101
|
Abstract
A sequence-to-expression machine learning model achieves higher accuracy by incorporating information about potential long-range interactions.
Collapse
|
102
|
Umarov R, Li Y, Arakawa T, Takizawa S, Gao X, Arner E. ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation. PLoS Comput Biol 2021; 17:e1009376. [PMID: 34491989 PMCID: PMC8448322 DOI: 10.1371/journal.pcbi.1009376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/17/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Regulatory elements control gene expression through transcription initiation (promoters) and by enhancing transcription at distant regions (enhancers). Accurate identification of regulatory elements is fundamental for annotating genomes and understanding gene expression patterns. While there are many attempts to develop computational promoter and enhancer identification methods, reliable tools to analyze long genomic sequences are still lacking. Prediction methods often perform poorly on the genome-wide scale because the number of negatives is much higher than that in the training sets. To address this issue, we propose a dynamic negative set updating scheme with a two-model approach, using one model for scanning the genome and the other one for testing candidate positions. The developed method achieves good genome-level performance and maintains robust performance when applied to other vertebrate species, without re-training. Moreover, the unannotated predicted regulatory regions made on the human genome are enriched for disease-associated variants, suggesting them to be potentially true regulatory elements rather than false positives. We validated high scoring "false positive" predictions using reporter assay and all tested candidates were successfully validated, demonstrating the ability of our method to discover novel human regulatory regions.
Collapse
Affiliation(s)
- Ramzan Umarov
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail: (RU); (XG); (EA)
| | - Yu Li
- Department of Computer Science and Engineering (CSE), The Chinese University of Hong Kong (CUHK), Hong Kong, People’s Republic of China
| | - Takahiro Arakawa
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Satoshi Takizawa
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Xin Gao
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, Thuwal, Saudi Arabia
- * E-mail: (RU); (XG); (EA)
| | - Erik Arner
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- * E-mail: (RU); (XG); (EA)
| |
Collapse
|
103
|
González-Ramírez M, Ballaré C, Mugianesi F, Beringer M, Santanach A, Blanco E, Di Croce L. Differential contribution to gene expression prediction of histone modifications at enhancers or promoters. PLoS Comput Biol 2021; 17:e1009368. [PMID: 34473698 PMCID: PMC8443064 DOI: 10.1371/journal.pcbi.1009368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 08/21/2021] [Indexed: 12/31/2022] Open
Abstract
The ChIP-seq signal of histone modifications at promoters is a good predictor of gene expression in different cellular contexts, but whether this is also true at enhancers is not clear. To address this issue, we develop quantitative models to characterize the relationship of gene expression with histone modifications at enhancers or promoters. We use embryonic stem cells (ESCs), which contain a full spectrum of active and repressed (poised) enhancers, to train predictive models. As many poised enhancers in ESCs switch towards an active state during differentiation, predictive models can also be trained on poised enhancers throughout differentiation and in development. Remarkably, we determine that histone modifications at enhancers, as well as promoters, are predictive of gene expression in ESCs and throughout differentiation and development. Importantly, we demonstrate that their contribution to the predictive models varies depending on their location in enhancers or promoters. Moreover, we use a local regression (LOESS) to normalize sequencing data from different sources, which allows us to apply predictive models trained in a specific cellular context to a different one. We conclude that the relationship between gene expression and histone modifications at enhancers is universal and different from promoters. Our study provides new insight into how histone modifications relate to gene expression based on their location in enhancers or promoters. Gene expression can be properly predicted by the ChIP-seq signal of histone modifications at promoters, but whether this is also true at enhancers is unclear. In this study we develop predictive models of gene expression that demonstrate the predictive power of histone modifications at enhancers in the context of mouse embryonic stem cells, during differentiation, and in animal development. Moreover, by assessing the contribution of each histone modification, we found that enhancer predictive models and promoter predictive models have different histone modification requirement. Therefore, different histone modifications relate better to enhancer or promoter function(s). Finally, by applying predictive models trained in a specific cellular context to a different one, we concluded that the relationship between gene expression and histone modifications at enhancers is universal.
Collapse
Affiliation(s)
- Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesca Mugianesi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Malte Beringer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandra Santanach
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Barcelona, Spain
- * E-mail:
| |
Collapse
|
104
|
Faux T, Rytkönen KT, Mahmoudian M, Paulin N, Junttila S, Laiho A, Elo LL. Differential ATAC-seq and ChIP-seq peak detection using ROTS. NAR Genom Bioinform 2021; 3:lqab059. [PMID: 34235431 PMCID: PMC8253552 DOI: 10.1093/nargab/lqab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Changes in cellular chromatin states fine-tune transcriptional output and ultimately lead to phenotypic changes. Here we propose a novel application of our reproducibility-optimized test statistics (ROTS) to detect differential chromatin states (ATAC-seq) or differential chromatin modification states (ChIP-seq) between conditions. We compare the performance of ROTS to existing and widely used methods for ATAC-seq and ChIP-seq data using both synthetic and real datasets. Our results show that ROTS outperformed other commonly used methods when analyzing ATAC-seq data. ROTS also displayed the most accurate detection of small differences when modeling with synthetic data. We observed that two-step methods that require the use of a separate peak caller often more accurately called enrichment borders, whereas one-step methods without a separate peak calling step were more versatile in calling sub-peaks. The top ranked differential regions detected by the methods had marked correlation with transcriptional differences of the closest genes. Overall, our study provides evidence that ROTS is a useful addition to the available differential peak detection methods to study chromatin and performs especially well when applied to study differential chromatin states in ATAC-seq data.
Collapse
Affiliation(s)
- Thomas Faux
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Finland
| | - Mehrad Mahmoudian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland
| | - Niklas Paulin
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Finland
| |
Collapse
|
105
|
López V, Tejedor JR, Carella A, García MG, Santamarina-Ojeda P, Pérez RF, Mangas C, Urdinguio RG, Aranburu A, de la Nava D, Corte-Torres MD, Astudillo A, Mollejo M, Meléndez B, Fernández AF, Fraga MF. Epigenetic Deregulation of the Histone Methyltransferase KMT5B Contributes to Malignant Transformation in Glioblastoma. Front Cell Dev Biol 2021; 9:671838. [PMID: 34447744 PMCID: PMC8383299 DOI: 10.3389/fcell.2021.671838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in adulthood. Epigenetic mechanisms are known to play a key role in GBM although the involvement of histone methyltransferase KMT5B and its mark H4K20me2 has remained largely unexplored. The present study shows that DNA hypermethylation and loss of DNA hydroxymethylation is associated with KMT5B downregulation and genome-wide reduction of H4K20me2 levels in a set of human GBM samples and cell lines as compared with non-tumoral specimens. Ectopic overexpression of KMT5B induced tumor suppressor-like features in vitro and in a mouse tumor xenograft model, as well as changes in the expression of several glioblastoma-related genes. H4K20me2 enrichment was found immediately upstream of the promoter regions of a subset of deregulated genes, thus suggesting a possible role for KMT5B in GBM through the epigenetic modulation of key target cancer genes.
Collapse
Affiliation(s)
- Virginia López
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Antonella Carella
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - María G García
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Cristina Mangas
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Aitziber Aranburu
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Daniel de la Nava
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - María D Corte-Torres
- Biobanco del Principado de Asturias, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Departamento de Anatomía Patológica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Manuela Mollejo
- Departamento de Patología, Hospital Virgen de la Salud (CHT), Toledo, Spain
| | - Bárbara Meléndez
- Departamento de Patología, Hospital Virgen de la Salud (CHT), Toledo, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| |
Collapse
|
106
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
107
|
Polit L, Kerdivel G, Gregoricchio S, Esposito M, Guillouf C, Boeva V. CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes. BMC Bioinformatics 2021; 22:407. [PMID: 34404353 PMCID: PMC8371782 DOI: 10.1186/s12859-021-04320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
Background Multiple studies rely on ChIP-seq experiments to assess the effect of gene modulation and drug treatments on protein binding and chromatin structure. However, most methods commonly used for the normalization of ChIP-seq binding intensity signals across conditions, e.g., the normalization to the same number of reads, either assume a constant signal-to-noise ratio across conditions or base the estimates of correction factors on genomic regions with intrinsically different signals between conditions. Inaccurate normalization of ChIP-seq signal may, in turn, lead to erroneous biological conclusions. Results We developed a new R package, CHIPIN, that allows normalizing ChIP-seq signals across different conditions/samples when spike-in information is not available, but gene expression data are at hand. Our normalization technique is based on the assumption that, on average, no differences in ChIP-seq signals should be observed in the regulatory regions of genes whose expression levels are constant across samples/conditions. In addition to normalizing ChIP-seq signals, CHIPIN provides as output a number of graphs and calculates statistics allowing the user to assess the efficiency of the normalization and qualify the specificity of the antibody used. In addition to ChIP-seq, CHIPIN can be used without restriction on open chromatin ATAC-seq or DNase hypersensitivity data. We validated the CHIPIN method on several ChIP-seq data sets and documented its superior performance in comparison to several commonly used normalization techniques. Conclusions The CHIPIN method provides a new way for ChIP-seq signal normalization across conditions when spike-in experiments are not available. The method is implemented in a user-friendly R package available on GitHub: https://github.com/BoevaLab/CHIPIN Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04320-3.
Collapse
Affiliation(s)
- Lélia Polit
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, 75014, Paris, France
| | - Gwenneg Kerdivel
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, 75014, Paris, France
| | - Sebastian Gregoricchio
- INSERM UMR1170, Equipe Labellisée Ligue Nationale Contre Le Cancer, Gustave Roussy, Paris-Saclay University, 94800, Villejuif, France
| | - Michela Esposito
- INSERM UMR1170, Equipe Labellisée Ligue Nationale Contre Le Cancer, Gustave Roussy, Paris-Saclay University, 94800, Villejuif, France
| | - Christel Guillouf
- INSERM UMR1170, Equipe Labellisée Ligue Nationale Contre Le Cancer, Gustave Roussy, Paris-Saclay University, 94800, Villejuif, France
| | - Valentina Boeva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, 75014, Paris, France. .,Department of Computer Science, Institute for Machine Learning, ETH Zurich, 8092, Zurich, Switzerland. .,Swiss Institute for Bioinformatics (SIB), Zürich, Switzerland.
| |
Collapse
|
108
|
Zhang XS, Yin YS, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri MH, Armstrong AJS, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton JT, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez-Bello MG, Bäckhed F, Hazen SL, Blaser MJ. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 2021; 29:1249-1265.e9. [PMID: 34289377 PMCID: PMC8370265 DOI: 10.1016/j.chom.2021.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal microbiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3γ, in an innate intestinal immune network involving CD44, TLR2, and Reg3γ. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| | - Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Jincheng Wang
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Thomas Battaglia
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Kimberly Krautkramer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden
| | - Wei Vivian Li
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jackie Li
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Mark Brown
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Michelle H Badri
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA
| | - Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Christopher M Strauch
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Altomare
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Joseph C Devlin
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Linchen He
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Jamie T Morton
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - John Alex Chalk
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Kelly Needles
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Viviane Liao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Julia Mount
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Kelly V Ruggles
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Richard A Bonneau
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA; Institute for Food, Nutrition and Health, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden; Region västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanley L Hazen
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
109
|
Yue M, Gautam M, Chen Z, Hou J, Zheng X, Hou H, Li L. Histone acetylation of 45S rDNA correlates with disrupted nucleolar organization during heat stress response in Zea mays L. PHYSIOLOGIA PLANTARUM 2021; 172:2079-2089. [PMID: 33887068 DOI: 10.1111/ppl.13438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The role of the nucleolus in plant response to heat stress remains largely obscure. Our current efforts focused on exploring the underlying mechanism by which nucleolar disorganization is regulated in heat stressed-maize lines. Here, two maize lines, a heat-sensitive line, ZD958, and a heat-tolerant line, ZDH, were submitted to heat stress for investigating their association with the nucleolar disruption. Immunofluorescence staining showed that nucleolar disruption increased with prolonged treatment time. After heat treatment, a significant change in nucleolus organization was observed in the ZD958 line, but the ZDH line showed mild alteration. Moreover, actinomycin D (ActD)-induced nucleolus fission led to inhibition of maize growth under the normal condition. The ZD958 line exhibited a significant increase in the level of H3K9ac and H4K5ac of the 45S rDNA accompanied by a higher transcription of the 5'-external transcribed spacer (ETS) region, while the line ZDH showed a slight increase in histone acetylation levels and the transcriptional initiation at this site after heat treatment. To our knowledge, this is the first report providing a comparative insight between heat stress, rDNA histone modifications, and nucleolus disintegration in a heat-tolerant ZDH compared with a heat-sensitive line ZD958. Our investigation might assist maize breeders in obtaining heat-tolerant lines by targeting nucleoli using epigenetics.
Collapse
Affiliation(s)
- Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mayank Gautam
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
110
|
Brocato E, Wolstenholme JT. Neuroepigenetic consequences of adolescent ethanol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:45-84. [PMID: 34696879 DOI: 10.1016/bs.irn.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical developmental period characterized by ongoing brain maturation processes including myelination and synaptic pruning. Adolescents experience heightened reward sensitivity, sensation seeking, impulsivity, and diminished inhibitory self-control, which contribute to increased participation in risky behaviors, including the initiation of alcohol use. Ethanol exposure in adolescence alters memory and cognition, anxiety-like behavior, and ethanol sensitivity as well as brain myelination and dendritic spine morphology, with effects lasting into adulthood. Emerging evidence suggests that epigenetic modifications may explain these lasting effects. Focusing on the amygdala, prefrontal cortex and hippocampus, we review studies investigating the epigenetic consequences of adolescent ethanol exposure. Ethanol metabolism globally increases donor substrates for histone acetylation and histone and DNA methylation, and this chapter discusses how this can further impact epigenetic programming of the adolescent brain. Elucidation of the mechanisms through which ethanol can alter the epigenetic code at specific transcripts may provide therapeutic targets for intervention.
Collapse
Affiliation(s)
- Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
111
|
Zhang Y, Cai Y, Roca X, Kwoh CK, Fullwood MJ. Chromatin loop anchors predict transcript and exon usage. Brief Bioinform 2021; 22:6319936. [PMID: 34263910 PMCID: PMC8575016 DOI: 10.1093/bib/bbab254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenomics and transcriptomics data from high-throughput sequencing techniques such as RNA-seq and ChIP-seq have been successfully applied in predicting gene transcript expression. However, the locations of chromatin loops in the genome identified by techniques such as Chromatin Interaction Analysis with Paired End Tag sequencing (ChIA-PET) have never been used for prediction tasks. Here, we developed machine learning models to investigate if ChIA-PET could contribute to transcript and exon usage prediction. In doing so, we used a large set of transcription factors as well as ChIA-PET data. We developed different Gradient Boosting Trees models according to the different tasks with the integrated datasets from three cell lines, including GM12878, HeLaS3 and K562. We validated the models via 10-fold cross validation, chromosome-split validation and cross-cell validation. Our results show that both transcript and splicing-derived exon usage can be effectively predicted with at least 0.7512 and 0.7459 of accuracy, respectively, on all cell lines from all kinds of validations. Examining the predictive features, we found that RNA Polymerase II ChIA-PET was one of the most important features in both transcript and exon usage prediction, suggesting that chromatin loop anchors are predictive of both transcript and exon usage.
Collapse
Affiliation(s)
- Yu Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yichao Cai
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore.,School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Singapore 138673, Singapore
| |
Collapse
|
112
|
Huang R, Huang T, Irish VF. Do Epigenetic Timers Control Petal Development? FRONTIERS IN PLANT SCIENCE 2021; 12:709360. [PMID: 34295349 PMCID: PMC8290480 DOI: 10.3389/fpls.2021.709360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Epigenetic modifications include histone modifications and DNA methylation; such modifications can induce heritable changes in gene expression by altering DNA accessibility and chromatin structure. A number of studies have demonstrated that epigenetic factors regulate plant developmental timing in response to environmental changes. However, we still have an incomplete picture of how epigenetic factors can regulate developmental events such as organogenesis. The small number of cell types and the relatively simple developmental progression required to form the Arabidopsis petal makes it a good model to investigate the molecular mechanisms driving plant organogenesis. In this minireview, we summarize recent studies demonstrating the epigenetic control of gene expression during various developmental transitions, and how such regulatory mechanisms can potentially act in petal growth and differentiation.
Collapse
Affiliation(s)
- Ruirui Huang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Vivian F. Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
113
|
H3K27Ac modification and gene expression in psoriasis. J Dermatol Sci 2021; 103:93-100. [PMID: 34281744 DOI: 10.1016/j.jdermsci.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Numerous alterations in gene expression have been described in psoriatic lesions compared to uninvolved or healthy skin. However, the mechanisms which induce this altered expression remain unclear. Epigenetic modifications play a key role in regulating genes' expression. Only three studies compared the whole-genome DNA methylation of psoriasis versus healthy skin. The present is the first study of genome-wide comparison of histone modifications between psoriatic to healthy skins. OBJECTIVE Our objective was to explore the pattern of H3K27Ac modifications in psoriatic lesions compared to uninvolved psoriatic and healthy skin, in order to identify new genes involved in the pathogenesis of psoriasis. METHOD Using ChIP-seq with anti H3K27Ac we compared the acetylation of lysine 27 on histone 3 (H3K27Ac) modification between psoriatic to healthy skins, combined with mRNA array. RESULTS We found a differential H3K27Ac pattern between psoriatic compared to uninvolved or healthy skins. We found that many of the overexpressed and H3K27Ac enriched genes in psoriasis, harbor a putative GRHL transcription factor-binding site. CONCLUSIONS In the most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac. However, the loss of H3K27 acetylation modification does not correlate with decreased gene expression. GRHL appears to play an important role in the pathogenesis of psoriasis and therefore, might be a new target for psoriasis therapeutics.
Collapse
|
114
|
Wu CJ, Liu ZZ, Wei L, Zhou JX, Cai XW, Su YN, Li L, Chen S, He XJ. Three functionally redundant plant-specific paralogs are core subunits of the SAGA histone acetyltransferase complex in Arabidopsis. MOLECULAR PLANT 2021; 14:1071-1087. [PMID: 33737195 DOI: 10.1016/j.molp.2021.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 05/29/2023]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation, gene expression, and various developmental processes in eukaryotes. However, little is known about the composition and function of the SAGA complex in plants. In this study, we found that the SAGA complex in Arabidopsis thaliana contains not only conserved subunits but also four plant-specific subunits: three functionally redundant paralogs, SCS1, SCS2A, and SCS2B (SCS1/2A/2B), and a TAF-like subunit, TAFL. Mutations in SCS1/2A/2B lead to defective phenotypes similar to those caused by mutations in the genes encoding conserved SAGA subunits HAG1 and ADA2B, including delayed juvenile-to-adult phase transition, late flowering, and increased trichome density. Furthermore, we demonstrated that SCS1/2A/2B are required for the function of the SAGA complex in histone acetylation, thereby promoting the transcription of development-related genes. These results together suggest that SCS1/2A/2B are core subunits of the SAGA complex in Arabidopsis. Compared with SAGA complexes in other eukaryotes, the SAGA complexes in plants have evolved unique features that are necessary for normal growth and development.
Collapse
Affiliation(s)
- Chan-Juan Wu
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Long Wei
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
115
|
Ebert P, Schulz MH. Fast detection of differential chromatin domains with SCIDDO. Bioinformatics 2021; 37:1198-1205. [PMID: 33232443 PMCID: PMC8189691 DOI: 10.1093/bioinformatics/btaa960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION The generation of genome-wide maps of histone modifications using chromatin immunoprecipitation sequencing is a standard approach to dissect the complexity of the epigenome. Interpretation and differential analysis of histone datasets remains challenging due to regulatory meaningful co-occurrences of histone marks and their difference in genomic spread. To ease interpretation, chromatin state segmentation maps are a commonly employed abstraction combining individual histone marks. We developed the tool SCIDDO as a fast, flexible and statistically sound method for the differential analysis of chromatin state segmentation maps. RESULTS We demonstrate the utility of SCIDDO in a comparative analysis that identifies differential chromatin domains (DCD) in various regulatory contexts and with only moderate computational resources. We show that the identified DCDs correlate well with observed changes in gene expression and can recover a substantial number of differentially expressed genes (DEGs). We showcase SCIDDO's ability to directly interrogate chromatin dynamics, such as enhancer switches in downstream analysis, which simplifies exploring specific questions about regulatory changes in chromatin. By comparing SCIDDO to competing methods, we provide evidence that SCIDDO's performance in identifying DEGs via differential chromatin marking is more stable across a range of cell-type comparisons and parameter cut-offs. AVAILABILITY AND IMPLEMENTATION The SCIDDO source code is openly available under github.com/ptrebert/sciddo. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Heinrich Heine University, 40225 Düsseldorf, Germany.,Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Marcel H Schulz
- Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany.,Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
116
|
Prowse-Wilkins CP, Wang J, Xiang R, Garner JB, Goddard ME, Chamberlain AJ. Putative Causal Variants Are Enriched in Annotated Functional Regions From Six Bovine Tissues. Front Genet 2021; 12:664379. [PMID: 34249087 PMCID: PMC8260860 DOI: 10.3389/fgene.2021.664379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants which affect complex traits (causal variants) are thought to be found in functional regions of the genome. Identifying causal variants would be useful for predicting complex trait phenotypes in dairy cows, however, functional regions are poorly annotated in the bovine genome. Functional regions can be identified on a genome-wide scale by assaying for post-translational modifications to histone proteins (histone modifications) and proteins interacting with the genome (e.g., transcription factors) using a method called Chromatin immunoprecipitation followed by sequencing (ChIP-seq). In this study ChIP-seq was performed to find functional regions in the bovine genome by assaying for four histone modifications (H3K4Me1, H3K4Me3, H3K27ac, and H3K27Me3) and one transcription factor (CTCF) in 6 tissues (heart, kidney, liver, lung, mammary and spleen) from 2 to 3 lactating dairy cows. Eighty-six ChIP-seq samples were generated in this study, identifying millions of functional regions in the bovine genome. Combinations of histone modifications and CTCF were found using ChromHMM and annotated by comparing with active and inactive genes across the genome. Functional marks differed between tissues highlighting areas which might be particularly important to tissue-specific regulation. Supporting the cis-regulatory role of functional regions, the read counts in some ChIP peaks correlated with nearby gene expression. The functional regions identified in this study were enriched for putative causal variants as seen in other species. Interestingly, regions which correlated with gene expression were particularly enriched for potential causal variants. This supports the hypothesis that complex traits are regulated by variants that alter gene expression. This study provides one of the largest ChIP-seq annotation resources in cattle including, for the first time, in the mammary gland of lactating cows. By linking regulatory regions to expression QTL and trait QTL we demonstrate a new strategy for identifying causal variants in cattle.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, Australia
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| |
Collapse
|
117
|
Stępniak K, Machnicka MA, Mieczkowski J, Macioszek A, Wojtaś B, Gielniewski B, Poleszak K, Perycz M, Król SK, Guzik R, Dąbrowski MJ, Dramiński M, Jardanowska M, Grabowicz I, Dziedzic A, Kranas H, Sienkiewicz K, Diamanti K, Kotulska K, Grajkowska W, Roszkowski M, Czernicki T, Marchel A, Komorowski J, Kaminska B, Wilczyński B. Mapping chromatin accessibility and active regulatory elements reveals pathological mechanisms in human gliomas. Nat Commun 2021; 12:3621. [PMID: 34131149 PMCID: PMC8206121 DOI: 10.1038/s41467-021-23922-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.
Collapse
Affiliation(s)
- Karolina Stępniak
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena A Machnicka
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Jakub Mieczkowski
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Medical University of Gdansk, International Research Agenda 3P Medicine Laboratory, Gdansk, Poland
| | - Anna Macioszek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Poleszak
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Perycz
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia K Król
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Guzik
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał J Dąbrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Marta Jardanowska
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Ilona Grabowicz
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Agata Dziedzic
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Kranas
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Karolina Sienkiewicz
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Klev Diamanti
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Katarzyna Kotulska
- Departments of Neurology, Neurosurgery, Neuropathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Wiesława Grajkowska
- Departments of Neurology, Neurosurgery, Neuropathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Marcin Roszkowski
- Departments of Neurology, Neurosurgery, Neuropathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Tomasz Czernicki
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Marchel
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Bozena Kaminska
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| | - Bartek Wilczyński
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
118
|
Wang Q, Wu Y, Vorberg T, Eils R, Herrmann C. Integrative Ranking of Enhancer Networks Facilitates the Discovery of Epigenetic Markers in Cancer. Front Genet 2021; 12:664654. [PMID: 34135941 PMCID: PMC8201988 DOI: 10.3389/fgene.2021.664654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression through multiple epigenetic components is a highly combinatorial process. Alterations in any of these layers, as is commonly found in cancer diseases, can lead to a cascade of downstream effects on tumor suppressor or oncogenes. Hence, deciphering the effects of epigenetic alterations on regulatory elements requires innovative computational approaches that can benefit from the huge amounts of epigenomic datasets that are available from multiple consortia, such as Roadmap or BluePrint. We developed a software tool named IRENE (Integrative Ranking of Epigenetic Network of Enhancers), which performs quantitative analyses on differential epigenetic modifications through an integrated, network-based approach. The method takes into account the additive effect of alterations on multiple regulatory elements of a gene. Applying this tool to well-characterized test cases, it successfully found many known cancer genes from publicly available cancer epigenome datasets.
Collapse
Affiliation(s)
- Qi Wang
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Yonghe Wu
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Vorberg
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Roland Eils
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| |
Collapse
|
119
|
Agarwal V, Shendure J. Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks. Cell Rep 2021; 31:107663. [PMID: 32433972 DOI: 10.1016/j.celrep.2020.107663] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/11/2019] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Algorithms that accurately predict gene structure from primary sequence alone were transformative for annotating the human genome. Can we also predict the expression levels of genes based solely on genome sequence? Here, we sought to apply deep convolutional neural networks toward that goal. Surprisingly, a model that includes only promoter sequences and features associated with mRNA stability explains 59% and 71% of variation in steady-state mRNA levels in human and mouse, respectively. This model, termed Xpresso, more than doubles the accuracy of alternative sequence-based models and isolates rules as predictive as models relying on chromatic immunoprecipitation sequencing (ChIP-seq) data. Xpresso recapitulates genome-wide patterns of transcriptional activity, and its residuals can be used to quantify the influence of enhancers, heterochromatic domains, and microRNAs. Model interpretation reveals that promoter-proximal CpG dinucleotides strongly predict transcriptional activity. Looking forward, we propose cell-type-specific gene-expression predictions based solely on primary sequences as a grand challenge for the field.
Collapse
Affiliation(s)
- Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
120
|
Abstract
OBJECTIVES Recent evidence from the fields of microbiology and immunology, as well as a small number of human sepsis studies, suggest that epigenetic regulation may play a central role in the pathogenesis of sepsis. The term "epigenetics" refers to regulatory mechanisms that control gene expression but are not related to changes in DNA sequence. These include DNA methylation, histone modifications, and regulation of transcription via non-coding RNAs. Epigenetic modifications, occurring in response to external stressors, lead to changes in gene expression, and thus lie at the intersection between genetics and the environment. In this review, we examine data from in vitro studies, animal studies, and the existing human sepsis studies in epigenetics to demonstrate that epigenetic mechanisms are likely central to the pathogenesis of sepsis and that epigenetic therapies may have potential in the treatment of sepsis and its associated organ failures. DATA SOURCES Online search of published scientific literature via Pubmed using the term "epigenetics" in combination with the terms "sepsis", "infection", "bacterial infection", "viral infection", "critical illness", "acute respiratory distress syndrome", and "acute lung injury". STUDY SELECTION Articles were chosen for inclusion based on their relevance to sepsis, acute inflammation, sepsis-related immune suppression, and sepsis-related organ failure. Reference lists were reviewed to identify additional relevant articles. DATA EXTRACTION Relevant data was extracted and synthesized for narrative review. DATA SYNTHESIS Epigenetic regulation is a key determinant of gene expression in sepsis. At the onset of infection, host-pathogen interactions often result in epigenetic alterations to host cells that favor pathogen survival. In parallel, the host inflammatory response is characterized by epigenetic modifications in key regulatory genes, including tumor necrosis factor and interleukin-1β. In human sepsis patients, multiple epigenetic modifying enzymes show differential expression in early sepsis, suggesting a role for epigenetics in coordinating the response to infection. In the later stages of sepsis, epigenetic modifications accompany endotoxin tolerance and the immune-suppressed state. In animal models, treatment with epigenetic modifiers can mitigate the effects of sepsis and improve survival as well as reverse sepsis-associated organ injury. CONCLUSIONS Epigenetic modifications are associated with key phases of sepsis, from the host-pathogen interaction, to acute inflammation, to immune suppression. Epigenetic markers show promise in the diagnosis and prognosis of sepsis and epigenetic modifying agents show promise as therapeutic tools in animal models of sepsis. Human studies in the area of epigenetics are sorely lacking and should be a priority for sepsis researchers.
Collapse
|
121
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
122
|
George RM, Firulli AB. Epigenetics and Heart Development. Front Cell Dev Biol 2021; 9:637996. [PMID: 34026751 PMCID: PMC8136428 DOI: 10.3389/fcell.2021.637996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic control of gene expression during cardiac development and disease has been a topic of intense research in recent years. Advances in experimental methods to study DNA accessibility, transcription factor occupancy, and chromatin conformation capture technologies have helped identify regions of chromatin structure that play a role in regulating access of transcription factors to the promoter elements of genes, thereby modulating expression. These chromatin structures facilitate enhancer contacts across large genomic distances and function to insulate genes from cis-regulatory elements that lie outside the boundaries for the gene of interest. Changes in transcription factor occupancy due to changes in chromatin accessibility have been implicated in congenital heart disease. However, the factors controlling this process and their role in changing gene expression during development or disease remain unclear. In this review, we focus on recent advances in the understanding of epigenetic factors controlling cardiac morphogenesis and their role in diseases.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
123
|
Toker L, Tran GT, Sundaresan J, Tysnes OB, Alves G, Haugarvoll K, Nido GS, Dölle C, Tzoulis C. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson's disease brain. Mol Neurodegener 2021; 16:31. [PMID: 33947435 PMCID: PMC8097820 DOI: 10.1186/s13024-021-00450-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a complex, age-related neurodegenerative disorder of largely unknown etiology. PD is strongly associated with mitochondrial respiratory dysfunction, which can lead to epigenetic dysregulation and specifically altered histone acetylation. Nevertheless, and despite the emerging role of epigenetics in age-related brain disorders, the question of whether aberrant histone acetylation is involved in PD remains unresolved. METHODS We studied fresh-frozen brain tissue from two independent cohorts of individuals with idiopathic PD (n = 28) and neurologically healthy controls (n = 21). We performed comprehensive immunoblotting to identify histone sites with altered acetylation levels in PD, followed by chromatin immunoprecipitation sequencing (ChIP-seq). RNA sequencing data from the same individuals was used to assess the impact of altered histone acetylation on gene expression. RESULTS Immunoblotting analyses revealed increased acetylation at several histone sites in PD, with the most prominent change observed for H3K27, a marker of active promoters and enhancers. ChIP-seq analysis further indicated that H3K27 hyperacetylation in the PD brain is a genome-wide phenomenon with a strong predilection for genes implicated in the disease, including SNCA, PARK7, PRKN and MAPT. Integration of the ChIP-seq with transcriptomic data from the same individuals revealed that the correlation between promoter H3K27 acetylation and gene expression is attenuated in PD patients, suggesting that H3K27 acetylation may be decoupled from transcription in the PD brain. Strikingly, this decoupling was most pronounced among nuclear-encoded mitochondrial genes, corroborating the notion that impaired crosstalk between the nucleus and mitochondria is involved in the pathogenesis of PD. Our findings independently replicated in the two cohorts. CONCLUSIONS Our findings strongly suggest that aberrant histone acetylation and altered transcriptional regulation are involved in the pathophysiology of PD. We demonstrate that PD-associated genes are particularly prone to epigenetic dysregulation and identify novel epigenetic signatures associated with the disease.
Collapse
Affiliation(s)
- Lilah Toker
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Gia T. Tran
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Janani Sundaresan
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068 Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062 Stavanger, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| |
Collapse
|
124
|
Espeso-Gil S, Holik AZ, Bonnin S, Jhanwar S, Chandrasekaran S, Pique-Regi R, Albaigès-Ràfols J, Maher M, Permanyer J, Irimia M, Friedländer MR, Pons-Espinal M, Akbarian S, Dierssen M, Maass PG, Hor CN, Ossowski S. Environmental Enrichment Induces Epigenomic and Genome Organization Changes Relevant for Cognition. Front Mol Neurosci 2021; 14:664912. [PMID: 34025350 PMCID: PMC8131874 DOI: 10.3389/fnmol.2021.664912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/09/2021] [Indexed: 01/11/2023] Open
Abstract
In early development, the environment triggers mnemonic epigenomic programs resulting in memory and learning experiences to confer cognitive phenotypes into adulthood. To uncover how environmental stimulation impacts the epigenome and genome organization, we used the paradigm of environmental enrichment (EE) in young mice constantly receiving novel stimulation. We profiled epigenome and chromatin architecture in whole cortex and sorted neurons by deep-sequencing techniques. Specifically, we studied chromatin accessibility, gene and protein regulation, and 3D genome conformation, combined with predicted enhancer and chromatin interactions. We identified increased chromatin accessibility, transcription factor binding including CTCF-mediated insulation, differential occupancy of H3K36me3 and H3K79me2, and changes in transcriptional programs required for neuronal development. EE stimuli led to local genome re-organization by inducing increased contacts between chromosomes 7 and 17 (inter-chromosomal). Our findings support the notion that EE-induced learning and memory processes are directly associated with the epigenome and genome organization.
Collapse
Affiliation(s)
- Sergio Espeso-Gil
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada
| | - Aliaksei Z. Holik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sarah Bonnin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Shalu Jhanwar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandhya Chandrasekaran
- MD/PhD Program in the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Júlia Albaigès-Ràfols
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Michael Maher
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jon Permanyer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Marc R. Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Meritxell Pons-Espinal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Schahram Akbarian
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Philipp G. Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Charlotte N. Hor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
125
|
Sadeh R, Sharkia I, Fialkoff G, Rahat A, Gutin J, Chappleboim A, Nitzan M, Fox-Fisher I, Neiman D, Meler G, Kamari Z, Yaish D, Peretz T, Hubert A, Cohen JE, Salah A, Temper M, Grinshpun A, Maoz M, Abu-Gazala S, Ya’acov AB, Shteyer E, Safadi R, Kaplan T, Shemer R, Planer D, Galun E, Glaser B, Zick A, Dor Y, Friedman N. ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. Nat Biotechnol 2021; 39:586-598. [PMID: 33432199 PMCID: PMC7610786 DOI: 10.1038/s41587-020-00775-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Cell-free DNA (cfDNA) in human plasma provides access to molecular information about the pathological processes in the organs or tumors from which it originates. These DNA fragments are derived from fragmented chromatin in dying cells and retain some of the cell-of-origin histone modifications. In this study, we applied chromatin immunoprecipitation of cell-free nucleosomes carrying active chromatin modifications followed by sequencing (cfChIP-seq) to 268 human samples. In healthy donors, we identified bone marrow megakaryocytes, but not erythroblasts, as major contributors to the cfDNA pool. In patients with a range of liver diseases, we showed that we can identify pathology-related changes in hepatocyte transcriptional programs. In patients with metastatic colorectal carcinoma, we detected clinically relevant and patient-specific information, including transcriptionally active human epidermal growth factor receptor 2 (HER2) amplifications. Altogether, cfChIP-seq, using low sequencing depth, provides systemic and genome-wide information and can inform diagnosis and facilitate interrogation of physiological and pathological processes using blood samples.
Collapse
Affiliation(s)
- Ronen Sadeh
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israa Sharkia
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gavriel Fialkoff
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet Rahat
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jenia Gutin
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Chappleboim
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Nitzan
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilana Fox-Fisher
- Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Neiman
- Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Guy Meler
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zahala Kamari
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dayana Yaish
- The Goldyne Savad Institute for Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayala Hubert
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel,The Wohl institute for Translational Medicine, Hadassah Medical Center
| | - Azzam Salah
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mark Temper
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Samir Abu-Gazala
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ami Ben Ya’acov
- The Juliet Keidan Institute of Pediatric Gastroenterology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eyal Shteyer
- The Juliet Keidan Institute of Pediatric Gastroenterology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rifaat Safadi
- The Liver Unit, Institute of Gastroenterology and Liver Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tommy Kaplan
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Planer
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute for Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Glaser
- Dept of Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nir Friedman
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel,lead contact:
| |
Collapse
|
126
|
Huang D, Li Q, Sun X, Sun X, Tang Y, Qu Y, Liu D, Yu T, Li G, Tong T, Zhang Y. CRL4 DCAF8 dependent opposing stability control over the chromatin remodeler LSH orchestrates epigenetic dynamics in ferroptosis. Cell Death Differ 2021; 28:1593-1609. [PMID: 33288900 PMCID: PMC8166945 DOI: 10.1038/s41418-020-00689-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/28/2023] Open
Abstract
Despite the emerging evidence on ferroptosis implicated in diverse pathologies, molecular linkage between oxidative inducers and chromatin as epigenetic memory carrier for its propagation remains elusive. Here, we report the identification of two WD40 proteins DCAF8 and WDR76 as substrate adapter and molecular inhibitor respectively of the Cullin-4 RING ubiquitin ligase (CRL4) system for stability control of chromatin remodeler LSH. Degradation analysis and CRL4-DCAF8 complex reconstitution demonstrate that CRL4DCAF8 is a bona fide E3 ligase for LSH. In contrast, WDR76 antagonizes DCAF8-targeted LSH proteolysis through competitive inhibition of the holo-CRL4DCAF8-LSH complex assembly. Importantly, this opposing regulatory strategy is utilized in lipid hydroperoxide induced ferroptosis, where we identify key redox homeostasis genes significantly regulated by the DCAF8/WDR76/LSH axis through transcriptomic epistasis analysis. This regulation is mechanistically attributed to DNA hydroxymethylation fostered WDR76 interaction with LSH and increased ratio of DCAF8 to WDR76 for antagonistic LSH association accompanying decreased DNA oxidation along with ROS overproduction. Evaluation of epigenetic dynamics at ferroptosis gene promoters reveals linker histone H1- and LSH-associated transcriptional repression is coordinately removed upon lipid peroxidation stress. Together with the phenotypes driven by WDR76 and DCAF8 manipulations, these data identify DCAF8- and WDR76-adapted oxidative damage sensing through DNA hydroxymethylation for LSH degradation control as a crucial nexus in epigenetic regulation of ferroptosis.
Collapse
Affiliation(s)
- Daoyuan Huang
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| | - Qian Li
- grid.11135.370000 0001 2256 9319Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
| | - Xinpei Sun
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| | - Xiwen Sun
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| | - Yunyi Tang
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| | - Yanan Qu
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| | - Dawei Liu
- grid.11135.370000 0001 2256 9319Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
| | - Tingting Yu
- grid.11135.370000 0001 2256 9319Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
| | - Guodong Li
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| | - Tanjun Tong
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| | - Yu Zhang
- grid.11135.370000 0001 2256 9319Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, China
| |
Collapse
|
127
|
Fischer J, Ardakani FB, Kattler K, Walter J, Schulz MH. CpG content-dependent associations between transcription factors and histone modifications. PLoS One 2021; 16:e0249985. [PMID: 33857234 PMCID: PMC8049299 DOI: 10.1371/journal.pone.0249985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the factors that underlie the epigenetic regulation of genes is crucial to understand the gene regulatory machinery as a whole. Several experimental and computational studies examined the relationship between different factors involved. Here we investigate the relationship between transcription factors (TFs) and histone modifications (HMs), based on ChIP-seq data in cell lines. As it was shown that gene regulation by TFs differs depending on the CpG class of a promoter, we study the impact of the CpG content in promoters on the associations between TFs and HMs. We suggest an approach based on sparse linear regression models to infer associations between TFs and HMs with respect to CpG content. A study of the partial correlation of HMs for the two classes of high and low CpG content reveals possible CpG dependence and potential candidates for confounding factors in our models. We show that the models are accurate, inferred associations reflect known biological relationships, and we give new insight into associations with respect to CpG content. Moreover, analysis of a ChIP-seq dataset in HepG2 cells of the HM H3K122ac, an HM about little is known, reveals novel TF associations and supports a previously established link to active transcription.
Collapse
Affiliation(s)
- Jonas Fischer
- Max Planck Institute for Informatics, Databases and Information Systems, Saarbrücken, Germany
- Cluster of Excellence for Multimodal Computing and Interaction, High Throughput Genomics and Systems Biology, Saarbrücken, Germany
- * E-mail:
| | - Fatemeh Behjati Ardakani
- Max Planck Institute for Informatics, Computational Biology and Applied Algorithmics, Saarbrücken, Germany
- Cluster of Excellence for Multimodal Computing and Interaction, High Throughput Genomics and Systems Biology, Saarbrücken, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Kathrin Kattler
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Marcel H. Schulz
- Max Planck Institute for Informatics, Computational Biology and Applied Algorithmics, Saarbrücken, Germany
- Cluster of Excellence for Multimodal Computing and Interaction, High Throughput Genomics and Systems Biology, Saarbrücken, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| |
Collapse
|
128
|
Turunen T, Hernández de Sande A, Pölönen P, Heinäniemi M. Genome-wide analysis of primary microRNA expression using H3K36me3 ChIP-seq data. Comput Struct Biotechnol J 2021; 19:1944-1955. [PMID: 33995896 PMCID: PMC8082160 DOI: 10.1016/j.csbj.2021.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/29/2022] Open
Abstract
MicroRNAs are key players in gene regulatory networks controlling cell homeostasis. Their altered expression has been previously linked to disease outcomes and microRNAs thus serve as biomarkers for disease diagnostics. However, their synthesis and its transcriptional regulation have been challenging to investigate. In this study, we validated the use of H3K36me3 histone modification for the quantification of microRNA transcription levels using data from the ENCODE Consortium and then applied this approach to provide new insight into the cell-type-specific regulation in tissues, cell line models and cardiac disease. In cardiomyocytes derived from patients suffering from septal defects, carrying a G296S mutation in the transcription factor GATA4, we show that microRNA gene transcription is altered in cardiomyocytes carrying this mutation and coincides with novel super-enhancers formed within regulatory domains defined using chromatin interaction profiles. The most prominently elevated primary transcript encodes for let-7a and miR-100 that may target genes in the Hippo signaling pathway. Collectively, our work presents a methodology to quantify microRNA gene expression using histone marker data and paves the way for functional studies of cell-type-specific transcriptional regulation occurring in disease pathology.
Collapse
Affiliation(s)
- Tanja Turunen
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu FI-80101, Finland
| | | | - Petri Pölönen
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland
| | - Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland
| |
Collapse
|
129
|
Zhao Z, Fan R, Xu W, Kou Y, Wang Y, Ma X, Du Z. Single-cell dynamics of chromatin activity during cell lineage differentiation in Caenorhabditis elegans embryos. Mol Syst Biol 2021; 17:e10075. [PMID: 33900055 PMCID: PMC8073016 DOI: 10.15252/msb.202010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems-level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage-dependent manner, with switch-like changes accompanying anterior-posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra-tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left-right symmetric pattern are predetermined to be analogous in early progenitors so as to pre-set equivalent states. Finally, genome-wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co-regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single-cell level.
Collapse
Affiliation(s)
- Zhiguang Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rong Fan
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weina Xu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yahui Kou
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
130
|
Yao S, Wu H, Liu TT, Wang JH, Ding JM, Guo J, Rong Y, Ke X, Hao RH, Dong SS, Yang TL, Guo Y. Epigenetic Element-Based Transcriptome-Wide Association Study Identifies Novel Genes for Bipolar Disorder. Schizophr Bull 2021; 47:1642-1652. [PMID: 33772305 PMCID: PMC8530404 DOI: 10.1093/schbul/sbab023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the bipolar disorder (BD) signals identified by genome-wide association study (GWAS) often reside in the non-coding regions, understanding the biological relevance of these genetic loci has proven to be complicated. Transcriptome-wide association studies (TWAS) providing a powerful approach to identify novel disease risk genes and uncover possible causal genes at loci identified previously by GWAS. However, these methods did not consider the importance of epigenetic regulation in gene expression. Here, we developed a novel epigenetic element-based transcriptome-wide association study (ETWAS) that tested the effects of genetic variants on gene expression levels with the epigenetic features as prior and further mediated the association between predicted expression and BD. We conducted an ETWAS consisting of 20 352 cases and 31 358 controls and identified 44 transcriptome-wide significant hits. We found 14 conditionally independent genes, and 10 genes that did not previously implicate with BD were regarded as novel candidate genes, such as ASB16 in the cerebellar hemisphere (P = 9.29 × 10-8). We demonstrated that several genome-wide significant signals from the BD GWAS driven by genetically regulated expression, and NEK4 explained 90.1% of the GWAS signal. Additionally, ETWAS identified genes could explain heritability beyond that explained by GWAS-associated SNPs (P = 5.60 × 10-66). By querying the SNPs in the final models of identified genes in phenome databases, we identified several phenotypes previously associated with BD, such as schizophrenia and depression. In conclusion, ETWAS is a powerful method, and we identified several novel candidate genes associated with BD.
Collapse
Affiliation(s)
- Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P. R. China,Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Tong-Tong Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Jia-Hao Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Jing-Miao Ding
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Tie-Lin Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P. R. China,Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Yan Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P. R. China,Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China,To whom correspondence should be addressed; tel: +86-29-62818386, fax: +86-29-62818386, e-mail:
| |
Collapse
|
131
|
Basova L, Lindsey A, McGovern AM, Ellis RJ, Marcondes MCG. Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis. Viruses 2021; 13:544. [PMID: 33805201 PMCID: PMC8064323 DOI: 10.3390/v13040544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Human postmortem specimens are extremely valuable resources for investigating translational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic signatures would be more stable than RNA for assessing global changes associated with outcomes of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was abundant and stable up to the 72 h postmortem. We tested our ability to use HeK4me3 in human prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not (Meth +/-) which exhibited poor RNA quality and were not suitable for transcriptional profiling. Systems strategies that are typically used in transcriptional metadata were applied to H3K4me3 peaks revealing consistent genomic activity differences in regions where addiction and neuronal synapses pathway genes are represented, including genes of the dopaminergic system, as well as inflammatory pathways. The resulting comparisons mirrored previously observed effects of Meth on suppressing gene expression and provided insights on neurological processes affected by Meth. The results suggested that H3K4me3 detection in chromatin may reflect transcriptional patterns, thus providing opportunities for analysis of larger numbers of specimens from cases with substance use and neurological deficits. In conclusion, the detection of H3K4me3 in isolated chromatin can be an alternative to transcriptome strategies to increase the power of association using specimens with long postmortem intervals and low RNA quality.
Collapse
Affiliation(s)
- Liana Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Alexander Lindsey
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Anne Marie McGovern
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA;
| | | |
Collapse
|
132
|
Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, Saelao P, Waters S, Xiang R, Chamberlain A, Korf I, Delany ME, Cheng HH, Medrano JF, Van Eenennaam AL, Tuggle CK, Ernst C, Flicek P, Quon G, Ross P, Zhou H. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun 2021; 12:1821. [PMID: 33758196 PMCID: PMC7988148 DOI: 10.1038/s41467-021-22100-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Xiaoqin Xu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Susan Waters
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Amanda Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Chris K Tuggle
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, David, Davis, CA, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
133
|
van der Burg KR, Reed RD. Seasonal plasticity: how do butterfly wing pattern traits evolve environmental responsiveness? Curr Opin Genet Dev 2021; 69:82-87. [PMID: 33740694 DOI: 10.1016/j.gde.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023]
Abstract
Phenotypic plasticity in response to environmental cues is common in butterflies, and is a major driver of butterfly wing pattern diversity. The endocrine signal ecdysone has been revealed as a major modulator of plasticity in butterflies. External cues such as day length or temperature are translated internally into variation in ecdysone titers, which in turn lead to alternate phenotypes such as seasonal wing patterns. Here we review the evidence showing that ecdysone-mediated plasticity of different wing pattern features such as wing color and eyespot size can evolve independently. Recent studies show that ecdysone regulates gene expression in Drosophila melanogaster via a chromatin remodeling mechanism. We thus propose that environmentally responsive ecdysone titers in butterflies may also function via chromatin regulation to promote different seasonal phenotypes. We present a model of ecdysone response evolution that integrates both gene regulatory architecture and organismal development, and propose a set of testable mechanistic hypotheses for how plastic response profiles of specific genes can evolve.
Collapse
Affiliation(s)
- Karin Rl van der Burg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
134
|
Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel) 2021; 13:cancers13061213. [PMID: 33802026 PMCID: PMC8000866 DOI: 10.3390/cancers13061213] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Maintenance of telomeres is a fundamental step in human carcinogenesis and is primarily regulated by telomerase and the human telomerase reverse transcriptase gene (TERT). Improved understanding of the transcriptional control of this gene may provide potential therapeutic targets. Epigenetic modifications are a prominent mechanism to control telomerase activity and regulation of the TERT gene. TERT-targeting miRNAs have been widely studied and their function explained through pre-clinical in vivo model-based validation studies. Further, histone deacetylase inhibitors are now in pre and early clinical trials with significant clinical success. Importantly, TERT downregulation through epigenetic modifications including TERT promoter methylation, histone deacetylase inhibitors, and miRNA activity might contribute to clinical study design. This review provides an overview of the epigenetic mechanisms involved in the regulation of TERT expression and telomerase activity. Abstract Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
- School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
135
|
Lv Z, Li Z, Wang M, Zhao F, Zhang W, Li C, Gong L, Zhang Y, Mason AS, Liu B. Conservation and trans-regulation of histone modification in the A and B subgenomes of polyploid wheat during domestication and ploidy transition. BMC Biol 2021; 19:42. [PMID: 33750361 PMCID: PMC7944620 DOI: 10.1186/s12915-021-00985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy has played a prominent role in the evolution of plants and many other eukaryotic lineages. However, how polyploid genomes adapt to the abrupt presence of two or more sets of chromosomes via genome regulation remains poorly understood. Here, we analyzed genome-wide histone modification and gene expression profiles in relation to domestication and ploidy transition in the A and B subgenomes of polyploid wheat. RESULTS We found that epigenetic modification patterns by two typical euchromatin histone markers, H3K4me3 and H3K27me3, for the great majority of homoeologous triad genes in A and B subgenomes were highly conserved between wild and domesticated tetraploid wheats and remained stable in the process of ploidy transitions from hexaploid to extracted tetraploid and then back to resynthesized hexaploid. However, a subset of genes was differentially modified during tetraploid and hexaploid wheat domestication and in response to ploidy transitions, and these genes were enriched for particular gene ontology (GO) terms. The extracted tetraploid wheat manifested higher overall histone modification levels than its hexaploid donor, and which were reversible and restored to normal levels in the resynthesized hexaploid. Further, while H3K4me3 marks were distally distributed along each chromosome and significantly correlated with subgenome expression as expected, H3K27me3 marks showed only a weak distal bias and did not show a significant correlation with gene expression. CONCLUSIONS Our results reveal overall high stability of histone modification patterns in the A and B subgenomes of polyploid wheat during domestication and in the process of ploidy transitions. However, modification levels of a subset of functionally relevant genes in the A and B genomes were trans-regulated by the D genome in hexaploid wheat.
Collapse
Affiliation(s)
- Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yijng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Department of Plant Breeding, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
136
|
MACMIC Reveals A Dual Role of CTCF in Epigenetic Regulation of Cell Identity Genes. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:140-153. [PMID: 33677108 PMCID: PMC8498966 DOI: 10.1016/j.gpb.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
Numerous studies of relationship between epigenomic features have focused on their strong correlation across the genome, likely because such relationship can be easily identified by many established methods for correlation analysis. However, two features with little correlation may still colocalize at many genomic sites to implement important functions. There is no bioinformatic tool for researchers to specifically identify such feature pairs. Here, we develop a method to identify feature pairs in which two features have maximal colocalization minimal correlation (MACMIC) across the genome. By MACMIC analysis of 3306 feature pairs in 16 human cell types, we reveal a dual role of CCCTC-binding factor (CTCF) in epigenetic regulation of cell identity genes. Although super-enhancers are associated with activation of target genes, only a subset of super-enhancers colocalized with CTCF regulate cell identity genes. At super-enhancers colocalized with CTCF, CTCF is required for the active marker H3K27ac in cell types requiring the activation, and also required for the repressive marker H3K27me3 in other cell types requiring repression. Our work demonstrates the biological utility of the MACMIC analysis and reveals a key role for CTCF in epigenetic regulation of cell identity. The code for MACMIC is available at https://github.com/bxia888/MACMIC.
Collapse
|
137
|
Nakato R, Sakata T. Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods 2021; 187:44-53. [PMID: 32240773 DOI: 10.1016/j.ymeth.2020.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a central method in epigenomic research. Genome-wide analysis of histone modifications, such as enhancer analysis and genome-wide chromatin state annotation, enables systematic analysis of how the epigenomic landscape contributes to cell identity, development, lineage specification, and disease. In this review, we first present a typical ChIP-seq analysis workflow, from quality assessment to chromatin-state annotation. We focus on practical, rather than theoretical, approaches for biological studies. Next, we outline various advanced ChIP-seq applications and introduce several state-of-the-art methods, including prediction of gene expression level and chromatin loops from epigenome data and data imputation. Finally, we discuss recently developed single-cell ChIP-seq analysis methodologies that elucidate the cellular diversity within complex tissues and cancers.
Collapse
Affiliation(s)
- Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
138
|
Wang J, Li G, Li C, Zhang C, Cui L, Ai G, Wang X, Zheng F, Zhang D, Larkin RM, Ye Z, Zhang J. NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. THE NEW PHYTOLOGIST 2021; 229:3237-3252. [PMID: 33247457 DOI: 10.1111/nph.17112] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
NF-Y transcription factors are reported to play diverse roles in a wide range of biological processes in plants. However, only a few active NF-Y complexes are known in plants and the precise functions of NF-Y complexes in flavonoid biosynthesis have not been determined. Using various molecular, genetic and biochemical approaches, we found that NF-YB8a, NF-YB8b and NF-YB8c - a NF-YB subgroup - can interact with a specific subgroup of NF-YC and then recruit either of two distinct NF-YAs to form NF-Y complexes that bind the CCAAT element in the CHS1 promoter. Furthermore, suppressing the expression of particular NF-YB genes increased the levels of H3K27me3 at the CHS1 locus and significantly suppressed the expression of CHS1 during tomato fruit ripening, which led to the development of pink-coloured fruit with colourless peels. Altogether, by demonstrating that NF-Y transcription factors play essential roles in flavonoid biosynthesis and by providing significant molecular insight into the regulatory mechanisms that drive the development of pink-coloured tomato fruit, we provide a major advance to our fundamental knowledge and information that has considerable practical value for horticulture.
Collapse
Affiliation(s)
- Jiafa Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guobin Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxing Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunli Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Cui
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guo Ai
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangyan Zheng
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dedi Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
139
|
Ohnuki H, Venzon DJ, Lobanov A, Tosato G. Iterative epigenomic analyses in the same single cell. Genome Res 2021; 31:1819-1830. [PMID: 33627472 DOI: 10.1101/gr.269068.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022]
Abstract
Gene expression in individual cells is epigenetically regulated by DNA modifications, histone modifications, transcription factors, and other DNA-binding proteins. It has been shown that multiple histone modifications can predict gene expression and reflect future responses of bulk cells to extracellular cues. However, the predictive ability of epigenomic analysis is still limited for mechanistic research at a single cell level. To overcome this limitation, it would be useful to acquire reliable signals from multiple epigenetic marks in the same single cell. Here, we propose a new approach and a new method for analysis of several components of the epigenome in the same single cell. The new method allows reanalysis of the same single cell. We found that reanalysis of the same single cell is feasible, provides confirmation of the epigenetic signals, and allows application of statistical analysis to identify reproduced reads using data sets generated only from the single cell. Reanalysis of the same single cell is also useful to acquire multiple epigenetic marks from the same single cells. The method can acquire at least five epigenetic marks: H3K27ac, H3K27me3, mediator complex subunit 1, a DNA modification, and a DNA-interacting protein. We can predict active signaling pathways in K562 single cells using the epigenetic data and confirm that the predicted results strongly correlate with actual active signaling pathways identified by RNA-seq results. These results suggest that the new method provides mechanistic insights for cellular phenotypes through multilayered epigenome analysis in the same single cells.
Collapse
Affiliation(s)
- Hidetaka Ohnuki
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
140
|
Yan R, Fan C, Yin Z, Wang T, Chen X. Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine. Stem Cells 2021; 39:511-521. [PMID: 33587792 DOI: 10.1002/stem.3336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.
Collapse
Affiliation(s)
- Ruojin Yan
- Dr. Li Dak Sum - Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, People's Republic of China
| | - Chunmei Fan
- Dr. Li Dak Sum - Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, People's Republic of China
| | - Zi Yin
- Dr. Li Dak Sum - Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, People's Republic of China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Xiao Chen
- Dr. Li Dak Sum - Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, People's Republic of China
| |
Collapse
|
141
|
Smith AR, Smith RG, Macdonald R, Marzi SJ, Burrage J, Troakes C, Al-Sarraj S, Mill J, Lunnon K. The histone modification H3K4me3 is altered at the ANK1 locus in Alzheimer's disease brain. Future Sci OA 2021; 7:FSO665. [PMID: 33815817 PMCID: PMC8015672 DOI: 10.2144/fsoa-2020-0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Several epigenome-wide association studies of DNA methylation have highlighted altered DNA methylation in the ANK1 gene in Alzheimer's disease (AD) brain samples. However, no study has specifically examined ANK1 histone modifications in the disease. We use chromatin immunoprecipitation-qPCR to quantify tri-methylation at histone 3 lysine 4 (H3K4me3) and 27 (H3K27me3) in the ANK1 gene in entorhinal cortex from donors with high (n = 59) or low (n = 29) Alzheimer's disease pathology. We demonstrate decreased levels of H3K4me3, a marker of active gene transcription, with no change in H3K27me3, a marker of inactive genes. H3K4me3 is negatively correlated with DNA methylation in specific regions of the ANK1 gene. Our study suggests that the ANK1 gene shows altered epigenetic marks indicative of reduced gene activation in Alzheimer's disease.
Collapse
Affiliation(s)
- Adam R Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Sarah J Marzi
- The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| |
Collapse
|
142
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|
143
|
Williams J, Xu B, Putnam D, Thrasher A, Li C, Yang J, Chen X. MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biol 2021; 22:24. [PMID: 33461601 PMCID: PMC7814737 DOI: 10.1186/s13059-020-02220-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Although genome-wide DNA methylomes have demonstrated their clinical value as reliable biomarkers for tumor detection, subtyping, and classification, their direct biological impacts at the individual gene level remain elusive. Here we present MethylationToActivity (M2A), a machine learning framework that uses convolutional neural networks to infer promoter activities based on H3K4me3 and H3K27ac enrichment, from DNA methylation patterns for individual genes. Using publicly available datasets in real-world test scenarios, we demonstrate that M2A is highly accurate and robust in revealing promoter activity landscapes in various pediatric and adult cancers, including both solid and hematologic malignant neoplasms.
Collapse
Affiliation(s)
- Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Andrew Thrasher
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN, 38105, USA.
| |
Collapse
|
144
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
145
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
146
|
Xu G, Lyu H, Yi Y, Peng Y, Feng Q, Song Q, Gong C, Peng X, Palli SR, Zheng S. Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. iScience 2021; 24:102040. [PMID: 33521602 PMCID: PMC7820559 DOI: 10.1016/j.isci.2021.102040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic modification. However, the regulations and functions of insect intragenic DNA methylation remain unknown. Here, we demonstrate that a regulatory mechanism involving intragenic DNA methylation controls ovarian and embryonic developmental processes in Bombyx mori. In B. mori, DNA methylation is found near the transcription start site (TSS) of ovarian genes. By promoter activity analysis, we observed that 5′ UTR methylation enhances gene expression. Moreover, methyl-DNA-binding domain protein 2/3 (MBD2/3) binds to the intragenic methyl-CpG fragment and recruits acetyltransferase Tip60 to promote histone H3K27 acetylation and gene expression. Additionally, genome-wide analyses showed that the peak of H3K27 acetylation appears near the TSS of methyl-modified genes, and DNA methylation is enriched in genes involved in protein synthesis in the B. mori ovary, with MBD2/3 knockdown resulting in decreased fecundity. These data uncover a mechanism of gene body methylation for regulating insect gene expression and reproduction. Insect intragenic 5mC enhances gene expression through histone H3K27 acetylation MBD2/3 binds the intragenic 5mC and recruits Tip60 to promote H3K27 acetylation Intragenic 5mCs modify protein synthesis-related genes in insect ovaries The intragenic 5mC plays a role in insect reproduction
Collapse
Affiliation(s)
- Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yangqin Yi
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuling Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Chengcheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xuezhen Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
147
|
Bourdareau S, Tirichine L, Lombard B, Loew D, Scornet D, Wu Y, Coelho SM, Cock JM. Histone modifications during the life cycle of the brown alga Ectocarpus. Genome Biol 2021; 22:12. [PMID: 33397407 PMCID: PMC7784034 DOI: 10.1186/s13059-020-02216-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brown algae evolved complex multicellularity independently of the animal and land plant lineages and are the third most developmentally complex phylogenetic group on the planet. An understanding of developmental processes in this group is expected to provide important insights into the evolutionary events necessary for the emergence of complex multicellularity. Here, we focus on mechanisms of epigenetic regulation involving post-translational modifications of histone proteins. RESULTS A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression. CONCLUSIONS The overview of histone post-translational modifications in the brown alga presented here will provide a foundation for future studies aimed at understanding the role of chromatin modifications in the regulation of brown algal genomes.
Collapse
Affiliation(s)
- Simon Bourdareau
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Leila Tirichine
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Delphine Scornet
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Yue Wu
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France
| | - Susana M Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
- Current address: Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
148
|
Cao Y, Kitanovski S, Hoffmann D. intePareto: an R package for integrative analyses of RNA-Seq and ChIP-Seq data. BMC Genomics 2020; 21:802. [PMID: 33372591 PMCID: PMC7771091 DOI: 10.1186/s12864-020-07205-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA-Seq, the high-throughput sequencing (HT-Seq) of mRNAs, has become an essential tool for characterizing gene expression differences between different cell types and conditions. Gene expression is regulated by several mechanisms, including epigenetically by post-translational histone modifications which can be assessed by ChIP-Seq (Chromatin Immuno-Precipitation Sequencing). As more and more biological samples are analyzed by the combination of ChIP-Seq and RNA-Seq, the integrated analysis of the corresponding data sets becomes, theoretically, a unique option to study gene regulation. However, technically such analyses are still in their infancy. RESULTS Here we introduce intePareto, a computational tool for the integrative analysis of RNA-Seq and ChIP-Seq data. With intePareto we match RNA-Seq and ChIP-Seq data at the level of genes, perform differential expression analysis between biological conditions, and prioritize genes with consistent changes in RNA-Seq and ChIP-Seq data using Pareto optimization. CONCLUSION intePareto facilitates comprehensive understanding of high dimensional transcriptomic and epigenomic data. Its superiority to a naive differential gene expression analysis with RNA-Seq and available integrative approach is demonstrated by analyzing a public dataset.
Collapse
Affiliation(s)
- Yingying Cao
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr.2, Essen, 45141, Germany.
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr.2, Essen, 45141, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr.2, Essen, 45141, Germany
| |
Collapse
|
149
|
Baisya DR, Lonardi S. Prediction of histone post-translational modifications using deep learning. Bioinformatics 2020; 36:5610-5617. [PMID: 33367499 DOI: 10.1093/bioinformatics/btaa1075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
Abstract
Motivation
Histone post-translational modifications (PTMs) are involved in a variety of essential regulatory processes in the cell, including transcription control. Recent studies have shown that histone PTMs can be accurately predicted from the knowledge of transcription factor binding or DNase hypersensitivity data. Similarly, it has been shown that one can predict PTMs from the underlying DNA primary sequence.
Results
In this study, we introduce a deep learning architecture called DeepPTM for predicting histone PTMs from transcription factor binding data and the primary DNA sequence. Extensive experimental results show that our deep learning model outperforms the prediction accuracy of the model proposed in Benveniste et al. (PNAS 2014) and DeepHistone (BMC Genomics 2019). The competitive advantage of our framework lies in the synergistic use of deep learning combined with an effective pre-processing step. Our classification framework has also enabled the discovery that the knowledge of a small subset of transcription factors (which are histone-PTM and cell-type-specific) can provide almost the same prediction accuracy that can be obtained using all the transcription factors data.
Availabilityand implementation
https://github.com/dDipankar/DeepPTM.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dipankar Ranjan Baisya
- Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
150
|
Ullah H, De Filippis A, Santarcangelo C, Daglia M. Epigenetic regulation by polyphenols in diabetes and related complications. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020. [DOI: 10.3233/mnm-200489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most challenging health problems worldwide. Left untreated, it may progress causing serious complications. Genetics, epigenetics, and environmental factors are known to play an overlapping role in the pathogenesis of DM. Growing evidence suggests the hypothesis that the environment induces changes in the early phases of growth and development, influencing health and disease in the adulthood through the alteration in genetic expression of an individual, at least in part. DNA methylation, histone modifications and miRNAs are three mechanisms responsible for epigenetic alterations. The daily diet contains a number of secondary metabolites, with polyphenols being highest in abundance, which contribute to overall health and may prevent or delay the onset of many chronic diseases. Polyphenols have the ability to alter metabolic and signaling pathways at various levels, such as gene expression, epigenetic regulation, protein expression and enzyme activity. The potential efficacy of polyphenolic compounds on glucose homeostasis has been evidenced from in vitro, in vivo and clinical studies. The present review is designed to focus on epigenetic regulation exerted by polyphenolic compounds in DM and their complications, as well as to summarize clinical trials involving polyphenols in DM.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|