101
|
Even‐Chen O, Herburg L, Kefalakes E, Urshansky N, Grothe C, Barak S. FGF2 is an endogenous regulator of alcohol reward and consumption. Addict Biol 2022; 27:e13115. [PMID: 34796591 DOI: 10.1111/adb.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder, characterized by escalating alcohol drinking and loss of control, with very limited available treatments. We recently reported that the expression of fibroblast growth factor 2 (Fgf2) is increased in the striatum of rodents following long-term excessive alcohol drinking and that the systemic or intra-striatal administration of recombinant FGF2 increases alcohol consumption. Here, we set out to determine whether the endogenous FGF2 plays a role in alcohol drinking and reward, by testing the behavioural phenotype of Fgf2 knockout mice. We found that Fgf2 deficiency resulted in decreased alcohol consumption when tested in two-bottle choice procedures with various alcohol concentrations. Importantly, these effects were specific for alcohol, as a natural reward (sucrose) or water consumption was not affected by Fgf2 deficiency. In addition, Fgf2 knockout mice failed to show alcohol-conditioned place preference (CPP) but showed normal fear conditioning, suggesting that deletion of the growth factor reduces alcohol's rewarding properties. Finally, Fgf2 knockout mice took longer to recover from the loss of righting reflex and showed higher blood alcohol concentrations when challenged with an intoxicating alcohol dose, suggesting that their ethanol metabolism might be affected. Together, our results show that the endogenous FGF2 plays a critical role in alcohol drinking and reward and indicate that FGF2 is a positive regulator of alcohol-drinking behaviours. Our findings suggest that FGF2 is a potential biomarker for problem alcohol drinking and is a potential target for pharmacotherapy development for AUD.
Collapse
Affiliation(s)
- Oren Even‐Chen
- School of Psychological Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - Leonie Herburg
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Carl‐Neuberg‐Straße 1 Hanover 30625 Germany
- Center for Systems Neuroscience (ZSN) Hannover Germany
| | - Ekaterini Kefalakes
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Carl‐Neuberg‐Straße 1 Hanover 30625 Germany
- Center for Systems Neuroscience (ZSN) Hannover Germany
| | - Nataly Urshansky
- School of Psychological Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Carl‐Neuberg‐Straße 1 Hanover 30625 Germany
- Center for Systems Neuroscience (ZSN) Hannover Germany
| | - Segev Barak
- School of Psychological Sciences Tel Aviv University Tel Aviv 69978 Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv 69978 Israel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
102
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:jpm12020321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, “the answer is blowin’ in the wind,” and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
- Correspondence: ; Tel.: +1-619-890-2167
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
103
|
Chou T, D’Orsogna MR. A mathematical model of reward-mediated learning in drug addiction. CHAOS (WOODBURY, N.Y.) 2022; 32:021102. [PMID: 35232044 PMCID: PMC8816520 DOI: 10.1063/5.0082997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Substances of abuse are known to activate and disrupt neuronal circuits in the brain reward system. We propose a simple and easily interpretable dynamical systems model to describe the neurobiology of drug addiction that incorporates the psychiatric concepts of reward prediction error, drug-induced incentive salience, and opponent process theory. Drug-induced dopamine releases activate a biphasic reward response with pleasurable, positive "a-processes" (euphoria, rush) followed by unpleasant, negative "b-processes" (cravings, withdrawal). Neuroadaptive processes triggered by successive intakes enhance the negative component of the reward response, which the user compensates for by increasing drug dose and/or intake frequency. This positive feedback between physiological changes and drug self-administration leads to habituation, tolerance, and, eventually, to full addiction. Our model gives rise to qualitatively different pathways to addiction that can represent a diverse set of user profiles (genetics, age) and drug potencies. We find that users who have, or neuroadaptively develop, a strong b-process response to drug consumption are most at risk for addiction. Finally, we include possible mechanisms to mitigate withdrawal symptoms, such as through the use of methadone or other auxiliary drugs used in detoxification.
Collapse
Affiliation(s)
- Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, California 90095-1766, USA
| | - Maria R. D’Orsogna
- Department of Mathematics, California State University at Northridge, Los Angeles, California 91130-8313, USA
- Also at: Department of Computational Medicine, UCLA, Los Angeles, CA 90095-1766, USA. Author to whom correspondence should be addressed:
| |
Collapse
|
104
|
von Deneen KM, Hussain H, Waheed J, Xinwen W, Yu D, Yuan K. Comparison of frontostriatal circuits in adolescent nicotine addiction and internet gaming disorder. J Behav Addict 2022; 11:26-39. [PMID: 35049521 PMCID: PMC9109629 DOI: 10.1556/2006.2021.00086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, there has been significantly increased participation in online gaming and other addictive behaviors particularly in adolescents. Tendencies to avoid social interaction and become more involved in technology-based activities pose the danger of creating unhealthy addictions. Thus, the presence of relatively immature cognitive control and high risk-taking properties makes adolescence a period of major changes leading to an increased rate of emotional disorders and addiction. AIMS The critical roles of frontostriatal circuits in addiction have become the primary focus associated with reward in the striatum and cognitive control in the PFC. Internet gaming disorder (IGD) and nicotine addiction are currently becoming more and more serious. METHODS In the light of neuroimaging, the similarity between brain mechanisms causing substance use disorder (SUD) and IGD have been described in previous literature. RESULTS In particular, two distinct brain systems affect the way we act accounting for uncharacteristic neural function in addiction: the affective system comprises of the striatum driven by emotional, reward-related, and internal stimuli, and a cognitive system consisting of the prefrontal cortex (PFC) supporting the ventral affective system's actions via inhibitory control. DISCUSSION AND CONCLUSION Therefore, as a novel concept, we focused on the implication of frontostriatal circuits in nicotine addiction and IGD by reviewing the main findings from our studies compared to those of others. We hope that all of these neuroimaging findings can lead to effective intervention and treatment for addiction especially during this critical period.
Collapse
Affiliation(s)
- Karen M. von Deneen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, Peoples R China,Corresponding authors. E-mail: (), ,
| | - Hadi Hussain
- Xi'an Jiaotong University, 74 Yanta Street, Yanta District, Xi'an, Shaanxi 710001, Peoples R China
| | - Junaid Waheed
- Xi'an Jiaotong University, 74 Yanta Street, Yanta District, Xi'an, Shaanxi 710001, Peoples R China
| | - Wen Xinwen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, Peoples R China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, Peoples R China,Corresponding authors. E-mail: (), ,
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, Peoples R China,Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, Peoples R China,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, Peoples R China,Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, Peoples R China,Corresponding authors. E-mail: (), ,
| |
Collapse
|
105
|
The link between the brain volume derived index and the determinants of social performance. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-021-02544-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Motivation, defined as the energizing of behavior in pursuit of a goal, is a fundamental element of our interaction with the world and with each other. Furthermore, as it is known that cooperation leads to higher levels of performance than do individual conditions, empathic concern is also crucial to all forms of helping relationships. A growing number of studies indicate that motivation and empathy are associated not only with organizational performance and study achievements, but also with the human brain. However, to date, no definite neuroimaging-derived measures are available to measure motivation and empathy objectively. The current research evaluated the association of motivation and empathy with the whole brain using the gray-matter brain healthcare quotient (GM-BHQ), an MRI-based quotient. Participants were 47 healthy adults. All subjects underwent structural T1-weighted imaging. Motivation levels were evaluated using four motivation scales: Behavioral Activation System (BAS), Self-Monitoring Scale (SMS), Self-Control Scale (SCS), and Behavioral Inhibition System (BIS). Interaction levels, including empathic concern, were evaluated using four subscales of the Interpersonal Reactivity Index (IRI). It was found that the GM-BHQ was most significantly sensitive to the BAS scale (p = 0.002). Furthermore, the GM-BHQ was moderately sensitive to the SMS (p = 0.028) and subscales of the IRI (p = 0.044 for Fantasy and p = 0.036 for Empathic Concern). However, no significant association was found between the GM-BHQ and other variables (BIS and SCS). These results suggest that the GM-BHQ might reflect motivation and empathic concern.
Collapse
|
106
|
Moretta T, Buodo G, Demetrovics Z, Potenza MN. Tracing 20 years of research on problematic use of the internet and social media: Theoretical models, assessment tools, and an agenda for future work. Compr Psychiatry 2022; 112:152286. [PMID: 34749058 DOI: 10.1016/j.comppsych.2021.152286] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past two decades, there has been increasing interest in the impact of internet use and growing concern about whether problematic use of the internet (PUI) constitutes an addiction. Despite the growing number of studies investigating PUI and PUI subtypes, its conceptualization and inclusion in a classification system have not been possible yet. Several models aimed at inspiring clinical research and practice have proposed possible mechanisms involved in PUI and problematic use of social media, and multiple self-report instruments have been consequentially developed. The diversity of theoretical models and instruments currently hinders standardized assessment procedures across studies and, in turn, their comparability. The purpose of the present overview is to highlight the current conceptualization and assessment of both PUI and problematic use of social media, in order to critically discuss the existing fragmentation in the field and the need to achieve conceptual convergence. Two suggestions for future directions are also provided, i.e., define diagnostic criteria by bottom-up and top-down processes and develop a psychobiological hypothesis including the description of higher-order mechanisms involved in PUI and not other psychopathological conditions (e.g., the multiple available internet-related cues and outcomes that may lead to parallel forms of associative learning; probabilities of obtaining internet-related reinforcements; and intrinsic motivation processes).
Collapse
Affiliation(s)
- Tania Moretta
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Giulia Buodo
- Department of General Psychology, University of Padova, Padova, Italy
| | - Zsolt Demetrovics
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
107
|
Common Features in Compulsive Sexual Behavior, Substance Use Disorders, Personality, Temperament, and Attachment-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010296. [PMID: 35010552 PMCID: PMC8751077 DOI: 10.3390/ijerph19010296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/23/2022]
Abstract
Do addictions share common traits of an “addictive personality” or do different addictions have distinct personality profiles? This narrative review examines the differences in the associations between substance use disorder (SUD) and compulsive sexual behavior disorder (CSBD), on the one hand, and personality traits, attachment dispositions, and temperament, on the other hand. We found that both people with a SUD and people with CSBD tended to be more spontaneous, careless, and less reliable, to place self-interest above getting along with others, to show emotional instability and experience negative emotions such as anger, anxiety, and/or depression, to be less able to control their attention and/or behavior, and to be engulfed with a constant sensation of “wanting”. Only people with CSBD, but not SUD, noted concerns with their social ties, fear of losing close others, and/or trusting others around them. Results also suggested that people with a SUD and people with CSBD share high commonalities in personality traits and temperament, yet there are noted differences in their social tendencies, especially with close others. People with CSBD reported more concerns with possible relationship losses compared to people with SUD issues, who may be more worried about losing their source of escapism.
Collapse
|
108
|
Harada M, Pascoli V, Hiver A, Flakowski J, Lüscher C. Corticostriatal Activity Driving Compulsive Reward Seeking. Biol Psychiatry 2021; 90:808-818. [PMID: 34688471 DOI: 10.1016/j.biopsych.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Activation of the mesolimbic dopamine system is positively reinforcing. After repeated activation, some individuals develop compulsive reward-seeking behavior, which is a core symptom of addiction. However, the underlying neural mechanism remains elusive. METHODS We trained mice in a seek-take chain, rewarded by optogenetic dopamine neuron self-stimulation. After compulsivity was evaluated, AMPA/NMDA ratio was measured at three distinct corticostriatal pathways confirmed by retrograde labeling and anterograde synaptic connectivity. Fiber photometry method and chemogenetics were used to parse the contribution of orbitofrontal cortex afferents onto the dorsal striatum (DS) during the behavioral task. We established a causal link between DS activity and compulsivity using optogenetic inhibition. RESULTS Mice that persevered when seeking was punished exhibited an increased AMPA/NMDA ratio selectively at orbitofrontal cortex to DS synapses. In addition, an activity peak of spiny projection neurons in the DS at the moment of signaled reward availability was detected. Chemogenetic inhibition of orbitofrontal cortex neurons curbed the activity peak and reduced punished reward seeking, as did optogenetic hyperpolarization of spiny projection neurons time-locked to the cue predicting reward availability. CONCLUSIONS Our results suggest that compulsive individuals display stronger neuronal activity in the DS during the cue predicting reward availability even when at the risk of punishment, nurturing further compulsive reward seeking.
Collapse
Affiliation(s)
- Masaya Harada
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Pascoli
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Agnès Hiver
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérôme Flakowski
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
109
|
Addictive Games: Case Study on Multi-Armed Bandit Game. INFORMATION 2021. [DOI: 10.3390/info12120521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The attraction of games comes from the player being able to have fun in games. Gambling games that are based on the Variable-Ratio schedule in Skinner’s experiment are the most typical addictive games. It is necessary to clarify the reason why typical gambling games are simple but addictive. Also, the Multiarmed Bandit game is a typical test for Skinner Box design and is most popular in the gambling house, which is a good example to analyze. This article mainly focuses on expanding on the idea of the motion in mind model in the scene of Multiarmed Bandit games, quantifying the player’s psychological inclination by simulation experimental data. By relating with the quantification of player satisfaction and play comfort, the expectation’s feeling is discussed from the energy perspective. Two different energies are proposed: player-side (Er) and game-side energy (Ei). This provides the difference of player-side (Er) and game-side energy (Ei), denoted as Ed to show the player’s psychological gap. Ten settings of mass bandit were simulated. It was found that the setting of the best player confidence (Er) and entry difficulty (Ei) can balance player expectation. The simulation results show that when m=0.3,0.7, the player has the biggest psychological gap, which expresses that player will be motivated by not being reconciled. Moreover, addiction is likely to occur when m∈[0.5,0.7]. Such an approach can also help the developers and educators increase edutainment games’ efficiency and make the game more attractive.
Collapse
|
110
|
Sørensen G, Rickhag M, Leo D, Lycas MD, Ridderstrøm PH, Weikop P, Lilja JH, Rifes P, Herborg F, Woldbye D, Wörtwein G, Gainetdinov RR, Fink-Jensen A, Gether U. Disruption of the PDZ domain-binding motif of the dopamine transporter uniquely alters nanoscale distribution, dopamine homeostasis, and reward motivation. J Biol Chem 2021; 297:101361. [PMID: 34756883 PMCID: PMC8648841 DOI: 10.1016/j.jbc.2021.101361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022] Open
Abstract
The dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain-binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals. In parallel, we observe mesostriatal DA adaptations and changes in DA-related behaviors distinct from those seen in other genetic DAT mouse models. DA levels in the striatum are reduced to ∼45% of that of WT, accompanied by elevated DA turnover. Nonetheless, fast-scan cyclic voltammetry recordings on striatal slices reveal a larger amplitude and prolonged clearance rate of evoked DA release in DAT-AAA mice compared with WT mice. Autoradiography and radioligand binding show reduced DA D2 receptor levels, whereas immunohistochemistry and autoradiography show unchanged DA D1 receptor levels. In behavioral experiments, we observe enhanced self-administration of liquid food under both a fixed ratio of one and progressive ratio schedule of reinforcement but a reduction compared with WT when using cocaine as reinforcer. In summary, our data demonstrate how disruption of PDZ domain interactions causes changes in DAT expression and its nanoscopic distribution that in turn alter DA clearance dynamics and related behaviors.
Collapse
Affiliation(s)
- Gunnar Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Mattias Rickhag
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Damiana Leo
- Neuroscience and Brain Technologies Department, Italian Institute of Technology, Genoa, Italy
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Herrstedt Ridderstrøm
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Jamila H Lilja
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Rifes
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freja Herborg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Woldbye
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
111
|
Loganathan K. Value-based cognition and drug dependency. Addict Behav 2021; 123:107070. [PMID: 34359016 DOI: 10.1016/j.addbeh.2021.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Value-based decision-making is thought to play an important role in drug dependency. Achieving elevated levels of euphoria or ameliorating dysphoria/pain may motivate goal-directed drug consumption in both drug-naïve and long-time users. In other words, drugs become viewed as the preferred means of attaining a desired internal state. The bias towards choosing drugs may affect one's cognition. Observed biases in learning, attention and memory systems within the brain gradually focus one's cognitive functions towards drugs and related cues to the exclusion of other stimuli. In this narrative review, the effects of drug use on learning, attention and memory are discussed with a particular focus on changes across brain-wide functional networks and the subsequent impact on behaviour. These cognitive changes are then incorporated into the cycle of addiction, an established model outlining the transition from casual drug use to chronic dependency. If drug use results in the elevated salience of drugs and their cues, the studies highlighted in this review strongly suggest that this salience biases cognitive systems towards the motivated pursuit of addictive drugs. This bias is observed throughout the cycle of addiction, possibly contributing to the persistent hold that addictive drugs have over the dependent. Taken together, the excessive valuation of drugs as the preferred means of achieving a desired internal state affects more than just decision-making, but also learning, attentional and mnemonic systems. This eventually narrows the focus of one's thoughts towards the pursuit and consumption of addictive drugs.
Collapse
|
112
|
Xu Y, Wang S, Chen L, Shao Z, Zhang M, Liu S, Wen X, Li Y, Yang W, Tang F, Luo J, Fan L, Yan C, Liu J, Yuan K. Reduced midbrain functional connectivity and recovery in abstinent heroin users. J Psychiatr Res 2021; 144:168-176. [PMID: 34662755 DOI: 10.1016/j.jpsychires.2021.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
Dopaminergic pathways from the midbrain to striatum as well as cortex are involved in addiction. However, the alternations of these pathways and whether the recoveries of aberrant circuits would be detected after prolonged abstinence in heroin users are rarely known. The resting-state functional connectivity (RSFC) patterns of midbrain (i.e., the ventral tegmental area (VTA) and substantia nigra (SN)) were compared between 40 abstinent heroin users with opioid use disorder (HUs) and 35 healthy controls (HCs). Then, we tested the functional recovery hypothesis by both cross-sectional and longitudinal design. For cross-sectional design, HUs were separated into short-term abstainers (STs) (3-15 days) and long-term abstainers (LTs) (>15 days). With regard to longitudinal design, 22 subjects among HUs were followed up for 10 months. A sandwich estimator method was used to analyze the differences between baseline HUs and follow-up HUs. HUs showed lower RSFC between midbrain and several cortical areas (medial orbitofrontal cortex (mOFC) and anterior cingulate cortex) compared with HCs. Besides, lower RSFC of VTA-right nucleus accumbens circuit as well as right SN- caudate circuit was also found in HUs. The enhanced RSFC value of VTA-left mOFC circuit was observed in LTs, compared with STs. Additionally, longitudinal design also revealed the increased RSFC values of the midbrain with frontal cortex after 10 months prolonged abstinence. We revealed abnormal functional organizations of midbrain-striato and midbrain-cortical circuits in HUs. More importantly, partially recovery of these dysfunctions can be found after long-term abstinence.
Collapse
Affiliation(s)
- Yan Xu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Shicong Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Longmao Chen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Min Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Shuang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Xinwen Wen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Yangding Li
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Tang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cui Yan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
113
|
Flores Mosri D. Affective Neuroscience Contributions to the Treatment of Addiction: The Role of Social Instincts, Pleasure and SEEKING. Front Psychiatry 2021; 12:761744. [PMID: 34887789 PMCID: PMC8649919 DOI: 10.3389/fpsyt.2021.761744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Addiction is an illness prevalent in the worldwide population that entails multiple health risks. Because of the nature of addictive disorders, users of drugs seldom look for treatment and when they do, availability can be difficult to access. Permanence in treatment and its outcomes vary from case to case. Most models work from a multidisciplinary approach that tackles several dimensions of addictive disorders. However, the different etiological factors claim for a personalized treatment to enhance opportunities for better results. Problems in relationships with others play an important role in the etiology and the recovery process of addiction. This paper focuses on the social-environmental causes of addiction based on an affective neuroscience approach that attempts to integrate the interplay between social instincts, pleasure, and the SEEKING system in addiction. To advance toward better treatment strategies, it is pertinent to understand the limitations of the current multidisciplinary models. Acknowledging the social nature of the human brain may help to identify the quality of different types of traumatic early life experiences in drug users and how to address them in what may become a neuropsychoanalytic treatment of addiction.
Collapse
Affiliation(s)
- Daniela Flores Mosri
- Department of Psychology, Psychoanalytic Psychotherapy, Neuropsychoanalysis, Universidad Intercontinental, Mexico City, Mexico
| |
Collapse
|
114
|
Fogelman N, Hwang S, Sinha R, Seo D. Social Support Effects on Neural Stress and Alcohol Reward Responses. Curr Top Behav Neurosci 2021; 54:461-482. [PMID: 34734391 DOI: 10.1007/7854_2021_246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Social support (SS), or having people to depend on during times of stress, may offer an emotional and neurological buffer to problem drinking. Specifically, SS may modulate reward and stress-related brain responses to mitigate perceptions of alcohol reward and stress. There is limited evidence, however, on this topic and specifically on brain networks that may modulate SS effects on stress and alcohol reward. Here we present a review of the current literature on this topic as well as data from a large community sample of 115 social drinkers. Findings from a novel fMRI task viewing alcohol cue, stress, and neutral images, in separate blocks, while providing ratings on subjective feelings of alcohol craving, stress, and arousal are included. Lower SS significantly predicted greater alcohol craving during alcohol cue and stress conditions, higher baseline levels of stress, and greater arousal in the alcohol cue, relative to neutral condition. Remarkably, individuals with low SS showed greater reward activation (ventral medial prefrontal cortex (VmPFC) and ventral striatum) during alcohol cue exposure, while those with high SS showed no such activation (p < 0.001, family wise error corrected at 0.05). Furthermore, individuals with lower SS showed greater stress circuit (VmPFC, dorsal striatum, and periaqueductal gray) activation not observed in the high SS groups. Both groups showed increased amygdala activation under stress condition. The findings support the notion that SS is a powerful modulator of stress response and reward motivation. High SS buffers neural and subjective stress responses, while low SS potentiates greater reward seeking with higher alcohol craving and greater brain activation during alcohol cue exposure. Previous research and current results suggest the need to further explore the role of SS in those at risk of developing alcohol use disorder and assess novel prevention strategies to boost SS in at-risk drinkers.
Collapse
Affiliation(s)
- Nia Fogelman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Seungju Hwang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
115
|
Li Y, Yan X, Wang Z, Zhang B, Jia Z. Clear the fog of negative emotions: A new challenge for intervention towards drug users. J Affect Disord 2021; 294:305-313. [PMID: 34311330 DOI: 10.1016/j.jad.2021.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/26/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The psychological and emotional problems of drug users are a focus of research. However, quick and effective emotion assessment tools were scarce. We aimed to use facial expression recognition to assess the emotional states of drug users. METHODS Our study was conducted in Chengdu City, Sichuan Province, China from January 1, 2020 to June 30, 2020. The 69 drug users who were undergoing community-based treatment were recruited. We developed an app to collect their images and videos, and trained the deep learning model to assess their emotional states. We also explored the correlation between emotional changes and treatment time, and investigated the impact factors associated with emotional changes. RESULTS Based on the continuous 6-month follow-up study, the emotional distribution of drug users was still dominated by negative emotions during community treatment (72.85%). Nevertheless, with the increase of treatment time, 17.39% of drug users' emotions were changing better. Results also showed that compared with the females, males were less likely to have positive emotion change. In addition, the females were more willing to read reply messages from social workers. LIMITATIONS The relatively short observation period could be extended, and voice data should be considered for analysis in the future. CONCLUSIONS Social workers should pay attention to emotional states of drug users, and provide effective and gender-specific psychological interventions for them. In addition, as a more powerful "medicine", it is essential to strengthen the accessibility of humanistic care and services to help drug users maintain a positive attitude.
Collapse
Affiliation(s)
- Yongjie Li
- School of Public Health, Peking University, Beijing, China
| | - Xiangyu Yan
- School of Public Health, Peking University, Beijing, China
| | - Zekun Wang
- School of Public Health, Peking University, Beijing, China
| | - Bo Zhang
- School of Public Health, Peking University, Beijing, China
| | - Zhongwei Jia
- School of Public Health, Peking University, Beijing, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China; Center for Drug Abuse Control and Prevention, National Institute of Health Data Science, Peking University, Beijing, China.
| |
Collapse
|
116
|
Oliva F, Mangiapane C, Nibbio G, Berchialla P, Colombi N, Vigna-Taglianti FD. Prevalence of cocaine use and cocaine use disorder among adult patients with attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. J Psychiatr Res 2021; 143:587-598. [PMID: 33199055 DOI: 10.1016/j.jpsychires.2020.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
We conducted this systematic review and meta-analysis (registered with PROSPERO CRD42020142039) of the literature to estimate the lifetime prevalence of cocaine use and cocaine use disorder among adult patients with attention-deficit/hyperactivity disorder (ADHD). The literature search was performed on the electronic databases PubMed and PsychINFO without date or language restrictions. Additional studies were identified by hand searching of citations. Inclusion criteria were: studies involving adult patients with ADHD and reporting cocaine use and/or cocaine use disorders. Data were pooled in the meta-analyses using a generalized linear mixed model with random effects. Statistical heterogeneity was assessed using the Cochran Q test. Sensitivity analyses were conducted. Twelve studies were included in the review: six in the meta-analysis of cocaine use and nine in the meta-analysis of cocaine use disorder. The estimated prevalence of cocaine use was 26.0% (95% CI 0.18-0.35) and the estimated prevalence of cocaine use disorder was 10.0% (95% CI 0.08-0.13). Heterogeneity in both meta-analyses was high but decreased to non-significance in the meta-analysis on cocaine use disorder after excluding the outlier study. In conclusion, one out of four adult patients with ADHD use cocaine and one out of ten develop a lifetime cocaine use disorder. Since cocaine use can lead to more severe and complex disorders of impaired systemic functioning, adult patients with ADHD should be assessed for cocaine use disorder and promptly referred for treatment.
Collapse
Affiliation(s)
- F Oliva
- Department of Clinical and Biological Sciences, University of Torino, Italy
| | - C Mangiapane
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Italy
| | - G Nibbio
- Department of Psychiatry, Brescia University School of Medicine, Brescia, Italy
| | - P Berchialla
- Department of Clinical and Biological Sciences, University of Torino, Italy
| | - N Colombi
- Federated Library of Medicine "F. Rossi", University of Torino, Italy
| | - F D Vigna-Taglianti
- Department of Clinical and Biological Sciences, University of Torino, Italy; Piedmont Centre for Drug Addiction Epidemiology, ASL TO3, Grugliasco, Torino, Italy.
| |
Collapse
|
117
|
Bi Y, Hu L. Magnetic resonance imaging for smoking abstinence: symptoms, mechanisms, and interventions. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tobacco smoking is the leading preventable cause of morbidity and mortality worldwide. Although a number of smokers are aware of the adverse outcomes of smoking and express a strong desire to stop smoking, most smoking quit attempts end in relapse within the first few days of abstinence, primarily resulting from the aversive aspects of the nicotine withdrawal syndrome. Therefore, studying the neural mechanisms of smoking abstinence, identifying smokers with heightened relapse vulnerability prior to quit attempts, and developing effective smoking cessation treatments appear to be promising strategies for improving the success of quit attempts. In recent years, with the development of magnetic resonance imaging, the neural substrates of smoking abstinence have become extensively studied. In this review, we first introduce the psychophysiological changes induced by smoking abstinence, including affective, cognitive, and somatic signs. We then provide an overview of the magnetic resonance imaging-based evidence regarding abstinence-related functional changes accompanied by these psychophysiological changes. We conclude with a discussion of the neural markers that could predict relapse during quit attempts and a summary of the psychophysiological interventions that are currently often used to help with smoking cessation. This review extends our understanding of the role of the central nervous system in smoking abstinence.
Collapse
Affiliation(s)
- Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
118
|
Andrianarivelo A, Saint-Jour E, Pousinha P, Fernandez SP, Petitbon A, De Smedt-Peyrusse V, Heck N, Ortiz V, Allichon MC, Kappès V, Betuing S, Walle R, Zhu Y, Joséphine C, Bemelmans AP, Turecki G, Mechawar N, Javitch JA, Caboche J, Trifilieff P, Barik J, Vanhoutte P. Disrupting D1-NMDA or D2-NMDA receptor heteromerization prevents cocaine's rewarding effects but preserves natural reward processing. SCIENCE ADVANCES 2021; 7:eabg5970. [PMID: 34669474 PMCID: PMC8528421 DOI: 10.1126/sciadv.abg5970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Addictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Here, we provide evidence, from mice to humans, that an underlying mechanism relies on drug-evoked heteromerization of glutamate N-methyl-d-aspartate receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early phases of cocaine-mediated synaptic, morphological, and behavioral responses. In contrast, preventing D2R-NMDAR heteromerization blocked the persistence of these adaptations. Interfering with these heteromers spared natural reward processing. Notably, we established that D2R-NMDAR complexes exist in human samples and showed that, despite a decreased D2R protein expression in the NAc, individuals with psychostimulant use disorder display a higher proportion of D2R forming heteromers with NMDAR. These findings contribute to a better understanding of molecular mechanisms underlying addiction and uncover D2R-NMDAR heteromers as targets with potential therapeutic value.
Collapse
Affiliation(s)
- Andry Andrianarivelo
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
| | - Estefani Saint-Jour
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
| | - Paula Pousinha
- Université Côte d’Azur, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Valbonne, France
| | - Sebastian P. Fernandez
- Université Côte d’Azur, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Valbonne, France
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000 Bordeaux, France
| | | | - Nicolas Heck
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
| | - Vanesa Ortiz
- Université Côte d’Azur, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Valbonne, France
| | - Marie-Charlotte Allichon
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
| | - Vincent Kappès
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
| | - Sandrine Betuing
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
| | - Roman Walle
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000 Bordeaux, France
| | - Ying Zhu
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Charlène Joséphine
- Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jonathan A. Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | - Jocelyne Caboche
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000 Bordeaux, France
| | - Jacques Barik
- Université Côte d’Azur, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Valbonne, France
| | - Peter Vanhoutte
- CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France
- Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, F-75005 Paris, France
- Corresponding author.
| |
Collapse
|
119
|
Qi S, Schumann G, Bustillo J, Turner JA, Jiang R, Zhi D, Fu Z, Mayer AR, Vergara VM, Silva RF, Iraji A, Chen J, Damaraju E, Ma X, Yang X, Stevens M, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, Potkin SG, Preda A, Zhuo C, Xu Y, Chu C, Banaschewski T, Barker GJ, Bokde ALW, Quinlan EB, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Martinot JL, Paillère Martinot ML, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Walter H, Whelan R, Calhoun VD, Sui J. Reward Processing in Novelty Seekers: A Transdiagnostic Psychiatric Imaging Biomarker. Biol Psychiatry 2021; 90:529-539. [PMID: 33875230 PMCID: PMC8322149 DOI: 10.1016/j.biopsych.2021.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dysfunctional reward processing is implicated in multiple mental disorders. Novelty seeking (NS) assesses preference for seeking novel experiences, which is linked to sensitivity to reward environmental cues. METHODS A subset of 14-year-old adolescents (IMAGEN) with the top 20% ranked high-NS scores was used to identify high-NS-associated multimodal components by supervised fusion. These features were then used to longitudinally predict five different risk scales for the same and unseen subjects (an independent dataset of subjects at 19 years of age that was not used in predictive modeling training at 14 years of age) (within IMAGEN, n ≈1100) and even for the corresponding symptom scores of five types of patient cohorts (non-IMAGEN), including drinking (n = 313), smoking (n = 104), attention-deficit/hyperactivity disorder (n = 320), major depressive disorder (n = 81), and schizophrenia (n = 147), as well as to classify different patient groups with diagnostic labels. RESULTS Multimodal biomarkers, including the prefrontal cortex, striatum, amygdala, and hippocampus, associated with high NS in 14-year-old adolescents were identified. The prediction models built on these features are able to longitudinally predict five different risk scales, including alcohol drinking, smoking, hyperactivity, depression, and psychosis for the same and unseen 19-year-old adolescents and even predict the corresponding symptom scores of five types of patient cohorts. Furthermore, the identified reward-related multimodal features can classify among attention-deficit/hyperactivity disorder, major depressive disorder, and schizophrenia with an accuracy of 87.2%. CONCLUSIONS Adolescents with higher NS scores can be used to reveal brain alterations in the reward-related system, implicating potential higher risk for subsequent development of multiple disorders. The identified high-NS-associated multimodal reward-related signatures may serve as a transdiagnostic neuroimaging biomarker to predict disease risks or severity.
Collapse
Affiliation(s)
- Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia; Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Rongtao Jiang
- University of Chinese Academy of Sciences, Beijing, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dongmei Zhi
- University of Chinese Academy of Sciences, Beijing, China; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia
| | - Andrew R Mayer
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Victor M Vergara
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia
| | - Rogers F Silva
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia
| | - Armin Iraji
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia
| | - Jiayu Chen
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia
| | - Eswar Damaraju
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | | | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, California
| | - Judith M Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, California
| | - James Voyvodic
- Department of Radiology, Duke University, Durham, North Carolina
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven G Potkin
- Department of Psychiatry, University of California Irvine, Irvine, California
| | - Adrian Preda
- Department of Psychiatry, University of California Irvine, Irvine, California
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory, Nankai University Affiliated Anding Hospital, Tianjin, China
| | - Yong Xu
- Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China
| | - Congying Chu
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Herta Flor
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry," University Paris-Saclay, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry," University Paris-Saclay, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry," University Paris-Saclay, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Tomáš Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Berlin, Germany
| | - Robert Whelan
- PONS Research Group, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Humboldt University, Berlin, Germany
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia; Department of Psychology, Georgia State University, Atlanta, Georgia.
| | - Jing Sui
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute Technology, and Emory University, Atlanta, Georgia; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
120
|
Nitric Oxide Signaling Pathway in Ventral Tegmental Area is Involved in Regulation of 7,8-Dihydroxyflavone on Alcohol Consumption in Rats. Mol Neurobiol 2021; 59:35-46. [PMID: 34618330 DOI: 10.1007/s12035-021-02575-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
We recently reported that intraperitoneal injection of 7,8-dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor-mimicking small compound, could attenuate alcohol-related behaviors in a two-bottle choice ethanol consumption procedure (IA2BC) in rats via tropomyosin receptor kinase B in the ventral tegmental area (VTA), which is closely related to alcohol use disorder. However, the detailed mechanisms underlying the regulation of 7,8-DHF on alcohol drinking behavior remain elusive. In this study, we determined the role of nitric oxide (NO), a pleiotropic signaling molecule, in the VTA in the action of 7,8-DHF upon alcohol drinking behavior. Intermittent alcohol exposure led to the overexpression of NO in the VTA, especially 72 h after withdrawal from four weeks of ethanol exposure in IA2BC rats. A higher amount of alcohol intake was also found at the same time point, consistent with the overexpression of NO in the VTA. Microinjection of NG-Nitro-l-Arginine Methyl Ester, (NO synthase inhibitor) or 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NO scavenger) into the VTA inhibited alcohol intake, whereas application of S-Nitroso-N-acetyl-DL-penicillamine (SNAP, the NO donor) in the VTA further enhanced alcohol consumption in IA2BC rats. Interestingly, either 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (a sGC inhibitor) or KT5823 [a selective protein kinase G (PKG) inhibitor] blocked NO's enhancing effect on ethanol intake. Intraperitoneal injection of 7,8-DHF reduced the overexpression of NO; SNAP microinjected into the VTA reversed the inhibitory effects of 7,8-DHF on alcohol consumption. Our findings suggest that NO-cGMP-PKG might be involved in regulation of 7,8-DHF on alcohol consumption in IA2BC rats.
Collapse
|
121
|
Burnette EM, Ray LA, Irwin MR, Grodin EN. Ibudilast attenuates alcohol cue-elicited frontostriatal functional connectivity in alcohol use disorder. Alcohol Clin Exp Res 2021; 45:2017-2028. [PMID: 34585396 PMCID: PMC8602728 DOI: 10.1111/acer.14696] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ibudilast, a novel neuroimmune modulator being studied to treat alcohol use disorder (AUD), was shown in a randomized controlled trial (NCT03489850) to reduce ventral striatum (VS) activation in response to visual alcohol cues. The present study extended this finding by probing the effects of ibudilast on alcohol cue-elicited functional connectivity (i.e., temporally correlated activation) with the VS seed. The study also tests the association between functional connectivity and alcohol use during the trial. METHODS Non-treatment-seeking participants (n = 45) with current alcohol use disorder were randomized to receive twice-daily dosing with either ibudilast (50 mg; n = 20) or placebo (n = 25). Upon reaching the target dosagee of the medication or placebo, participants completed a functional neuroimaging alcohol cue reactivity paradigm. Drinks per drinking day were assessed at baseline and daily during the 2-week trial. RESULTS Ibudilast reduced alcohol cue-elicited functional connectivity between the VS seed and reward-processing regions including the orbitofrontal and anterior cingulate cortices compared with placebo (p < 0.05). Cue-elicited functional connectivity was correlated with drinks per drinking day (R2 = 0.5351, p < 0.001), and ibudilast reduced this association in similar reward-processing regions compared with placebo. CONCLUSIONS Ibudilast's effects on drinking outcomes may be related to the attenuation of functional connectivity in frontostriatal circuits related to reward processing. These results provide an important proof of concept for this novel pharmacotherapy and support the clinical utility of incorporating neuroimaging-and especially functional connectivity-analyses into medication development.
Collapse
Affiliation(s)
- Elizabeth M. Burnette
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA
| | - Lara A. Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
| | - Michael R. Irwin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
| | - Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
122
|
Webber HE, Kessler DA, Lathan EC, Wardle MC, Green CE, Schmitz JM, Lane SD, Vujanovic AA. Posttraumatic stress symptom clusters differentially predict late positive potential to cocaine imagery cues in trauma-exposed adults with cocaine use disorder. Drug Alcohol Depend 2021; 227:108929. [PMID: 34340161 PMCID: PMC8464512 DOI: 10.1016/j.drugalcdep.2021.108929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND While studies have investigated the effects of posttraumatic stress disorder (PTSD) symptoms on substance use, information on these associations in the context of drug cue reactivity is lacking, which can provide meaningful information about risk for relapse. The current study assessed the associations between PTSD symptom clusters and reactivity to cues in trauma-exposed adults with cocaine use disorder. METHODS We recorded electroencephalogram on 52 trauma-exposed participants (Mage = 51.3; SD = 7.0; 15.4 % women) diagnosed with cocaine use disorder while they viewed pleasant (i.e., erotic, romantic, sweet foods), unpleasant (i.e., mutilations, violence, accidents), neutral, and cocaine-related images. Reactivity was measured with the late positive potential (LPP), an indicator of motivational relevance. It was hypothesized that individuals with greater PTSD avoidance and negative alterations in cognition and mood (NACM) symptoms, as determined by the PTSD Checklist for DSM-5 (PCL-5), would have higher LPPs to cocaine-related images, indicating greater cue reactivity. RESULTS Linear mixed modeling indicated that higher NACM symptomatology was associated with higher LPPs to cocaine cues and higher arousal/reactivity was associated with lower LPPs to cocaine cues. CONCLUSIONS These results highlight the potential clinical utility of the LPP in assessing drug cue reactivity in trauma-exposed adults with substance use disorder.
Collapse
Affiliation(s)
- Heather E. Webber
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | | | - Emma C. Lathan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Margaret C. Wardle
- Department of Psychology, University of Illinois at Chicago, Chicago, IL
| | - Charles E. Green
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science, Center at Houston, Houston, TX
| | - Joy M. Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Scott D. Lane
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | | |
Collapse
|
123
|
Neurocircuitry of Mindfulness-Based Interventions for Substance Use Prevention and Recovery. CURRENT ADDICTION REPORTS 2021. [DOI: 10.1007/s40429-021-00396-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
124
|
Klausen MK, Thomsen M, Wortwein G, Fink-Jensen A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br J Pharmacol 2021; 179:625-641. [PMID: 34532853 DOI: 10.1111/bph.15677] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Drug-, alcohol- and tobacco use disorders are a global burden affecting millions of people. Despite decades of research, treatment options are sparse or missing, and relapse rates are high. Glucagon-like peptide-1 (GLP-1) is released in the small intestines, promotes blood glucose homeostasis, slows gastric emptying, and reduces appetite. GLP-1 receptor agonists approved for treating type 2 diabetes mellitus and obesity, have received attention as a potential anti-addiction treatment. Studies in rodents and non-human primates have demonstrated a reduction in intake of alcohol and drugs of abuse, and clinical trials have been initiated to investigate whether the preclinical findings can be translated to patients. This review will give an overview of current findings and discuss the possible mechanisms of action. We suggest that effects of GLP-1 in alcohol- and substance use disorder is mediated centrally, at least partly through dopamine signalling, but precise mechanisms are still to be uncovered.
Collapse
Affiliation(s)
- Mette Kruse Klausen
- Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| | - Gitta Wortwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
125
|
Inkster JAH, Sromek AW, Akurathi V, Neumeyer JL, Packard AB. The Non-Anhydrous, Minimally Basic Synthesis of the Dopamine D 2 Agonist [18F]MCL-524. CHEMISTRY (BASEL, SWITZERLAND) 2021; 3:1047-1056. [PMID: 37830058 PMCID: PMC10569134 DOI: 10.3390/chemistry3030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The dopamine D2 agonist MCL-524 is selective for the D2 receptor in the high-affinity state (D2high), and, therefore, the PET analogue, [18F]MCL-524, may facilitate the elucidation of the role of D2high in disorders such as schizophrenia. However, the previously reported synthesis of [18F]MCL-524 proved difficult to replicate and was lacking experimental details. We therefore developed a new synthesis of [18F]MCL-524 using a "non-anhydrous, minimally basic" (NAMB) approach. In this method, [18F]F- is eluted from a small (10-12 mg) trap-and-release column with tetraethylammonium tosylate (2.37 mg) in 7:3 MeCN:H2O (0.1 mL), rather than the basic carbonate or bicarbonate solution that is most often used for [18F]F- recovery. The tosylated precursor (1 mg) in 0.9 mL anhydrous acetonitrile was added directly to the eluate, without azeotropic drying, and the solution was heated (150 °C/15 min). The catechol was then deprotected with the Lewis acid In(OTf)3 (10 equiv.; 150 °C/20 min). In contrast to deprotection with protic acids, Lewis-acid-based deprotection facilitated the efficient removal of byproducts by HPLC and eliminated the need for SPE extraction prior to HPLC purification. Using the NAMB approach, [18F]MCL-524 was obtained in 5-9% RCY (decay-corrected, n = 3), confirming the utility of this improved method for the multistep synthesis of [18F]MCL-524 and suggesting that it may applicable to the synthesis of other 18F-labeled radiotracers.
Collapse
Affiliation(s)
- James A. H. Inkster
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Anna W. Sromek
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Vamsidhar Akurathi
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - John L. Neumeyer
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Alan B. Packard
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
126
|
Casanovas M, Jiménez-Rosés M, Cordomí A, Lillo A, Vega-Quiroga I, Izquierdo J, Medrano M, Gysling K, Pardo L, Navarro G, Franco R. Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addict Biol 2021; 26:e13017. [PMID: 33559278 DOI: 10.1111/adb.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
Cocaine not only increases brain dopamine levels but also activates the sigma1 receptor (σ1 R) that in turn regulates orexigenic receptor function. Identification of interactions involving dopamine D1 (D1 R), ghrelin (GHS-R1a ), and σ1 receptors have been addressed by biophysical techniques and a complementation approach using interfering peptides. The effect of cocaine on receptor functionality was assayed by measuring second messenger, cAMP and Ca2+ , levels. The effect of acute or chronic cocaine administration on receptor complex expression was assayed by in situ proximity ligation assay. In silico procedures were used for molecular model building. σ1 R KO mice were used for confirming involvement of this receptor. Upon identification of protomer interaction and receptor functionality, a unique structural model for the macromolecular complex formed by σ1 R, D1 R, and GHS-R1a is proposed. The functionality of the complex, able to couple to both Gs and Gq proteins, is affected by cocaine binding to the σ1 R, as confirmed using samples from σ1 R-/- mice. The expression of the macromolecular complex was differentially affected upon acute and chronic cocaine administration to rats. The constructed 3D model is consistent with biochemical, biophysical, and available structural data. The σ1 R, D1 R, and GHS-R1a complex constitutes a functional unit that is altered upon cocaine binding to the σ1 R. Remarkably, the heteromer can simultaneously couple to two G proteins, thus allowing dopamine to signal via Ca2+ and ghrelin via cAMP. The anorexic action of cocaine is mediated by such complex whose expression is higher after acute than after chronic administration regimens.
Collapse
Affiliation(s)
- Mireia Casanovas
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Jiménez-Rosés
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joan Izquierdo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Mireia Medrano
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
127
|
Park CI, Kim HW, Hwang SS, Kang JI, Kim SJ. Influence of dopamine-related genes on craving, impulsivity, and aggressiveness in Korean males with alcohol use disorder. Eur Arch Psychiatry Clin Neurosci 2021; 271:865-872. [PMID: 31559529 DOI: 10.1007/s00406-019-01072-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
Dopamine is a major neuromodulator that is acutely involved in various cognitive processes, reward-motivated behaviors, and impulsivity. Abnormality in dopaminergic neurotransmission is implicated in the pathophysiology of alcohol use disorder (AUD). The present study examined the genetic influence of dopamine system on problematic drinking, impulsivity, and aggressiveness in a Korean male population with AUD. Five single nucleotide polymorphisms (SNPs) (rs4532 in DRD1, rs2283265 in DRD2, rs6280 in DRD3, rs1800497 in ANKK1, and rs4680 in COMT) and a variable number of tandem repeats (VNTRs) in DAT1 in 295 male patients with AUD were genotyped. For AUD-related clinical characteristics, the Alcohol Use Disorders Identification Test and the Obsessive-Compulsive Drinking Scale (OCDS) were used to assess the severity of hazardous drinking and craving symptoms, respectively. Participants also completed the UPPS-P Impulsive Behavior Scale (UPPS-P) and Buss-Perry Aggression Questionnaire (BPAQ). Analyses were performed using R package SNPassoc; statistical significance was set as p < 0.0083 after Bonferroni correction. A significant association was detected between DRD3 SNP rs6280 and OCDS scores. In regard to impulsivity and aggressiveness, rs4532 of DRD1 was significantly associated with UPPS-P score. Also, rs4532 demonstrated a nominally significant association with BPAQ score, although it did not reach statistical significance after correction for multiple comparisons. Results of this study support the idea that genetic variations in the dopamine system may contribute to alcohol cravings and impulsivity in patients with AUD.
Collapse
Affiliation(s)
- Chun Il Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medical Education, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Syung Shick Hwang
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Joo Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
128
|
The Paradoxical Effect Hypothesis of Abused Drugs in a Rat Model of Chronic Morphine Administration. J Clin Med 2021; 10:jcm10153197. [PMID: 34361981 PMCID: PMC8348660 DOI: 10.3390/jcm10153197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
A growing body of studies has recently shown that abused drugs could simultaneously induce the paradoxical effect in reward and aversion to influence drug addiction. However, whether morphine induces reward and aversion, and which neural substrates are involved in morphine’s reward and aversion remains unclear. The present study first examined which doses of morphine can simultaneously produce reward in conditioned place preference (CPP) and aversion in conditioned taste aversion (CTA) in rats. Furthermore, the aversive dose of morphine was determined. Moreover, using the aversive dose of 10 mg/kg morphine tested plasma corticosterone (CORT) levels and examined which neural substrates were involved in the aversive morphine-induced CTA on conditioning, extinction, and reinstatement. Further, we analyzed c-Fos and p-ERK expression to demonstrate the paradoxical effect—reward and aversion and nonhomeostasis or disturbance by morphine-induced CTA. The results showed that a dose of more than 20 mg/kg morphine simultaneously induced reward in CPP and aversion in CTA. A dose of 10 mg/kg morphine only induced the aversive CTA, and it produced higher plasma CORT levels in conditioning and reacquisition but not extinction. High plasma CORT secretions by 10 mg/kg morphine-induced CTA most likely resulted from stress-related aversion but were not a rewarding property of morphine. For assessments of c-Fos and p-ERK expression, the cingulate cortex 1 (Cg1), prelimbic cortex (PrL), infralimbic cortex (IL), basolateral amygdala (BLA), nucleus accumbens (NAc), and dentate gyrus (DG) were involved in the morphine-induced CTA, and resulted from the aversive effect of morphine on conditioning and reinstatement. The c-Fos data showed fewer neural substrates (e.g., PrL, IL, and LH) on extinction to be hyperactive. In the context of previous drug addiction data, the evidence suggests that morphine injections may induce hyperactivity in many neural substrates, which mediate reward and/or aversion due to disturbance and nonhomeostasis in the brain. The results support the paradoxical effect hypothesis of abused drugs. Insight from the findings could be used in the clinical treatment of drug addiction.
Collapse
|
129
|
Wei L, Wu GR, Bi M, Baeken C. Effective connectivity predicts cognitive empathy in cocaine addiction: a spectral dynamic causal modeling study. Brain Imaging Behav 2021; 15:1553-1561. [PMID: 32710329 DOI: 10.1007/s11682-020-00354-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Social cognition plays a crucial role in the development and treatment of cocaine dependence. However, studies investigating social cognition, such as empathy and its underlying neural basis, are lacking. To explore the neural interactions among reward and memory circuits, we applied effective connectivity analysis on resting-state fMRI data collected from cocaine-dependent subjects. The relationship between effective connectivity within these two important circuits and empathy ability - evaluated with the Interpersonal Reactivity Index (IRI) - was assessed by machine learning algorithm using multivariate regression analysis. In accordance with the neurocircuitry disruptions of cocaine addiction, the results showed that cocaine-dependent subjects relative to healthy controls had altered resting state effective connectivity between parts of the memory and reward systems. Furthermore, effective connectivity between the memory and reward system could predict the fantasy empathy (FE) subscale scores in cocaine dependence. Overall, our findings provide further evidence for the neural substrates of social cognition in cocaine-dependent patients. These new insights could be useful for the development of new treatment programs for this substance dependency disorder.
Collapse
Affiliation(s)
- Luqing Wei
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China. .,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Minghua Bi
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Psychiatry and Medical Psychology, Ghent University, Ghent, Belgium.,Department of Psychiatry, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZBrussel), Laarbeeklaan 101, 1090, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
130
|
Zale EL, Powers JM, Ditre JW. Cognitive-Affective Transdiagnostic Factors Associated With Vulnerability to Alcohol and Prescription Opioid Use in the Context of Pain. Alcohol Res 2021; 41:08. [PMID: 34306903 PMCID: PMC8289456 DOI: 10.35946/arcr.v41.1.08] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of alcohol and prescription opioids is common among people in pain and poses significant public health burdens. This review identifies factors associated with motivation to use alcohol and prescription opioids in the context of pain. Pain-relevant, cognitive-affective, transdiagnostic vulnerability factors-expectancies/motives, pain catastrophizing, pain-related anxiety, distress intolerance, anxiety sensitivity, and perceived interrelations-were selected from theoretical conceptualizations of pain and substance use. Searches conducted in PubMed, PsycINFO, and Embase returned 25 studies that examined associations between identified variables of interest and the use of alcohol and prescription opioids in the context of pain. Consistent with a larger literature on pain and substance use, the studies included in this review demonstrated that people with chronic pain are motivated to use alcohol and opioids in response to negative affect and hold expectancies/motives for coping with pain. Vulnerabilities that engender difficulty managing aversive internal states (distress intolerance and anxiety sensitivity) and maladaptive responses to pain (pain-related anxiety and pain catastrophizing) also were implicated in motivation for alcohol and opioid use. Although one study found that pain-related anxiety was associated with co-use of alcohol and opioids, no studies examined simultaneous use. Future research directions that can explicate causal associations, identify patterns of alcohol and opioid co-use, clarify the role of pain in cessation processes, and inform treatment development are discussed.
Collapse
Affiliation(s)
- Emily L Zale
- Department of Psychology, Binghamton University, Binghamton, New York
| | - Jessica M Powers
- Department of Psychology, Syracuse University, Syracuse, New York
| | - Joseph W Ditre
- Department of Psychology, Syracuse University, Syracuse, New York
| |
Collapse
|
131
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
132
|
Wang L, Luo X, Yuan TF, Zhou X. Reward facilitates response conflict resolution via global motor inhibition: Electromyography evidence. Psychophysiology 2021; 58:e13896. [PMID: 34231226 DOI: 10.1111/psyp.13896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022]
Abstract
It is crucial for humans to coordinate between behavioural tendencies that can lead to reward but are in conflict with each other. This response conflict can be measured in a reward-modulated Simon task, in which a discriminative response to the identity of a lateral target is required and the target is associated with either high- or low-reward. Critically, the lateral target is presented either congruent or incongruent with the location of the responding hand. It has been shown that relative to the low-reward target, the high-reward target induced a larger response conflict when the target was incongruent with the position of the task-required, reward-obtaining hand. Here we investigated how this response conflict is resolved by acquiring 24 healthy participants' electromyography (EMG) signals from both the task-required responding hand (i.e., goal-directed effector) and the alternative hand (i.e., inappropriate effector). During the coping with the response conflict, motor inhibition (indexed by reduction in EMG signals between conditions) was observed not only at the inappropriate effector but also at the goal-directed effector. Individuals who showed stronger inhibition on the inappropriate effector suffered less from the inhibition on the goal-directed effector, and had more efficient implementation of the reward-obtaining response. Our findings suggest a global motor inhibition that may function to increase the signal-noise ratio in the motor system so as to implement reward-guided behavior.
Collapse
Affiliation(s)
- Lihui Wang
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Experimental Psychology, Otto-von-Guericke University, Magdeburg, Germany
| | - Xiaoxiao Luo
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Zhou
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
133
|
Wang T, Zhu X, Yi H, Gu J, Liu S, Izenwasser S, Lemmon VP, Roy S, Hao S. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol 2021; 341:113710. [PMID: 33781732 DOI: 10.1016/j.expneurol.2021.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Xun Zhu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyun Yi
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jun Gu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shue Liu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sari Izenwasser
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Vance P Lemmon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shuanglin Hao
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
134
|
Contó MB, Dos Santos NB, Munhoz CD, Marcourakis T, D'Almeida V, Camarini R. Exposure to Running Wheels Prevents Ethanol Rewarding Effects: The Role of CREB and Deacetylases SIRT-1 and SIRT-2 in the Nucleus Accumbens and Prefrontal Cortex. Neuroscience 2021; 469:125-137. [PMID: 34175423 DOI: 10.1016/j.neuroscience.2021.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Alcohol use disorder is one of the most prevalent addictions, strongly influenced by environmental factors. Voluntary physical activity (VPA) has proven to be intrinsically reinforcing and we hypothesized that, as a non-drug reinforcer, VPA could mitigate ethanol-induced rewarding effects. The transcriptional factor cAMP response element binding protein (CREB), and deacetylases isozymes sirtuins 1 and 2 (SIRT-1 and SIRT-2) have a complex interplay and both play a role in the rewarding effects of ethanol. To test whether the exposure of mice to running wheels inhibits the development of ethanol-induced conditioned place preference (CPP), mice were assigned into four groups: housed in home cages with locked ("Sedentary") or unlocked running wheels (VPA), and treated with saline or 1.8 g/kg ethanol during the conditioning phase. The groups were referred as Saline-Sedentary, Saline-VPA, Ethanol-Sedentary and Ethanol-VPA. The expression of CREB, SIRT-1 and SIRT-2 were evaluated in the prefrontal cortex (PFC) and nucleus accumbens (NAc). VPA prevented the development of ethanol-induced CPP. VPA, ethanol and the combination of both inhibited pCREB and pCREB/CREB ratio in the NAc, suggesting that both reward stimuli can share similar patterns of CREB activation. However, we have found that ethanol-induced increased CREB levels were prevented by VPA. Both VPA groups presented lower SIRT-1 levels in the NAc compared to the Sedentary groups. Thus, exposure to running wheels prevented ethanol-rewarding effects and ethanol-induced increases in CREB in the NAc. The molecular alterations underlying CPP prevention may be related to a lower expression of CREB in the NAc of Ethanol-VPA compared to the respective Sedentary group, given the positive correlation between CPP and CREB levels in the Ethanol-Sedentary group.
Collapse
Affiliation(s)
- Marcos Brandão Contó
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Nilton Barreto Dos Santos
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vânia D'Almeida
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP/EPM), Sao Paulo, Brazil
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
135
|
Lynch KS, Ryan MJ. Understanding the Role of Incentive Salience in Sexual Decision-Making. Integr Comp Biol 2021; 60:712-721. [PMID: 32483613 DOI: 10.1093/icb/icaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the search for understanding female sexual decision-making, progress has been made in uncovering a variety of perceptual biases and most of these concern the animal's sensory biology and cognitive processes. We are now poised to dig deeper into the female's decision-making and ask if incentive salience, which plays a role in all types of appetitive behaviors, also influences a female's "taste for the beautiful." The incentive salience hypothesis suggests that dopamine assigns value or salience to objects or actions. After value is assigned to all potential actions, an action selection system then chooses among potential options to select the most valuable action. In this view, dopamine stimulates reward-seeking behavior by assigning incentive salience to specific behavioral actions, which in turn, increases pursuit and focus on objects or stimuli that represent the valuable action. Here, we apply this framework to understand why females are compelled to respond maximally to some male courtship signals over others and how this process may reveal a female's hidden mate preferences. We examine studies of dopamine and the mesolimbic reward system because these may play a role in expanding the female's perceptual landscape for novelty in male courtship signals and establishing novel hidden preferences. We review three avenues of research that may identify signatures of incentive salience in females during sexual decision-making. This review includes studies of dopamine agonist or antagonist administration in females during mate choice or partner preference tests, measures of neural activity in dopaminergic neural circuits during mate choice or partner preference tests, and social regulation of dopamine in females when entering reproductive contexts and/or exposure to mate signals. By applying the incentive salience hypothesis to female reproductive decision-making, it redefines how we see the female's role in sexual encounters. Females cannot be considered passive during reproductive encounters; rather they are seeking sexual encounters, particularly with males that tap into their perceptual biases and initiate a reward-seeking response. Incentive salience applied to reproductive behavior requires considering females as viewing sexual stimuli as rewarding and initiating action to seek out this reward, all of which indicates females are driving sexual encounters.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Department of Biological Sciences, Hofstra University, 1000 Hempstead Turnpike, Hempstead, NY 11549, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
136
|
Zhuang Q, Xu L, Zhou F, Yao S, Zheng X, Zhou X, Li J, Xu X, Fu M, Li K, Vatansever D, Kendrick KM, Becker B. Segregating domain-general from emotional context-specific inhibitory control systems - ventral striatum and orbitofrontal cortex serve as emotion-cognition integration hubs. Neuroimage 2021; 238:118269. [PMID: 34139360 DOI: 10.1016/j.neuroimage.2021.118269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022] Open
Abstract
Inhibitory control hierarchically regulates cognitive and emotional systems in the service of adaptive goal-directed behavior across changing task demands and environments. While previous studies convergently determined the contribution of prefrontal-striatal systems to general inhibitory control, findings on the specific circuits that mediate emotional context-specific impact on inhibitory control remained inconclusive. Against this background we combined an evaluated emotional Go/No Go task with fMRI in a large cohort of subjects (N=250) to segregate brain systems and circuits that mediate domain-general from emotion-specific inhibitory control. Particularly during a positive emotional context, behavioral results showed a lower accuracy for No Go trials and a faster response time for Go trials. While the dorsal striatum and lateral frontal regions were involved in inhibitory control irrespective of emotional context, activity in the ventral striatum (VS) and medial orbitofrontal cortex (mOFC) varied as a function of emotional context. On the voxel-wise whole-brain network level, limbic and striatal systems generally exhibited highest changes in global brain connectivity during inhibitory control, while global brain connectivity of the left mOFC was less decreased during emotional contexts. Functional connectivity analyses moreover revealed that negative coupling between the VS with inferior frontal gyrus (IFG)/insula and mOFC varied as a function of emotional context. Together these findings indicate separable domain- general as well as emotional context-specific inhibitory brain systems which specifically encompass the VS and its connections with frontal regions.
Collapse
Affiliation(s)
- Qian Zhuang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiao Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Meina Fu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China; Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
137
|
Santos DS, Medeiros LF, Stein DJ, De Macedo IC, Da Silva Rios DE, De Oliveira C, Toledo RS, Fregni F, Caumo W, Torres ILS. Bimodal transcranial direct current stimulation reduces alcohol consumption and induces long-term neurochemical changes in rats with neuropathic pain. Neurosci Lett 2021; 759:136014. [PMID: 34111512 DOI: 10.1016/j.neulet.2021.136014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the effects of repeated bimodal transcranial direct current stimulation (tDCS) on alcohol consumption and immunohistological and neurochemical parameters in nerve-injured rats. Forty-eight adult male Wistar rats were distributed into six groups: control, neuropathic pain (NP) + sham-tDCS, NP + alcohol + sham-tDCS, alcohol + sham-tDCS, alcohol + tDCS, and NP + alcohol + tDCS. NP is induced by chronic sciatic nerve constriction (CCI). The rats were exposed to a 10% alcohol solution by voluntary consumption for 14 days. From the 16th day after surgery, bimodal tDCS was applied for 20 min/day for 8 days. Brain structures were collected to evaluate the number of neuropeptide Y (NPY)-positive neurons, neurites, and argyrophilic grains by immunohistochemistry, and brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), interleukin (IL)-6, and IL-10 by ELISA. Nerve-injured rats showed a progressive increase in alcohol consumption compared to the non-injured rats. In addition, there was a reduction in voluntary alcohol consumption over time induced by tDCS. Alcohol exposure, chronic pain, and tDCS treatment modulated the central NPY immunoreactivity. tDCS increased the cerebellar levels of IL-6 and IL-10, and CCI and/or tDCS reduced striatal BDNF levels. The current data suggest that tDCS could be a promising non-pharmacological adjuvant to treat patients with chronic pain who use alcohol to relieve their symptoms.
Collapse
Affiliation(s)
- Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Postgraduate Program in Health and Human Development, Universidade La Salle, Canoas, RS, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Isabel Cristina De Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diego Evandro Da Silva Rios
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carla De Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roberta Ströher Toledo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Felipe Fregni
- Laboratoryof Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Wolnei Caumo
- Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratoryof Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| |
Collapse
|
138
|
Zhai T, Salmeron BJ, Gu H, Adinoff B, Stein EA, Yang Y. Functional connectivity of dorsolateral prefrontal cortex predicts cocaine relapse: implications for neuromodulation treatment. Brain Commun 2021; 3:fcab120. [PMID: 34189458 PMCID: PMC8226190 DOI: 10.1093/braincomms/fcab120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Relapse is one of the most perplexing problems of addiction. The dorsolateral prefrontal cortex is crucially involved in numerous cognitive and affective processes that are implicated in the phenotypes of both substance use disorders and other neuropsychiatric diseases and has become the principal site to deliver transcranial magnetic stimulation for their treatment. However, the dorsolateral prefrontal cortex is an anatomically large and functionally heterogeneous region, and the specific dorsolateral prefrontal cortex locus and dorsolateral prefrontal cortex-based functional circuits that contribute to drug relapse and/or treatment outcome remain unknown. We systematically investigated the relationship of cocaine relapse with functional circuits from 98 dorsolateral prefrontal cortex regions-of-interest defined by evenly sampling the entire surface of bilateral dorsolateral prefrontal cortex in a cohort of cocaine dependent patients (n = 43, 5 Fr) following a psychosocial treatment intervention. Cox regression models were utilized to predict relapse likelihood based on dorsolateral prefrontal cortex functional connectivity strength. Functional connectivity from only 3 of the 98 dorsolateral prefrontal cortex loci, one in the left and two in the right hemisphere, significantly predicted cocaine relapse with an accuracy of 83.9%, 84.6% and 85.4%, respectively. Combining all three loci significantly improved prediction validity to 87.5%. Protective and risk circuits related to these dorsolateral prefrontal cortex loci were identified that have previously been implicated to support 'bottom up' drive to use drug and 'top down' control over behaviour together with social emotional, learning and memory processing. Three dorsolateral prefrontal cortex-centric circuits were identified that predict relapse to cocaine use with high accuracy. These functionally distinct dorsolateral prefrontal cortex-based circuits provide insights into the multiple roles played by the dorsolateral prefrontal cortex in cognitive and affective functioning that affects treatment outcome. The identified dorsolateral prefrontal cortex loci may serve as potential neuromodulation targets to be tested in subsequent clinical studies for addiction treatment and as clinically relevant biomarkers of its efficacy. Zhai et al. identify three dorsolateral prefrontal cortex (dlPFC)-centric circuits that predict cocaine relapse with high accuracy, providing insights into the multiple roles of the dlPFC in brain functioning that affects treatment outcome and suggesting the dlPFC loci as potential neuromodulation targets for addiction treatment.
Collapse
Affiliation(s)
- Tianye Zhai
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hong Gu
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Bryon Adinoff
- Veterans Affairs North Texas Health Care System, Dallas, TX 75216, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Psychiatry-Residency, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
139
|
Wakaizumi K, Vigotsky AD, Jabakhanji R, Abdallah M, Barroso J, Schnitzer TJ, Apkarian AV, Baliki MN. Psychosocial, Functional, and Emotional Correlates of Long-Term Opioid Use in Patients with Chronic Back Pain: A Cross-Sectional Case-Control Study. Pain Ther 2021; 10:691-709. [PMID: 33844170 PMCID: PMC8119524 DOI: 10.1007/s40122-021-00257-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/13/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The opiate epidemic has severe medical and social consequences. Opioids are commonly prescribed in patients with chronic pain, and are a main contributor to the opiate epidemic. The adverse effects of long-term opioid usage have been studied primarily in dependence/addiction disorders, but not in chronic pain. Here, we examine the added iatrogenic effects, psychology, and brain morphology of long-term opioid use in matched patients with chronic pain with and without opioid use (case-controlled design). METHODS We compared psychosocial, functional, and psychological measures between patients with chronic back pain (CBP) who were managing their pain with or without opioids, thereby controlling for the effect of pain on these outcomes. In addition, we investigated brain morphological differences associated with long-term opioid usage. We recruited 58 patients with CBP, 29 of them on long-term opioids and 29 who did not use opioids, and who were matched in terms of age, sex, pain intensity, and pain duration. Questionnaires were used to assess pain quality, pain psychology, negative and positive emotions, physical, cognitive, sensory, and motor functions, quality of life, and personality traits. RESULTS Patients with CBP on opioids displayed more negative emotion, poorer physical function, and more pain interference (p < 0.001), whereas there were no statistical differences in cognitive and motor functions and personality traits. Voxel-based morphometry using structural brain imaging data identified decreased gray matter density of the dorsal paracingulate cortex (family-wise error-corrected p < 0.05) in patients with opioids, which was associated with negative emotion (p = 0.03). Finally, a volumetric analysis of hippocampal subfields identified lower volume of the left presubiculum in patients on opioids (p < 0.001). CONCLUSION Long-term opioid use in chronic pain is associated with adverse negative emotion and disabilities, as well as decreased gray matter volumes of specific brain regions.
Collapse
Affiliation(s)
- Kenta Wakaizumi
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, 355 East Erie St, Chicago, IL, 60611, USA
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Andrew D Vigotsky
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Statistics, Northwestern University, Evanston, IL, USA
| | - Rami Jabakhanji
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, 355 East Erie St, Chicago, IL, 60611, USA
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Maryam Abdallah
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, 355 East Erie St, Chicago, IL, 60611, USA
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Joana Barroso
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, 355 East Erie St, Chicago, IL, 60611, USA
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, 355 East Erie St, Chicago, IL, 60611, USA
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Apkar Vania Apkarian
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA.
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA.
- Department of Anesthesia, Feinberg School of Medicine, Northwestern University, Tarry Bldg. 7-705, Chicago, IL, 60611, USA.
| | - Marwan N Baliki
- Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, 355 East Erie St, Chicago, IL, 60611, USA.
- Center for Translational Pain Research, and Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University Feinberg School of Medicine, Chicago, USA.
| |
Collapse
|
140
|
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021; 157:1450-1472. [PMID: 33420731 PMCID: PMC8178159 DOI: 10.1111/jnc.15297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- These authors share senior authorship
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
- These authors share senior authorship
| |
Collapse
|
141
|
The why behind the high: determinants of neurocognition during acute cannabis exposure. Nat Rev Neurosci 2021; 22:439-454. [PMID: 34045693 DOI: 10.1038/s41583-021-00466-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/08/2022]
Abstract
Acute cannabis intoxication may induce neurocognitive impairment and is a possible cause of human error, injury and psychological distress. One of the major concerns raised about increasing cannabis legalization and the therapeutic use of cannabis is that it will increase cannabis-related harm. However, the impairing effect of cannabis during intoxication varies among individuals and may not occur in all users. There is evidence that the neurocognitive response to acute cannabis exposure is driven by changes in the activity of the mesocorticolimbic and salience networks, can be exacerbated or mitigated by biological and pharmacological factors, varies with product formulations and frequency of use and can differ between recreational and therapeutic use. It is argued that these determinants of the cannabis-induced neurocognitive state should be taken into account when defining and evaluating levels of cannabis impairment in the legal arena, when prescribing cannabis in therapeutic settings and when informing society about the safe and responsible use of cannabis.
Collapse
|
142
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
143
|
Brain responses to drug cues predict craving changes in abstinent heroin users: A preliminary study. Neuroimage 2021; 237:118169. [PMID: 34000396 DOI: 10.1016/j.neuroimage.2021.118169] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Loss of control over drug intake occurring in drug addiction is believed to result from disruption of reward circuits, including reduced responsiveness to natural rewards (e.g., monetary, sex) and heightened responsiveness to drug reward. Yet few studies have assessed reward deficiency and related brain responses in abstinent heroin users with opioid use disorder, and less is known whether the brain responses can predict cue-induced craving changes following by prolonged abstinence. METHOD 31 heroin users (age: 44.13±7.68 years, male: 18 (58%), duration of abstinence: 85.2 ± 52.5 days) were enrolled at a mandatory detoxification center. By employing a cue-reactivity paradigm including three types of cues (drug, sexual, neutral), brain regional activations and circuit-level functional coupling were extracted. Among the 31 heroin users, 15 were followed up longitudinally to assess cue induced craving changes in the ensuing 6 months. RESULTS One way analysis of variance results showed that heroin users have differential brain activations to the three cues (neutral, drug and sexual) in the left dorsolateral prefrontal cortex (DLPFC), insula, orbiotofrontal cortex (OFC) and the bilateral thalamus. Drug cue induced greater activations in left DLPFC, insula and OFC compared to sexual cue. The psychophysiological interactions (PPI) analysis revealed negative couplings of the left DLPFC and the left OFC, bilateral thalamus, putamen in heroin users during drug cue exposure. In the 6-month follow-up study, both drug cue induced activation of the left DLPFC and the functional coupling of the left DLPFC-bilateral thalamus at baseline was correlated with craving reductions, which were not found for sexual cues. CONCLUSION Our preliminary study provided novel evidence for the reward deficiency theory of opioid use disorder. Our findings also have clinical implications, as drug cue induced activation of the left DLPFC and functional coupling of left DLPFC-bilateral thalamus may be potential neuroimaging markers for craving changes during prolonged abstinence. Evidently, the findings in the current preliminary study should be confirmed by large sample size in the future.
Collapse
|
144
|
Altered functional connectivity of the dorsal attention network among problematic social network users. Addict Behav 2021; 116:106823. [PMID: 33460991 DOI: 10.1016/j.addbeh.2021.106823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Many smartphone users spend excessive amounts of time online and cannot control their behavior, and the addictive overuse of social-networking services has been shown to be associated with diminished executive control. Attentional control is a cognitive process crucial to exerting executive functions. The purpose of this study was to investigate functional connectivity (FC) characteristics of attention networks in problematic social-network users. We performed seed-based resting-state FC analyses for 29 males and 10 females with excessive social network use and 32 healthy males and 17 healthy females. The right intraparietal sulcus and frontal eye fields were considered seeds of the dorsal attention network (DAN), and the right temporoparietal junction and ventral frontal cortex were considered seeds of the ventral attention network (VAN). Clinical characteristics predictive of FC findings in problematic social network users were identified through hierarchical multiple regression analysis. In FC analysis with DAN seeds, FC between the right intraparietal sulcus and the right middle occipital gyrus was stronger in problematic social network users than in controls, and FC between the right frontal eye field and the right dorsolateral prefrontal cortex was weaker than that in controls. There was no significant difference between the groups in FC analysis with VAN seeds. Hierarchical regression analyses showed that usage times on social networking platforms significantly predicted the negative effects on the strength of FC between the intraparietal sulcus and the dorsolateral prefrontal cortex. These findings indicated that problematic social network use reflects changes in the neural circuits underlying attentional control. Weaking of prefrontal control for attention networks would have a significant impact on failure to control one's time spent on social networks.
Collapse
|
145
|
Zhang M, Liu S, Wang S, Xu Y, Chen L, Shao Z, Wen X, Yang W, Liu J, Yuan K. Reduced thalamic resting-state functional connectivity and impaired cognition in acute abstinent heroin users. Hum Brain Mapp 2021; 42:2077-2088. [PMID: 33459459 PMCID: PMC8046054 DOI: 10.1002/hbm.25346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a critical component of cortico-striato-thalamo-cortical loop in addiction, our understanding of the thalamus in impaired cognition of heroin users (HU) has been limited. Due to the complex thalamic connection with cortical and subcortical regions, thalamus was divided into prefrontal (PFC), occipital (OC), premotor, primary motor, sensory, temporal, and posterior parietal association subregions according to white matter tractography. We adopted seven subregions of bilateral thalamus as regions of interest to systematically study the implications of distinct thalamic nuclei in acute abstinent HU. The volume and resting-state functional connectivity (RSFC) differences of the thalamus were investigated between age-, gender-, and alcohol-matched 37 HU and 33 healthy controls (HCs). Trail making test-A (TMT-A) was adopted to assess cognitive function deficits, which were then correlated with neuroimaging findings. Although no significant different volumes were found, HU group showed decreased RSFC between left PFC_thalamus and middle temporal gyrus as well as between left OC_thalamus and inferior frontal gyrus and supplementary motor area relative to HCs. Meanwhile, the higher TMT-A scores in HU were negatively correlated with PFC_thalamic RSFC with inferior temporal gyrus, fusiform, and precuneus. Craving scores were negatively correlated with OC_thalamic RSFC with accumbens, hippocampus, and insula. Opiate Withdrawal Scale scores were negatively correlated with left PFC/OC_thalamic RSFC with orbitofrontal cortex and medial PFC. We indicated two thalamus subregions separately involvement in cognitive control and craving to reveal the implications of thalamic subnucleus in pathology of acute abstinent HU.
Collapse
Affiliation(s)
- Min Zhang
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Shuang Liu
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Shicong Wang
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Yan Xu
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Longmao Chen
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Ziqiang Shao
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Xinwen Wen
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Wenhan Yang
- Department of RadiologySecond Xiangya Hospital, Central South UniversityChangshaChina
| | - Jun Liu
- Department of RadiologySecond Xiangya Hospital, Central South UniversityChangshaChina
| | - Kai Yuan
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| |
Collapse
|
146
|
High frequency repetitive transcranial magnetic stimulation of dorsomedial prefrontal cortex for negative symptoms in patients with schizophrenia: A double-blind, randomized controlled trial. Psychiatry Res 2021; 299:113876. [PMID: 33770710 DOI: 10.1016/j.psychres.2021.113876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
Negative symptoms are the major challenge in clinical management of schizophrenia. Dorsomedial prefrontal cortex (DMPFC) has been suggested to be highly involved in the mechanisms of negative symptoms of schizophrenia. However, the effect of repetitive Transcranial Magnetic Stimulation (rTMS) over DMPFC has not yet been well studied. In this double-blind, randomized controlled rTMS clinical trial, thirty-three participants (17 in active group and 16 in sham group) were enrolled. This study includes the rTMS treatment phase (lasts for 4 weeks) and a subsequently naturalistic follow-up phase (lasts for another 4 weeks). Schizophrenia patients with prominently negative symptoms were randomly assigned to receive 10 Hz or sham rTMS intervention. The score change in Scale of Negative Symptoms (SANS) was defined as the primary outcome measure. There was a significant decrease in negative symptoms, especially affective flattening and anhedonia in schizophrenia patients after DMPFC-rTMS intervention. Moreover, the negative symptoms improvement could maintain at least another 4 weeks. In addition, no memory impairment or serious adverse reaction of rTMS emerged. Our results suggest that high frequency rTMS over DMPF may represent a safe and effective treatment for negative symptoms in patients with schizophrenia.
Collapse
|
147
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
148
|
Zhao M, Liu J, Cai W, Li J, Zhu X, Yu D, Yuan K. Support vector machine based classification of smokers and nonsmokers using diffusion tensor imaging. Brain Imaging Behav 2021; 14:2242-2250. [PMID: 31428924 DOI: 10.1007/s11682-019-00176-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite significant progress in treatments for smoking cessation, smoking continues to be a significant public health concern, especially in young adulthood. Thus, developing a predictive model that can classify and characterize the brain-based biomarkers predicting smoking status would be imperative to improving treatment development. In this study, we applied a support vector machine-based classification method to discriminate 70 young male smokers and 70 matched nonsmokers using their diffusion tensor imaging (DTI) data. The classification procedure achieved an average accuracy of 88.6% and an average area under the curve of 0.95. The most discriminative features that contributed to the classification were primarily located in the sagittal stratum (SS), external capsule (EC), superior longitudinal fasciculus (SLF), anterior corona radiata (ACR) and inferior front-occipital fasciculus (IFOF). The following regression analysis showed a significant negatively correlation between the average RD values of the left ACR (r = -0.247, p = 0.039) and FTND. The average MD values in the right EC (r = -0.254, p = 0.034) and RD values in the right IFOF (r = -0.240, p = 0.046) were inversely associated with pack-years. Our findings indicate that the discriminative white matter (WM) features as brain biomarkers provide great predictive power for smoking status and suggest that machine learning techniques can reveal underlying smoking-related neurobiology.
Collapse
Affiliation(s)
- Meng Zhao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Jingjing Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Wanye Cai
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China
| | - Jun Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, People's Republic of China.
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China. .,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, People's Republic of China. .,Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, People's Republic of China.
| |
Collapse
|
149
|
Ndlovu NA, Morgan N, Malapile S, Subramaney U, Daniels W, Naidoo J, van den Heuvel MP, Calvey T. Fronto-temporal cortical atrophy in 'nyaope' combination heroin and cannabis use disorder. Drug Alcohol Depend 2021; 221:108630. [PMID: 33667779 DOI: 10.1016/j.drugalcdep.2021.108630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
Sub-Saharan Africa is one of the top three regions with the highest rates of opioid-related premature mortality. Nyaope is the street name for what is believed to be a drug cocktail in South Africa although recent research suggests that it is predominantly heroin. Nyaope powder is most commonly smoked together with cannabis, a drug-use pattern unique to the region. Due to the increasing burden of this drug in low-income communities and the absence of human structural neuroimaging data of combination heroin and cannabis use disorder, we initiated an important cohort study in order to identify neuroanatomical sequelae. Twenty-eight male nyaope users and thirty healthy, matched controls were recruited from drug rehabilitation centers and the community, respectively. T1-weighted MRI images were obtained using a 3 T General Electric Discovery and cortical thickness was examined and compared. Nyaope users displayed extensive grey matter atrophy in the right hemispheric medial orbitofrontal, rostral middle frontal, superior temporal, superior frontal, and supramarginal gyri (two-sided t-test, p < 0.05, corrected for multiple comparisons). Our findings indicate cortical abnormality in nyaope users in regions involved in impulse control, decision making, social- and self-perception, and working memory. Importantly, affected brain regions show large overlap with the pattern of cortical abnormalities shown in heroin use disorder.
Collapse
Affiliation(s)
- Nhanisi A Ndlovu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nirvana Morgan
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stella Malapile
- The Nelson Mandela Children's Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Ugasvaree Subramaney
- Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - William Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jaishree Naidoo
- Department of Radiology, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, CNCR, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child Psychiatry, Amsterdam UMC, Amsterdam, the Netherlands
| | - Tanya Calvey
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
150
|
Schenk S, Highgate Q. Methylenedioxymethamphetamine (MDMA): Serotonergic and dopaminergic mechanisms related to its use and misuse. J Neurochem 2021; 157:1714-1724. [PMID: 33711169 DOI: 10.1111/jnc.15348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Methylenedioxymethamphetamine (MDMA) is an amphetamine analogue that preferentially stimulates the release of serotonin (5HT) and results in relatively small increases in synaptic dopamine (DA). The ratio of drug-stimulated increases in synaptic DA, relative to 5HT, predicts the abuse liability; drugs with higher DA:5HT ratios are more likely to be abused. Nonetheless, MDMA is a drug that is misused. Clinical and preclinical studies have suggested that repeated MDMA exposure produces neuroadaptive responses in both 5HT and DA neurotransmission that might explain the development and maintenance of MDMA self-administration in some laboratory animals and the development of a substance use disorder in some humans. In this paper, we describe the research that has demonstrated an inhibitory effect of 5HT on the acquisition of MDMA self-administration and the critical role of DA in the maintenance of MDMA self-administration in laboratory animals. We then describe the circuitry and 5HT receptors that are positioned to modulate DA activity and review the limited research on the effects of MDMA exposure on these receptor mechanisms.
Collapse
Affiliation(s)
- Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|