101
|
Sabetkar M, Low SY, Bradley NJ, Jacobs M, Naseem KM, Richard Bruckdorfer K. The nitration of platelet vasodilator stimulated phosphoprotein following exposure to low concentrations of hydrogen peroxide. Platelets 2008; 19:282-92. [PMID: 18569864 DOI: 10.1080/09537100801915142] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hydrogen peroxide (H2O2) at biologically relevant concentrations acts as a signaling molecule. We have shown previously that H2O2 acts synergistically with nitric oxide (NO) to inhibit platelet aggregation. We found that this synergism may be associated with the increased serine phosphorylation of vasodilator-sensitive phosphoprotein (VASP) by H2O2. In this study we demonstrate that H2O2 in the absence of NO or exogenous haem- containing proteins induces nitration of plateletVASP and other unidentified proteins by a mechanism that may involve the formation of peroxynitrite. The nitration was NO-dependent, but independent of oxidative stress and guanylyl cyclcase. The flavanoid epigallocatechin gallate (ECGC) completely suppressed nitration and was also shown to inhibit partially platelet activation by other agonists. Importantly, protein nitration was reversible, or at least the nitrated tyrosine residues are converted to a form not recognized by anti-nitrotyrosine antibodies. The loss of nitrated VASP was still evident in the presence of membrane permeable protease inhibitors. In conclusion, as H2O2 can inhibit platelet function, the nitration of VASP, a protein critical for actin cytoskeletal rearrangement, may represent a novel mechanism important in the regulation of platelets shape change leading to inhibition of platelets aggregation and the formation of blood clot.
Collapse
|
102
|
Bian K, Doursout MF, Murad F. Vascular system: role of nitric oxide in cardiovascular diseases. J Clin Hypertens (Greenwich) 2008; 10:304-10. [PMID: 18401228 DOI: 10.1111/j.1751-7176.2008.06632.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast with the short research history of the enzymatic synthesis of nitric oxide (NO), the introduction of nitrate-containing compounds for medicinal purposes marked its 150th anniversary in 1997. Glyceryl trinitrate (nitroglycerin) is the first compound of this category. On October 12, 1998, the Nobel Assembly awarded the Nobel Prize in Medicine or Physiology to scientists Robert Furchgott, Louis Ignarro, and Ferid Murad for their discoveries concerning NO as a signaling molecule in the cardiovascular system. NO-mediated signaling is a recognized component in various physiologic processes (eg, smooth muscle relaxation, inhibition of platelet and leukocyte aggregation, attenuation of vascular smooth muscle cell proliferation, neurotransmission, and immune defense), to name only a few. NO has also been implicated in the pathology of many inflammatory diseases, including arthritis, myocarditis, colitis, and nephritis and a large number of pathologic conditions such as amyotrophic lateral sclerosis, cancer, diabetes, and neurodegenerative diseases. Some of these processes (eg, smooth muscle relaxation, platelet aggregation, and neurotransmission) require only a brief production of NO at low nanomolar concentrations and are dependent on the recruitment of cyclic guanosine monophosphate (cGMP)-dependent signaling. Other processes are associated with direct interaction of NO or reactive nitrogen species derived from it with target proteins and requires a more sustained production of NO at higher concentrations but do not involve the cGMP pathway.
Collapse
Affiliation(s)
- Ka Bian
- The University of Texas Health Science Center at Houston, The Brown Institute of Molecular Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
103
|
Interaction of dicaffeoylquinic derivatives with peroxynitrite and other reactive nitrogen species. Arch Biochem Biophys 2008; 475:66-71. [DOI: 10.1016/j.abb.2008.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/10/2008] [Accepted: 04/13/2008] [Indexed: 02/05/2023]
|
104
|
Lu N, Zhang M, Li H, Gao Z. Completely Different Effects of Desferrioxamine on Hemin/Nitrite/H2O2-Induced Bovine Serum Albumin Nitration and Oxidation. Chem Res Toxicol 2008; 21:1229-34. [DOI: 10.1021/tx800013e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
105
|
Manini P, Camera E, Picardo M, Napolitano A, d’Ischia M. Biomimetic nitration of the linoleic acid metabolite 13-hydroxyoctadecadienoic acid: isolation and spectral characterization of novel chain-rearranged epoxy nitro derivatives. Chem Phys Lipids 2008; 151:51-61. [DOI: 10.1016/j.chemphyslip.2007.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Jung SH, DeRuisseau LR, Kavazis AN, DeRuisseau KC. Plantaris muscle of aged rats demonstrates iron accumulation and altered expression of iron regulation proteins. Exp Physiol 2007; 93:407-14. [DOI: 10.1113/expphysiol.2007.039453] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
107
|
Takahama U, Ryu K, Hirota S. Chlorogenic acid in coffee can prevent the formation of dinitrogen trioxide by scavenging nitrogen dioxide generated in the human oral cavity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9251-9258. [PMID: 17924708 DOI: 10.1021/jf071700r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Coffee contains antioxidants like chlorogenic acid and its isomers. In this report, effects of coffee on the nitrite-induced N2O3 formation were studied using whole saliva and bacterial fraction prepared from the saliva. The formation of N2O3 was measured by fluorescence increase due to the transformation of 4,5-diaminofluorescein to triazolfluorescein. Coffee inhibited the nitrite-induced fluorescence increase, and 50% inhibition was observed at several microg of coffee/mL in bacterial fraction of saliva as well as whole saliva. During the inhibition of the fluorescence increase, concentration of chlorogenic acid and its isomers decreased. It is discussed that the reduction of NO2 by chlorogenic acid and its isomers contributed to the coffee-dependent inhibition of the fluorescence increase as N2O3 is formed from NO and NO2. When coffee was added to whole saliva, chlorogenic acid and its isomers bound to cells in the saliva. The rate of the fluorescence increase in bacterial fraction, which was prepared at defined periods after the ingestion of coffee, was increased to the rate before the ingestion of coffee with a half-time of about 1 h. This result suggests that chlorogenic acid and its isomers remained in the oral cavity for a few hours after ingestion of coffee. The significance of coffee drinking and rinsing of the mouth with coffee for the health of the oral cavity is proposed.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental College, Kitakyushu, Japan.
| | | | | |
Collapse
|
108
|
Goodman AI, Olszanecki R, Yang LM, Quan S, Li M, Omura S, Stec DE, Abraham NG. Heme oxygenase-1 protects against radiocontrast-induced acute kidney injury by regulating anti-apoptotic proteins. Kidney Int 2007; 72:945-53. [PMID: 17667987 DOI: 10.1038/sj.ki.5002447] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Radiocontrast agents are thought to induce acute kidney injury in part through increased production of reactive oxygen species and increased cellular apoptosis. In this study we determined whether heme oxygenase-1 could prevent or reduce radiocontrast-induced acute kidney injury and, if so, what were the mechanisms by which this can occur. Sodium iothalamate was administered to uninephrectomized, salt-depleted male Sabra rats to initiate acute kidney injury. Heme oxygenase-1 was induced with cobalt protoporphyrin or inhibited with stannous mesoporphyrin. Inhibition of heme oxygenase exacerbated kidney injury as measured by an increase in plasma creatinine and in superoxide production. Heme oxygenase-1 induction prevented the increase in plasma creatinine and in superoxide in both the cortex and medulla compared to untreated rats with acute kidney injury. This protective effect of heme oxygenase-1 was associated with increased anti-apoptotic proteins Bcl-2 and Bcl-xl and a decrease of pro-apoptotic caspase-3 and caspase-9 along with increased expression of inactive BAX. Our study suggests that increased levels of heme oxygenase-1 are protective against acute kidney injury due to radiocontrast exposure.
Collapse
Affiliation(s)
- A I Goodman
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Dimitrov JD, Roumenina LT, Doltchinkova VR, Mihaylova NM, Lacroix-Desmazes S, Kaveri SV, Vassilev TL. Antibodies Use Heme as a Cofactor to Extend Their Pathogen Elimination Activity and to Acquire New Effector Functions. J Biol Chem 2007; 282:26696-26706. [PMID: 17636257 DOI: 10.1074/jbc.m702751200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various pathological processes are accompanied by release of high amounts of free heme into the circulation. We demonstrated by kinetic, thermodynamic, and spectroscopic analyses that antibodies have an intrinsic ability to bind heme. This binding resulted in a decrease in the conformational freedom of the antibody paratopes and in a change in the nature of the noncovalent forces responsible for the antigen binding. The antibodies use the molecular imprint of the heme molecule to interact with an enlarged panel of structurally unrelated epitopes. Upon heme binding, monoclonal as well as pooled immunoglobulin G gained an ability to interact with previously unrecognized bacterial antigens and intact bacteria. IgG-heme complexes had an enhanced ability to trigger complement-mediated bacterial killing. It was also shown that heme, bound to immunoglobulins, acted as a cofactor in redox reactions. The potentiation of the antibacterial activity of IgG after contact with heme may represent a novel and inducible innate-type defense mechanism against invading pathogens.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, F-75006 Paris, France; Université Paris Descartes, UMR S 872, F-75006 Paris, France; INSERM, U872, F-75006 Paris, France.
| | - Lubka T Roumenina
- Department of Biochemistry, Sofia University, St. Kliment Ohridsky, 1164 Sofia, Bulgaria
| | - Virjinia R Doltchinkova
- Department of Biophysics and Radiobiology, Sofia University, St. Kliment Ohridski, 1164 Sofia, Bulgaria
| | - Nikolina M Mihaylova
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Sebastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, F-75006 Paris, France; Université Paris Descartes, UMR S 872, F-75006 Paris, France; INSERM, U872, F-75006 Paris, France
| | - Srinivas V Kaveri
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, F-75006 Paris, France; Université Paris Descartes, UMR S 872, F-75006 Paris, France; INSERM, U872, F-75006 Paris, France
| | - Tchavdar L Vassilev
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
110
|
Determination of 3-Nitrotyrosine by Micellar Electrokinetic Chromatography with on-Column High-Salt Stacking. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2007. [DOI: 10.1016/s1872-2040(07)60069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
111
|
Boudko DY. Bioanalytical profile of the L-arginine/nitric oxide pathway and its evaluation by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:186-210. [PMID: 17329176 PMCID: PMC2040328 DOI: 10.1016/j.jchromb.2007.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
This review briefly summarizes recent progress in fundamental understanding and analytical profiling of the L-arginine/nitric oxide (NO) pathway. It focuses on key analytical references of NO actions and the experimental acquisition of these references in vivo, with capillary electrophoresis (CE) and high-performance capillary electrophoresis (HPCE) comprising one of the most flexible and technologically promising analytical platform for comprehensive high-resolution profiling of NO-related metabolites. Another aim of this review is to express demands and bridge efforts of experimental biologists, medical professionals and chemical analysis-oriented scientists who strive to understand evolution and physiological roles of NO and to develop analytical methods for use in biology and medicine.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA.
| |
Collapse
|
112
|
Dimitrov JD, Roumenina LT, Doltchinkova VR, Vassilev TL. Iron Ions and Haeme Modulate the Binding Properties of Complement Subcomponent C1q and of Immunoglobulins. Scand J Immunol 2007; 65:230-9. [PMID: 17309777 DOI: 10.1111/j.1365-3083.2006.01893.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complement system and circulating antibodies play a major role in the defence against infection. They act at the sites of inflammation, where the harsh microenvironment and the oxidative stress lead to the release of free iron ions and haeme. The aim of this study was to analyse the consequences of the exposure of C1q and immunoglobulins to iron ions or haeme. The changes in target recognition by C1q and in the rheumatoid factor activity of the immunoglobulins were investigated. The exposure of C1q to ferrous ions increased its binding to IgG and to IgM. In contrast, haeme inhibited C1q binding to all studied targets, especially to IgG1 and C-reactive protein. Thus, the haeme released as a result of tissue damage and oxidative stress may act as a negative feedback regulator of an inappropriate complement triggering as seen in ischaemia-reperfusion tissue injury. The results also show that iron ions and haeme were able to reveal rheumatoid factor activity of IgG. The modulation of the C1q-target binding as well as the revealing of rheumatoid factor activity of IgG by exposure to redox-active agents released at the sites of inflammation may have important consequences for the understanding of the immunopathological mechanisms of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- J D Dimitrov
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
113
|
Olmos A, Giner RM, Recio MC, Ríos JL, Máñez S. Modulation of protein tyrosine nitration and inflammatory mediators by isoprenylhydroquinone glucoside. Eur J Pharm Sci 2007; 30:220-8. [PMID: 17161592 DOI: 10.1016/j.ejps.2006.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
The nitration of tyrosine caused by peroxynitrite and other reactive nitrogen species is clearly detrimental for some physiological processes; however, its signalling role is still open to controversy. Among the natural phenolics known for their ability to oppose free tyrosine nitration, isoprenylhydroquinone glucoside is investigated due to its unusual structure, which contains a simple hydroxybenzene alkylated by a hemiterpenoid moiety. This hydroquinone was shown to be an effective inhibitor of peroxynitrite-induced protein tyrosine nitration in 3T3 fibroblasts. When tested on bovine seroalbumin nitration, however, the potency was reduced by half and the effect was almost abolished in the presence of bicarbonate. In contrast, addition of this anion had no effect on the nitrite/hydrogen peroxide/hemin system. Isoprenylhydroquinone glucoside was also active in the microM range on intra- and extracellular protein-bound tyrosine nitration by phorbol 12-myristate 13-acetate-stimulated neutrophils. The effects on nitric oxide synthase expression, interleukin-1beta and tumor necrosis factor-alpha production by lipopolysaccharide-stimulated macrophages were quite moderate. Thus, isoprenylhydroquinone glucoside is an inhibitor of protein nitration in situ, but lacks effect on the generation of either nitric oxide or inflammatory cytokines.
Collapse
Affiliation(s)
- Ana Olmos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
114
|
Jiang R, Paik DC, Hankinson JL, Barr RG. Cured meat consumption, lung function, and chronic obstructive pulmonary disease among United States adults. Am J Respir Crit Care Med 2007; 175:798-804. [PMID: 17255565 PMCID: PMC1899290 DOI: 10.1164/rccm.200607-969oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Cured meats are high in nitrites. Nitrites generate reactive nitrogen species that may cause nitrative and nitrosative damage to the lung resulting in emphysema. OBJECTIVE To test the hypothesis that frequent consumption of cured meats is associated with lower lung function and increased odds of chronic obstructive pulmonary disease (COPD). METHODS Cross-sectional study of 7,352 participants in the Third National Health and Nutrition Examination Survey, 45 years of age or more, who had adequate measures of cured meat, fish, fruit, and vegetable intake, and spirometry. RESULTS After adjustment for age, smoking, and multiple other potential confounders, frequency of cured meat consumption was inversely associated with FEV(1) and FEV(1)/FVC but not FVC. The adjusted differences in FEV(1) between individuals who did not consume cured meats and those who consumed cured meats 1 to 2, 3 to 4, 5 to 13, and 14 or more times per month were -37.6, -11.5, -42.0, and -110 ml, respectively (p for trend < 0.001). Corresponding differences for FEV(1)/FVC were -0.91, -0.54, -1.13, and -2.13% (p for trend = 0.001). These associations were not modified by smoking status. The multivariate odds ratio for COPD (FEV(1)/FVC <or= 0.7 and FEV(1) < 80% predicted) was 1.78 (95% confidence interval, 1.29-2.47) comparing the highest with the lowest category of cured meat consumption. The corresponding odds ratios for mild, moderate, and severe COPD were 1.11, 1.46, and 2.41, respectively. CONCLUSIONS Frequent cured meat consumption was associated independently with an obstructive pattern of lung function and increased odds of COPD. Additional studies are required to determine if cured meat consumption is a causal risk factor for COPD.
Collapse
Affiliation(s)
- Rui Jiang
- Division of General Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
115
|
Peterson TM, Gow AJ, Luckhart S. Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radic Biol Med 2007; 42:132-42. [PMID: 17157200 PMCID: PMC1764505 DOI: 10.1016/j.freeradbiomed.2006.10.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/07/2006] [Accepted: 10/10/2006] [Indexed: 02/04/2023]
Abstract
Malaria parasite infection in anopheline mosquitoes is limited by inflammatory levels of nitric oxide metabolites. To assess the mechanisms of parasite stasis or toxicity, we investigated the biochemistry of these metabolites within the blood-filled mosquito midgut. Our data indicate that nitrates, but not nitrites, are elevated in the Plasmodium-infected midgut. Although levels of S-nitrosothiols do not change with infection, blood proteins are S-nitrosylated after ingestion by the mosquito. In addition, photolyzable nitric oxide, which can be attributed to metal nitrosyls, is elevated after infection and, based on the abundance of hemoglobin, likely includes heme iron nitrosyl. The persistence of oxyhemoglobin throughout blood digestion and changes in hemoglobin conformation in response to infection suggest that hemoglobin catalyzes the synthesis of nitric oxide metabolites in a reducing environment. Provision of urate, a potent reductant and scavenger of oxidants and nitrating agents, as a dietary supplement to mosquitoes increased parasite infection levels relative to allantoin-fed controls, suggesting that nitrosative and/or oxidative stresses negatively impact developing parasites. Collectively, our results reveal a unique role for nitric oxide in an oxyhemoglobin-rich environment. In contrast to facilitating oxygen delivery by hemoglobin in the mammalian vasculature, nitric oxide synthesis in the blood-filled mosquito midgut drives the formation of toxic metabolites that limit parasite development.
Collapse
Key Words
- malaria
- plasmodium
- mosquito
- immunity
- anopheles
- nitric oxide
- hemoglobin
- ap, alkaline phosphatase
- asnos, anopheles stephensi nitric oxide synthase
- dtt, dithiothreitol
- gsno, s-nitrosoglutathione
- icr, institute of cancer research
- i, malaria parasite-infected
- kd, kilodalton
- methb, deoxygenated hemoglobin
- name, ng-nitro-l-arginine methyl ester
- nb, non-bloodfed
- nox, nitrogen oxides
- ntyr, nitrotyrosine
- oxyhb, oxygenated hemoglobin
- pbm, post-bloodmeal or post-bloodfeeding
- pn, peroxynitrite
- rnnos, n-nitroso compounds
- ros, reactive oxygen species
- page, polyacrylamide gel electrophoresis
- sem, standard error of the mean
- snap, s-nitroso-n-acetylpenicillamine
- sno, s-nitrosothiol
- u, uninfected
Collapse
Affiliation(s)
| | - Andrew J. Gow
- Department of Pharmacology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis CA
- Address correspondence and reprints to: Shirley Luckhart, Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California at Davis, Davis CA 95616 USA; Tel: (530) 754-6963, Fax: (530) 752-8692, E-mail:
| |
Collapse
|
116
|
Vera T, Kelsen S, Yanes LL, Reckelhoff JF, Stec DE. HO-1 induction lowers blood pressure and superoxide production in the renal medulla of angiotensin II hypertensive mice. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1472-8. [PMID: 17194725 DOI: 10.1152/ajpregu.00601.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heme oxygenase-1 (HO-1) induction can attenuate the development of angiotensin II (ANG II)-dependent hypertension. However, the mechanism by which HO-1 lowers blood pressure in this model is not clear. The goal of this study was to test the hypothesis that induction of HO-1 in the kidney can attenuate the increase in reactive oxygen species (ROS) generation in the kidney that occurs during ANG II-dependent hypertension. Mice were divided into four groups, control (Con), cobalt protoporphyrin (CoPP), ANG II, and ANG II + CoPP. CoPP treatment (50 mg/kg) was administered in a single subcutaneous injection 2 days prior to implantation of an osmotic minipump that infused ANG II at a rate of 1 microg x kg(-1) x min(-1). At the end of this period, mean arterial blood pressure (MAP) averaged 93 +/- 5, 90 +/- 5, 146 +/- 8, and 105 +/- 6 mmHg in Con, CoPP-, ANG II-, and ANG II + CoPP-treated mice. To determine whether HO-1 induction resulted in a decrease in ANG II-stimulated ROS generation in the renal medulla, superoxide production was measured. Medullary superoxide production was increased by ANG II infusion and normalized in mice pretreated with CoPP. The reduction in ANG II-mediated superoxide production in the medulla with CoPP was associated with a decrease in extracellular superoxide dismutase protein but an increase in catalase protein and activity. These results suggest that reduction in superoxide and possibly hydrogen peroxide production in the renal medulla may be a potential mechanism by which induction of HO-1 with CoPP lowers blood pressure in ANG-II dependent hypertension.
Collapse
Affiliation(s)
- Trinity Vera
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
117
|
Madhusoodanan KS, Murad F. NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem Res 2006; 32:681-94. [PMID: 17043768 DOI: 10.1007/s11064-006-9167-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 09/08/2006] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is a short lived diatomic free radical species synthesized by nitric oxide synthases (NOS). The physiological roles of NO depend on its local concentrations as well as availability and the nature of downstream target molecules. At low nanomolar concentrations, activation of soluble guanylyl cyclase (sGC) is the major event initiated by NO. The resulting elevation in the intracellular cyclic GMP (cGMP) levels serves as signals for regulating diverse cellular and physiological processes. The participation of NO and cGMP in diverse physiological processes is made possible through cell type specific spatio-temporal regulation of NO and cGMP synthesis and signal diversity downstream of cGMP achieved through specific target selection. Thus cyclic GMP directly regulates the activities of its downstream effectors such as Protein Kinase G (PKG), Cyclic Nucleotide Gated channels (CNG) and Cyclic nucleotide phosphodiesterases, which in turn regulate the activities of a number of proteins that are involved in regulating diverse cellular and physiological processes. Localization and activity of the NO-cGMP signaling pathway components are regulated by G-protein coupled receptors, receptor and non receptor tyrosine kinases, phosphatases and other signaling molecules. NO also serves as a powerful paracrine factor. At micromolar concentrations, NO reacts with superoxide anion to form reactive peroxinitrite, thereby leading to the oxidation of important cellular proteins. Extensive research efforts over the past two decades have shown that NO is an important modulator of axon outgrowth and guidance, synaptic plasticity, neural precursor proliferation as well as neuronal survival. Excessive NO production as that evoked by inflammatory signals has been identified as one of the major causative reasons for the pathogenesis of a number of neurodegenerative diseases such as ALS, Alzheimers and Parkinson diseases. Regenerative therapies involving transplantation of embryonic stem cells (ES cells) and ES cell derived lineage committed neural precursor cells have recently shown promising results in animal models of Parkinson disease (PD). Recent studies from our laboratory have shown that a functional NO-cGMP signaling system is operative early during the differentiation of embryonic stem cells. The cell type specific, spatio-temporally regulated NO-cGMP signaling pathways are well suited for inductive signals to use them for important cell fate decision making and lineage commitment processes. We believe that manipulating the NO-cGMP signaling system will be an important tool for large scale generation of lineage committed precursor cells to be used for regenerative therapies.
Collapse
Affiliation(s)
- K S Madhusoodanan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, 1825 Pressler Street, Houston, TX 77030, USA
| | | |
Collapse
|
118
|
Zhao Y, Li H, Gao Z, Gong Y, Xu H. Effects of flavonoids extracted from Scutellaria baicalensis Georgi on hemin–nitrite–H2O2 induced liver injury. Eur J Pharmacol 2006; 536:192-9. [PMID: 16574098 DOI: 10.1016/j.ejphar.2006.02.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 02/10/2006] [Accepted: 02/21/2006] [Indexed: 01/01/2023]
Abstract
Hemin-nitrite-H2O2 system may play a role in liver oxidative injury in some pathological events. In this paper, the effects of the three active components of the root of Scutellaria baicalensis Georgi, i.e. baicalin, baicalein and wogonin, on hemin-nitrite-H2O2 induced liver injury were studied in liver homogenate, liver microsome and human hepatoblastoma cell line HepG2 cells. It was found that hemin-nitrite-H2O2 could induce liver homogenate protein nitration, lipid peroxidation and liver microsome protein oxidation; it also caused a decrease of HepG2 cells viability. Baicalein, baicalin and wogonin could inhibit protein nitration and lipid peroxidation in liver homogenate as well as in HepG2 cells in a dose-dependent manner, the inhibition order was baicalein>baicalin>>wogonin. These three flavonoids also inhibited the oxidation of protein in liver microsome, the decrease of cell viability and the content of GSH in HepG2 cells, among which baicalin represented the most inhibitory effect. Besides, hemin-H2O2 induced cell injury could be augmented with the existence of nitrite, indicating protein nitration involved in hemin-nitrite-H2O2 induced liver injury. These results demonstrated hemin-nitrite-H2O2 could induce liver injury through oxidizing or nitrating different biomolecules. Baicalein, baicalin and wogonin could inhibit hemin-nitrite-H2O2 induced liver injury in dose-dependent manners by inhibiting oxidation and nitration.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Chemistry, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | | | | | | | | |
Collapse
|
119
|
Schildknecht S, Heinz K, Daiber A, Hamacher J, Kavaklí C, Ullrich V, Bachschmid M. Autocatalytic tyrosine nitration of prostaglandin endoperoxide synthase-2 in LPS-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun 2006; 340:318-25. [PMID: 16375865 DOI: 10.1016/j.bbrc.2005.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 12/03/2005] [Indexed: 10/25/2022]
Abstract
In the literature, biological tyrosine nitrations have been reported to depend not only on peroxynitrite but also on nitrite/hydrogen peroxide linked to catalysis by myeloperoxidase. In endotoxin-stimulated RAW 264.7 macrophages, we have detected a major nitrotyrosine positive protein band around 72 kDa and identified it as prostaglandin endoperoxide synthase-2 (PGHS-2). Isolated PGHS-2 in absence of its substrate arachidonate was not only tyrosine-nitrated with peroxynitrite, but also with nitrite/hydrogen peroxide in complete absence of myeloperoxidase. Our data favor an autocatalytic activation of nitrite by PGHS-2 with a subsequent nitration of the essential tyrosine residue in the cyclooxygenase domain. Under inflammatory conditions, nitrite formed via NO-synthase-2 may therefore act as an endogenous regulator for PGHS-2 in stimulated macrophages. Nitration of PGHS-2 by the autocatalytic activation of nitrite further depends on the intracellular concentration of arachidonate since arachidonate reacted competitively with nitrite and could prevent PGHS-2 from nitration when excessively present.
Collapse
|
120
|
Abstract
The role of nitric oxide (NO) in cellular signaling has become one of the most rapidly growing areas in biology during the past two decades. As a gas and free radical with an unshared electron, nitric oxide participates in various biological processes. The interaction between NO and proteins may be roughly divided into two categories. In many instances, NO mediates its biological effects by activating guanylyl cyclase and elevates intracellular cyclic GMP synthesis from GTP. However, the list of cGMP-independent effects of NO is also growing at a rapid rate. In this review, the importance and relevance of nitrotyrosine formation are stressed. The utilization of intact cell cultures, tissues, and cell-free preparations along with the use of pharmacological, biochemical, and molecular biological approaches to characterize, purify, and reconstitute these NO regulatory pathways could lead to the development of new therapies for various pathological conditions that are characterized by unbalanced production of NO.
Collapse
Affiliation(s)
- Ka Bian
- The Institute of Molecular Medicine, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
121
|
Beckers-Trapp ME, Lanoue L, Keen CL, Rucker RB, Uriu-Adams JY. Abnormal development and increased 3-nitrotyrosine in copper-deficient mouse embryos. Free Radic Biol Med 2006; 40:35-44. [PMID: 16337877 DOI: 10.1016/j.freeradbiomed.2005.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/08/2005] [Accepted: 08/08/2005] [Indexed: 11/28/2022]
Abstract
Copper-deficient rat embryos are characterized by brain and heart anomalies, low superoxide dismutase activity, and high superoxide anion concentrations. One consequence of increased superoxide anions can be the formation of peroxynitrite, a strong biological oxidant. To investigate developmentally important features of copper deficiency, GD 8.5 mouse embryos from copper-adequate and copper-deficient dams were cultured in media that were adequate or deficient in copper. After 48 h, copper-deficient embryos exhibited brain and heart anomalies, and a high incidence of yolk sac vasculature abnormalities compared to controls. Immunohistochemistry of 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine for lipid and DNA damage, respectively, was similar between groups. In contrast, 3-nitrotyrosine, taken as a measure of protein nitration, was markedly higher in the neuroepithelium of the anterior neural tube of copper-deficient embryos than in controls. Repletion of copper-deficient media with copper, or supplementation with copper-zinc superoxide dismutase, Tiron, or glutathione peroxidase did not ameliorate the abnormal development, but did decrease 3-nitrotyrosine in neuroepithelium of copper-deficient embryos. These data support the concept that while copper deficiency compromises oxidant defense and increases protein nitration, additional mechanisms, e.g., altered nitric oxide metabolism may contribute to copper-deficiency-induced teratogenesis.
Collapse
Affiliation(s)
- Molly E Beckers-Trapp
- Department of Nutrition, One Shields Avenue, University of California - Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
122
|
Deng H. Nitrite anions induce nitrosative deamination of peptides and proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3634-8. [PMID: 17096454 DOI: 10.1002/rcm.2776] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, reactions of sodium nitrite with proteins/peptides were characterized with mass spectrometry. The reaction generates two major products: replacement of the amino group by a hydroxyl group and formation of an alkene derivative by loss of a NH3 group at the N-terminus and the side chain of lysine residues of proteins/peptides. The reaction proceeds rapidly in weak acidic solution and at 37 degrees C in the presence of a millimolar concentration of nitrite, demonstrating that nitrite induces nitrosative deamination in proteins and peptides. The facile nitrite-induced modification of amino groups of protein/peptides changes the chemical nature of proteins and may have various applications in peptide synthesis, analytical chemistry, and protein engineering. It also provides information to enhance our understanding of functions of nitrite ions in biology and food preservation.
Collapse
Affiliation(s)
- Haiteng Deng
- The Proteomics Resource Center, The Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
123
|
Botros FT, Schwartzman ML, Stier CT, Goodman AI, Abraham NG. Increase in heme oxygenase-1 levels ameliorates renovascular hypertension. Kidney Int 2005; 68:2745-55. [PMID: 16316349 DOI: 10.1111/j.1523-1755.2005.00745.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The heme oxygenase system (HO-1 and HO-2) catalyzes the conversion of heme to free iron, carbon monoxide (CO), a vasodepressor, and biliverdin, which is further converted to bilirubin, an antioxidant. HO-1 induction has been shown to suppress arachidonic acid metabolism by cytochrome P450 (CYP450) monooxygenases and cyclooxygenases (COX), and to decrease blood pressure in spontaneously hypertensive rats (SHR). The Goldblatt 2K1C model is a model of renovascular hypertension in which there is increased expression of COX-2 in the macula densa and increased renin release from the juxtaglomerular apparatus of the clipped kidney. We examined whether HO-1 overexpression, as a prophylactic approach, would attenuate renovascular hypertension and evaluated potential mechanisms that may account for its effect. METHODS 2K1C rats were treated with cobalt protoporphyrin (CoPP) or tin mesoporphyrin (SnMP) one day before surgery and weekly for three weeks thereafter. We measured systolic blood pressure, HO activity, HO-1, HO-2, COX-1 and COX-2 protein expression, heme content, and nitrotyrosine levels as indices of oxidative stress. Urinary prostaglandin excretion (PGE2), plasma renin activity (PRA), and plasma aldosterone levels were also measured. RESULTS CoPP administration induced renal HO-1 expression by 20-fold and HO activity by 6-fold. This was associated with a reduction in heme content, nitrotyrosine levels, COX-2 expression and urinary PGE2 excretion, and attenuation of the development of hypertension in the 2K1C rats. There was no decrease in plasma renin activity; however, plasma aldosterone levels were significantly lower. In the 2K1C SnMP-treated rats, blood pressure was significantly higher than that of untreated 2K1C rats throughout the study, and the difference in the size of the smaller left clipped kidney compared to the nonclipped right kidney was significantly increased. CONCLUSION These findings define an action of prolonged HO-1 induction to interrupt and counteract the influence of the renin-angiotensin-aldosterone system (RAAS) to increase in blood pressure in the 2K1C model of renovascular hypertension. Multiple mechanisms include a decrease in oxidative stress as indicated by the decrease in cellular heme and nitrotyrosine levels, an anti-inflammatory action as evidenced by a decrease in COX-2 and PGE2, interference with the action of angiontensin II (Ang II) as evidenced by an increase in PRA in the face of a decrease in PGE2 and aldosterone, as well as the inhibition of aldosterone synthesis.
Collapse
Affiliation(s)
- Fady T Botros
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
124
|
Abstract
Copper (Cu), a redox active metal, is an essential nutrient for all species studied to date. During the past decade, there has been increasing interest in the concept that marginal deficits of this element can contribute to the development and progression of a number of disease states including cardiovascular disease and diabetes. Deficits of this nutrient during pregnancy can result in gross structural malformations in the conceptus, and persistent neurological and immunological abnormalities in the offspring. Excessive amounts of Cu in the body can also pose a risk. Acute Cu toxicity can result in a number of pathologies, and in severe cases, death. Chronic Cu toxicity can result in liver disease and severe neurological defects. The concept that elevated ceruloplasmin is a risk factor for certain diseases is discussed. In this paper, we will review recent literature on the potential causes of Cu deficiency and Cu toxicity, and the pathological consequences associated with the above. Finally, we will review some of the potential biochemical lesions that might underlie these pathologies. Given that oxidative stress is a characteristic of Cu deficiency, the role of Cu in the oxidative defense system will receive special attention. The concept that excess Cu may be a precipitating factor in Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, One Shields Ave., University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
125
|
Ottenheijm CAC, Heunks LMA, Geraedts MCP, Dekhuijzen PNR. Hypoxia-induced skeletal muscle fiber dysfunction: role for reactive nitrogen species. Am J Physiol Lung Cell Mol Physiol 2005; 290:L127-35. [PMID: 16113049 DOI: 10.1152/ajplung.00073.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hypoxia impairs skeletal muscle function, but the precise mechanisms are incompletely understood. In hypoxic rat diaphragm muscle, generation of peroxynitrite is elevated. Peroxynitrite and other reactive nitrogen species have been shown to impair contractility of skinned muscle fibers, reflecting contractile protein dysfunction. We hypothesized that hypoxia induces contractile protein dysfunction and that reactive nitrogen species are involved. In addition, we hypothesized that muscle reoxygenation reverses contractile protein dysfunction. In vitro contractility of rat soleus muscle bundles was studied after 30 min of hyperoxia (Po2 approximately 90 kPa), hypoxia (Po2 approximately 5 kPa), hypoxia + 30 microM N(G)-monomethyl-L-arginine (L-NMMA, a nitric oxide synthase inhibitor), hyperoxia + 30 microM L-NMMA, and hypoxia (30 min) + reoxygenation (15 min). One part of the muscle bundle was used for single fiber contractile measurements and the other part for nitrotyrosine detection. In skinned single fibers, maximal Ca2+-activated specific force (Fmax), fraction of strongly attached cross bridges (alphafs), rate constant of force redevelopment (ktr), and myofibrillar Ca2+ sensitivity were determined. Thirty minutes of hypoxia reduced muscle bundle contractility. In the hypoxic group, single fiber Fmax, alphafs, and ktr were significantly reduced compared with hyperoxic, L-NMMA, and reoxygenation groups. Myofibrillar Ca2+ sensitivity was not different between groups. Nitrotyrosine levels were increased in hypoxia compared with all other groups. We concluded that acute hypoxia induces dysfunction of skinned muscle fibers, reflecting contractile protein dysfunction. In addition, our data indicate that reactive nitrogen species play a role in hypoxia-induced contractile protein dysfunction. Reoxygenation of the muscle bundle partially restores bundle contractility but completely reverses contractile protein dysfunction.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Department of Pulmonary Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
126
|
d'Ischia M. Nitrosation and nitration of bioactive molecules: toward the basis of disease and its prevention. CR CHIM 2005. [DOI: 10.1016/j.crci.2005.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
127
|
Goldstein S, Lind J, Merényi G. Chemistry of Peroxynitrites as Compared to Peroxynitrates. Chem Rev 2005; 105:2457-70. [PMID: 15941219 DOI: 10.1021/cr0307087] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Goldstein
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Israel.
| | | | | |
Collapse
|
128
|
Yamaguchi Y, Haginaka J, Morimoto S, Fujioka Y, Kunitomo M. Facilitated nitration and oxidation of LDL in cigarette smokers. Eur J Clin Invest 2005; 35:186-93. [PMID: 15733073 DOI: 10.1111/j.1365-2362.2005.01472.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cigarette smoking increases the risk of developing atherosclerosis and ischaemic heart disease. Smoking-induced oxidative stress is considered to favour oxidation of low-density lipoprotein (LDL) and subsequently promotes the atherogenic process. We investigated whether peroxynitrite, a reaction product of cigarette smoke, is involved in facilitated oxidation of LDL in smokers. MATERIALS AND METHODS Plasma LDL was obtained from 10 healthy asymptomatic cigarette smokers and 10 healthy nonsmokers. The state of enhanced oxidative stress in the plasma was assessed by LDL subfraction assay using anion-exchange high-performance liquid chromatography (AE-HPLC) and measurements of thiobarbituric acid-reactive substances (TBARS), 8-hydroxydeoxyguanosine (8-OHdG), vitamin E, 3-nitrotyrosine and 3-chlorotyrosine. RESULTS Smokers showed a significantly higher level of TBARS and 8-OHdG as well as a significantly lower level of vitamin E than nonsmokers, even after stopping smoking for 10 h or more. The LDL subfraction assay demonstrated an increase in oxidatively modified LDL, as expressed by lower levels of LDL1 and higher levels of LDL2. The 3-nitrotyrosine levels in apolipoprotein B in LDL were significantly higher in smokers than nonsmokers, while the 3-chlorotyrosine levels remained unchanged. In addition, these changes observed in the smokers were further accelerated within 30 min after resumption of cigarette smoking when compared with the levels before smoking resumption. CONCLUSION The present study suggests that peroxynitrite plays a significant role in oxidative modification of plasma LDL induced by cigarette smoking.
Collapse
Affiliation(s)
- Y Yamaguchi
- Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan.
| | | | | | | | | |
Collapse
|
129
|
Turko IV, Murad F. Mapping Sites of Tyrosine Nitration by Matrix‐Assisted Laser Desorption/Ionization Mass Spectrometry. Methods Enzymol 2005; 396:266-75. [PMID: 16291238 DOI: 10.1016/s0076-6879(05)96023-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Protein tyrosine nitration is an important part of nitric oxide biology. This posttranslational modification occurs under normal physiological conditions and is substantially enhanced under various pathological conditions. Studies reveal that protein tyrosine nitration is a dynamic and selective process that influences protein function and turnover and can be considered a diagnostic biomarker of pathology. The identification of nitrated tyrosine residues directly within any given nitrated protein is important for studies on in vivo mechanisms of nitration and for the explanation of functional consequences of nitration. Specific nitrated tyrosines in given proteins may be also more informative as oxidative biomarkers than overall nitrotyrosine levels. However, localization of the sites of nitration remains a methodological challenge. Mass spectrometry (MS) is an ideal method for identifying nitrated tyrosines in proteins because of its sensitivity and specificity. This chapter is not intended to thoroughly discuss the various MS-based approaches for nitrotyrosine identification and merely focuses on the analysis of peptides containing nitrotyrosine by matrix-assisted laser desorption ionization MS (MALDI-MS). The data summarized show that the MALDI-MS pattern of a tyrosine-nitrated peptide includes the unique combination of ions that provides unequivocal evidence for the presence of nitrotyrosine in a given peptide and could be used for mapping sites of tyrosine nitration in proteins.
Collapse
Affiliation(s)
- Illarion V Turko
- Department of Integrative Biology and Pharmacology, UT Health Science Center at Houston, TX 77030, USA
| | | |
Collapse
|
130
|
Goldstein S, Merenyi G, Samuni A. Kinetics and Mechanism of•NO2Reacting with Various Oxidation States of Myoglobin. J Am Chem Soc 2004; 126:15694-701. [PMID: 15571391 DOI: 10.1021/ja046186+] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen dioxide ((*)NO(2)) participates in a variety of biological reactions. Of great interest are the reactions of (*)NO(2) with oxymyoglobin and oxyhemoglobin, which are the predominant hemeproteins in biological systems. Although these reactions occur rapidly during the nitrite-catalyzed autoxidation of hemeproteins, their roles in systems producing (*)NO(2) in the presence of these hemeproteins have been greatly underestimated. In the present study, we employed pulse radiolysis to study directly the kinetics and mechanism of the reaction of oxymyoglobin (MbFe(II)O(2)) with (*)NO(2). The rate constant of this reaction was determined to be (4.5 +/- 0.3) x 10(7) M(-1)s(-1), and is among the highest rate constants measured for (*)NO(2) with any biomolecule at pH 7.4. The interconversion among the various oxidation states of myoglobin that is prompted by nitrogen oxide species is remarkable. The reaction of MbFe(II)O(2) with (*)NO(2) forms MbFe(III)OONO(2), which undergoes rapid heterolysis along the O-O bond to yield MbFe(V)=O and NO(3-). The perferryl-myoglobin (MbFe(V)=O) transforms rapidly into the ferryl species that has a radical site on the globin ((*)MbFe(IV)=O). The latter oxidizes another oxymyoglobin (10(4) M(-1)s(-1) < k(17) < 10(7) M(-1)s(-1)) and generates equal amounts of ferrylmyoglobin and metmyoglobin. At much longer times, the ferrylmyoglobin disappears through a relatively slow comproportionation with oxymyoglobin (k(18) = 21.3 +/- 5.3 M(-1)s(-1)). Eventually, each (*)NO(2) radical converts three oxymyoglobin molecules into metmyoglobin. The same intermediate, namely MbFe(III)OONO(2), is also formed via the reaction peroxynitrate (O(2)NOO(-)/O(2)NOOH) with metmyoglobin (k(19) = (4.6 +/- 0.3) x 10(4) M(-1)s(-1)). The reaction of (*)NO(2) with ferrylmyoglobin (k(20) = (1.2 +/- 0.2) x 10(7) M(-1)s(-1)) yields MbFe(III)ONO(2), which in turn dissociates (k(21) = 190 +/- 20 s(-1)) into metmyoglobin and NO(3-). This rate constant was found to be the same as that measured for the decay of the intermediate formed in the reaction of MbFe(II)O(2) with (*)NO, which suggests that MbFe(III)ONO(2) is the intermediate observed in both processes. This conclusion is supported by thermokinetic arguments. The present results suggest that hemeproteins may detoxify (*)NO(2) and thus preempt deleterious processes, such as nitration of proteins. Such a possibility is substantiated by the observation that the reactions of (*)NO(2) with the various oxidation states of myoglobin lead to the formation of metmyoglobin, which, though not functional in the gas transport, is nevertheless nontoxic at physiological pH.
Collapse
Affiliation(s)
- Sara Goldstein
- Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
131
|
Zhao Y, Gao Z, Li H, Xu H. Hemin/nitrite/H2O2 induces brain homogenate oxidation and nitration: effects of some flavonoids. Biochim Biophys Acta Gen Subj 2004; 1675:105-12. [PMID: 15535973 DOI: 10.1016/j.bbagen.2004.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 08/24/2004] [Indexed: 12/31/2022]
Abstract
Oxidative injury has been implicated in the pathogenesis of numerous neurodegenerative diseases. Recently, it has been found that with the existence of hydrogen peroxide and nitrite, hemin catalyzes protein nitration. We hypothesize under certain pathological conditions, hemin catalyzed protein nitration may happen in the brain. In this paper, the effects of three flavonoids, i.e. quercetin, catachin and baicalein on hemin/nitrite/H2O2 induced brain homogenate oxidation and nitration were studied. The results showed that hemin/nitrite/H2O2 system could effectively induce brain homogenate protein oxidation and nitration. Quercetin, catachin and baicalein dose-dependently inhibited hemin/nitrite/H2O2 system-induced protein nitration in a dose-dependent manner, the inhibition of protein nitration was in the order of quercetin>catachin>baicalein. These compounds also inhibited hemin/H2O2 system-induced lipid peroxidation, the inhibition order was baicalein >quercetin>catachin. However, these flavonoids showed marginal effect on hemin/nitrite/H2O2 system caused protein oxidation and thiol oxidation. The inhibition activities of flavonoids on hemin/nitrite/H2O2 system-induced protein nitration may closely relate to their radical scavenging activities, since the inhibition order of protein nitration is the same as the radical scavenging order. These results indicate hemin/nitrite/H2O2 system induces different types of oxidative assault on bio-molecules. Flavonoids could act as antioxidants inhibiting ROS and RNS caused brain damage.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Chemistry, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | | | | | | |
Collapse
|
132
|
Del Moral ML, Esteban FJ, Hernández R, Blanco S, Molina FJ, Martínez-Lara E, Siles E, Viedma G, Ruiz A, Pedrosa JA, Peinado MA. Immunohistochemistry of neuronal nitric oxide synthase and protein nitration in the striatum of the aged rat. Microsc Res Tech 2004; 64:304-11. [PMID: 15481048 DOI: 10.1002/jemt.20081] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To ascertain the possible implications of the nitric oxide (NO*) producing system in striatal senescence, and by using immunohistochemistry and image-processing approaches, we describe the presence of the enzyme nitric oxide synthase (NOS), the NADPH-diaphorase (NADPH-d) histochemical marker, and nitrotyrosine-derived complexes (N-Tyr) in the striatum of adult and aged rats. The results showed neuronal NOS immunoreactive (nNOS-IR) aspiny medium-sized neurons and nervous fibres in both age groups, with no variation in the percentage of immunoreactive area but a significant decrease in the intensity and in the number of somata with age, which were not related to the observed increase with age of the striatal bundles of the white matter. In addition, NADPH-d activity was detected in neurons with morphology similar to that of the nNOS-IR cells; a decrease in the percentage of area per field and in the number of cells, but an increase in the intensity of staining for the NADPH-d histochemical marker, were detected with age. The number of neuronal NADPH-d somata was higher than for the nNOS-IR ones in both age groups. Moreover, N-Tyr-IR complexes were observed in cells (neurons and glia) and fibres, with a significant increase in the percentage of the area of immunoreaction, related to the increase of white matter, but a decrease in intensity for the aged group. On the other hand, we did not detect the inducible isoform (iNOS) either in adult or in aged rats. Taken together, these results support the contention that NADPH-d staining is not such an unambiguous marker for nNOS, and that increased protein nitration may participate in striatal aging.
Collapse
|
133
|
Martinat C, Shendelman S, Jonason A, Leete T, Beal MF, Yang L, Floss T, Abeliovich A. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES- derived cell model of primary Parkinsonism. PLoS Biol 2004; 2:e327. [PMID: 15502868 PMCID: PMC521171 DOI: 10.1371/journal.pbio.0020327] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 07/29/2004] [Indexed: 12/22/2022] Open
Abstract
The hallmark of Parkinson's disease (PD) is the selective loss of dopamine neurons in the ventral midbrain. Although the cause of neurodegeneration in PD is unknown, a Mendelian inheritance pattern is observed in rare cases, indicating a genetic factor. Furthermore, pathological analyses of PD substantia nigra have correlated cellular oxidative stress and altered proteasomal function with PD. Homozygous mutations in DJ-1 were recently described in two families with autosomal recessive Parkinsonism, one of which is a large deletion that is likely to lead to loss of function. Here we show that embryonic stem cells deficient in DJ-1 display increased sensitivity to oxidative stress and proteasomal inhibition. The accumulation of reactive oxygen species in toxin-treated DJ-1-deficient cells initially appears normal, but these cells are unable to cope with the consequent damage that ultimately leads to apoptotic death. Furthermore, we find that dopamine neurons derived from in vitro-differentiated DJ-1-deficient embryonic stem cells display decreased survival and increased sensitivity to oxidative stress. These data are consistent with a protective role for DJ-1, and demonstrate the utility of genetically modified embryonic stem cell-derived neurons as cellular models of neuronal disorders.
Collapse
Affiliation(s)
- Cecile Martinat
- 1Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia UniversityNew York, New YorkUnited States of America
| | - Shoshana Shendelman
- 1Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia UniversityNew York, New YorkUnited States of America
| | - Alan Jonason
- 1Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia UniversityNew York, New YorkUnited States of America
| | - Thomas Leete
- 1Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia UniversityNew York, New YorkUnited States of America
| | - M. Flint Beal
- 2Department of Neurology and Neuroscience, Weill Medical College of Cornell UniversityNew York, New YorkUnited States of America
| | - Lichuan Yang
- 2Department of Neurology and Neuroscience, Weill Medical College of Cornell UniversityNew York, New YorkUnited States of America
| | - Thomas Floss
- 3Institute of Developmental Genetics, GSF-National Research Center for Environment and HealthNeuherbergGermany
| | - Asa Abeliovich
- 1Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia UniversityNew York, New YorkUnited States of America
| |
Collapse
|
134
|
Roy U, Loreau O, Balazy M. Cytochrome P450/NADPH-dependent formation of trans epoxides from trans-arachidonic acids. Bioorg Med Chem Lett 2004; 14:1019-22. [PMID: 15013014 DOI: 10.1016/j.bmcl.2003.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2003] [Revised: 11/09/2003] [Accepted: 11/19/2003] [Indexed: 11/26/2022]
Abstract
Trans-arachidonic acids (trans-AA) are products of cis-trans isomerization of arachidonic acid by nitrogen dioxide radical (NO(2)), and occur in vivo, but their metabolism is unknown. We found that hepatic microsomes oxidized trans-AA via cytochrome P450/NADPH system to epoxides, which were hydrolyzed by epoxide hydrolase to diols (DiHETEs). 14,15-trans-AA produced one erythro diol and three threo diols each having one trans double bond.
Collapse
Affiliation(s)
- Uzzal Roy
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
135
|
Sen S, Davies NA, Mookerjee RP, Cheshire LM, Hodges SJ, Williams R, Jalan R. Pathophysiological effects of albumin dialysis in acute-on-chronic liver failure: a randomized controlled study. Liver Transpl 2004; 10:1109-19. [PMID: 15350001 DOI: 10.1002/lt.20236] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiological basis of acute-on-chronic liver failure (ACLF) is unclear but systemic inflammatory response is thought to be important. In patients with ACLF, the molecular adsorbents recirculating system (MARS) improves individual organ function, but the effect of MARS on the proposed mediators of systemic inflammatory response is unclear. The present study was designed to determine the effect of MARS on the cytokine profile, oxidative stress, nitric oxide, and ammonia. A total of 18 patients with alcohol-related ACLF due to inflammation-related precipitants were randomized to receive standard medical therapy (SMT) alone, or with MARS therapy over 7 days. Plasma cytokines, malondialdehyde (MDA), free radical production, nitrate / nitrite (NOx), and ammonia were measured. Encephalopathy improved significantly with MARS (P < .01), but not with SMT. Mean arterial pressure and renal function remained unchanged. No significant change of plasma cytokines and ammonia levels were observed in either group. Plasma MDA levels did not change either. There was a fall in NOx (P < .05) with MARS, but not with SMT. In conclusion, in inflammation-related ACLF patients, albumin dialysis using MARS results in improvement of encephalopathy, independent of changes of ammonia or cytokines, without improving blood pressure or renal function. These results should temper the liberal use of MARS until further data is available.
Collapse
Affiliation(s)
- Sambit Sen
- Liver Failure Group, Institute of Hepatology, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
136
|
Zghibeh CM, Raj Gopal V, Poff CD, Falck JR, Balazy M. Determination of trans-arachidonic acid isomers in human blood plasma. Anal Biochem 2004; 332:137-44. [PMID: 15301958 DOI: 10.1016/j.ab.2004.04.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Indexed: 10/26/2022]
Abstract
Endogenous trans fatty acids originate from diet, but recent studies also suggest that cis-trans isomerization of fatty acids is possible by nitrogen dioxide radical, a product of NO and nitrite oxidation. We developed a method for quantitative analysis of four trans-arachidonic acids (TAA) in human plasma using isotopic dilution gas chromatography/mass spectrometry (GC/MS) with deuterium-labeled internal standard. Esterification of the plasma fatty acid extract with pentafluorobenzyl (PFB) bromide followed by high-performance liquid chromatography purification yielded a fairly pure fraction containing TAA-PFB esters that was analyzed by GC/MS. Partial separation of the TAA isomers was obtained on various GC columns. Comparison of the retention time with the synthetic standards revealed that all four TAA isomers are present in human plasma. The mean concentration of TAA in human plasma was 20.2ng/ml. The levels of isomers were 12.48+/-1.28, 2.75+/-0.39, and 4.99+/-0.74ng/ml for 5E-AA + 11E-AA, 8E-AA, and 14E-AA, respectively. The identification of TAA in plasma suggests that isomerization of arachidonic acid occurs in vivo. Our method allows distinguishing between the dietary and the NO(2)-dependent mechanisms of trans fatty acid formation and will be useful in defining the role of TAA as an in vivo marker of nitrooxidative stress in clinical and experimental settings.
Collapse
Affiliation(s)
- Chaza M Zghibeh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
137
|
Suzuki T, Mower HF, Friesen MD, Gilibert I, Sawa T, Ohshima H. Nitration and nitrosation of N-acetyl-L-tryptophan and tryptophan residues in proteins by various reactive nitrogen species. Free Radic Biol Med 2004; 37:671-81. [PMID: 15288124 DOI: 10.1016/j.freeradbiomed.2004.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/17/2004] [Accepted: 05/28/2004] [Indexed: 11/30/2022]
Abstract
Proteins are targets of reactive nitrogen species such as peroxynitrite and nitrogen dioxide. Among the various amino acids in proteins, tryptophan residues are especially susceptible to attack by reactive nitrogen species. We carried out experiments on the reactions of peroxynitrite and other reactive nitrogen species with N-acetyl-L-tryptophan under various conditions. Four major products were identified as 1-nitroso-N-acetyl-L-tryptophan, 1-nitro-N-acetyl-L-tryptophan, 6-nitro-N-acetyl-L-tryptophan, and N-acetyl-N'-formyl-L-kynurenine on the basis of their mass and UV spectra. The reactions with SIN-1 (a peroxynitrite generator), Angeli's salt (a nitroxyl donor), and spermine NONOate (a nitric oxide donor) generated the nitroso derivative but not the nitro derivatives. A myeloperoxidase-H(2)O(2)-NO(2)(-) system generated the nitro derivatives but not the nitroso derivative. Under physiological conditions 6-nitro-N-acetyl-L-tryptophan was stable, whereas the 1-nitroso and 1-nitro derivatives decomposed with half-lives of 1.5 and 18 h, respectively. After treatment with various reactive nitrogen species, bovine serum albumin was enzymatically hydrolyzed and analyzed for 6-nitro-L-tryptophan and 3-nitro-L-tyrosine by HPLC with electrochemical detection. Levels of 6-nitro-L-tryptophan and 3-nitro-L-tyrosine were similar in the nitrated protein. 6-Nitro-L-tryptophan in proteins can be measured as an additional biomarker of protein nitration.
Collapse
Affiliation(s)
- Toshinori Suzuki
- International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|
138
|
Méthy D, Bertrand N, Prigent-Tessier A, Stanimirovic D, Beley A, Marie C. Differential MnSOD and HO-1 expression in cerebral endothelial cells in response to sublethal oxidative stress. Brain Res 2004; 1003:151-8. [PMID: 15019574 DOI: 10.1016/j.brainres.2003.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2003] [Indexed: 10/26/2022]
Abstract
The two inducible enzymes, manganese superoxide dismutase (MnSOD) and heme-oxygenase-1 (HO-1) may participate in the cellular defense of brain endothelium against oxidative stress. The time-dependent expression of MnSOD and HO-1 mRNAs and proteins was investigated in vitro in rat cerebral endothelial cells (CEC) subjected to sublethal mild or moderate hydroxyl radical-induced oxidative stress. Mild oxidative stress induced increases in both MnSOD and HO-1 mRNA and protein expression. Moderate oxidative stress resulted in a significant reduction in HO-1 mRNA and protein expression, whereas MnSOD expression pattern was similar to that observed after mild oxidative stress. A profound protein loss of both MnSOD and HO-1 was detected 24 h after exposure of CEC to a moderate oxidative stress. The data indicate that cerebral endothelial cells respond by increasing the expression of antioxidant defense enzymes in a manner dependent on the oxidative stress intensity.
Collapse
Affiliation(s)
- D Méthy
- Laboratoire de Pharmacodynamie et Physiologie pharmaceutique, 7 bld Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
139
|
Gonzalez D, Drapier JC, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J Biol Chem 2004; 279:43345-51. [PMID: 15258160 DOI: 10.1074/jbc.m401889200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron regulatory protein-1 (IRP-1) is a bifunctional [4Fe-4S] protein that functions as a cytosolic aconitase or as a trans-regulatory factor controlling iron homeostasis at a post-transcriptional level. Because IRP-1 is a sensitive target protein for nitric oxide (NO), we investigated whether this protein is nitrated in inflammatory macrophages and whether this post-transcriptional modification changes its activities. RAW 264.7 macrophages were first stimulated with interferon-gamma and lipopolysaccharide (IFN-gamma/LPS) and then triggered by phorbol 12-myristate 13-acetate (PMA) in order to promote co-generation of NO* and O*2-.. IRP-1 was isolated by immunoprecipitation and analyzed for protein-bound nitrotyrosine by Western blotting. We show that nitration of endogenous IRP-1 in NO-producing macrophages boosted to produce O*2- was accompanied by aconitase inhibition and impairment of its capacity to bind the iron-responsive element (IRE) of ferritin mRNA. Lost IRE-binding activity was not recovered by exposure of IRP-1 to 2% 2-mercaptoethanol and was not due to protein degradation. Inclusion of cis-aconitate with cell extract to stabilize the [4Fe-4S] cluster of holo-IRP-1 rendered protein insensitive to nitration by peroxynitrite, suggesting that loss of [Fe-S] cluster and subsequent change of conformation are prerequisites for tyrosine nitration. IRP-1 nitration was strongly reduced when IFN-gamma/LPS/PMA-stimulated cells were incubated with myeloperoxidase inhibitors, which points to the contribution of the nitrite/H2O2/peroxidase pathway to IRP-1 nitration in vivo. Interestingly, under these conditions, IRP-1 recovered full IRE binding as assessed by treatment with 2% 2-mercaptoethanol. Peroxidase-mediated nitration of critical tyrosine residues, by holding IRP-1 in an inactive state, may constitute, in activated macrophages, a self-protecting mechanism against iron-induced toxicity.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
140
|
Renaudin K, Denis MG, Karam G, Vallette G, Buzelin F, Laboisse CL, Jarry A. Loss of NOS1 expression in high-grade renal cell carcinoma associated with a shift of NO signalling. Br J Cancer 2004; 90:2364-9. [PMID: 15150612 PMCID: PMC2409527 DOI: 10.1038/sj.bjc.6601809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In normal human kidney, NOS1 and soluble guanylate cyclase (sGC) are expressed in tubular epithelial cells, suggesting a physiological autocrine NO signalling pathway. Therefore, we investigated both NOS1 and sGC expressions in benign and malignant renal tumours. In addition, we examined the pattern of protein tyrosine nitration in normal and tumour tissue. NOS1 expression and activity were found to be downregulated, correlating with the tumour grade, as shown by immunohistochemistry, quantitative RT-PCR analysis, and histochemical detection of the NADPH-diaphorase activity of nitric oxide synthases (NOS). These results show that the autocrine NO signalling pathway is maintained in benign tumours and lost in malignant tumours. In contrast, sGC expression was maintained in renal tumours whatever the tumour type, a finding showing that tumour cells remain sensitive to the bioregulatory role of exogeneous NO(*). Finally, the staining pattern of protein tyrosine nitration, assessed by immunohistochemistry, parallelled that of NOS1 expression in normal renal parenchyma and benign tumours, supporting the concept that protein nitration was accounted for by NOS1 activity. In contrast, in malignant tumours, protein tyrosine nitration was accounted for by the production of reactive nitrogen oxide species by the inflammatory infiltrate. Altogether, these findings argue for a pattern of NO signalling similar in normal kidney and benign renal tumours, whereas it is completely different in malignant renal tumours.
Collapse
Affiliation(s)
- K Renaudin
- Pathology Department, CHU Hôtel Dieu, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 1, France
- INSERM U539, Faculty of Medicine, 1 Rue Gaston Veil, 44035 Nantes Cedex1, France
| | - M G Denis
- INSERM U539, Faculty of Medicine, 1 Rue Gaston Veil, 44035 Nantes Cedex1, France
| | - G Karam
- Urology Department, CHU Hôtel Dieu, Place Alexis Ricordeau, 44093 Nantes Cedex 1, France
| | - G Vallette
- INSERM U539, Faculty of Medicine, 1 Rue Gaston Veil, 44035 Nantes Cedex1, France
| | - F Buzelin
- Pathology Department, CHU Hôtel Dieu, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 1, France
| | - C L Laboisse
- Pathology Department, CHU Hôtel Dieu, 30 Boulevard Jean Monnet, 44093 Nantes Cedex 1, France
- INSERM U539, Faculty of Medicine, 1 Rue Gaston Veil, 44035 Nantes Cedex1, France
| | - A Jarry
- INSERM U539, Faculty of Medicine, 1 Rue Gaston Veil, 44035 Nantes Cedex1, France
- INSERM U539, Faculty of Medicine, 1 Rue Gaston Veil, 44035 Nantes Cedex1, France. E-mail:
| |
Collapse
|
141
|
|
142
|
Pezzella A, Manini P, Di Donato P, Boni R, Napolitano A, Palumbo A, d'Ischia M. 17β-Estradiol nitration by peroxidase/H2O2/NO2−: a chemical assessment. Bioorg Med Chem 2004; 12:2927-36. [PMID: 15142552 DOI: 10.1016/j.bmc.2004.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/05/2004] [Accepted: 03/16/2004] [Indexed: 10/26/2022]
Abstract
Nitration of 17beta-estradiol by H(2)O(2) and nitrite in the presence of various peroxidases, viz. horseradish peroxidase, lactoperoxidase, and peroxidase-containing homogenates from bovine uteri, was systematically investigated to assess on a chemical basis its potential relevance to the mechanisms of impairment of estrogen functions under oxidative/nitrosative stress conditions. In the presence of excess nitrite 17beta-estradiol reacted smoothly to give 2-nitroestradiol (1), 4-nitroestradiol (2), and 2,4-dinitroestradiol (3). With 10-300 microM estradiol, formation yields of 1-3 were 12-55%, but dropped to 1% or less at lower estrogen concentration, for example, 1 microM, or in plasma as the reaction medium. Time course analysis showed that 2 is the prevalent nitration product under conditions of slow generation of nitrating species, suggesting some regioselectivity for estradiol nitration at C-4, whereas 1 prevails with bolus addition of reagents, due to faster degradation of 2. Competition experiments carried out with (15)NO(2)- showed that 2 is about twice more susceptible to nitration than 1 as determined by (15)N NMR analysis of the resulting 3. The biological effects of 1 and 2 were preliminarily tested on in vitro bovine embryo cultures. When 1 and 2 were substituted to the standard 17beta-estradiol in the oocyte maturation, a significant decrease in both cleavage and blastocyst efficiency was observed in the case of 1 but not 2. Overall, these results suggest that estradiol nitration is a potential pathway of hormonal dysfunction and toxicity but would require elevated estrogen levels of questionable physiological relevance.
Collapse
Affiliation(s)
- Alessandro Pezzella
- Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, I-80126 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
The occurrence of protein tyrosine nitration under disease conditions is now firmly established and represents a shift from the signal transducing physiological actions of (.)NO to oxidative and potentially pathogenic pathways. Tyrosine nitration is mediated by reactive nitrogen species such as peroxynitrite anion (ONOO(-)) and nitrogen dioxide ((.)NO2), formed as secondary products of (.)NO metabolism in the presence of oxidants including superoxide radicals (O2(.-)), hydrogen peroxide (H2O2), and transition metal centers. The precise interplay between (.)NO and oxidants and the identification of the proximal intermediate(s) responsible for nitration in vivo have been under controversy. Despite the capacity of peroxynitrite to mediate tyrosine nitration in vitro, its role on nitration in vivo has been questioned, and alternative pathways, including the nitrite/H2O2/hemeperoxidase and transition metal-dependent mechanisms, have been proposed. A balanced analysis of existing evidence indicates that (i) different nitration pathways can contribute to tyrosine nitration in vivo, and (ii) most, if not all, nitration pathways involve free radical biochemistry with carbonate radicals (CO3(.-)) and/or oxo-metal complexes oxidizing tyrosine to tyrosyl radical followed by the diffusion-controlled reaction with (.)NO2 to yield 3-nitrotyrosine. Although protein tyrosine nitration is a low-yield process in vivo, 3-nitrotyrosine has been revealed as a relevant biomarker of (.)NO-dependent oxidative stress; additionally, site-specific nitration focused on particular protein tyrosines may result in modification of function and promote a biological effect. Tissue distribution and quantitation of protein 3-nitrotyrosine, recognition of the predominant nitration pathways and individual identification of nitrated proteins in disease states open new avenues for the understanding and treatment of human pathologies.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
| |
Collapse
|