101
|
McCarthy EA, Dischino D, Maguire C, Leon S, Talbi R, Cheung E, Schteingart CD, Rivière PJM, Reed SD, Steiner RA, Navarro VM. Inhibiting Kiss1 Neurons With Kappa Opioid Receptor Agonists to Treat Polycystic Ovary Syndrome and Vasomotor Symptoms. J Clin Endocrinol Metab 2022; 107:e328-e347. [PMID: 34387319 PMCID: PMC8684497 DOI: 10.1210/clinem/dgab602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Recent evidence suggests that vasomotor symptoms (VMS) or hot flashes in the postmenopausal reproductive state and polycystic ovary syndrome (PCOS) in the premenopausal reproductive state emanate from the hyperactivity of Kiss1 neurons in the hypothalamic infundibular/arcuate nucleus (KNDy neurons). OBJECTIVE We demonstrate in 2 murine models simulating menopause and PCOS that a peripherally restricted kappa receptor agonist (PRKA) inhibits hyperactive KNDy neurons (accessible from outside the blood-brain barrier) and impedes their downstream effects. DESIGN Case/control. SETTING Academic medical center. PARTICIPANTS Mice. INTERVENTIONS Administration of peripherally restricted kappa receptor agonists and frequent blood sampling to determine hormone release and body temperature. MAIN OUTCOME MEASURES LH pulse parameters and body temperature. RESULTS First, chronic administration of a PRKA to bilaterally ovariectomized mice with experimentally induced hyperactivity of KNDy neurons reduces the animals' elevated body temperature, mean plasma LH level, and mean peak LH per pulse. Second, chronic administration of a PRKA to a murine model of PCOS, having elevated plasma testosterone levels and irregular ovarian cycles, suppresses circulating levels of LH and testosterone and restores normal ovarian cyclicity. CONCLUSION The inhibition of kisspeptin neuronal activity by activation of kappa receptors shows promise as a novel therapeutic approach to treat both VMS and PCOS in humans.
Collapse
Affiliation(s)
- Elizabeth A McCarthy
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Daniel Dischino
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Maguire
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Leon
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rajae Talbi
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eugene Cheung
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | | | - Susan D Reed
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Robert A Steiner
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Victor M Navarro
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Program in Neuroscience, Boston, MA 02115, USA
- Correspondence: Victor M. Navarro PhD, Brigham and Women’s Hospital, Division of Endocrinology, Diabetes and Hypertension, 221 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
102
|
Ivanova D, Li XF, McIntyre C, Liu Y, Kong L, O’Byrne KT. Urocortin3 in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology 2021; 162:6383454. [PMID: 34618891 PMCID: PMC8547342 DOI: 10.1210/endocr/bqab206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/09/2023]
Abstract
Psychosocial stress disrupts reproduction and interferes with pulsatile LH secretion. The posterodorsal medial amygdala (MePD) is an upstream modulator of the reproductive axis and stress. Corticotropin-releasing factor type 2 receptors (CRFR2s) are activated in the presence of psychosocial stress together with increased expression of the CRFR2 ligand Urocortin3 (Ucn3) in the MePD of rodents. We investigate whether Ucn3 signalling in the MePD is involved in mediating the suppressive effect of psychosocial stress on LH pulsatility. First, we administered Ucn3 into the MePD and monitored the effect on LH pulses in ovariectomized mice. Next, we delivered Astressin2B, a selective CRFR2 antagonist, intra-MePD in the presence of predator odor, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Subsequently, we virally infected Ucn3-cre-tdTomato mice with inhibitory designer receptor exclusively activated by designer drugs (DREADDs) targeting MePD Ucn3 neurons while exposing mice to TMT or restraint stress and examined the effect on LH pulsatility as well as corticosterone release. Administration of Ucn3 into the MePD dose-dependently inhibited LH pulses and administration of Astressin2B blocked the suppressive effect of TMT on LH pulsatility. Additionally, DREADDs inhibition of MePD Ucn3 neurons blocked TMT and restraint stress-induced inhibition of LH pulses and corticosterone release. These results demonstrate for the first time that Ucn3 neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator and corticosterone secretion. Ucn3 signalling in the MePD plays a role in modulating the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, and this brain locus may represent a nodal center in the interaction between the reproductive and stress axes.
Collapse
Affiliation(s)
- Deyana Ivanova
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Deyana Ivanova, PhD, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| | - Xiao-Feng Li
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Caitlin McIntyre
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Kevin T O’Byrne
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Kevin T. O’Byrne, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| |
Collapse
|
103
|
Deletion of Stim1 in Hypothalamic Arcuate Nucleus Kiss1 Neurons Potentiates Synchronous GCaMP Activity and Protects against Diet-Induced Obesity. J Neurosci 2021; 41:9688-9701. [PMID: 34654752 DOI: 10.1523/jneurosci.0622-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. High-frequency firing of hypothalamic arcuate Kiss1 (Kiss1ARH) neurons releases kisspeptin into the median eminence, and neurokinin B (NKB) and dynorphin onto neighboring Kiss1ARH neurons to generate a slow EPSP mediated by TRPC5 channels that entrains intermittent, synchronous firing of Kiss1ARH neurons. High-frequency optogenetic stimulation of Kiss1ARH neurons also releases glutamate to excite the anorexigenic proopiomelanocortin (POMC) neurons and inhibit the orexigenic neuropeptide Y/agouti-related peptide (AgRP) neurons via metabotropic glutamate receptors. At the molecular level, the endoplasmic reticulum (ER) calcium-sensing protein stromal interaction molecule 1 (STIM1) is critically involved in the regulation of neuronal Ca2+ signaling and neuronal excitability through its interaction with plasma membrane (PM) calcium (e.g., TRPC) channels. Therefore, we hypothesized that deletion of Stim1 in Kiss1ARH neurons would increase neuronal excitability and their synchronous firing, which ultimately would affect energy homeostasis. Using optogenetics in combination with whole-cell recording and GCaMP6 imaging in slices, we discovered that deletion of Stim1 in Kiss1 neurons significantly increased the amplitude and duration of the slow EPSP and augmented synchronous [Ca2+]i oscillations in Kiss1ARH neurons. Deletion of Stim1 in Kiss1ARH neurons amplified the actions of NKB and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting (HFD). Therefore, STIM1 appears to play a critical role in regulating synchronous firing of Kiss1ARH neurons, which ultimately affects the coordination between energy homeostasis and reproduction.SIGNIFICANCE STATEMENT Hypothalamic arcuate kisspeptin (Kiss1ARH) neurons are essential for stimulating the pulsatile release of gonadotropin-releasing hormone (GnRH) and maintaining fertility. However, Kiss1ARH neurons appear to be a key player in coordinating energy balance with reproduction. The regulation of calcium channels and hence calcium signaling is critically dependent on the endoplasmic reticulum (ER) calcium-sensing protein stromal interaction molecule 1 (STIM1), which interacts with the plasma membrane (PM) calcium channels. We have conditionally deleted Stim1 in Kiss1ARH neurons and found that it significantly increased the excitability of Kiss1ARH neurons and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting (HFD).
Collapse
|
104
|
Sexually Dimorphic Neurosteroid Synthesis Regulates Neuronal Activity in the Murine Brain. J Neurosci 2021; 41:9177-9191. [PMID: 34561233 DOI: 10.1523/jneurosci.0885-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Sex steroid hormones act on hypothalamic kisspeptin neurons to regulate reproductive neural circuits in the brain. Kisspeptin neurons start to express estrogen receptors in utero, suggesting steroid hormone action on these cells early during development. Whether neurosteroids are locally produced in the embryonic brain and impinge onto kisspeptin/reproductive neural circuitry is not known. To address this question, we analyzed aromatase expression, a key enzyme in estrogen synthesis, in male and female mouse embryos. We identified an aromatase neuronal network comprising ∼6000 neurons in the hypothalamus and amygdala. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male arcuate aromatase neurons convert testosterone to estrogen to regulate kisspeptin neuron activity. We provide spatiotemporal information on aromatase neuronal network development and highlight a novel mechanism whereby aromatase neurons regulate the activity of distinct neuronal populations expressing estrogen receptors.SIGNIFICANCE STATEMENT Sex steroid hormones, such as estradiol, are important regulators of neural circuits controlling reproductive physiology in the brain. Embryonic kisspeptin neurons in the hypothalamus express steroid hormone receptors, suggesting hormone action on these cells in utero Whether neurosteroids are locally produced in the brain and impinge onto reproductive neural circuitry is insufficiently understood. To address this question, we analyzed aromatase expression, a key enzyme in estradiol synthesis, in mouse embryos and identified a network comprising ∼6000 neurons in the brain. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male aromatase neurons convert testosterone to estradiol to regulate kisspeptin neuron activity.
Collapse
|
105
|
Porteous R, Haden P, Hackwell ECR, Singline A, Herde MK, Desai R, Handelsman DJ, Grattan DR, Herbison AE. Reformulation of PULSAR for Analysis of Pulsatile LH Secretion and a Revised Model of Estrogen-Negative Feedback in Mice. Endocrinology 2021; 162:6349057. [PMID: 34383026 DOI: 10.1210/endocr/bqab165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/19/2022]
Abstract
The recent use of the tail-tip bleeding approach in mice has enabled researchers to generate detailed pulse and surge profiles of luteinizing hormone (LH) secretion in mice. However, the analysis of pulsatile LH secretion is piecemeal across the field with each laboratory using their own methodology. We have reformulated the once-popular PULSAR algorithm of Merriam and Wachter to operate on contemporary computer systems and provide downloadable and online pulse analysis platforms. As it is now possible to record the activity of the gonadotropin-releasing hormone pulse generator in freely behaving mice, we have been able to unambiguously define LH pulses in intact and gonadectomized male and female mice. These data sets were used to determine the appropriate PULSAR parameter sets for analyzing pulsatile LH secretion in the mouse. This was then used to establish an accurate model of estrogen negative feedback in the mouse. Intact and ovariectomized mice given Silastic capsules containing 1, 2, and 4 μg 17-β-estradiol/20 g body weight were tail-tip bled at 6-min intervals, and the resultant LH profiles were analyzed with PULSAR. Only the 4 μg 17-β-estradiol capsule treatment was found to return LH pulse amplitude and frequency to that of intact diestrous mice. Ultrasensitive mass spectrometry analysis showed that the 4 μg 17-β-estradiol capsule generated circulating estradiol levels equivalent to that of diestrous mice. It is hoped that the reformulation of PULSAR and generation of a realistic model of estrogen-negative feedback will provide a platform for the more uniform assessment of pulsatile hormone secretion in mice.
Collapse
Affiliation(s)
- Robert Porteous
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Patricia Haden
- RTIS Scientific Programming, University of Otago, Dunedin, New Zealand
| | - Eleni C R Hackwell
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Aaron Singline
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Michel K Herde
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Reena Desai
- ANZAC Research Institute, Andrology Department, Concord Hospital, Sydney, Australia
| | - David J Handelsman
- ANZAC Research Institute, Andrology Department, Concord Hospital, Sydney, Australia
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
106
|
Duittoz A, Cayla X, Fleurot R, Lehnert J, Khadra A. Gonadotrophin-releasing hormone and kisspeptin: It takes two to tango. J Neuroendocrinol 2021; 33:e13037. [PMID: 34533248 DOI: 10.1111/jne.13037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Kisspeptin (Kp), a family of peptides comprising products of the Kiss1 gene, was discovered 20 years ago; it is recognised as the major factor controlling the activity of the gonadotrophin-releasing hormone (GnRH) neurones and thus the activation of the reproductive axis in mammals. It has been widely documented that the effects of Kp on reproduction through its action on GnRH neurones are mediated by the GPR54 receptor. Kp controls the activation of the reproductive axis at puberty, maintains reproductive axis activity in adults and is involved in triggering ovulation in some species. Although there is ample evidence coming from both conditional knockout models and conditional-induced Kp neurone death implicating the Kp/GPR54 pathway in the control of reproduction, the mechanism(s) underlying this process may be more complex than a sole direct control of GnRH neuronal activity by Kp. In this review, we provide an overview of the recent advances made in elucidating the interplay between Kp- and GnRH- neuronal networks with respect to regulating the reproductive axis. We highlight the existence of a possible mutual regulation between GnRH and Kp neurones, as well as the implication of Kp-dependent volume transmission in this process. We also discuss the capacity of heterodimerisation between GPR54 and GnRH receptor (GnRH-R) and its consequences on signalling. Finally, we illustrate the role of mathematical modelling that accounts for the synergy between GnRH-R and GPR54 in explaining the role of these two receptors when defining GnRH neuronal activity and GnRH pulsatile release.
Collapse
Affiliation(s)
- Anne Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Xavier Cayla
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Renaud Fleurot
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Jonas Lehnert
- Department of Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Quantitative Life Sciences, McGill University, Montreal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
107
|
Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome. Endocrinology 2021; 162:bqab158. [PMID: 34346492 PMCID: PMC8402932 DOI: 10.1210/endocr/bqab158] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 02/08/2023]
Abstract
Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Dayanara B Lohr
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Lique M Coolen
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
108
|
Vazquez MJ, Daza-Dueñas S, Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc 2021; 5:bvab152. [PMID: 34703958 PMCID: PMC8533971 DOI: 10.1210/jendso/bvab152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms that allow a perfect match between environmental conditions and internal cues to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons because major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be discussed.
Collapse
Affiliation(s)
- Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.,Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
109
|
Herbison AE. The dendron and episodic neuropeptide release. J Neuroendocrinol 2021; 33:e13024. [PMID: 34427000 DOI: 10.1111/jne.13024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
The unexpected observation that the long processes of gonadotrophin-releasing hormone (GnRH) neurons not only conducted action potentials, but also operated to integrate afferent information at their distal-most extent gave rise to the concept of a blended dendritic-axonal process termed the "dendron". The proximal dendrites of the GnRH neuron function in a conventional manner, receiving synaptic inputs and initiating action potentials that are critical for the surge mode of GnRH secretion. The distal dendrons are regulated by both classical synapses and volume transmission and likely operate using subthreshold electrotonic propagation into the nearby axon terminals in the median eminence. Evidence indicates that neural processing at the distal dendron is responsible for the pulsatile patterning of GnRH secretion. Although the dendron remains unique to the GnRH neuron, data show that it exists in both mice and rats and may be a common feature of mammalian species in which GnRH neuron cell bodies do not migrate into the basal hypothalamus. This review outlines the discovery and function of the dendron as a unique neuronal structure optimised to generate episodic neuronal output.
Collapse
Affiliation(s)
- Allan E Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
110
|
Tsuchida H, Kawai N, Yamada K, Takizawa M, Inoue N, Uenoyama Y, Tsukamura H. Central µ-Opioid Receptor Antagonism Blocks Glucoprivic LH Pulse Suppression and Gluconeogenesis/Feeding in Female Rats. Endocrinology 2021; 162:6322534. [PMID: 34270714 DOI: 10.1210/endocr/bqab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Energetic status often affects reproductive function, glucose homeostasis, and feeding in mammals. Malnutrition suppresses pulsatile release of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) and increases gluconeogenesis and feeding. The present study aims to examine whether β-endorphin-μ-opioid receptor (MOR) signaling mediates the suppression of pulsatile GnRH/LH release and an increase in gluconeogenesis/feeding induced by malnutrition. Ovariectomized female rats treated with a negative feedback level of estradiol-17β (OVX + low E2) receiving 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, intravenously (iv) were used as a malnutrition model. An administration of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective MOR antagonist, into the third ventricle blocked the suppression of the LH pulse and increase in gluconeogenesis/feeding induced by iv 2DG administration. Histological analysis revealed that arcuate Kiss1 (kisspeptin gene)-expressing cells and preoptic Gnrh1 (GnRH gene)-expressing cells co-expressed little Oprm1 (MOR gene), while around 10% of arcuate Slc17a6 (glutamatergic marker gene)-expressing cells co-expressed Oprm1. Further, the CTOP treatment decreased the number of fos-positive cells in the paraventricular nucleus (PVN) in OVX + low E2 rats treated with iv 2DG but failed to affect the number of arcuate fos-expressing Slc17a6-positive cells. Taken together, these results suggest that the central β-endorphin-MOR signaling mediates the suppression of pulsatile LH release and that the β-endorphin may indirectly suppress the arcuate kisspeptin neurons, a master regulator for GnRH/LH pulses during malnutrition. Furthermore, the current study suggests that central β-endorphin-MOR signaling is also involved in gluconeogenesis and an increase in food intake by directly or indirectly acting on the PVN neurons during malnutrition in female rats.
Collapse
Affiliation(s)
- Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Narumi Kawai
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
111
|
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol 2021; 63:100928. [PMID: 34171353 PMCID: PMC8605987 DOI: 10.1016/j.yfrne.2021.100928] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/27/2023]
Abstract
Reproduction is controlled by a sequential regulation of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis integrates multiple inputs to maintain proper reproductive functions. It has long been demonstrated that stress alters fertility. Nonetheless, the central mechanisms of how stress interacts with the reproductive system are not fully understood. One of the major pathways that is activated during the stress response is the hypothalamo-pituitary-adrenal (HPA) axis. In this review, we discuss several aspects of the interactions between these two neuroendocrine systems to offer insights to mechanisms of how the HPA and HPG axes interact. We have also included discussions of other systems, for example GABA-producing neurons, where they are informative to the overall picture of stress effects on reproduction.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
112
|
Prenatal Androgen Treatment Does Not Alter the Firing Activity of Hypothalamic Arcuate Kisspeptin Neurons in Female Mice. eNeuro 2021; 8:ENEURO.0306-21.2021. [PMID: 34503965 PMCID: PMC8482853 DOI: 10.1523/eneuro.0306-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
Neuroendocrine control of reproduction is disrupted in many individuals with polycystic ovary syndrome (PCOS), who present with increased luteinizing hormone (LH), and presumably gonadotropin-releasing hormone (GnRH), release frequency, and high androgen levels. Prenatal androgenization (PNA) recapitulates these phenotypes in primates and rodents. Female offspring of mice injected with dihydrotestosterone (DHT) on gestational days 16-18 exhibit disrupted estrous cyclicity, increased LH and testosterone, and increased GnRH neuron firing rate as adults. PNA also alters the developmental trajectory of GnRH neuron firing rates, markedly blunting the prepubertal peak in firing that occurs in three-week (3wk)-old controls. GnRH neurons do not express detectable androgen receptors and are thus probably not the direct target of DHT. Rather, PNA likely alters GnRH neuronal activity by modulating upstream neurons, such as hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B (gene Tac2), and dynorphin, also known as KNDy neurons. We hypothesized PNA treatment changes firing rates of KNDy neurons in a similar age-dependent manner as GnRH neurons. We conducted targeted extracellular recordings (0.5-2 h) of Tac2-identified KNDy neurons from control and PNA mice at 3wks of age and in adulthood. About half of neurons were quiescent (<0.005 Hz). Long-term firing rates of active cells varied, suggestive of episodic activity, but were not different among groups. Short-term burst firing was also similar. We thus reject the hypothesis that PNA alters the firing rate of KNDy neurons. This does not preclude altered neurosecretory output of KNDy neurons, involvement of other neuronal populations, or in vivo networks as critical drivers of altered GnRH firing rates in PNA mice.
Collapse
|
113
|
Carrasco RA, Leonardi CE, Hutt K, Singh J, Adams GP. Kisspeptin induces LH release and ovulation in an induced ovulator†. Biol Reprod 2021; 103:49-59. [PMID: 32307518 DOI: 10.1093/biolre/ioaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/14/2022] Open
Abstract
Kisspeptin has been implicated in the ovulatory process of several species of spontaneous ovulators but in only one induced ovulator. In contrast, NGF in semen is the principal trigger of ovulation in other species of induced ovulators-camelids. We tested the hypotheses that kisspeptin induces luteinizing hormone (LH) secretion in llamas through a hypothalamic mechanism, and kisspeptin neurons are the target of NGF in its ovulation-inducing pathway. In Experiment 1, llamas were given either NGF, kisspeptin, or saline intravenously, and LH secretion and ovulation were compared among groups. All llamas treated with NGF (5/5) or kisspeptin (5/5) had an elevation of LH blood concentrations after treatment and ovulated, whereas none of the saline group did (0/5). In Experiment 2, llamas were either pretreated with a gonadotropin-releasing hormone (GnRH) receptor antagonist or saline and treated 2 h later with kisspeptin. Llamas pretreated with saline had elevated plasma LH concentrations and ovulated (6/6) whereas llamas pretreated with cetrorelix did not (0/6). In Experiment 3, we evaluated the hypothalamic kisspeptin-GnRH neuronal network by immunohistochemistry. Kisspeptin neurons were detected in the arcuate nucleus, the preoptic area, and the anterior hypothalamus, establishing synaptic contacts with GnRH neurons. We found no colocalization between kisspeptin and NGF receptors by double immunofluorescence. Functional and morphological findings support the concept that kisspeptin is a mediator of the LH secretory pathway in llamas; however, the role of kisspeptins in the NGF ovulation-inducing pathway in camelids remains unclear since NGF receptors were not detected in kisspeptin neurons in the hypothalamus.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Carlos E Leonardi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kylie Hutt
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
114
|
Leon S, Talbi R, McCarthy EA, Ferrari K, Fergani C, Naule L, Choi JH, Carroll RS, Kaiser UB, Aylwin CF, Lomniczi A, Navarro VM. Sex-specific pubertal and metabolic regulation of Kiss1 neurons via Nhlh2. eLife 2021; 10:e69765. [PMID: 34494548 PMCID: PMC8439651 DOI: 10.7554/elife.69765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Hypothalamic Kiss1 neurons control gonadotropin-releasing hormone release through the secretion of kisspeptin. Kiss1 neurons serve as a nodal center that conveys essential regulatory cues for the attainment and maintenance of reproductive function. Despite this critical role, the mechanisms that control kisspeptin synthesis and release remain largely unknown. Using Drop-Seq data from the arcuate nucleus of adult mice and in situ hybridization, we identified Nescient Helix-Loop-Helix 2 (Nhlh2), a transcription factor of the basic helix-loop-helix family, to be enriched in Kiss1 neurons. JASPAR analysis revealed several binding sites for NHLH2 in the Kiss1 and Tac2 (neurokinin B) 5' regulatory regions. In vitro luciferase assays evidenced a robust stimulatory action of NHLH2 on human KISS1 and TAC3 promoters. The recruitment of NHLH2 to the KISS1 and TAC3 promoters was further confirmed through chromatin immunoprecipitation. In vivo conditional ablation of Nhlh2 from Kiss1 neurons using Kiss1Cre:Nhlh2fl/fl mice induced a male-specific delay in puberty onset, in line with a decrease in arcuate Kiss1 expression. Females retained normal reproductive function albeit with irregular estrous cycles. Further analysis of male Kiss1Cre:Nhlh2fl/fl mice revealed higher susceptibility to metabolic challenges in the release of luteinizing hormone and impaired response to leptin. Overall, in Kiss1 neurons, Nhlh2 contributes to the metabolic regulation of kisspeptin and NKB synthesis and release, with implications for the timing of puberty onset and regulation of fertility in male mice.
Collapse
Affiliation(s)
- Silvia Leon
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Rajae Talbi
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Elizabeth A McCarthy
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Kaitlin Ferrari
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Chrysanthi Fergani
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Lydie Naule
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Ji Hae Choi
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Rona S Carroll
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Ursula B Kaiser
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Víctor M Navarro
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
- Harvard Program in NeuroscienceBostonUnited States
| |
Collapse
|
115
|
Keen KL, Petersen AJ, Figueroa AG, Fordyce BI, Shin J, Yadav R, Erdin S, Pearce RA, Talkowski ME, Bhattacharyya A, Terasawa E. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology 2021; 162:6298609. [PMID: 34125902 PMCID: PMC8294693 DOI: 10.1210/endocr/bqab120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to fibroblast growth factor 8 (FGF8), was more effective in generating GnRH neurons. Second, addition of kisspeptin to FGF8 further increased the efficiency rates of GnRH neurogeneration. Third, we generated a fluorescent marker mCherry labeled human embryonic GnRH cell line (mCh-hESC) using a CRISPR-Cas9 targeting approach. Fourth, we examined physiological characteristics of GnRH (mCh-hESC) neurons: similar to GnRH neurons in vivo, they released the GnRH peptide in a pulsatile manner at ~60 min intervals; GnRH release increased in response to high potassium, kisspeptin, estradiol, and neurokinin B challenges; and injection of depolarizing current induced action potentials. Finally, we characterized developmental changes in transcriptomes of GnRH neurons using hESC, hiPSC, and mCh-hESC. The developmental pattern of transcriptomes was remarkably similar among the 3 cell lines. Collectively, human stem cell-derived GnRH neurons will be an important tool for establishing disease models to understand diseases, such as idiopathic hypothalamic hypogonadism, and testing contraceptive drugs.
Collapse
Affiliation(s)
- Kim L Keen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Andrew J Petersen
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
| | - Alexander G Figueroa
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin I Fordyce
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Robert A Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Anita Bhattacharyya
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Medicine, University of Wisconsin, Madison, WI, USA
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Correspondence: Ei Terasawa, PhD, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA.
| |
Collapse
|
116
|
Dai M, Nakamura S, Takahashi C, Sato M, Munetomo A, Magata F, Uenoyama Y, Tsukamura H, Matsuda F. Reduction of arcuate kappa-opioid receptor-expressing cells increased luteinizing hormone pulse frequency in female rats. Endocr J 2021; 68:933-941. [PMID: 33867395 DOI: 10.1507/endocrj.ej20-0832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The brain mechanism responsible for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) is important for maintaining reproductive function in mammals. Accumulating evidence suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH and subsequent gonadotropin secretion. Dynorphin A (Dyn) and its receptor, kappa-opioid receptor (KOR, encoded by Oprk1), have been shown to be involved in the suppression of pulsatile GnRH/luteinizing hormone (LH) release. On the other hand, it is still unclear whether the inhibitory Dyn signaling affects KNDy neurons or KOR-expressing non-KNDy cells in the ARC or other brain regions. We therefore aimed to clarify the role of ARC-specific Dyn-KOR signaling in the regulation of pulsatile GnRH/LH release by the ARC specific cell deletion of KOR-expressing cells using Dyn-conjugated-saporin (Dyn-SAP). Estrogen-primed ovariectomized female rats were administered Dyn-SAP to the ARC. In situ hybridization of Oprk1 showed that ARC Dyn-SAP administration significantly decreased the number of Oprk1-expressing cells in the ARC, but not in the ventromedial hypothalamic nucleus and paraventricular nucleus. The frequency of LH pulses significantly increased in animals bearing the ARC Dyn-SAP administration. The number of Kiss1-expressing cells in the ARC was not affected by ARC Dyn-SAP treatment. Dyn-KOR signaling within the ARC seems to mediate the suppression of the frequency of pulsatile GnRH/LH release, and ARC non-KNDy KOR neurons may be involved in the mechanism modulating GnRH/LH pulse generation.
Collapse
Affiliation(s)
- Mingdao Dai
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sho Nakamura
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Chudai Takahashi
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
117
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Kisspeptin Neurons and Estrogen-Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. Int J Mol Sci 2021; 22:ijms22179229. [PMID: 34502135 PMCID: PMC8430864 DOI: 10.3390/ijms22179229] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
- Correspondence:
| |
Collapse
|
118
|
Lavalle SN, Chou T, Hernandez J, Naing NCP, Tonsfeldt KJ, Hoffmann HM, Mellon PL. Kiss1 is differentially regulated in male and female mice by the homeodomain transcription factor VAX1. Mol Cell Endocrinol 2021; 534:111358. [PMID: 34098016 PMCID: PMC8319105 DOI: 10.1016/j.mce.2021.111358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Regulation of Kiss1 transcription is crucial to the development and function of the reproductive axis. The homeodomain transcription factor, ventral anterior homeobox 1 (VAX1), has been implicated as a potential regulator of Kiss1 transcription. However, it is unknown whether VAX1 directly mediates transcription within kisspeptin neurons or works indirectly by acting upstream of kisspeptin neuron populations. This study tested the hypothesis that VAX1 within kisspeptin neurons regulates Kiss1 gene expression. We found that VAX1 acts as a repressor of Kiss1 in vitro and within the male arcuate nucleus in vivo. In female mice, we found that the loss of VAX1 caused a reduction in Kiss1 expression and Kiss1-containing neurons in the anteroventral periventricular nucleus at the time of the preovulatory luteinizing hormone surge, but was compensated by an increase in Kiss1-cFos colocalization. Despite changes in Kiss1 transcription, gonadotropin levels were unaffected and there were no impairments to fertility.
Collapse
Affiliation(s)
- Shanna N Lavalle
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Teresa Chou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jacqueline Hernandez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nay Chi P Naing
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
119
|
Faykoo-Martinez M, Kalinowski LM, Holmes MM. Neuroendocrine regulation of pubertal suppression in the naked mole-rat: What we know and what comes next. Mol Cell Endocrinol 2021; 534:111360. [PMID: 34116130 DOI: 10.1016/j.mce.2021.111360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023]
Abstract
Puberty is a key developmental milestone that marks an individual's maturation in several ways including, but not limited to, reproductive maturation, changes in behaviors and neural organization. The timing at which puberty occurs is variable both within individuals of the same species and between species. These variations can be aligned with ecological cues that delay or suppress puberty. Naked mole-rats are colony-living rodents where reproduction is restricted to a few animals; all other animals are pubertally-suppressed. Animals removed from suppressive colony cues can reproductively mature, presenting the unique opportunity to study adult-onset puberty. Recently, we found that RFRP-3 administration sustains pubertal delay in naked mole-rats removed from colony. In this review, we explore what is known about regulators that control puberty onset, the role of stress/social status in pubertal timing, the status of knowledge of pubertal suppression in naked mole-rats and what comes next.
Collapse
Affiliation(s)
| | | | - Melissa M Holmes
- Department of Cell and Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| |
Collapse
|
120
|
Fraser GL, Obermayer-Pietsch B, Laven J, Griesinger G, Pintiaux A, Timmerman D, Fauser BCJM, Lademacher C, Combalbert J, Hoveyda HR, Ramael S. Randomized Controlled Trial of Neurokinin 3 Receptor Antagonist Fezolinetant for Treatment of Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2021; 106:e3519-e3532. [PMID: 34000049 PMCID: PMC8372662 DOI: 10.1210/clinem/dgab320] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS), a highly prevalent endocrine disorder characterized by hyperandrogenism, is the leading cause of anovulatory infertility. OBJECTIVE This proof-of-concept study evaluated clinical efficacy and safety of the neurokinin 3 (NK3) receptor antagonist fezolinetant in PCOS. METHODS This was a phase 2a, randomized, double-blind, placebo-controlled, multicenter study (EudraCT 2014-004409-34). The study was conducted at 5 European clinical centers. Women with PCOS participated in the study. Interventions included fezolinetant 60 or 180 mg/day or placebo for 12 weeks. The primary efficacy end point was change in total testosterone. Gonadotropins, ovarian hormones, safety and tolerability were also assessed. RESULTS Seventy-three women were randomly assigned, and 64 participants completed the study. Adjusted mean (SE) changes in total testosterone from baseline to week 12 for fezolinetant 180 and 60 mg/day were -0.80 (0.13) and -0.39 (0.12) nmol/L vs -0.05 (0.10) nmol/L with placebo (P < .001 and P < .05, respectively). Adjusted mean (SE) changes from baseline in luteinizing hormone (LH) for fezolinetant 180 and 60 mg/d were -10.17 (1.28) and -8.21 (1.18) vs -3.16 (1.04) IU/L with placebo (P < .001 and P = .002); corresponding changes in follicle-stimulating hormone (FSH) were -1.46 (0.32) and -0.92 (0.30) vs -0.57 (0.26) IU/L (P = .03 and P = .38), underpinning a dose-dependent decrease in the LH-to-FSH ratio vs placebo (P < .001). Circulating levels of progesterone and estradiol did not change significantly vs placebo (P > .10). Fezolinetant was well tolerated. CONCLUSION Fezolinetant had a sustained effect to suppress hyperandrogenism and reduce the LH-to-FSH ratio in women with PCOS.
Collapse
Affiliation(s)
- Graeme L Fraser
- Correspondence: Graeme L. Fraser, PhD, EPICS Therapeutics, 47 Rue Adrienne Bolland, 6041 Gosselies, Belgium.
| | | | - Joop Laven
- Erasmus MC, 3015 Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Mohr MA, Wong AM, Sukumar G, Dalgard CL, Hong W, Wu TJ, Wu YE, Micevych PE. RNA-sequencing of AVPV and ARH reveals vastly different temporal and transcriptomic responses to estradiol in the female rat hypothalamus. PLoS One 2021; 16:e0256148. [PMID: 34407144 PMCID: PMC8372949 DOI: 10.1371/journal.pone.0256148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
In females, estrogens have two main modes of action relating to gonadotropin secretion: positive feedback and negative feedback. Estrogen positive and negative feedback are controlled by different regions of the hypothalamus: the preoptic area/anterior portion (mainly the anteroventral periventricular nucleus, AVPV) of the hypothalamus is associated with estrogen positive feedback while the mediobasal hypothalamus (mainly the arcuate nucleus of the hypothalamus, ARH), is associated with estrogen negative feedback. In this study, we examined the temporal pattern of gene transcription in these two regions following estrogen treatment. Adult, ovariectomized, Long Evans rats received doses of estradiol benzoate (EB) or oil every 4 days for 3 cycles. On the last EB priming cycle, hypothalamic tissues were dissected into the AVPV+ and ARH+ at 0 hrs (baseline/oil control), 6 hrs, or 24 hrs after EB treatment. RNA was extracted and sequenced using bulk RNA sequencing. Differential gene analysis, gene ontology, and weighted correlation network analysis (WGCNA) was performed. Overall, we found that the AVPV+ and ARH+ respond differently to estradiol stimulation. In both regions, estradiol treatment resulted in more gene up-regulation than down-regulation. S100g was very strongly up-regulated by estradiol in both regions at 6 and 24 hrs after EB treatment. In the AVPV+ the highest number of differentially expressed genes occurred 24 hrs after EB. In the ARH+, the highest number of genes differentially expressed by EB occurred between 6 and 24 hrs after EB, while in the AVPV+, the fewest genes changed their expression between these time points, demonstrating a temporal difference in the way that EB regulates transcription these two areas. Several genes strongly implicated in gonadotropin release were differentially affected by estradiol including Esr1, encoding estrogen receptor-α and Kiss1, encoding kisspeptin. As an internal validation, Kiss1 was up-regulated in the AVPV+ and down-regulated in the ARH+. Gene network analysis revealed the vastly different clustering of genes modulated by estradiol in the AVPV+ compared with the ARH+. These results indicate that gene expression in these two hypothalamic regions have specific responses to estradiol in timing and direction.
Collapse
Affiliation(s)
- Margaret A. Mohr
- Dept of Neurobiology, and the Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA DGSOM, Los Angeles, California, United States of America
| | - Angela M. Wong
- Dept of Neurobiology, and the Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA DGSOM, Los Angeles, California, United States of America
| | - Gauthaman Sukumar
- Dept of Gynecological Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Clifton L. Dalgard
- Dept of Gynecological Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Weizhe Hong
- Dept of Neurobiology, and the Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA DGSOM, Los Angeles, California, United States of America
| | - T. John Wu
- Dept of Gynecological Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ye Emily Wu
- Dept of Neurobiology, and the Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA DGSOM, Los Angeles, California, United States of America
| | - Paul E. Micevych
- Dept of Neurobiology, and the Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA DGSOM, Los Angeles, California, United States of America
| |
Collapse
|
122
|
Arcuate and Preoptic Kisspeptin Neurons Exhibit Differential Projections to Hypothalamic Nuclei and Exert Opposite Postsynaptic Effects on Hypothalamic Paraventricular and Dorsomedial Nuclei in the Female Mouse. eNeuro 2021; 8:ENEURO.0093-21.2021. [PMID: 34281980 PMCID: PMC8354717 DOI: 10.1523/eneuro.0093-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 01/24/2023] Open
Abstract
Kisspeptin (Kiss1) neurons provide indispensable excitatory input to gonadotropin-releasing hormone (GnRH) neurons, which is important for the coordinated release of gonadotropins, estrous cyclicity and ovulation. However, Kiss1 neurons also send projections to many other brain regions within and outside the hypothalamus. Two different populations of Kiss1 neurons, one in the arcuate nucleus (Kiss1ARH) and another in the anteroventral periventricular nucleus (AVPV) and periventricular nucleus (PeN; Kiss1AVPV/PeN) of the hypothalamus are differentially regulated by ovarian steroids, and are believed to form direct contacts with GnRH neurons as well as other neurons. To investigate the projection fields from Kiss1AVPV/PeN and Kiss1ARH neurons in female mice, we used anterograde projection analysis, and channelrhodopsin-assisted circuit mapping (CRACM) to explore their functional input to select target neurons within the paraventricular (PVH) and dorsomedial (DMH) hypothalamus, key preautonomic nuclei. Cre-dependent viral (AAV1-DIO-ChR2 mCherry) vectors were injected into the brain to label the two Kiss1 neuronal populations. Immunocytochemistry (ICC) for mCherry and neuropeptides combined with confocal microscopy was used to determine the projection-fields of both Kiss1 neuronal groups. Whole-cell electrophysiology and optogenetics were used to elucidate the functional input to the PVH and DMH. Our analysis revealed many common but also several clearly separate projection fields between the two different populations of Kiss1 neurons. In addition, optogenetic stimulation of Kiss1 projections to PVH prodynorphin, Vglut2 and DMH CART-expressing neurons, revealed excitatory glutamatergic input from Kiss1ARH neurons and inhibitory GABAergic input from Kiss1AVPV/PeN neurons. Therefore, these steroid-sensitive Kiss1 neuronal groups can differentially control the excitability of target neurons to coordinate autonomic functions with reproduction.
Collapse
|
123
|
Nandankar N, Negrón AL, Wolfe A, Levine JE, Radovick S. Deficiency of arcuate nucleus kisspeptin results in postpubertal central hypogonadism. Am J Physiol Endocrinol Metab 2021; 321:E264-E280. [PMID: 34181485 PMCID: PMC8410100 DOI: 10.1152/ajpendo.00088.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 11/25/2022]
Abstract
Kisspeptin (encoded by Kiss1), a neuropeptide critically involved in neuroendocrine regulation of reproduction, is primarily synthesized in two hypothalamic nuclei: the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). AVPV kisspeptin is thought to regulate the estrogen-induced positive feedback control of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH), and the preovulatory LH surge in females. In contrast, ARC kisspeptin neurons, which largely coexpress neurokinin B and dynorphin A (collectively named KNDy neurons), are thought to mediate estrogen-induced negative feedback control of GnRH/LH and be the major regulators of pulsatile GnRH/LH release. However, definitive data to delineate the specific roles of AVPV versus ARC kisspeptin neurons in the control of GnRH/LH release is lacking. Therefore, we generated a novel mouse model targeting deletion of Kiss1 to the ARC nucleus (Pdyn-Cre/Kiss1fl/fl KO) to determine the functional differences between ARC and AVPV kisspeptin neurons on the reproductive axis. The efficacy of the knockout was confirmed at both the mRNA and protein levels. Adult female Pdyn-Cre/Kiss1fl/fl KO mice exhibited persistent diestrus and significantly fewer LH pulses when compared with controls, resulting in arrested folliculogenesis, hypogonadism, and infertility. Pdyn-Cre/Kiss1fl/fl KO males also exhibited disrupted LH pulsatility, hypogonadism, and variable, defective spermatogenesis, and subfertility. The timing of pubertal onset in males and females was equivalent to controls. These findings add to the current body of evidence for the critical role of kisspeptin in ARC KNDy neurons in GnRH/LH pulsatility in both sexes, while directly establishing ARC kisspeptin's role in regulating estrous cyclicity in female mice, and gametogenesis in both sexes, and culminating in disrupted fertility. The Pdyn-Cre/Kiss1fl/fl KO mice present a novel mammalian model of postpubertal central hypogonadism.NEW & NOTEWORTHY We demonstrate through a novel, conditional knockout mouse model of arcuate nucleus (ARC)-specific kisspeptin in the KNDy neuron that ARC kisspeptin is critical for estrous cyclicity in female mice and GnRH/LH pulsatility in both sexes. Our study reveals that ARC kisspeptin is essential for normal gametogenesis, and the loss of ARC kisspeptin results in significant hypogonadism, impacting fertility status. Our findings further confirm that normal puberty occurs despite a loss of ARC kisspeptin.
Collapse
Affiliation(s)
- Nimisha Nandankar
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Ariel L Negrón
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Andrew Wolfe
- Division of Physiological and Pathological Sciences, National Institutes of Health, Bethesda, Maryland
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| | - Sally Radovick
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
124
|
Talbi R, Ferrari K, Choi JH, Gerutshang A, McCarthy EA, Dischino D, León S, Navarro VM. Characterization of the Action of Tachykinin Signaling on Pulsatile LH Secretion in Male Mice. Endocrinology 2021; 162:bqab074. [PMID: 33839770 PMCID: PMC8234505 DOI: 10.1210/endocr/bqab074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/12/2022]
Abstract
The alternation of the stimulatory action of the tachykinin neurokinin B (NKB) and the inhibitory action of dynorphin within arcuate (ARH) Kiss1 neurons has been proposed as the mechanism behind the generation of gonadotropin-releasing hormone (GnRH) pulses through the pulsatile release of kisspeptin. However, we have recently documented that GnRH pulses still exist in gonadectomized mice in the absence of tachykinin signaling. Here, we document an increase in basal frequency and amplitude of luteinizing hormone (LH) pulses in intact male mice deficient in substance P, neurokinin A (NKA) signaling (Tac1KO), and NKB signaling (Tac2KO and Tacr3KO). Moreover, we offer evidence that a single bolus of the NKB receptor agonist senktide to gonad-intact wild-type males increases the basal release of LH without changing its frequency. Altogether, these data support the dispensable role of the individual tachykinin systems in the generation of LH pulses. Moreover, the increased activity of the GnRH pulse generator in intact KO male mice suggests the existence of compensation by additional mechanisms in the generation of kisspeptin/GnRH pulses.
Collapse
Affiliation(s)
- Rajae Talbi
- Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kaitlin Ferrari
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ji Hae Choi
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Achi Gerutshang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Elizabeth A McCarthy
- Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Daniel Dischino
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Silvia León
- Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Víctor M Navarro
- Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Graduate Program in Neuroscience, Boston, MA 02115, USA
| |
Collapse
|
125
|
Vanacker C, Defazio RA, Sykes CM, Moenter SM. A role for glial fibrillary acidic protein (GFAP)-expressing cells in the regulation of gonadotropin-releasing hormone (GnRH) but not arcuate kisspeptin neuron output in male mice. eLife 2021; 10:68205. [PMID: 34292152 PMCID: PMC8337074 DOI: 10.7554/elife.68205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized that glial fibrillary acidic protein (GFAP)-expressing astrocytes play a role in regulating GnRH and/or KNDy neuron activity and LH release. We used adeno-associated viruses to target designer receptors exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq- or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest that astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - R Anthony Defazio
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Charlene M Sykes
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Suzanne M Moenter
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States.,Internal Medicine, University of Michigan, Ann Arbor, United States.,Obstetrics & Gynecology, University of Michigan, Ann Arbor, United States.,Reproductive Sciences Program, University of Michigan, Ann Arbor, United States
| |
Collapse
|
126
|
Delli V, Silva MSB, Prévot V, Chachlaki K. The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Mol Cell Endocrinol 2021; 532:111302. [PMID: 33964320 DOI: 10.1016/j.mce.2021.111302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
127
|
Gonadotropin-Releasing Hormone (GnRH) Neuron Potassium Currents and Excitability in Both Sexes Exhibit Minimal Changes upon Removal of Negative Feedback. eNeuro 2021; 8:ENEURO.0126-21.2021. [PMID: 34135001 PMCID: PMC8266219 DOI: 10.1523/eneuro.0126-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 11/24/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) drives pituitary secretion of luteinizing hormone and follicle-stimulating hormone, which in turn regulate gonadal functions including steroidogenesis. The pattern of GnRH release and thus fertility depend on gonadal steroid feedback. Under homeostatic (negative) feedback conditions, removal of the gonads from either females or males increases the amplitude and frequency of GnRH release and alters the long-term firing pattern of these neurons in brain slices. The neurobiological mechanisms intrinsic to GnRH neurons that are altered by homeostatic feedback are not well studied and have not been compared between sexes. During estradiol-positive feedback, which is unique to females, there are correlated changes in voltage-gated potassium currents and neuronal excitability. We thus hypothesized that these same mechanisms would be engaged in homeostatic negative feedback. Voltage-gated potassium channels play a direct role in setting excitability and action potential properties. Whole-cell patch-clamp recordings of GFP-identified GnRH neurons in brain slices from sham-operated and castrated adult female and male mice were made to assess fast and slow inactivating potassium currents as well as action potential properties. Surprisingly, no changes were observed among groups in most potassium current properties, input resistance, or capacitance, and this was reflected in a lack of differences in excitability and specific action potential properties. These results support the concept that, in contrast to positive feedback, steroid-negative feedback regulation of GnRH neurons in both sexes is likely conveyed to GnRH neurons via mechanisms that do not induce major changes in the biophysical properties of these cells.
Collapse
|
128
|
Clinical Potential of Kisspeptin in Reproductive Health. Trends Mol Med 2021; 27:807-823. [PMID: 34210598 DOI: 10.1016/j.molmed.2021.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022]
Abstract
Kisspeptins are a family of hypothalamic neuropeptides that are essential for the regulation of reproductive physiology. Their importance in reproductive health became apparent in 2003, when loss-of-function variants in the gene encoding the kisspeptin receptor were reported to result in isolated congenital hypogonadotropic hypogonadism (CHH). It has since been ascertained that hypothalamic kisspeptin neurons regulate gonadotropin-releasing hormone (GnRH) secretion to thus stimulate the remainder of the reproductive endocrine axis. In this review, we discuss genetic variants that affect kisspeptin receptor signaling, summarize data on KISS1R agonists, and posit possible clinical uses of native and synthetic kisspeptin receptor agonists for the investigation and treatment of reproductive disorders.
Collapse
|
129
|
Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. Proc Natl Acad Sci U S A 2021; 118:2009156118. [PMID: 33500349 DOI: 10.1073/pnas.2009156118] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gonadotropin-releasing hormone (GnRH) pulse is fundamental for mammalian reproduction: GnRH pulse regimens are needed as therapies for infertile women as continuous GnRH treatment paradoxically inhibits gonadotropin release. Circumstantial evidence suggests that the hypothalamic arcuate KNDy neurons expressing kisspeptin (encoded by Kiss1), neurokinin B (encoded by Tac3), and d ynorphin A serve as a GnRH pulse generator; however, no direct evidence is currently available. Here, we show that rescuing >20% KNDy neurons by transfecting Kiss1 inside arcuate Tac3 neurons, but not outside of these neurons, recovered folliculogenesis and luteinizing hormone (LH) pulses, an indicator of GnRH pulses, in female global Kiss1 knockout (KO) rats and that >90% conditional arcuate Kiss1 KO in newly generated Kiss1-floxed rats completely suppressed LH pulses. These results first provide direct evidence that KNDy neurons are the GnRH pulse generator, and at least 20% of KNDy neurons are sufficient to maintain folliculogenesis via generating GnRH/gonadotropin pulses.
Collapse
|
130
|
Nair BB, Khant Aung Z, Porteous R, Prescott M, Glendining KA, Jenkins DE, Augustine RA, Silva MSB, Yip SH, Bouwer GT, Brown CH, Jasoni CL, Campbell RE, Bunn SJ, Anderson GM, Grattan DR, Herbison AE, Iremonger KJ. Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice. J Neuroendocrinol 2021; 33:e12972. [PMID: 33896057 DOI: 10.1111/jne.12972] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.
Collapse
Affiliation(s)
- Betina B Nair
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Robert Porteous
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Danielle E Jenkins
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Rachael A Augustine
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Mauro S B Silva
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Gregory T Bouwer
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
131
|
Sucquart IE, Nagarkar R, Edwards MC, Rodriguez Paris V, Aflatounian A, Bertoldo MJ, Campbell RE, Gilchrist RB, Begg DP, Handelsman DJ, Padmanabhan V, Anderson RA, Walters KA. Neurokinin 3 Receptor Antagonism Ameliorates Key Metabolic Features in a Hyperandrogenic PCOS Mouse Model. Endocrinology 2021; 162:6125280. [PMID: 33522579 DOI: 10.1210/endocr/bqab020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine condition characterized by a range of endocrine, reproductive, and metabolic abnormalities. At present, management of women with PCOS is suboptimal as treatment is only symptomatic. Clinical and experimental advances in our understanding of PCOS etiology support a pivotal role for androgen neuroendocrine actions in PCOS pathogenesis. Hyperandrogenism is a key PCOS trait and androgen actions play a role in regulating the kisspeptin-/neurokinin B-/dynorphin (KNDy) system. This study aimed to investigate if targeted antagonism of neurokinin B signaling through the neurokinin 3 receptor (NK3R) would reverse PCOS traits in a dihydrotestosterone (DHT)-induced mouse model of PCOS. After 3 months, DHT exposure induced key reproductive PCOS traits of cycle irregularity and ovulatory dysfunction, and PCOS-like metabolic traits including increased body weight; white and brown fat pad weights; fasting serum triglyceride and glucose levels, and blood glucose incremental area under the curve. Treatment with a NK3R antagonist (MLE4901) did not impact the observed reproductive defects. In contrast, following NK3R antagonist treatment, PCOS-like females displayed decreased total body weight, adiposity, and adipocyte hypertrophy, but increased respiratory exchange ratio, suggesting NK3R antagonism altered the metabolic status of the PCOS-like females. NK3R antagonism did not improve circulating serum triglyceride or fasted glucose levels. Collectively, these findings demonstrate that NK3R antagonism may be beneficial in the treatment of adverse metabolic features associated with PCOS and support neuroendocrine targeting in the development of novel therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Irene E Sucquart
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ruchi Nagarkar
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Melissa C Edwards
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Valentina Rodriguez Paris
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ali Aflatounian
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael J Bertoldo
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rebecca E Campbell
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Denovan P Begg
- Department of Behavioural Neuroscience, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Concord Hospital, NSW 2139, Australia
| | | | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kirsty A Walters
- Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
132
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Membrane and nuclear initiated estrogenic regulation of homeostasis. Steroids 2021; 168:108428. [PMID: 31229508 PMCID: PMC6923613 DOI: 10.1016/j.steroids.2019.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Reproduction and energy balance are inextricably linked in order to optimize the evolutionary fitness of an organism. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy and produce unhealthy or obesity-prone offspring. The quintessential function of the hypothalamus is to act as a bridge between the endocrine and nervous systems, coordinating fertility and autonomic functions. Across the female reproductive cycle various motivations wax and wane, following levels of ovarian hormones. Estrogens, more specifically 17β-estradiol (E2), coordinate a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool of cells, this triumvirate is composed of the kisspeptin (Kiss1ARH), proopiomelanocortin (POMC), and neuropeptide Y/agouti-related peptide (AgRP) neurons. Although the excitability of these neuronal subpopulations is subject to genomic and rapid estrogenic regulation, kisspeptin neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we will review the recent findings on the synaptic interactions between Kiss1, AgRP and POMC neurons and how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
133
|
Yip SH, Liu X, Hessler S, Cheong I, Porteous R, Herbison AE. Indirect Suppression of Pulsatile LH Secretion by CRH Neurons in the Female Mouse. Endocrinology 2021; 162:bqaa237. [PMID: 33543235 DOI: 10.1210/endocr/bqaa237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 01/01/2023]
Abstract
Acute stress is a potent suppressor of pulsatile luteinizing hormone (LH) secretion, but the mechanisms through which corticotrophin-releasing hormone (CRH) neurons inhibit gonadotropin-releasing hormone (GnRH) release remain unclear. The activation of paraventricular nucleus (PVN) CRH neurons with Cre-dependent hM3Dq in Crh-Cre female mice resulted in the robust suppression of pulsatile LH secretion. Channelrhodopsin (ChR2)-assisted circuit mapping revealed that PVN CRH neuron projections existed around kisspeptin neurons in the arcuate nucleus (ARN) although many more fibers made close appositions with GnRH neuron distal dendrons in the ventral ARN. Acutely prepared brain slice electrophysiology experiments in GnRH- green fluorescent protein (GFP) mice showed a dose-dependent (30 and 300 nM CRH) activation of firing in ~20% of GnRH neurons in both intact diestrus and ovariectomized mice with inhibitory effects being uncommon (<8%). Confocal GCaMP6 imaging of GnRH neuron distal dendrons in acute para-horizontal brain slices from GnRH-Cre mice injected with Cre-dependent GCaMP6s adeno-associated viruses demonstrated no effects of 30 to 300 nM CRH on GnRH neuron dendron calcium concentrations. Electrophysiological recordings of ARN kisspeptin neurons in Crh-Cre,Kiss1-GFP mice revealed no effects of 30 -300 nM CRH on basal or neurokinin B-stimulated firing rate. Similarly, the optogenetic activation (2-20 Hz) of CRH nerve terminals in the ARN of Crh-Cre,Kiss1-GFP mice injected with Cre-dependent ChR2 had no effect on kisspeptin neuron firing. Together, these studies demonstrate that PVN CRH neurons potently suppress LH pulsatility but do not exert direct inhibitory control over GnRH neurons, at their cell body or dendron, or the ARN kisspeptin neuron pulse generator in the female mouse.
Collapse
Affiliation(s)
- Siew Hoong Yip
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Xinhuai Liu
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Sabine Hessler
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Isaiah Cheong
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Robert Porteous
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
134
|
Torres E, Velasco I, Franssen D, Heras V, Gaytan F, Leon S, Navarro VM, Pineda R, Candenas ML, Romero-Ruiz A, Tena-Sempere M. Congenital ablation of Tacr2 reveals overlapping and redundant roles of NK2R signaling in the control of reproductive axis. Am J Physiol Endocrinol Metab 2021; 320:E496-E511. [PMID: 33427049 PMCID: PMC8828271 DOI: 10.1152/ajpendo.00346.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.
Collapse
Affiliation(s)
- Encarnacion Torres
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Violeta Heras
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Silvia Leon
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victor M Navarro
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafael Pineda
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - M Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Seville, Spain
| | - Antonio Romero-Ruiz
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
135
|
Franssen D, Barroso A, Ruiz-Pino F, Vázquez MJ, García-Galiano D, Castellano JM, Onieva R, Ruiz-Cruz M, Poutanen M, Gaytán F, Diéguez C, Pinilla L, Lopez M, Roa J, Tena-Sempere M. AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism 2021; 115:154460. [PMID: 33285180 DOI: 10.1016/j.metabol.2020.154460] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/08/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reproduction is tightly coupled to body energy and metabolic status. GnRH neurons, master elements and final output pathway for the brain control of reproduction, directly or indirectly receive and integrate multiple metabolic cues to regulate reproductive function. Yet, the molecular underpinnings of such phenomenon remain largely unfolded. AMP-activated protein kinase (AMPK), the fundamental cellular sensor that becomes activated in conditions of energy deficit, has been recently shown to participate in the control of Kiss1 neurons, essential gatekeepers of the reproductive axis, by driving an inhibitory valence in situations of energy scarcity at puberty. However, the contribution of AMPK signaling specifically in GnRH neurons to the metabolic control of reproduction remains unknown. METHODS Double immunohistochemistry (IHC) was applied to evaluate expression of active (phosphorylated) AMPK in GnRH neurons and a novel mouse line, named GAMKO, with conditional ablation of the AMPK α1 subunit in GnRH neurons, was generated. GAMKO mice of both sexes were subjected to reproductive characterization, with attention to puberty and gonadotropic responses to kisspeptin and metabolic stress. RESULTS A vast majority (>95%) of GnRH neurons co-expressed pAMPK. Female (but not male) GAMKO mice displayed earlier puberty onset and exaggerated LH (as surrogate marker of GnRH) responses to kisspeptin-10 at the prepubertal age. In adulthood, GAMKO females retained increased LH responsiveness to kisspeptin and showed partial resilience to the inhibitory effects of conditions of negative energy balance on the gonadotropic axis. The modulatory role of AMPK in GnRH neurons required preserved ovarian function, since the differences in LH pulsatility detected between GAMKO and control mice subjected to fasting were abolished in ovariectomized animals. CONCLUSIONS Altogether, our data document a sex-biased, physiological role of AMPK signaling in GnRH neurons, as molecular conduit of the inhibitory actions of conditions of energy deficit on the female reproductive axis.
Collapse
Affiliation(s)
- D Franssen
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - A Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - F Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - D García-Galiano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - J M Castellano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - R Onieva
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - M Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - M Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - F Gaytán
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - C Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - L Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M Lopez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - J Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
136
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
137
|
Atre I, Mizrahi N, Hausken K, Yom-Din S, Hurvitz A, Degani G, Levavi-Sivan B. Molecular characterization of kisspeptin receptors and gene expression analysis during oogenesis in the Russian sturgeon (Acipenser gueldenstaedtii). Gen Comp Endocrinol 2021; 302:113691. [PMID: 33301759 DOI: 10.1016/j.ygcen.2020.113691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Sturgeons belong to a subclass of fishes that derived from ray-finned fish ancestors preceding the emergence of teleosts. The Russian sturgeon (Acipenser gueldenstaedtii) is a late-maturing fish with the females reaching puberty under aquaculture conditions at 6-10 years of age. Since kisspeptin has been shown to be a key hormone involved in regulation of major reproductive processes of many vertebrate species, this study was conducted to better understand the kisspeptin receptor (KissR) in sturgeon. In this study we have cloned Russian sturgeon KissR1 from brain mRNA and observed the ontogeny of rsKissR1 mRNA expression in ovarian follicles. Multiple sequence alignment of KissR1, KissR4, and their orthologs revealed that the Russian sturgeon (rs) KissR1 sequence shares 64%-77% identity with elephant shark, coelacanth, and gar and 44-58% identity with tetrapod and teleost KissR1 sequences, while KissR4 seemed to share <65% identity to eel KissR2 and ~57% identity to Perciformes and Cypriniformes. Further rsKissR4 showed <97% identity to reed fish KissR4, <63% with Squamata (Reptiles) and gar KissR4. A phylogenetic analysis revealed that rsKissR1 is more closely related to coelacanth and gar KissR1 than teleost, while rsKissR4 was part of the KissR4 clade and shared higher similarity with Actinopterygiian sequences. We have further predicted homology models for both rsKiss receptors and performed in-silico analyses of their binding to a kiss-10 peptide. Both sturgeon and zebrafish Kiss1 and Kiss2 activated rsKissR1 via both PKC/Ca2+ and PKA/cAMP signal-transduction pathways, while rsKissR2 was found to be less effective and was not activated by stKiss peptides. Ovarian rsKissR transcript levels for 10 fishes were determined by real-time PCR and significantly increased concomitantly with oogenesis, where the highest level of expression was evident in black follicles. These data suggest that extra-neuronal expression of the kisspeptin receptor may be involved in sturgeon reproduction in a manner dependent on reproductive development.
Collapse
Affiliation(s)
- Ishwar Atre
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Naama Mizrahi
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Krist Hausken
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Svetlana Yom-Din
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel; MIGAL - Galilee Technology Center, P.O. Box 831, Kiryat Shmona 10200, Israel; School of Science and Technology, Tel-Hai Academic College, Galilee, Israel
| | - Avshalom Hurvitz
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel; MIGAL - Galilee Technology Center, P.O. Box 831, Kiryat Shmona 10200, Israel
| | - Gad Degani
- MIGAL - Galilee Technology Center, P.O. Box 831, Kiryat Shmona 10200, Israel; School of Science and Technology, Tel-Hai Academic College, Galilee, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
138
|
Liu X, Yeo SH, McQuillan HJ, Herde MK, Hessler S, Cheong I, Porteous R, Herbison AE. Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron. eLife 2021; 10:62455. [PMID: 33464205 PMCID: PMC7847305 DOI: 10.7554/elife.62455] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
The necessity and functional significance of neurotransmitter co-transmission remains unclear. The glutamatergic 'KNDy' neurons co-express kisspeptin, neurokinin B (NKB), and dynorphin and exhibit a highly stereotyped synchronized behavior that reads out to the gonadotropin-releasing hormone (GnRH) neuron dendrons to drive episodic hormone secretion. Using expansion microscopy, we show that KNDy neurons make abundant close, non-synaptic appositions with the GnRH neuron dendron. Electrophysiology and confocal GCaMP6 imaging demonstrated that, despite all three neuropeptides being released from KNDy terminals, only kisspeptin was able to activate the GnRH neuron dendron. Mice with a selective deletion of kisspeptin from KNDy neurons failed to exhibit pulsatile hormone secretion but maintained synchronized episodic KNDy neuron behavior that is thought to depend on recurrent NKB and dynorphin transmission. This indicates that KNDy neurons drive episodic hormone secretion through highly redundant neuropeptide co-transmission orchestrated by differential post-synaptic neuropeptide receptor expression at the GnRH neuron dendron and KNDy neuron.
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Shel-Hwa Yeo
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - H James McQuillan
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Michel K Herde
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Sabine Hessler
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Isaiah Cheong
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Robert Porteous
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
139
|
Uenoyama Y, Nagae M, Tsuchida H, Inoue N, Tsukamura H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front Endocrinol (Lausanne) 2021; 12:724632. [PMID: 34566891 PMCID: PMC8458932 DOI: 10.3389/fendo.2021.724632] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.
Collapse
|
140
|
Lin XH, Lass G, Kong LS, Wang H, Li XF, Huang HF, O’Byrne KT. Optogenetic Activation of Arcuate Kisspeptin Neurons Generates a Luteinizing Hormone Surge-Like Secretion in an Estradiol-Dependent Manner. Front Endocrinol (Lausanne) 2021; 12:775233. [PMID: 34795643 PMCID: PMC8593229 DOI: 10.3389/fendo.2021.775233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 01/31/2023] Open
Abstract
Traditionally, the anteroventral periventricular (AVPV) nucleus has been the brain area associated with luteinizing hormone (LH) surge secretion in rodents. However, the role of the other population of hypothalamic kisspeptin neurons, in the arcuate nucleus (ARC), has been less well characterized with respect to surge generation. Previous experiments have demonstrated ARC kisspeptin knockdown reduced the amplitude of LH surges, indicating that they have a role in surge amplification. The present study used an optogenetic approach to selectively stimulate ARC kisspeptin neurons and examine the effect on LH surges in mice with different hormonal administrations. LH level was monitored from 13:00 to 21:00 h, at 30-minute intervals. Intact Kiss-Cre female mice showed increased LH secretion during the stimulation period in addition to displaying a spontaneous LH surge around the time of lights off. In ovariectomized Kiss-Cre mice, optogenetic stimulation was followed by a surge-like secretion of LH immediately after the stimulation period. Ovariectomized Kiss-Cre mice with a low dose of 17β-estradiol (OVX+E) replacement displayed a surge-like increase in LH release during period of optic stimulation. No LH response to the optic stimulation was observed in OVX+E mice on the day of estradiol benzoate (EB) treatment (day 1). However, after administration of progesterone (day 2), all OVX+E+EB+P mice exhibited an LH surge during optic stimulation. A spontaneous LH surge also occurred in these mice at the expected time. Taken together, these results help to affirm the fact that ARC kisspeptin may have a novel amplificatory role in LH surge production, which is dependent on the gonadal steroid milieu.
Collapse
Affiliation(s)
- Xian-Hua Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Geffen Lass
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling-Si Kong
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Songjiang District, Shanghai, China
| | - Xiao-Feng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - He-Feng Huang
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Kevin T. O’Byrne
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Kevin T. O’Byrne, kevin.o’
| |
Collapse
|
141
|
Rumpler É, Skrapits K, Takács S, Göcz B, Trinh SH, Rácz G, Matolcsy A, Kozma Z, Ciofi P, Dhillo WS, Hrabovszky E. Characterization of Kisspeptin Neurons in the Human Rostral Hypothalamus. Neuroendocrinology 2021; 111:249-262. [PMID: 32299085 DOI: 10.1159/000507891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS Immunohistochemical techniques were used. RESULTS The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sarolta H Trinh
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Kozma
- Department of Forensic Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary,
| |
Collapse
|
142
|
Nakamura S, Miwa M, Morita Y, Ohkura S, Yamamura T, Wakabayashi Y, Matsuyama S. Neurokinin 3 receptor-selective agonist, senktide, decreases core temperature in Japanese Black cattle. Domest Anim Endocrinol 2021; 74:106522. [PMID: 32841888 DOI: 10.1016/j.domaniend.2020.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 11/27/2022]
Abstract
Heat stress disrupts reproductive function in cattle. In summer, high ambient temperature and humidity elevate core body temperature, which is considered to be detrimental to reproductive abilities in cattle. Neurokinin B (NKB) is a factor that generates pulsatile GnRH and subsequent LH secretion in mammals. Recent studies have reported that NKB-neurokinin 3 receptor (NK3R) signaling is associated with heat-defense responses in rodents. The present study aimed to clarify the role of NKB-NK3R signaling in thermoregulation in cattle. We examined the effects of an NK3R-selective agonist, senktide, on vaginal temperature as an indicator of core body temperature in winter and summer. In both seasons, continuous infusion of senktide for 4 h immediately decreased vaginal temperature, and the mean temperature change in the senktide-treated group was significantly lower than that of both vehicle- and GnRH-treated groups. Administration of GnRH induced LH elevation, but there was no significant difference in vaginal temperature change between GnRH- and vehicle-treated groups. Moreover, we investigated the effects of senktide on ovarian temperature. Senktide treatment seemed to suppress the increase in ovarian temperature from 2 h after the beginning of administration, although the difference between groups was not statistically significant. Taken together, these results suggest that senktide infusion caused a decline in the vaginal temperature of cattle, in both winter and summer seasons, and this effect was not due to the gonadotropin-releasing action of senktide. These findings provide new therapeutic options for senktide to support both heat-defense responses and GnRH/LH pulse generation.
Collapse
Affiliation(s)
- S Nakamura
- Division of Animal Feeding and Management Research, Institute of Livestock and Grassland Science, NARO, Nasushiobara, Japan; Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - M Miwa
- Division of Animal Feeding and Management Research, Institute of Livestock and Grassland Science, NARO, Nasushiobara, Japan; Division of Grassland Farming, Institute of Livestock and Grassland Science, NARO, Nasushiobara, Japan; Agricultural AI Research Office, Research Center for Agricultural Information Technology, NARO, Tsukuba, Japan
| | - Y Morita
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - S Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - T Yamamura
- Agricultural AI Research Office, Research Center for Agricultural Information Technology, NARO, Tsukuba, Japan; Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Y Wakabayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - S Matsuyama
- Division of Animal Feeding and Management Research, Institute of Livestock and Grassland Science, NARO, Nasushiobara, Japan; Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
143
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
144
|
Zakharova L, Sharova V, Izvolskaia M. Mechanisms of Reciprocal Regulation of Gonadotropin-Releasing Hormone (GnRH)-Producing and Immune Systems: The Role of GnRH, Cytokines and Their Receptors in Early Ontogenesis in Normal and Pathological Conditions. Int J Mol Sci 2020; 22:ijms22010114. [PMID: 33374337 PMCID: PMC7795970 DOI: 10.3390/ijms22010114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Different aspects of the reciprocal regulatory influence on the development of gonadotropin-releasing hormone (GnRH)-producing- and immune systems in the perinatal ontogenesis and their functioning in adults in normal and pathological conditions are discussed. The influence of GnRH on the development of the immune system, on the one hand, and the influence of proinflammatory cytokines on the development of the hypothalamic-pituitary-gonadal system, on the other hand, and their functioning in adult offspring are analyzed. We have focused on the effects of GnRH on the formation and functional activity of the thymus, as the central organ of the immune system, in the perinatal period. The main mechanisms of reciprocal regulation of these systems are discussed. The reproductive health of an individual is programmed by the establishment and development of physiological systems during critical periods. Regulatory epigenetic mechanisms of development are not strictly genetically controlled. These processes are characterized by a high sensitivity to various regulatory factors, which provides possible corrections for disorders.
Collapse
|
145
|
Rumpler É, Takács S, Göcz B, Baska F, Szenci O, Horváth A, Ciofi P, Hrabovszky E, Skrapits K. Kisspeptin Neurons in the Infundibular Nucleus of Ovariectomized Cats and Dogs Exhibit Unique Anatomical and Neurochemical Characteristics. Front Neurosci 2020; 14:598707. [PMID: 33343288 PMCID: PMC7738562 DOI: 10.3389/fnins.2020.598707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons co-synthesizing kisspeptin (KP), neurokinin B (NKB), and dynorphin (“KNDy neurons”) in the hypothalamic arcuate/infundibular nucleus (INF) form a crucial component of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) “pulse generator.” The goal of our study was to characterize KP neuron distribution, neuropeptide phenotype and connectivity to GnRH cells in ovariectomized (OVX) dogs and cats with immunohistochemistry on formalin-fixed hypothalamic tissue sections. In both species, KP and NKB neurons occurred in the INF and the two cell populations overlapped substantially. Dynorphin was detected in large subsets of canine KP (56%) and NKB (37%) cells and feline KP (64%) and NKB (57%) cells; triple-labeled (“KNDy”) somata formed ∼25% of all immunolabeled neurons. Substance P (SP) was present in 20% of KP and 29% of NKB neurons in OVX cats but not dogs, although 26% of KP and 24% of NKB neurons in a gonadally intact male dog also contained SP signal. Only in cats, cocaine- and amphetamine regulated transcript was also colocalized with KP (23%) and NKB (7%). In contrast with reports from mice, KP neurons did not express galanin in either carnivore. KP neurons innervated virtually all GnRH neurons in both species. Results of this anatomical study on OVX animals reveal species-specific features of canine and feline mediobasal hypothalamic KP neurons. Anatomical and neurochemical similarities to and differences from the homologous KP cells of more extensively studied rodent, domestic and primate species will enhance our understanding of obligate and facultative players in the molecular mechanisms underlying pulsatile GnRH/LH secretion.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Baska
- Department of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Ottó Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary.,MTA-SZIE Large Animal Clinical Research Group, University of Veterinary Medicine, Üllõ, Hungary
| | - András Horváth
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, Üllõ, Hungary
| | - Philippe Ciofi
- INSERM U1215, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
146
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
147
|
Lehman MN, Coolen LM, Goodman RL. Importance of neuroanatomical data from domestic animals to the development and testing of the KNDy hypothesis for GnRH pulse generation. Domest Anim Endocrinol 2020; 73:106441. [PMID: 32113801 PMCID: PMC7377956 DOI: 10.1016/j.domaniend.2020.106441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Work during the last decade has led to a novel hypothesis for a question that is half a century old: how is the secretory activity of GnRH neurons synchronized to produce episodic GnRH secretion. This hypothesis posits that a group of neurons in the arcuate nucleus (ARC) that contain kisspeptin, neurokinin B (NKB), and dynorphin (known as KNDy neurons) fire simultaneously to drive each GnRH pulse. Kisspeptin is proposed to be the output signal to GnRH neurons with NKB and dynorphin acting within the KNDy network to initiate and terminate each pulse, respectively. This review will focus on the importance of neuroanatomical studies in general and, more specifically, on the work of Dr Marcel Amstalden during his postdoctoral fellowship with the authors, to the development and testing of this hypothesis. Critical studies in sheep that laid the foundation for much of the KNDy hypothesis included the report that a group of neurons in the ARC contain both NKB and dynorphin and appear to form an interconnected network capable of firing synchronously, and Marcel's observations that the NKB receptor is found in most KNDy neurons, but not in any GnRH neurons. Moreover, reports that almost all dynorphin-NKB neurons and kisspeptin neurons in the ARC contained steroid receptors led directly to their common identification as "KNDy" neurons. Subsequent anatomical work demonstrating that KNDy neurons project to GnRH somas and terminals, and that kisspeptin receptors are found in GnRH, but not KNDy neurons, provided important tests of this hypothesis. Recent work has explored the time course of dynorphin release onto KNDy neurons and has begun to apply new approaches to the issue, such as RNAscope in situ hybridization and the use of whole tissue optical clearing with light-sheet microscopy. Together with other approaches, these anatomical techniques will allow continued exploration of the functions of the KNDy population and the possible role of other ARC neurons in generation of GnRH pulses.
Collapse
Affiliation(s)
- M N Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - L M Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - R L Goodman
- Departments of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
148
|
Romero-Ruiz A, Skorupskaite K, Gaytan F, Torres E, Perdices-Lopez C, Mannaerts BM, Qi S, Leon S, Manfredi-Lozano M, Lopez-Rodriguez C, Avendaño MS, Sanchez-Garrido MA, Vazquez MJ, Pinilla L, van Duin M, Kohout TA, Anderson RA, Tena-Sempere M. Kisspeptin treatment induces gonadotropic responses and rescues ovulation in a subset of preclinical models and women with polycystic ovary syndrome. Hum Reprod 2020; 34:2495-2512. [PMID: 31820802 PMCID: PMC6936723 DOI: 10.1093/humrep/dez205] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/25/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Can kisspeptin treatment induce gonadotrophin responses and ovulation in preclinical models and anovulatory women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Kisspeptin administration in some anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. WHAT IS KNOWN ALREADY PCOS is a prevalent, heterogeneous endocrine disorder, characterized by ovulatory dysfunction, hyperandrogenism and deregulated gonadotrophin secretion, in need of improved therapeutic options. Kisspeptins (encoded by Kiss1) are master regulators of the reproductive axis, acting mainly at GnRH neurons, with kisspeptins being an essential drive for gonadotrophin-driven ovarian follicular maturation and ovulation. Altered Kiss1 expression has been found in rodent models of PCOS, although the eventual pathophysiological role of kisspeptins in PCOS remains unknown. STUDY DESIGN, SIZE, DURATION Gonadotrophin and ovarian/ovulatory responses to kisspeptin-54 (KP-54) were evaluated in three preclinical models of PCOS, generated by androgen exposures at different developmental windows, and a pilot exploratory cohort of anovulatory women with PCOS. PARTICIPANTS/MATERIALS, SETTING, METHODS Three models of PCOS were generated by exposure of female rats to androgens at different periods of development: PNA (prenatal androgenization; N = 20), NeNA (neonatal androgenization; N = 20) and PWA (post-weaning androgenization; N = 20). At adulthood (postnatal day 100), rats were subjected to daily treatments with a bolus of KP-54 (100 μg/kg, s.c.) or vehicle for 11 days (N = 10 per model and treatment). On Days 1, 4, 7 and 11, LH and FSH responses were assessed at different time-points within 4 h after KP-54 injection, while ovarian responses, in terms of follicular maturation and ovulation, were measured at the end of the treatment. In addition, hormonal (gonadotrophin, estrogen and inhibin B) and ovulatory responses to repeated KP-54 administration, at doses of 6.4-12.8 nmol/kg, s.c. bd for 21 days, were evaluated in a pilot cohort of anovulatory women (N = 12) diagnosed with PCOS, according to the Rotterdam criteria. MAIN RESULTS AND THE ROLE OF CHANCE Deregulated reproductive indices were detected in all PCOS models: PNA, NeNA and PWA. Yet, anovulation was observed only in NeNA and PWA rats. However, while anovulatory NeNA rats displayed significant LH and FSH responses to KP-54 (P < 0.05), which rescued ovulation, PWA rats showed blunted LH secretion after repeated KP-54 injection and failed to ovulate. In women with PCOS, KP-54 resulted in a small rise in LH (P < 0.05), with an equivalent elevation in serum estradiol levels (P < 0.05). Two women showed growth of a dominant follicle with subsequent ovulation, one woman displayed follicle growth but not ovulation and desensitization was observed in another patient. No follicular response was detected in the other women. LIMITATIONS, REASONS FOR CAUTION While three different preclinical PCOS models were used in order to capture the heterogeneity of clinical presentations of the syndrome, it must be noted that rat models recapitulate many but not all the features of this condition. Additionally, our pilot study was intended as proof of principle, and the number of participants is low, but the convergent findings in preclinical and clinical studies reinforce the validity of our conclusions. WIDER IMPLICATIONS OF THE FINDINGS Our first-in-rodent and -human studies demonstrate that KP-54 administration in anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. As our rat models likely reflect the diversity of PCOS phenotypes, our results argue for the need of personalized management of anovulatory dysfunction in women with PCOS, some of whom may benefit from kisspeptin-based treatments. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by research agreements between Ferring Research Institute and the Universities of Cordoba and Edinburgh. K.S. was supported by the Wellcome Trust Scottish Translational Medicine and Therapeutics Initiative (STMTI). Some of this work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. M.T.-S. is a member of CIBER Fisiopatología de la Obesidad y Nutrición, which is an initiative of Instituto de Salud Carlos III. Dr Mannaerts is an employee of Ferring International PharmaScience Center (Copenhagen, Denmark), and Drs Qi, van Duin and Kohout are employees of the Ferring Research Institute (San Diego, USA). Dr Anderson and Dr Tena-Sempere were recipients of a grant support from the Ferring Research Institute, and Dr Anderson has undertaken consultancy work and received speaker fees outside this study from Merck, IBSA, Roche Diagnostics, NeRRe Therapeutics and Sojournix Inc. Dr Skorupskaite was supported by the Wellcome Trust through the Scottish Translational Medicine and Therapeutics Initiative 102419/Z/13/A. The other authors have no competing interest.
Collapse
Affiliation(s)
- A Romero-Ruiz
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - K Skorupskaite
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - F Gaytan
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - E Torres
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - C Perdices-Lopez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - B M Mannaerts
- Ferring International PharmaScience Center, Copenhagen, Denmark
| | - S Qi
- Ferring Research Institute, San Diego, CA 92121, USA
| | - S Leon
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M Manfredi-Lozano
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - C Lopez-Rodriguez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M S Avendaño
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M A Sanchez-Garrido
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M J Vazquez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - L Pinilla
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M van Duin
- Ferring Research Institute, San Diego, CA 92121, USA
| | - T A Kohout
- Ferring Research Institute, San Diego, CA 92121, USA
| | - R A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - M Tena-Sempere
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain.,FiDiPro Program, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
149
|
Handelsman DJ. Testosterone, Spermatogenesis, and Unravelling the Mysteries of Puberty. Endocrinology 2020; 161:5875543. [PMID: 32701149 DOI: 10.1210/endocr/bqaa120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
|
150
|
Etzion T, Zmora N, Zohar Y, Levavi-Sivan B, Golan M, Gothilf Y. Ectopic over expression of kiss1 may compensate for the loss of kiss2. Gen Comp Endocrinol 2020; 295:113523. [PMID: 32470472 DOI: 10.1016/j.ygcen.2020.113523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Kisspeptin (KISS) is a neuropeptide which plays a central role in the regulation of the hypothalamic-pituitary-gonadal axis, and is essential for sexual maturation and fertility in mammals. Unlike mammals, which possess only one KISS gene, two paralogous genes, kiss1 and kiss2, have been identified in zebrafish and other non-mammalian vertebrates. Previous studies suggest that Kiss2, but not Kiss1, is the reproduction relevant form amongst the two. To better understand the role of each of these isoforms in reproduction, a loss of function approach was applied. Two genetic manipulation techniques-clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector nucleases (TALEN)-were used to generate kiss1 and kiss2 knockout (KO) zebrafish lines, respectively. Examination of these KO lines showed that reproductive capability was not impaired, confirming earlier observations. Further analysis revealed that KO of kiss2 caused a significant increase in expression levels of kiss1, kiss2r and tac3a, while KO of kiss1 had no effect on the expression of any of the examined genes. In situ hybridization analysis revealed that kiss1 mRNA is expressed only in the habenula in wild type brains, while in kiss2 KO fish, kiss1 mRNA-expressing cells were identified also in the ventral telencephalon, the ventral part of the entopeduncular nucleus, and the dorsal and ventral hypothalamus. Interestingly, these regions are known to express kiss2r, and the ventral hypothalamus normally expresses kiss2. These results suggest that a compensatory mechanism, involving ectopic kiss1 expression, takes place in the kiss2 KO fish, which may substitute for Kiss2 activity.
Collapse
Affiliation(s)
- Talya Etzion
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Yonatan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Letziyon 7505101, Israel
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|