in Saunders et al. (Neurology 43:1467-1472, 1993): depending on whether you have 1 or 2 copies of APOE4 allele, the risk increases from 3- to 12-fold, respectively, in line with Genin et al. (Mol Psychiatry 16:903-907, 2011). Besides these genetic risk factors, having type 2 diabetes (T2D), a chronic metabolic disease, is known to increase the AD risk by at least 2-fold when these individuals age, conforming to Sims-Robinson et al. (Nat Rev Neurol 6:551-559, 2010). Diabetes is reaching a pandemic scale with over 422 million people diagnosed worldwide in 2014 according to World Health Organization. Although what proportion of these diabetic patients develop AD is not known, even if 10% of diabetic patients develop AD later in their life, it would double the number of AD patients in the world. Better understanding between T2D and AD is of paramount of importance for the future. The goal of this review is to examine our current understanding on metabolic dysfunction in AD, so that a potential target can be identified in the near future.
Collapse
Affiliation(s)
- J C Ryu
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, OH, USA
| | - E R Zimmer
- Department of Pharmacology, UFRGS, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - P Rosa-Neto
- Montreal Neurological Institute, Montreal, Canada
| | - S O Yoon
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
123
|
Wan W, Cao L, Kalionis B, Murthi P, Xia S, Guan Y. Iron Deposition Leads to Hyperphosphorylation of Tau and Disruption of Insulin Signaling. Front Neurol 2019; 10:607. [PMID: 31275224 PMCID: PMC6593079 DOI: 10.3389/fneur.2019.00607] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Iron deposition in the brain is an early issue in Alzheimer's disease (AD). However, the pathogenesis of iron-induced pathological changes in AD remains elusive. Insulin resistance in brains is an essential feature of AD. Previous studies determined that insulin resistance is involved in the development of pathologies in AD. Tau pathology is one of most important hallmarks in AD and is associated with the impairment of cognition and clinical grades of the disease. In the present study, we observed that ferrous (Fe2+) chloride led to aberrant phosphorylation of tau, and decreased tyrosine phosphorylation levels of insulin receptor β (IRβ), insulin signal substrate 1 (IRS-1) and phosphoinositide 3-kinase p85α (PI3K p85α), in primary cultured neurons. In the in vivo studies using mice with supplemented dietary iron, learning and memory was impaired. As well, hyperphosphorylation of tau and disrupted insulin signaling in the brain was induced in iron-overloaded mice. Furthermore, in our in vitro work we identified the activation of insulin signaling following exogenous supplementation of insulin. This was further attenuated by iron-induced hyperphosphorylation of tau in primary neurons. Together, these data suggest that dysfunctional insulin signaling participates in iron-induced abnormal phosphorylation of tau in AD. Our study highlights the promising role of insulin signaling in pathological lesions induced by iron overloading.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Obstetrics and Gynecology, Royal Women's Hospital, Parkville, VIC, Australia
| | - Padma Murthi
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
124
|
Stonnington CM, Chen Y, Savage CR, Lee W, Bauer RJ, Sharieff S, Thiyyagura P, Alexander GE, Caselli RJ, Locke DEC, Reiman EM, Chen K. Predicting Imminent Progression to Clinically Significant Memory Decline Using Volumetric MRI and FDG PET. J Alzheimers Dis 2019; 63:603-615. [PMID: 29630550 DOI: 10.3233/jad-170852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Brain imaging measurements can provide evidence of possible preclinical Alzheimer's disease (AD). Their ability to predict individual imminent clinical conversion remains unclear. OBJECTIVE To investigate the ability of pre-specified volumetric magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) measurements to predict which cognitively unimpaired older participants would subsequently progress to amnestic mild cognitive impairment (aMCI) within 2 years. METHODS From an apolipoprotein E4 (APOE4) enriched prospective cohort study, 18 participants subsequently progressed to the clinical diagnosis of aMCI or probable AD dementia within 1.8±0.8 years (progressors); 20 participants matched for sex, age, education, and APOE allele dose remained cognitively unimpaired for at least 4 years (nonprogressors). A complementary control group not matched for APOE allele dose included 35 nonprogressors. Groups were compared on baseline FDG-PET and MRI measures known to be preferentially affected in the preclinical and clinical stages of AD and by voxel-wise differences in regional gray matter volume and glucose metabolism. Receiver Operating Characteristic, binary logistic regression, and leave-one-out procedures were used to predict clinical outcome for the a priori measures. RESULTS Compared to non-progressors and regardless of APOE-matching, progressors had significantly reduced baseline MRI and PET measurements in brain regions preferentially affected by AD and reduced hippocampal volume was the strongest predictor of an individual's imminent progression to clinically significant memory decline (79% sensitivity/78% specificity among APOE-matched cohorts). CONCLUSION Regional MRI and FDG-PET measurements may be useful in predicting imminent progression to clinically significant memory decline.
Collapse
Affiliation(s)
- Cynthia M Stonnington
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Yinghua Chen
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Cary R Savage
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Wendy Lee
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Robert J Bauer
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Sameen Sharieff
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Midwestern University, Glendale, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Pradeep Thiyyagura
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Gene E Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.,Neuroscience and Physiological Science Interdisciplinary Graduate Programs, University of Arizona, Tucson, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Dona E C Locke
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.,Translational Genomics Research Institute, Scottsdale, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.,Arizona State University, Tempe, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
125
|
The Alzheimer's Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:216-227. [PMID: 31211217 PMCID: PMC6562315 DOI: 10.1016/j.trci.2019.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction Alzheimer's disease (AD) pathology, including the accumulation of amyloid beta (Aβ) species and tau pathology, begins decades before the onset of cognitive impairment. This long preclinical period provides an opportunity for clinical trials designed to prevent or delay the onset of cognitive impairment due to AD. Under the umbrella of the Alzheimer's Prevention Initiative Generation Program, therapies targeting Aβ, including CNP520 (umibecestat), a β-site-amyloid precursor protein cleaving enzyme-1 (BACE-1) inhibitor, and CAD106, an active Aβ immunotherapy, are in clinical development in preclinical AD. Methods The Alzheimer's Prevention Initiative Generation Program comprises two pivotal (phase 2/3) studies that assess the efficacy and safety of umibecestat and CAD106 in cognitively unimpaired individuals with high risk for developing symptoms of AD based on their age (60-75 years), APOE4 genotype, and, for heterozygotes (APOE ε2/ε4 or ε3/ε4), elevated brain amyloid. Approximately, 3500 individuals will be enrolled in either Generation Study 1 (randomized to cohort 1 [CAD106 injection or placebo, 5:3] or cohort 2 [oral umibecestat 50 mg or placebo, 3:2]) or Generation Study 2 (randomized to oral umibecestat 50 mg and 15 mg, or placebo [2:1:2]). Participants receive treatment for at least 60 months and up to a maximum of 96 months. Primary outcomes include time to event, with event defined as diagnosis of mild cognitive impairment due to AD and/or dementia due to AD, and the Alzheimer's Prevention Initiative preclinical composite cognitive test battery. Secondary endpoints include the Clinical Dementia Rating Sum of Boxes, Repeatable Battery for the Assessment of Neuropsychological Status total score, Everyday Cognition Scale, biomarkers, and brain imaging. Discussion The Generation Program is designed to assess the efficacy, safety, and biomarker effects of the two treatments in individuals at high risk for AD. It may also provide a plausible test of the amyloid hypothesis and further accelerate the evaluation of AD prevention therapies.
Collapse
|
126
|
Goltermann J, Redlich R, Dohm K, Zaremba D, Repple J, Kaehler C, Grotegerd D, Förster K, Meinert S, Enneking V, Schlaghecken E, Fleischer L, Hahn T, Kugel H, Jansen A, Krug A, Brosch K, Nenadic I, Schmitt S, Stein F, Meller T, Yüksel D, Fischer E, Rietschel M, Witt SH, Forstner AJ, Nöthen MM, Kircher T, Thalamuthu A, Baune BT, Dannlowski U, Opel N. Apolipoprotein E Homozygous ε4 Allele Status: A Deteriorating Effect on Visuospatial Working Memory and Global Brain Structure. Front Neurol 2019; 10:552. [PMID: 31191441 PMCID: PMC6545528 DOI: 10.3389/fneur.2019.00552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Theoretical background: The Apolipoprotein E (APOE) ε4 genotype is known to be one of the strongest single-gene predictors for Alzheimer disease, which is characterized by widespread brain structural degeneration progressing along with cognitive impairment. The ε4 allele status has been associated with brain structural alterations and lower cognitive ability in non-demented subjects. However, it remains unclear to what extent the visuospatial cognitive domain is affected, from what age onward changes are detectable and if alterations may interact with cognitive deficits in major depressive disorder (MDD). The current work investigated the effect of APOE ε4 homozygosity on visuospatial working memory (vWM) capacity, and on hippocampal morphometry. Furthermore, potential moderating roles of age and MDD were assessed. Methods: A sample of n = 31 homozygous ε4 carriers was contrasted with n = 31 non-ε4 carriers in a cross-sectional design. The sample consisted of non-demented, young to mid-age participants (mean age = 34.47; SD = 13.48; 51.6% female). Among them were n = 12 homozygous ε4 carriers and n = 12 non-ε4 carriers suffering from MDD (39%). VWM was assessed using the Corsi block-tapping task. Region of interest analyses of hippocampal gray matter density and volume were conducted using voxel-based morphometry (CAT12), and Freesurfer, respectively. Results: Homozygous ε4 carriers showed significantly lower Corsi span capacity than non-ε4 carriers did, and Corsi span capacity was associated with higher gray matter density of the hippocampus. APOE group differences in hippocampal volume could be detected but were no longer present when controlling for total intracranial volume. Hippocampal gray matter density did not differ between APOE groups. We did not find any interaction effects of age and MDD diagnosis on hippocampal morphometry. Conclusion: Our results point toward a negative association of homozygous ε4 allele status with vWM capacity already during mid-adulthood, which emerges independently of MDD diagnosis and age. APOE genotype seems to be associated with global brain structural rather than hippocampus specific alterations in young- to mid-age participants.
Collapse
Affiliation(s)
- Janik Goltermann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Claas Kaehler
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Mathematics and Computer Science, University of Münster, Münster, Germany
| | | | | | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Lara Fleischer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Institute of Clinical Radiology, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg, Germany.,Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Dilara Yüksel
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Elena Fischer
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Andreas J Forstner
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany.,Centre for Human Genetics, University of Marburg, Marburg, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
127
|
Abstract
Decades of research indicate mitochondria from Alzheimer's disease (AD) patients differ from those of non-AD individuals. Initial studies revealed structural differences, and subsequent studies showed functional deficits. Observations of structure and function changes prompted investigators to consider the consequences, significance, and causes of AD-related mitochondrial dysfunction. Currently, extensive research argues mitochondria may mediate, drive, or contribute to a variety of AD pathologies. The perceived significance of these mitochondrial changes continues to grow, and many currently believe AD mitochondrial dysfunction represents a reasonable therapeutic target. Debate continues over the origin of AD mitochondrial changes. Some argue amyloid-β (Aβ) induces AD mitochondrial dysfunction, a view that does not challenge the amyloid cascade hypothesis and that may in fact help explain that hypothesis. Alternatively, data indicate mitochondrial dysfunction exists independent of Aβ, potentially lies upstream of Aβ deposition, and suggest a primary mitochondrial cascade hypothesis that assumes mitochondrial pathology hierarchically supersedes Aβ pathology. Mitochondria, therefore, appear at least to mediate or possibly even initiate pathologic molecular cascades in AD. This review considers studies and data that inform this area of AD research.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center and Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
128
|
Iqbal J, Zhang K, Jin N, Zhao Y, Liu X, Liu Q, Ni J, Shen L. Alzheimer's Disease Is Responsible for Progressive Age-Dependent Differential Expression of Various Protein Cascades in Retina of Mice. ACS Chem Neurosci 2019; 10:2418-2433. [PMID: 30695639 DOI: 10.1021/acschemneuro.8b00710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease associated with cognitive impairments and memory loss usually in aged people. In the past few years, it has been detected in the eye retina, manifesting the systematic spread of the disease. This might be used for biomarker discovery for early detection and treatment of the disease. Here, we have described the proteomic alterations in retina of 2, 4, and 6 months old 3×Tg-AD mice by using iTRAQ (isobaric tags for relative and absolute quantification) proteomics technology. Out of the total identified proteins, 121 (71 up- and 50 down-regulated), 79 (51 up- and 28 down-regulated), and 153 (37 up- and 116 down-regulated) significantly differentially expressed proteins (DEPs) are found in 2, 4, and 6 month's mice retina (2, 4, and 6 M), respectively. Seventeen DEPs are found common in these three groups with consistent expression behavior or opposite expression in the three groups. Bioinformatics analysis of these DEPs highlighted their involvement in vital AD-related biological phenomenon. To further prompt the results, four proteins from 2 M group, three from 4 M, and four from 6 M age groups are successfully validated with Western blot analysis. This study confirms the retinal involvement of AD in the form of proteomic differences and further explains the protein-based molecular mechanisms, which might be a step toward biomarker discovery for early detection and treatment of the disease.
Collapse
Affiliation(s)
- Javed Iqbal
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Kaoyuan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Department of Dermatology, Peking University Shenzhen Hospital, Guangdong 518036, China
| | - Na Jin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuxi Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xukun Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiazuan Ni
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
129
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
130
|
Johnson LA, Torres ER, Weber Boutros S, Patel E, Akinyeke T, Alkayed NJ, Raber J. Apolipoprotein E4 mediates insulin resistance-associated cerebrovascular dysfunction and the post-prandial response. J Cereb Blood Flow Metab 2019; 39:770-781. [PMID: 29215310 PMCID: PMC6498752 DOI: 10.1177/0271678x17746186] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolic dysfunction, commonly a result of diets high in saturated fats and sugar, is associated with impaired cognitive function and an increased risk of age-related cognitive decline (ACD) and Alzheimer's disease (AD). Compared to the E3 isoform of apolipoprotein (apoE), the E4 isoform is a major genetic risk factor for ACD, AD, and for developing cognitive impairments following various environmental challenges, including dietary challenges such as a high-fat diet (HFD). Both insulin resistance (IR) and E4 are associated with metabolic and vascular impairments. Deficits in cerebral metabolism and cerebrovascular function have been proposed as initiating events leading to these impairments. In the current study, we employed a model of human apoE targeted replacement mice and HFD-induced obesity to study the potential link between E4 and IR, at rest and following a postprandial challenge. HFD-induced IR was associated with impaired cognition, reduced cerebral blood volume and decreased glucose uptake. These effects were more profound in E4 than E3 mice. Furthermore, the cognitive, metabolic and cerebrovascular responses to an exogenous glucose load showed an apoE isoform-dependent response, with E4, but not E3 mice, acutely benefiting from a spike in blood glucose.
Collapse
Affiliation(s)
- Lance A Johnson
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,2 Department of Physiology, University of Kentucky, Lexington, KY 40536 USA
| | - Eileen Ruth Torres
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Esha Patel
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tunde Akinyeke
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- 3 Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,4 Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- 1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,5 Department of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
131
|
Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer's disease. Proc Natl Acad Sci U S A 2019; 116:9285-9292. [PMID: 31015296 DOI: 10.1073/pnas.1901600116] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spatial navigation is emerging as a critical factor in identifying preclinical Alzheimer's disease (AD). However, the impact of interindividual navigation ability and demographic risk factors (e.g., APOE, age, and sex) on spatial navigation make it difficult to identify persons "at high risk" of AD in the preclinical stages. In the current study, we use spatial navigation big data (n = 27,108) from the Sea Hero Quest (SHQ) game to overcome these challenges by investigating whether big data can be used to benchmark a highly phenotyped healthy aging laboratory cohort into high- vs. low-risk persons based on their genetic (APOE) and demographic (sex, age, and educational attainment) risk factors. Our results replicate previous findings in APOE ε4 carriers, indicative of grid cell coding errors in the entorhinal cortex, the initial brain region affected by AD pathophysiology. We also show that although baseline navigation ability differs between men and women, sex does not interact with the APOE genotype to influence the manifestation of AD-related spatial disturbance. Most importantly, we demonstrate that such high-risk preclinical cases can be reliably distinguished from low-risk participants using big-data spatial navigation benchmarks. By contrast, participants were undistinguishable on neuropsychological episodic memory tests. Taken together, we present evidence to suggest that, in the future, SHQ normative benchmark data can be used to more accurately classify spatial impairments in at-high-risk of AD healthy participants at a more individual level, therefore providing the steppingstone for individualized diagnostics and outcome measures of cognitive symptoms in preclinical AD.
Collapse
|
132
|
Zhu QB, Bao AM, Swaab D. Activation of the Brain to Postpone Dementia: A Concept Originating from Postmortem Human Brain Studies. Neurosci Bull 2019; 35:253-266. [PMID: 30721394 PMCID: PMC6426905 DOI: 10.1007/s12264-019-00340-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/29/2018] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by decreased neuronal activity and atrophy, while hyperactivity of neurons seems to make them resistant to aging and neurodegeneration, a phenomenon which we have paraphrased as 'use it or lose it'. Our hypothesis proposes that (1) during their functioning, neurons are damaged; (2) accumulation of damage that is not repaired is the basis of aging; (3) the vulnerability to AD is determined by the genetic background and the balance between the amount of damage and the efficiency of repair, and (4) by stimulating the brain, repair mechanisms are stimulated and cognitive reserve is increased, resulting in a decreased rate of aging and risk for AD. Environmental stimulating factors such as bilingualism/multilingualism, education, occupation, musical experience, physical exercise, and leisure activities have been reported to reduce the risk of dementia and decrease the rate of cognitive decline, although methodological problems are present.
Collapse
Affiliation(s)
- Qiong-Bin Zhu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ai-Min Bao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dick Swaab
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
133
|
Paranjpe MD, Chen X, Liu M, Paranjpe I, Leal JP, Wang R, Pomper MG, Wong DF, Benzinger TLS, Zhou Y. The effect of ApoE ε4 on longitudinal brain region-specific glucose metabolism in patients with mild cognitive impairment: a FDG-PET study. Neuroimage Clin 2019; 22:101795. [PMID: 30991617 PMCID: PMC6449776 DOI: 10.1016/j.nicl.2019.101795] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 11/02/2022]
Abstract
While the ApoE ε4 allele is a known risk factor for mild cognitive impairment (MCI) and Alzheimer's disease, brain region specific effects remain elusive. In this study, we investigate whether the ApoE ε4 allele exhibits brain region specific effects in longitudinal glucose uptake among patients with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed FDG PET images, MRIs, and demographic information were downloaded from the ADNI database. An iterative reblurred Van Cittertiteration method was used for partial volume correction (PVC) on all PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. Longitudinal changes in ROI FDG standardized uptake value ratio (SUVR) relative to cerebellum in 24 ApoE ε4 carriers and 24 age-matched ApoE ε4 non-carriers were measured for up to 84-months (median 72 months, SD = 11.2 months) and compared using a generalized linear mixed effects model controlling for gender, education, baseline age, and follow-up period. Additionally, voxelwise analysis was performed by implementing a paired t-test comparing matched baseline and 72 month FDG SUVR images in ApoE carriers and non-carriers separately. Results with PVC were compared with ones from non-PVC based analysis. After applying PVC, the superior fontal, parietal, lateral temporal, medial temporal, caudate, thalamus, and post-cingulate, and amygdala regions had greater longitudinal decreases in FDG uptake in ApoE ε4 carriers with MCI compared to non-carriers with MCI. Similar forebrain and limbic clusters were found through voxelwise analysis. Compared to the PVC based analysis, fewer significant ApoE-associated regions and clusters were found in the non-PVC based PET analysis. Our findings suggest that the ApoE ε4 genotype is associated with a longitudinal decline in glucose uptake in 8 forebrain and limbic brain regions in the context of MCI. In conclusion, this 84-months longitudinal FDG PET study demonstrates a novel ApoE ε4-associated brain-region specific glucose metabolism pattern in patients with MCI. Partial volume correction improved FDG PET quantification.
Collapse
Affiliation(s)
- Manish D Paranjpe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Min Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ishan Paranjpe
- Icahn School of Medicine at Mount Sinai, NY, New York, United States
| | - Jeffrey P Leal
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Dean F Wong
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Nuclear Medicine, Peking University First Hospital, Beijing, China; Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
134
|
The Contribution of Genetic Factors to Cognitive Impairment and Dementia: Apolipoprotein E Gene, Gene Interactions, and Polygenic Risk. Int J Mol Sci 2019; 20:ijms20051177. [PMID: 30866553 PMCID: PMC6429136 DOI: 10.3390/ijms20051177] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Although it has been studied for years, the pathogenesis of AD is still controversial. Genetic factors may play an important role in pathogenesis, with the apolipoprotein E (APOE) gene among the greatest risk factors for AD. In this review, we focus on the influence of genetic factors, including the APOE gene, the interaction between APOE and other genes, and the polygenic risk factors for cognitive function and dementia. The presence of the APOE ε4 allele is associated with increased AD risk and reduced age of AD onset. Accelerated cognitive decline and abnormal internal environment, structure, and function of the brain were also found in ε4 carriers. The effect of the APOE promoter on cognition and the brain was confirmed by some studies, but further investigation is still needed. We also describe the effects of the associations between APOE and other genetic risk factors on cognition and the brain that exhibit a complex gene⁻gene interaction, and we consider the importance of using a polygenic risk score to investigate the association between genetic variance and phenotype.
Collapse
|
135
|
Dong Q, Zhang W, Wu J, Li B, Schron EH, McMahon T, Shi J, Gutman BA, Chen K, Baxter LC, Thompson PM, Reiman EM, Caselli RJ, Wang Y. Applying surface-based hippocampal morphometry to study APOE-E4 allele dose effects in cognitively unimpaired subjects. NEUROIMAGE-CLINICAL 2019; 22:101744. [PMID: 30852398 PMCID: PMC6411498 DOI: 10.1016/j.nicl.2019.101744] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/02/2019] [Accepted: 03/02/2019] [Indexed: 11/30/2022]
Abstract
Apolipoprotein E (APOE) e4 is the major genetic risk factor for late-onset Alzheimer's disease (AD). The dose-dependent impact of this allele on hippocampal volumes has been documented, but its influence on general hippocampal morphology in cognitively unimpaired individuals is still elusive. Capitalizing on the study of a large number of cognitively unimpaired late middle aged and older adults with two, one and no APOE-e4 alleles, the current study aims to characterize the ability of our automated surface-based hippocampal morphometry algorithm to distinguish between these three levels of genetic risk for AD and demonstrate its superiority to a commonly used hippocampal volume measurement. We examined the APOE-e4 dose effect on cross-sectional hippocampal morphology analysis in a magnetic resonance imaging (MRI) database of 117 cognitively unimpaired subjects aged between 50 and 85 years (mean = 57.4, SD = 6.3), including 36 heterozygotes (e3/e4), 37 homozygotes (e4/e4) and 44 non-carriers (e3/e3). The proposed automated framework includes hippocampal surface segmentation and reconstruction, higher-order hippocampal surface correspondence computation, and hippocampal surface deformation analysis with multivariate statistics. In our experiments, the surface-based method identified APOE-e4 dose effects on the left hippocampal morphology. Compared to the widely-used hippocampal volume measure, our hippocampal morphometry statistics showed greater statistical power by distinguishing cognitively unimpaired subjects with two, one, and no APOE-e4 alleles. Our findings mirrored previous studies showing that APOE-e4 has a dose effect on the acceleration of brain structure deformities. The results indicated that the proposed surface-based hippocampal morphometry measure is a potential preclinical AD imaging biomarker for cognitively unimpaired individuals. Applied surface-based hippocampal morphometry on cognitively unimpaired subjects. Our study identified APOE-e4 dose effects on cognitively unimpaired subjects. Surface-based hippocampal morphometry outperformed the hippocampal volume measure. Surface-based hippocampal morphometry may be a potential preclinical AD biomarker.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Bolun Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Travis McMahon
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Leslie C Baxter
- Human Brain Imaging Laboratory, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
136
|
Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer's and Parkinson's Diseases. CNS Drugs 2019; 33:209-223. [PMID: 30511349 DOI: 10.1007/s40263-018-0593-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current absence of effective treatments for Alzheimer's disease (AD) and Parkinson's disease (PD) reflects an incomplete knowledge of the underlying disease processes. Considerable efforts have been made to investigate the central pathological features of these diseases, giving rise to numerous attempts to develop compounds that interfere with such features. However, further characterization of the molecular targets within the interconnected AD and PD pathways is still required. Impaired brain insulin signaling has emerged as a feature that contributes to neuronal dysfunction in both AD and PD, leading to strategies aiming at restoring this pathway in the brain. Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for treatment of type 2 diabetes mellitus have been tested and have shown encouraging protective actions in experimental models of AD and PD as well as in initial clinical trials. We review studies revealing the neuroprotective actions of GLP-1 analogues in pre-clinical models of AD and PD and promising results from recent clinical trials.
Collapse
|
137
|
Zhao L, Cheng X, Zhong C. Implications of Successful Symptomatic Treatment in Parkinson's Disease for Therapeutic Strategies of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:922-930. [PMID: 30474958 DOI: 10.1021/acschemneuro.8b00450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) has been a devastating neurodegenerative disorder and lacks effective treatment to improve the prognosis for patients. Symptomatic treatment for AD mainly includes two categories: Acetylcholinesterase inhibitors and the N-methyl-d-aspartate (NMDA) receptor antagonist (memantine). They cannot significantly improve the quality of life and extend survival time for AD patients. Worse, almost all clinical trials for disease-modifying drugs have failed, and the reduction of brain β-amyloid (Aβ) deposition by multiple approaches, including inhibitors of β- or γ-secretase, vaccines, and antibodies against Aβ deposition, was found to have little effect on AD progression. A new therapeutic strategy for AD is urgently needed. Parkinson's disease also is a neurodegenerative disease having no effective treatment for modifying the disease. Nevertheless, successful symptomatic treatment using the combined therapies of l-DOPA supplement and modulators of l-DOPA metabolism greatly improves the prognosis for PD patients; the average survival time of the patient has been extended from 3-4 years to 10-15 years although dopaminergic neurons are still progressively decreasing. This provides useful implications for AD therapeutic strategies. AD patients manifest global cognitive decline, prominently represented by memory deficit, especially in the early stages of the disease. Further, the degree of decreased cognitive abilities correlates with cholinergic dysfunction and the hypometabolism of glucose, the dominant energy fuel for brain. Thus, the amelioration of brain cholinergic function and brain energy metabolism may be effective treatment to improve cognitive abilities of AD patients. Here, we highlighted the explorations of symptomatic therapeutics through modulating brain cholinergic function and energy metabolism in AD.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200111, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, The State Key Laboratory of Medical Neurobiology, The Institute of Brain Science, Fudan University, Shanghai 200032, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, The State Key Laboratory of Medical Neurobiology, The Institute of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
138
|
Burns CM, Kaszniak AW, Chen K, Lee W, Bandy DJ, Caselli RJ, Reiman EM. Longitudinal Changes in Serum Glucose Levels are Associated with Metabolic Changes in Alzheimer's Disease Related Brain Regions. J Alzheimers Dis 2019; 62:833-840. [PMID: 29480176 DOI: 10.3233/jad-170767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The association between longitudinal changes in serum glucose level and longitudinal changes in [18F] Fluorodeoxyglucose-PET (FDG PET) measurements of Alzheimer's disease (AD) risk are unknown. OBJECTIVE To investigate whether variation in serum glucose levels across time are associated with changes in FDG PET measurements of cerebral metabolic rate for glucose (rCMRgl) in brain regions preferentially affected by Alzheimer's disease (AD). METHODS Participants are a subset of a prospective cohort study investigating FDG PET, apolipoprotein E (APOE) ɛ4, and risk for AD which includes data from baseline, interim, and follow up visits over 4.4±1.0-years. An automated brain-mapping algorithm was utilized to characterize and compare associations between longitudinal changes in serum glucose levels and longitudinal changes in rCMRgl. RESULTS This study included 80 adults aged 61.5±5 years, including 38 carriers and 42 non-carriers of the APOE ɛ4 allele. Longitudinal increases in serum glucose levels were associated with longitudinal CMRgl decline in the vicinity of parietotemporal, precuneus/posterior cingulate, and prefrontal brain regions preferentially affected by AD (p < 0.05, corrected for multiple comparisons). Findings remained significant when controlled for APOE ɛ4 status and baseline and advancing age. CONCLUSIONS Additional studies are needed to clarify and confirm the relationship between longitudinal changes in peripheral glucose and FDG PET measurements of AD risk. Future findings will set the stage on the use of FDG PET in the evaluation of possible interventions that target risk factors for the development of AD.
Collapse
Affiliation(s)
- Christine M Burns
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA.,Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Alfred W Kaszniak
- Department of Psychology, University of Arizona, Tucson, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Kewei Chen
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Wendy Lee
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Daniel J Bandy
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Richard J Caselli
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Mayo Clinic Scottsdale, Scottsdale, AZ, USA
| | - Eric M Reiman
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
139
|
Chornenkyy Y, Wang W, Wei A, Nelson PT. Alzheimer's disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 2019; 29:3-17. [PMID: 30106209 PMCID: PMC6427919 DOI: 10.1111/bpa.12655] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are highly prevalent aging-related diseases associated with significant morbidity and mortality. Some findings in human and animal models have linked T2DM to AD-type dementia. Despite epidemiological associations between the T2DM and cognitive impairment, the interrelational mechanisms are unclear. The preponderance of evidence in longitudinal studies with autopsy confirmation have indicated that vascular mechanisms, rather than classic AD-type pathologies, underlie the cognitive decline often seen in self-reported T2DM. T2DM is associated with cardiovascular and cerebrovascular disease (CVD), and is associated with increased risk of infarcts and small vessel disease in the brain and other organs. Neuropathological examinations of post-mortem brains demonstrated evidence of cerebrovascular disease and little to no correlation between T2DM and β-amyloid deposits or neurofibrillary tangles. Nevertheless, the mechanisms upstream of early AD-specific pathology remain obscure. In this regard, there may indeed be overlap between the pathologic mechanisms of T2DM/"metabolic syndrome," and AD. More specifically, cerebral insulin processing, glucose metabolism, mitochondrial function, and/or lipid metabolism could be altered in patients in early AD and directly influence symptomatology and/or neuropathology.
Collapse
Affiliation(s)
| | - Wang‐Xia Wang
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| | - Angela Wei
- Department of BiologyUniversity of KentuckyLexingtonKY
| | - Peter T. Nelson
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
140
|
Touroutoglou A, Dickerson BC. Cingulate-centered large-scale networks: Normal functions, aging, and neurodegenerative disease. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:113-127. [PMID: 31731908 DOI: 10.1016/b978-0-444-64196-0.00008-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we review evidence from structural and functional neuroimaging in humans to consider the role of the cingulate cortex subregions (i.e., subgenual anterior cingulate cortex, pregenual anterior cingulate cortex, anterior midcingulate cortex, and dorsal posterior cingulate cortex) as major hubs anchoring multiple large-scale brain networks. We begin with a review of evidence from intrinsic functional connectivity and diffusion tensor imaging studies to show how connections within and between cingulate-centered networks contribute to processing and integrating signals related to autonomic, affective, executive, and memory functions. We then consider how variability in cingulate-centered networks could contribute to a range of aging outcomes, including typical aging and unusually successful aging (dubbed "superaging"), as well as early neurodegenerative dementias, including frontotemporal dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.
| |
Collapse
|
141
|
Orr AL, Kim C, Jimenez-Morales D, Newton BW, Johnson JR, Krogan NJ, Swaney DL, Mahley RW. Neuronal Apolipoprotein E4 Expression Results in Proteome-Wide Alterations and Compromises Bioenergetic Capacity by Disrupting Mitochondrial Function. J Alzheimers Dis 2019; 68:991-1011. [PMID: 30883359 PMCID: PMC6481541 DOI: 10.3233/jad-181184] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Apolipoprotein (apo) E4, the major genetic risk factor for Alzheimer's disease (AD), alters mitochondrial function and metabolism early in AD pathogenesis. When injured or stressed, neurons increase apoE synthesis. Because of its structural difference from apoE3, apoE4 undergoes neuron-specific proteolysis, generating fragments that enter the cytosol, interact with mitochondria, and cause neurotoxicity. However, apoE4's effect on mitochondrial respiration and metabolism is not understood in detail. Here we used biochemical assays and proteomic profiling to more completely characterize the effects of apoE4 on mitochondrial function and cellular metabolism in Neuro-2a neuronal cells stably expressing apoE4 or apoE3. Under basal conditions, apoE4 impaired respiration and increased glycolysis, but when challenged or stressed, apoE4-expressing neurons had 50% less reserve capacity to generate ATP to meet energy requirements than apoE3-expressing neurons. ApoE4 expression also decreased the NAD+/NADH ratio and increased the levels of reactive oxygen species and mitochondrial calcium. Global proteomic profiling revealed widespread changes in mitochondrial processes in apoE4 cells, including reduced levels of numerous respiratory complex subunits and major disruptions to all detected subunits in complex V (ATP synthase). Also altered in apoE4 cells were levels of proteins related to mitochondrial endoplasmic reticulum-associated membranes, mitochondrial fusion/fission, mitochondrial protein translocation, proteases, and mitochondrial ribosomal proteins. ApoE4-induced bioenergetic deficits led to extensive metabolic rewiring, but despite numerous cellular adaptations, apoE4-expressing neurons remained vulnerable to metabolic stress. Our results provide insights into potential molecular targets of therapies to correct apoE4-associated mitochondrial dysfunction and altered cellular metabolism.
Collapse
Affiliation(s)
- Adam L. Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Present address: Helen & Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chaeyoung Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Present address: Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA, USA
| | - Billy W. Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Robert W. Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pathology and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
142
|
Arendash G, Cao C, Abulaban H, Baranowski R, Wisniewski G, Becerra L, Andel R, Lin X, Zhang X, Wittwer D, Moulton J, Arrington J, Smith A. A Clinical Trial of Transcranial Electromagnetic Treatment in Alzheimer's Disease: Cognitive Enhancement and Associated Changes in Cerebrospinal Fluid, Blood, and Brain Imaging. J Alzheimers Dis 2019; 71:57-82. [PMID: 31403948 PMCID: PMC6839500 DOI: 10.3233/jad-190367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small aggregates (oligomers) of the toxic proteins amyloid-β (Aβ) and phospho-tau (p-tau) are essential contributors to Alzheimer's disease (AD). In mouse models for AD or human AD brain extracts, Transcranial Electromagnetic Treatment (TEMT) disaggregates both Aβ and p-tau oligomers, and induces brain mitochondrial enhancement. These apparent "disease-modifying" actions of TEMT both prevent and reverse memory impairment in AD transgenic mice. OBJECTIVE To evaluate the safety and initial clinical efficacy of TEMT against AD, a comprehensive open-label clinical trial was performed. METHODS Eight mild/moderate AD patients were treated with TEMT in-home by their caregivers for 2 months utilizing a unique head device. TEMT was given for two 1-hour periods each day, with subjects primarily evaluated at baseline, end-of-treatment, and 2 weeks following treatment completion. RESULTS No deleterious behavioral effects, discomfort, or physiologic changes resulted from 2 months of TEMT, as well as no evidence of tumor or microhemorrhage induction. TEMT induced clinically important and statistically significant improvements in ADAS-cog, as well as in the Rey AVLT. TEMT also produced increases in cerebrospinal fluid (CSF) levels of soluble Aβ1-40 and Aβ1-42, cognition-related changes in CSF oligomeric Aβ, a decreased CSF p-tau/Aβ1-42 ratio, and reduced levels of oligomeric Aβ in plasma. Pre- versus post-treatment FDG-PET brain scans revealed stable cerebral glucose utilization, with several subjects exhibiting enhanced glucose utilization. Evaluation of diffusion tensor imaging (fractional anisotropy) scans in individual subjects provided support for TEMT-induced increases in functional connectivity within the cognitively-important cingulate cortex/cingulum. CONCLUSION TEMT administration to AD subjects appears to be safe, while providing cognitive enhancement, changes to CSF/blood AD markers, and evidence of stable/enhanced brain connectivity.
Collapse
Affiliation(s)
| | - Chuanhai Cao
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Haitham Abulaban
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| | | | | | | | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Department of Neurology, 2nd Faculty of Medicine, Charles University/Motol University Hospital, Prague, Czech Republic
| | - Xiaoyang Lin
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xiaolin Zhang
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | | | | | - Amanda Smith
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
143
|
Abstract
Alzheimer's disease (AD) dementia refers to a particular onset and course of cognitive and functional decline associated with age together with a particular neuropathology. It was first described by Alois Alzheimer in 1906 about a patient whom he first encountered in 1901. Modern clinical diagnostic criteria have been developed, and criteria have also been proposed to recognize preclinical (or presymptomatic) stages of the disease with the use of biomarkers. The primary neuropathology was described by Alzheimer, and in the mid-1980s subsequently evolved into a more specific neuropathologic definition that recognizes the comorbid neuropathologies that frequently contribute to clinical dementia. Alzheimer's disease is now the most common form of neurodegenerative dementia in the United States with a disproportionate disease burden in minority populations. Deficits in the ability to encode and store new memories characterizes the initial stages of the disease. Subsequent progressive changes in cognition and behavior accompany the later stages. Changes in amyloid precursor protein (APP) cleavage and production of the APP fragment beta-amyloid (Aβ) along with hyperphosphorylated tau protein aggregation coalesce to cause reduction in synaptic strength, synaptic loss, and neurodegeneration. Metabolic, vascular, and inflammatory changes, as well as comorbid pathologies are key components of the disease process. Symptomatic treatment offers a modest, clinically measurable effect in cognition, but disease-modifying therapies are desperately needed.
Collapse
Affiliation(s)
- Jose A Soria Lopez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Hector M González
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Gabriel C Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
144
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
145
|
Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial Metabolism in Major Neurological Diseases. Cells 2018; 7:E229. [PMID: 30477120 PMCID: PMC6316877 DOI: 10.3390/cells7120229] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell's ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation⁻functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Grant L Austin
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lyndsay E A Young
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | - Ramon Sun
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
146
|
Kageyama Y, Saito A, Pletnikova O, Rudow GL, Irie Y, An Y, Murakami K, Irie K, Resnick SM, Fowler DR, Martin LJ, Troncoso JC. Amyloid β toxic conformer has dynamic localization in the human inferior parietal cortex in absence of amyloid plaques. Sci Rep 2018; 8:16895. [PMID: 30442978 PMCID: PMC6237870 DOI: 10.1038/s41598-018-35004-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023] Open
Abstract
Amyloid β (Aβ) plays a critical role in the pathogenesis of Alzheimer's disease. Nevertheless, its distribution and clearance before Aβ plaque formation needs to be elucidated. Using an optimized immunofluorescent staining method, we examined the distribution of Aβ in the post-mortem parietal cortex of 35 subjects, 30 to 65 years of age, APOE ε3/ε3, without AD lesions. We used 11A1, an antibody against an Aβ conformer which forms neurotoxic oligomers. 11A1 immunoreactivity (IR) was present in cortical neurons, pericapillary spaces, astrocytes and the extracellular compartment at 30 years of age. The percentage of neurons with 11A1 IR did not change with age, but the number and percentage of astrocytes with 11A1 IR gradually increased. Notably, the percentage of pericapillary spaces labeled with 11A1 IR declined significantly in the 5th decade of the life, at the same time that 11A1 IR increased in the extracellular space. Our findings indicate that the Aβ toxic conformer is normally present in various cell types and brain parenchyma, and appears to be constitutively produced, degraded, and cleared from the inferior parietal cortex. The decrease in pericapillary Aβ and the concomitant increase of extracellular Aβ may reflect an age-associated impairment in Aβ clearance from the brain.
Collapse
Affiliation(s)
- Yusuke Kageyama
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Atsushi Saito
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gay L Rudow
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yumi Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yang An
- Laboratory of Behavioral Neuroscience, NIH/NIA/IRP, Baltimore, MD, USA
| | - Kazuma Murakami
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuhiro Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, NIH/NIA/IRP, Baltimore, MD, USA
| | - David R Fowler
- Office of the Chief Medical Examiner, Baltimore, MD, USA
| | - Lee J Martin
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
147
|
Albrecht F, Ballarini T, Neumann J, Schroeter ML. FDG-PET hypometabolism is more sensitive than MRI atrophy in Parkinson's disease: A whole-brain multimodal imaging meta-analysis. Neuroimage Clin 2018; 21:101594. [PMID: 30514656 PMCID: PMC6413303 DOI: 10.1016/j.nicl.2018.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 11/25/2022]
Abstract
Recently, revised diagnostic criteria for Parkinson's disease (PD) were introduced (Postuma et al., 2015). Yet, except for well-established dopaminergic imaging, validated imaging biomarkers for PD are still missing, though they could improve diagnostic accuracy. We conducted systematic meta-analyses to identify PD-specific markers in whole-brain structural magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) and diffusion tensor imaging (DTI) studies. Overall, 74 studies were identified including 2323 patients and 1767 healthy controls. Studies were first grouped according to imaging modalities (MRI 50; PET 14; DTI 10) and then into subcohorts based on clinical phenotypes. To ensure reliable results, we combined established meta-analytical algorithms - anatomical likelihood estimation and seed-based D mapping - and cross-validated them in a conjunction analysis. Glucose hypometabolism was found using FDG-PET extensively in bilateral inferior parietal cortex and left caudate nucleus with both meta-analytic methods. This hypometabolism pattern was confirmed in subcohort analyses and related to cognitive deficits (inferior parietal cortex) and motor symptoms (caudate nucleus). Structural MRI showed only small focal gray matter atrophy in the middle occipital gyrus that was not confirmed in subcohort analyses. DTI revealed fractional anisotropy reductions in the cingulate bundle near the orbital and anterior cingulate gyri in PD. Our results suggest that FDG-PET reliably identifies consistent functional brain abnormalities in PD, whereas structural MRI and DTI show only focal alterations and rather inconsistent results. In conclusion, FDG-PET hypometabolism outperforms structural MRI in PD, although both imaging methods do not offer disease-specific imaging biomarkers for PD.
Collapse
Affiliation(s)
- Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Jane Neumann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany; Department of Medical Engineering and Biotechnology, University of Applied Science, Jena, Germany.
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig & FTLD Consortium Germany, Leipzig, Germany.
| |
Collapse
|
148
|
Wang M, Hao X, Huang J, Shao W, Zhang D. Discovering network phenotype between genetic risk factors and disease status via diagnosis-aligned multi-modality regression method in Alzheimer's disease. Bioinformatics 2018; 35:1948-1957. [PMID: 30395195 PMCID: PMC7963079 DOI: 10.1093/bioinformatics/bty911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Neuroimaging genetics is an emerging field to identify the associations between genetic variants [e.g. single-nucleotide polymorphisms (SNPs)] and quantitative traits (QTs) such as brain imaging phenotypes. However, most of the current studies focus only on the associations between brain structure imaging and genetic variants, while neglecting the connectivity information between brain regions. In addition, the brain itself is a complex network, and the higher-order interaction may contain useful information for the mechanistic understanding of diseases [i.e. Alzheimer's disease (AD)]. RESULTS A general framework is proposed to exploit network voxel information and network connectivity information as intermediate traits that bridge genetic risk factors and disease status. Specifically, we first use the sparse representation (SR) model to build hyper-network to express the connectivity features of the brain. The network voxel node features and network connectivity edge features are extracted from the structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (fMRI), respectively. Second, a diagnosis-aligned multi-modality regression method is adopted to fully explore the relationships among modalities of different subjects, which can help further mine the relation between the risk genetics and brain network features. In experiments, all methods are tested on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results not only verify the effectiveness of our proposed framework but also discover some brain regions and connectivity features that are highly related to diseases. AVAILABILITY AND IMPLEMENTATION The Matlab code is available at http://ibrain.nuaa.edu.cn/2018/list.htm.
Collapse
Affiliation(s)
| | | | - Jiashuang Huang
- Department of Computer Science and Technology, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Wei Shao
- Department of Computer Science and Technology, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | | |
Collapse
|
149
|
Bussy A, Snider BJ, Coble D, Xiong C, Fagan AM, Cruchaga C, Benzinger TLS, Gordon BA, Hassenstab J, Bateman RJ, Morris JC. Effect of apolipoprotein E4 on clinical, neuroimaging, and biomarker measures in noncarrier participants in the Dominantly Inherited Alzheimer Network. Neurobiol Aging 2018; 75:42-50. [PMID: 30530186 DOI: 10.1016/j.neurobiolaging.2018.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
The apolipoprotein E ε4 allele (APOE4) is the major genetic risk factor for sporadic Alzheimer's disease (AD). APOE4 may have effects on cognition and brain atrophy years before the onset of symptomatic AD. We analyzed the effects of APOE4 in a unique cohort of young adults who had undergone comprehensive assessments as part of the Dominantly Inherited Alzheimer Network (DIAN), an international longitudinal study of individuals from families with autosomal dominant AD. We analyzed the effect of an APOE4 allele on cognitive measures, volumetric MRI, amyloid deposition, glucose metabolism, and on cerebrospinal fluid levels of AD biomarkers in 162 participants that did not carry the mutant gene (noncarriers). APOE4+ and APOE4- mutation noncarriers had similar performance on cognitive measures. Amyloid deposition began at an earlier age in APOE4+ participants, whereas hippocampal volume was similar between the groups. These preliminary findings are consistent with growing evidence that the APOE4 allele may exert effects in midlife years before symptom onset, promoting amyloid deposition before altering cognitive performance or brain structure.
Collapse
Affiliation(s)
- Aurélie Bussy
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - B Joy Snider
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Neurology, Washington University School of Medicine, Saint Louis, MO.
| | - Dean Coble
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO
| | - Anne M Fagan
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Carlos Cruchaga
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO
| | - Tammie L S Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Radiology, Washington University School of Medicine, Saint Louis, MO
| | - Brian A Gordon
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Radiology, Washington University School of Medicine, Saint Louis, MO
| | - Jason Hassenstab
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Randall J Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO; Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
150
|
Aghamohammadi-Sereshki A, Hrybouski S, Travis S, Huang Y, Olsen F, Carter R, Camicioli R, Malykhin NV. Amygdala subnuclei and healthy cognitive aging. Hum Brain Mapp 2018; 40:34-52. [PMID: 30291764 DOI: 10.1002/hbm.24353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Amygdala is a group of nuclei involved in the neural circuits of fear, reward learning, and stress. The main goal of this magnetic resonance imaging (MRI) study was to investigate the relationship between age and the amygdala subnuclei volumes in a large cohort of healthy individuals. Our second goal was to determine effects of the apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) polymorphisms on the amygdala structure. One hundred and twenty-six healthy participants (18-85 years old) were recruited for this study. MRI datasets were acquired on a 4.7 T system. Amygdala was manually segmented into five major subdivisions (lateral, basal, accessory basal nuclei, and cortical, and centromedial groups). The BDNF (methionine and homozygous valine) and APOE genotypes (ε2, homozygous ε3, and ε4) were obtained using single nucleotide polymorphisms. We found significant nonlinear negative associations between age and the total amygdala and its lateral, basal, and accessory basal nuclei volumes, while the cortical amygdala showed a trend. These age-related associations were found only in males but not in females. Centromedial amygdala did not show any relationship with age. We did not observe any statistically significant effects of APOE and BDNF polymorphisms on the amygdala subnuclei volumes. In contrast to APOE ε2 allele carriers, both older APOE ε4 and ε3 allele carriers had smaller lateral, basal, accessory basal nuclei volumes compared to their younger counterparts. This study indicates that amygdala subnuclei might be nonuniformly affected by aging and that age-related association might be gender specific.
Collapse
Affiliation(s)
| | - Stanislau Hrybouski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Scott Travis
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Rawle Carter
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|